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1 Abstract
Species respond to global climatic changes in a local context. Understanding this process, 

including its speed and intensity is paramount due to the pace  at which such changes are 

currently occurring. Tree species are particularly interesting to study in this regard due to their 

long generation times, sedentarism, and ecological and economic importance. Quercus suber 

L. is  an evergreen forest  tree species  of the Fagaceae family with an essentially  Western 

Mediterranean distribution. Despite frequent assessments of the species’ evolutionary history, 

large-scale genetic studies have mostly relied on plastidial markers, whereas nuclear markers 

have been used on studies with locally focused sampling strategies. In this work, “Genotyping 

by  Sequencing”  (GBS)  is  used  to  derive  1,996  SNP  markers  to  assess  the  species’ 

evolutionary history from a nuclear DNA perspective, gain insights on how local adaptation is 

shaping the species’ genetic background, and to forecast how Q. suber may respond to global 

climatic changes from a genetic perspective. Results reveal (1) an essentially unstructured 

species, where (2) a balance between gene flow and local adaptation keeps the species’ gene 

pool somewhat homogeneous across its distribution, but still allowing (3) variation clines for 

the individuals to cope with local conditions. “Risk of Non-Adaptedness” (RONA) analyses, 

suggest that for the considered variables and most sampled locations, (4) the cork oak should 

not require large shifts in allele frequencies to survive the predicted climatic changes. Future 

directions  include  integrating  these  results  with  ecological  niche  modelling  perspectives, 

improving  the  RONA  methodology  and  expanding  its  use  to  other  species.  With  the 

implementation presented in this work, the RONA can now also be easily assessed for other 

organisms.
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2 Introduction
Understanding how and at  which  rate  species  respond to  global  climatic  change  in  their 

environmental  context  is  becoming an increasingly important  question due to  the pace at 

which these are taking place (Kremer et al., 2012; Primack et al., 2009). To avoid obliteration, 

species may respond to such changes by either altering their distribution range, or by adapting 

to the new conditions. The latter can occur “instantly”, due to phenotypic plasticity, or across 

several generations, by local adaptation (Aitken, Yeaman, Holliday, Wang, & Curtis-McLane, 

2008). The kind of response species can provide is known to depend on factors like location, 

distribution range,  and/or  genetic  background  (Gienapp,  Teplitsky,  Alho,  Mills,  & Merilä, 

2008; Ohlemuller, Gritti, Sykes, & Thomas, 2006).

Tree species are characterized by sedentarism and long lifespan and generation times, allied 

with  generally  large  distribution  ranges  and  capacity  for  long  distance  dispersal  through 

pollen and seeds (Kremer et al., 2012). These traits make them interesting subjects to study 

regarding their response to global climatic changes (Thuiller et al., 2008).

In this work, we address the case of the cork oak (Quercus suber L.). With a distribution 

ranging  most  of  the  West  Mediterranean  region  (Figure  1), this  oak  species  is  the  most 

selective evergreen oak of the Mediterranean basin in terms of precipitation and temperature 

conditions (Vessella, López-Tirado, Simeone, Schirone, & Hidalgo, 2017). European oaks in 

particular, are known to have endured past climatic alterations, but how they can cope with 

the current, rapidly occurring changes is not yet fully understood (Kremer, Potts, & Delzon, 

2014; Kremer et al., 2012). Despite this tree’s ecological and economic importance, there is 

yet much to learn regarding the consequences of global climatic change on its future (Benito 

Garzón, Sánchez de Dios, & Sainz Ollero, 2008).
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Some  recent  works  have  attempted  to  answer  this  very  question,  but  focusing  on  range 

expansion and contraction with the assumption of a genetically homogeneous species and 

niche conservationism (Correia, Bugalho, Franco, & Palmeirim, 2017; Vessella et al., 2017). 

Both  these  studies  also  highlight  the  need  for  a  genetic  study  regarding  the  adaptation 

potential of Q. suber. Unlike what happen in other oak species (Rellstab et al., 2016), studies 

integrating genetic information and response to climatic alterations of Q. suber (eg. (Modesto 

et al., 2014)) are rare and of small scale (Jose Alberto Ramírez-Valiente, Valladares, Huertas, 

Granados,  & Aranda, 2011). Even though this  study made the important assessement that 

some  cork  oak  traits  can  be  associated  to  genetic  variants,  its  local  geographic  scope 

combined with the relatively low number if used markers, limits its utility in a distribution 

wide perspective. Large scale information regarding Q. suber’s gene flow patterns and local 

adaptation  dynamics  is  paramount  to  understanding the species’ potential  to  endure rapid 

climatic changes through adaptation (Savolainen, Lascoux, & Merilä, 2013).

In  general  terms,  to  predict  a  species’ response  to  change  (Kremer  et  al.,  2012),  it  is 

fundamental to know both its genetic architecture of adaptive traits (Alberto et al., 2013) and 

evolutionary history (Kremer et al., 2014). However, the very nature of genetic and genomic 

data hampers the distinction of selection signals from other processes  (McVean & Spencer, 

2006),  especially  demographic  events  (Bazin,  Dawson,  &  Beaumont,  2010).  In  order  to 

disentangle population structure (mostly shaped by gene flow, inbreeding, and genetic drift) 

and selection (Foll, Gaggiotti, Daub, Vatsiou, & Excoffier, 2014), recent methods incorporate 

population structure information to detect adaptation (Gautier, 2015; Günther & Coop, 2013). 

Likewise, methods to accurately estimate population structure should be performed without 

loci known to be under selection (De Kort et al., 2014).
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In non-model organisms like the cork oak, loci of adaptive value can potentially be identified 

by two kinds of methods – outlier analyses and environmental association analyses. While the 

former identify loci that depart from the expected allele frequencies as under selection (Foll & 

Gaggiotti,  2008; Vitalis, Gautier, Dawson, & Beaumont,  2014), they do not indicate what 

which loci  is  responding to  (Gautier,  2015).  The latter,  while  being able  to  associate  the 

markers to an external covariate, are limited to detecting linear relations, and cannot assert 

wether or not the identified correlations are of causative nature (Gautier, 2015).

The  evolutionary  history  of  Q.  suber has  been  studied  in  the  past  using  multiple 

methodologies and in different geographic ranges. The most recent large-scale studies on the 

subject suggest that cork oak is divided into four strictly defined lineages (Magri et al., 2007; 

Simeone et al., 2009). Two of these lineages range from the south-east of France, to Morocco, 

including the  Iberian  peninsula  and  the  Balearic  Islands,  a  third  lineage  ranges  from the 

Monaco region to Algeria and Tunisia, including the islands of Corsica and Sardinia. The 

fourth lineage spans the entire Italic peninsula,  including Sicilia.  Based only on plastidial 

markers, these lineages have been shown to hardly share any haplotypes (Magri et al., 2007). 

Notwithstanding, later works based on nuclear DNA have hinted at a different scenario, where 

the species is not as strictly divided (Costa et al., 2011; J. A. Ramírez-Valiente, Valladares, & 

Aranda, 2014). These works are, however, limited in either geographic scope or number of 

markers to confidently conclude that such segregation is only present in plastidial markers.

Genomic resources represent a new way to study the genetic mechanisms responsible for local 

adaptation  (Rellstab,  Gugerli,  Eckert,  Hancock,  & Holderegger,  2015) through the  use  of 

environmental association analyses, which correlate environmental data with genetic markers, 

thus highlighting loci putatively involved in the adaptation process (Rellstab et al., 2016). The 

same  methods,  can  thus,  in  principle,  be  used  to  assess  the  degree  of  maladaptation  to 
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predicted  future  local  conditions  (Rellstab  et  al.,  2016).  The  Risk  of  Non-Adaptedness 

(RONA) method was developed with this very goal (Rellstab et al., 2016). In short, for every 

significant  association between a SNP and an environmental  variable,  the RONA method 

plots each location’s individuals’ allele frequencies vs. the respective environmental variable. 

This is done for both the current value and the future prediction. A correlation between allele 

frequencies and the current variable values is then calculated and the corresponding best fit 

line is inferred. The distance between the fitted line and the two coordinates is then compared 

per location and its normalized difference is considered the RONA value for each association 

and  location  (which  can  vary  between  0  and  1).  In  theory,  the  higher  the  difference  in 

conditions between the current values and the prediction, the more the studied species should 

have to shift its allele frequencies to survive in the location under the new conditions. Despite 

the innovation and importance of the method for the general scientific community,  in the 

original paper, RONA is applied only for the work’s case study (calculating RONA values for 

several Swiss species of Quercus based on candidate genes), and no public implementation is 

provided. Applying this kind of methodology to  Q. suber would fill the gap mentioned in 

(Correia et al., 2017; Vessella et al., 2017), that multidisciplinary approaches are required to 

more accurately provide sound recommendations for the conservation of forests.

In the present work, a panel of Single Nucleotide Polymorphism (SNP) markers derived from 

the  Genotyping  by  Sequencing  (GBS)  technique  (Elshire  et  al.,  2011) was  developed  to 

accomplish  the  following  goals:  (1)  attempt  to  infer  the  species’ genetic  structure  and 

evolutionary  history,  (2)  detect  signatures  of  natural  selection,  and  (3)  investigate  the 

adaptation potential of  Q. suber based on the RONA method developed and presented on 

(Rellstab et al., 2016).
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3 Material & Methods

3.1 Sample and environmental data collection
In order to provide a comprehensive view of the species genetic background, samples were 

collected  from 17  locations  spanning  most  of  Q.  suber’s  distribution.  Fresh  leaves  were 

collected from six individuals from, Bulgaria, Corsica, Kenitra, Monchique, Puglia, Sardinia, 

Sicilia, Tuscany, Tunisia and Var, and from five individuals from Algeria, Catalonia, Haza de 

Lino,  Landes,  Sintra,  Taza and  Toledo for a total of 95 individuals (Table 1,  Figure 1). It is 

worth noting that trees from Bulgaria are not of natural origin, but rather the result of human 

introduction from Iberian locations (Borelli & Varela, 2000; Petrov & Genov, 2004).

Most samples were collected from an international provenance trial (FAIR I CT 95 0202) 

established at “Monte Fava”, Alentejo, Portugal (38°00’ N; 8°7’ W)  (Varela, 2000), except 

Portuguese and Bulgarian samples, which were collected directly from their native locations. 

The collected plant material was stored at –80°C until DNA extraction.

Altitude, latitude and longitude spatial variables (Varela, 2000) were recorded for each of the 

native sampling sites. Nineteen Bioclimatic (BIO) variables, BIO1 to BIO19 were collected 

from the WorldClim database  (Hijmans, Cameron, Parra, Jones, & Jarvis, 2005) at 30 arc-

seconds  (~  1  km)  resolution  for  both  “Current  conditions  ~1960-1990”  and  “Future” 

predictions  for  2070,  using two different  Representative Concentration  Pathways (RCPs), 

rcp26 and  rcp85 for  the  following  “Global  Climate  Models”  (GCMs):  BCC-CSM1-1, 

CCSM4,  GFDL-CM3,  GISS-E2-R,  HadGEM2-ES,  IPSL-CM5A-LR,  MRI-CGCM3,  MPI-

ESM-LR and NorESM1-M (IPCC, 2014) as these are available under permissive licenses and 

calculated for both  rcp26 and  rcp85. Instead of using the GCMs directly, an average of the 

values was obtained for each coordinate, and merged into a single dataset, for both used RCPs 

(Supporting Table 1 and 2 respectively). Data was extracted from the GeoTiff files using a 
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python script,  layer_data_extractor.py (https://github.com/StuntsPT/Misc_GIS_scripts) as of 

commit “bd36320”.

Correlations between present Bioclimatic variables were assessed using Pearson's correlation 

coefficient  as  implemented  in  the  R  script  eliminate_correlated_variables.R 

(https://github.com/JulianBaur/R-scripts)  as  of  commit  “43e6553”,  which  resulted  in  the 

exclusion of six variables due to high correlation (r>0.95). Each sampling location was thus 

characterized by three spatial variables and 13 environmental variables (Supporting Table 3).

3.2 Library preparation and sequencing
Genomic DNA was extracted from liquid nitrogen grounded leaves of all samples collected 

for this work using the kit "innuPREP Plant DNA Kit" (Analytik Jena AG), according to the 

manufacturer's protocol.

The total amount of extracted DNA was quantified by spectrophotometry using a Nanodrop 

1000 (Thermo Scientific) and integrity verified on Agarose gel (0.8 %). DNA samples were 

then diluted to a concentration of ~100 ng/μl and plated for genotyping.

DNA samples were then outsourced to “Genomic Diversity Facility”, at Cornell University” 

for  genotyping  using  the  “Genotyping  by  sequencing”  (GBS)  technique  as  described  in 

(Elshire et al., 2011). Samples were shipped in a single 96 well plate with one “blank” well 

for negative control. Sequencing was performed according to the standard protocol on a single 

Illumina HiSeq 2000 flowcell using the low frequency cutter enzyme “EcoT22I”, due to the 

large size of Q. suber’s genome.

3.3 Genomic data analyses
The raw GBS data was analysed using the program ipyrad v0.7.24, which is based on pyrad 

(Eaton,  2014),  using  an  “anaconda”  environment  containing  -  MUSCLE v3.8.31  (Edgar, 
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2004) and  VSEARCH v2.7.0 (Rognes, Flouri,  Nichols, Quince,  & Mahé, 2016). A denovo 

sequence  assembly  was  performed,  but  mtDNA and  cpDNA reads  were  “baited”  out  by 

ipyrad’s  mode “denovo-reference” using the complete  mitochondiral  genomes of  Populus  

davidiana (KY216145.1)  (Choi et al.,  2017) ,  Pyrus pyrifolia (KY563267.1)  (Chung, Lee, 

Kim,  &  Kim,  2017) and  Rosa  chinensis (CM009589.1)  (Raymond  et  al.,  2018),  and 

chloroplastidial  genomes  of  Quercus  rubra (JX970937.1)  (Alexander  &  Woeste,  2014), 

Quercus aliena (KU240007.1) and Quercus variabilis (KU240009.1) (Yang et al., 2016). This 

ensured that mtDNA and cpDNA reads were filtered from downstream analyses. Parameters 

included GBS as datatype, clustering threshold of 0.85, mindepth of 8 and maximum barcode 

mismatch of 0. Each sampling site had to be represented by at least three individuals for a 

SNP to be called, except the locations of  Kenitra and  Taza, where only one individual was 

required due to the lower representation of these sampling sites. Full parameters can be found 

in Supporting Datafile 1. The demultiplexed “fastq” files were submitted to NCBI’s Sequence 

Read Archive (SRA) as “BioProject” PRJNA413625.

Downstream analyses were automated using “GNU Make”. This file, containing every detail 

of  every  step  of  the  analyses  for  easier  reproducibility  can  be  found  in  gitlab 

(https://gitlab.com/StuntsPT/Qsuber_GBS_data_analyses,  tag  “v03”).  For  improved 

reproducibility, a docker image with all the software, configuration files, parameters and the 

Makefile,  ready  to  use  is  also  provided 

(https://hub.docker.com/r/stunts/q.suber_gbs_data_analyses/, tag “v03”). The intent is not to 

allow  the  analyses  process  to  be  treated  as  a  “black  box”,  but  rather  to  provide  a  full 

environment that can be reproduced, studied and modified by the scientific community.

Processed data from ipyrad was then filtered using VCFtools v0.1.14 (Danecek et al., 2011) 

with the following criteria: each sample has to be represented in at least 40 % of the SNPs, 
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and after this each SNP has to be represented in at least 80 % of the individuals. Furthermore, 

due to the relatively small sample size, the minimum allele frequency (MAF) of each SNP has 

to be at least 0.03 for it to be retained.

In  order  to  minimize  the  effects  of  linkage  disequilibrium,  downstream  analyses  were 

performed using only one SNP per locus, by discarding all but the SNP closest to the centre of 

the  sequence  in  each  locus.  This  sub  dataset  was  obtained  using  the  python  script 

vcf_parser.py (https://github.com/CoBiG2/RAD_Tools/blob/master/vcf_parser.py)  as  of 

commit “0893296”.

All file format conversions were performed using PGDSpider v2.1.0.0 (Lischer & Excoffier, 

2012), except for the  BayPass and  SelEstim formats, where the scripts geste2baypass.py 

(https://github.com/CoBiG2/RAD_Tools/blob/master/geste2baypass.py)  and  gest2selestim.sh 

(https://github.com/Telpidus/omics_tools)  as  of  commit  “b99636e”  and  “f74f66b” 

respectively were used, since the used version of PGDSpider does not handle either of these 

formats.

Descriptive  statistics,  such  as  Hardy-Weinberg  Equilibrium  (HWE),  FST and  FIS were 

calculated  using  Genepop v4.6  (Rousset,  2008).  The  same  software  was  further  used  to 

perform Mantel  tests  to  determine  an  eventual  effect  of  Isolation  by  Distance  (IBD)  by 

correlating  “'F/(1-F)'-like  with  common  denominator”  with  “Ln(distance)”  following  on 

1,000,000  permutations.  This  test  was  performed  excluding  individuals  sampled  from 

Bulgaria due to their introduced origin.

3.4 Outlier detection and environmental associations
Outlier detection was performed using two programs: SelEstim v1.1.4 (Vitalis et al., 2014) (50 

pilot runs of length 1,000 followed by a main run of length 10 , with a burnin of 1,000, a⁶  
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thinning  interval  of  20,  and  a  detection  threshold  of  0.01)  and  BayeScan v2.1  (Foll  & 

Gaggiotti, 2008) (20 pilot runs of length 5,000 followed by a main run of 500,000 iterations, a 

burnin of 50,000, a thinning interval of 10, and a detection threshold of 0.05) (full commands 

and parameters are available in Supporting Datafile 2), since these methods show the lowest 

rate of false positives  (Narum & Hess, 2011; Vitalis et al., 2014). Only SNPs indicated as 

outliers by both programs were considered outliers for the purpose of this work. This was 

done to further reduce the chance of false positives, which is a known issue in this type of 

analyses (Gautier, 2015; Vitalis et al., 2014).

The software  BayPass v2.1  (Gautier, 2015) wrapped under the script  Baypass_workflow.R 

(https://git  lab  .com/StuntsPT/pyRona/blob/master/pyRona/R/Baypass_workflow.R  )  from 

pyRona v0.1.3 was used to assess associations of SNPs to environmental variables using the 

“AUX” model (20 pilot runs of length 1,000, followed by a main run of length 500,000 with a 

burnin of 5,000 and a thinning interval of 25). Any association with a Bayes Factor (BF) 

above  15  was  considered  significant.  Association  analyses  were  performed  excluding 

individuals from Bulgaria sampling site for the same reasons as in the Mantel tests.

Sequences  containing  outlier  loci  or  SNPs  associated  to  an  environmental  variable  were 

queried against the genome of  Q. lobata (Sork et  al.,  2016) v1.0 using BLAST v2.2.28+ 

(Altschul et al., 1997) with an e-value threshold of 0.00001.

3.5 Population Structure
Two distinct  methods were used for  clustering the  individuals  in  order  to  understand the 

general pattern of individual or population grouping, namely, Principal Components Analysis 

(PCA) and  MavericK (Verity & Nichols, 2016),  which is based on  STRUCTURE (Pritchard, 

Stephens, & Donnelly, 2000).
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The  PCA  was  performed  with  snp_pca_static.R 

(https://github.com/CoBiG2/RAD_Tools/blob/master/snp_pca_static.R)  as  of  commit 

“bb2fc45”.

In order to correctly interpret clustering analyses results, it is important to estimate the value 

of  “K”,  which  represents  how many  demes the  data  can  be  clustered  into.  The software 

MavericK is  especially  interesting for cluster  estimation due to  its  innovative method for 

estimating  “K”,  called  “Thermodynamic  Integration”  (TI),  which  has  shown  superior 

performance in this task relative to other methods  (Verity & Nichols, 2016). Analysis was 

divided in two stages: an initial single “pilot” stage which ran for 5,000 iterations, with a 

burnin of 500 using an admixture model, a free alpha parameter of “1” and “thermodynamic 

integration” (TI) turned off. This stage was used to infer tuned alpha and alphaPropSD values 

which were used in the subsequent “tuned” stage as parameters for the admixture model. This 

stage was comprised of five runs of 10,000 iterations (10 % burnin), with TI turned on and set 

to  20  rungs  of  10,000  samples  with  20  %  burnin. MavericK was  wrapped  under 

Structure_threader v 1.2.2 (Pina-Martins, Silva, Fino, & Paulo, 2016) and was run for values 

of “K” between 1 and 8. The most suitable value of “K” was estimated using the TI method. 

Full parameter files are available as Supporting Datafile 2.

The same methodology was used on two more datasets derived from the original data. On 

one, only SNPs considered “neutral” were used, in order to obtain an unbiased population 

structure (De Kort et al., 2014). On the other one, only SNPs considered “non-neutral” were 

used, which should not be interpreted as population structure, but rather as an indication of 

wether local adaptation is responsible for the observed pattern.
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3.6 Risk of non-adaptedness
The software  pyRona was developed in this work as the first public implementation of the 

method described in  (Rellstab et al., 2016) called “Risk of non-adaptedness” (RONA). This 

method provides a way to represent the theoretical average change in allele frequency at loci 

associated  with  environmental  variables  required  for  any  given  population  to  cope  with 

changes in that variable. The program source code is hosted on public repositories, under a 

GPLv3 license, and can be downloaded free of charge at https://git  lab  .com/StuntsPT/pyRona  .

PyRona has  a  complete  user  manual,  with  installation  instructions,  usage  patterns,  and a 

graphical method description.

The RONA method as implemented in pyRona, however, is slightly different from the original 

method description (Supporting Datafile 3). Namely, instead of ranking environmental factors 

by  p-value  of  the  difference  test  between  present  and  future  values  like  the  original 

description,  pyRona will  rank  the  environmental  factors  by  the  number  of  associations. 

Furthermore, the average RONA value provided by  pyRona is weighted by the R² value of 

each involved correlation, unlike the original, which uses unweighted means.

In this work, two alternative climate prediction models were used to calculate a RONA value 

for each location in  pyRona v0.1.3: a low emission scenario (RCP26) and a high emission 

scenario  (RCP85)  (IPCC,  2014) in  order  to  account  for  uncertainties  in  the  models’ 

assumptions.  Any  associations  flagged by  Baypass  with a  BF above 15 were  considered 

relevant  and  included  in  the  RONA  analysis.  The  three  non-geospatial  environmental 

variables most frequently associated with SNPs, were selected for determining generic RONA 

values.
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4 Results
Genotyping by sequencing  (Elshire et  al.,  2011), a technique based on restriction enzyme 

genomic complexity reduction followed by short-read sequencing, was employed to discover 

SNP markers from a total of 95 Q. suber individuals sampled from 17 geographical locations 

(Table 1).

A total of 225,214,094 reads (100 bp) generated by the GBS assay was processed by ipyrad 

(Eaton, 2014) computational pipeline. The first analytical step consisted in the assembly of 

raw reads into 4,548 distinct contiguous sequence fragments (genomic loci), from which an 

initial set of 8,978 SNPs were flagged. Twelve Q. suber samples were discarded due to low 

sequence  representation  during  the  assembly  process,  resulting  in  the  retention  of  83 

individuals. After filtering according to the criteria presented in the methods section 3.3, 1,996 

SNPs remained, which were used for all further analyses. This filtering process additionally 

removed two samples which were not represented for more than 55 % of the markers, and 

therefore, only 81 samples were used in the analyses (Supporting Table 4).

The calculated FIS values for each sampling site are available in Supporting Table 4. These 

range from -0.0262 (Var) to 0.1145 (Puglia) with an average value of 0.0666. Pairwise FST 

values are available in Supporting Table 5. These range from 0.0028 between  Sardinia and 

Tuscany to 0.1216 between Landes and Var (average FST of 0.0541).

When  looking  at  HWE  results  per  marker,  of  the  1,996  SNPs,  172  (~9  %) reveal  a 

heterozygote deficit, whereas 88 (~4 %) reveal a deficit of homozygotes. Individual sampling 

sites are comprised of two few individuals to achieve biologically meaningful results. The 

performed Mantel test revealed no evidence of IBD among Q. suber individuals.
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4.1 Outlier detection and environmental association
Population differentiation and ecological association approaches (François, Martins, Caye, & 

Schoville, 2016) were employed aiming at the identification of loci targeted by selection. In 

the first strategy, highly differentiated loci among populations, measured as outliers in FST 

distribution,  were detected by the software  BayeScan and  SelEstim uncovering 29 and  17 

outlier SNPs respectively (Supporting Table 6). All of the loci considered under outliers by 

SelEstim were also present in the set of loci flagged as outlier by BayeScan. This set of 17 

common markers was considered as being putatively under the effect of natural selection.

For a functional characterization of these loci, the draft genome sequence of  Q. lobata was 

used as a proxy for similarity searches. None of the 17 sequences revealed significant matches 

to Q. lobata‘s genome scaffolds.

The ecological association approach was carried out using the software BayPass and yielded 

274 associations  between 249 SNPs and 12 of  the  16 tested  environmental  variables  (no 

associations  were  found  with  “Altitude”,  “Temperature  Annual  Range”,  “Precipitation  of 

Wettest  Month”  or  “Precipitation  Seasonality”).  These  associations  can  be  found  in 

Supporting Table 7. Despite this relatively high number of associations, it is important to note 

that 70 of these associations were between a SNP and a geospatial variable: 12 associations 

with “Latitude” and 58 with “Longitude”. Of all environmental variables, the one with most 

markers  associated  is  “Precipitation  of  Driest  Month”  with  71  associations,  followed  by 

“Isothermality” with 35 associations,  and “Mean Temperature of  Driest  Quarter”  with  29 

associations.

Sequences containing 22 of the 249 markers associated with environmental variables were 

matched to entries in the Q. lobata genome, however, of these only 10 were annotated (Table

2).
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The union of the outlier loci set and the set of loci associated with at least one environmental 

variable resulted in a dataset of 259 SNPs which were deemed “non-neutral” (7 SNPs were 

common to both loci sets). The remaining 1737 SNPs were grouped in another sub-dataset, 

deemed “neutral”.

4.2 Population structure
Clustering analyses were used to infer the current population structure of Q. suber in the West 

Mediterranean. The  TI method implemented in the software  MavericK determined the best 

“K” value to be “1” on all datasets. Despite this assessment, the presented plots are always 

with K=2 (Figure 2), but with strong evidence that the data does not support structuring of 

any kind. Q-plots for values of K above 2 were always either reduced to two clusters, or to 

every  individual  being  roughly  equally  divided  into  fractions  of  all  clusters  (Supporting 

Figure 1).

The Q-matrix plot  showing the relatedness of each genotype to  each considered deme of 

MavericK‘s results produced using all loci (Figure 2a) can be interpreted as a rough split 

between  western  individuals  (from locations  Sintra,  Monchique,  Kenitra,  Toledo,  Landes, 

Taza, Haza de Lino and Catalonia), which are mostly, but not completely, assigned to cluster 

“1” and eastern ones (from locations Var, Algeria, Sardinia, Corsica, Tunisia, Tuscany, Sicilia 

and Puglia), which are mostly assigned to cluster “2”. Individuals from Bulgaria are a notable 

exception, since individual genotypes are mostly assigned to cluster “1” similar to those of 

individuals from western locations, likely due to the species’ introduced origin (Varela, 2000). 

However,  this  West  –  East  split  is  somewhat  fuzzy,  as  individuals’ genomes  are  never 

completely attributed to a single cluster. In fact, most individuals have a considerable part of 

their  genome attributed  to  both  cluster  “1”  and “2”.  Furthermore,  individuals  from some 

eastern locations have their  genomes almost  completely attributed to  cluster  ”1” (Var 21, 
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Corsica 3, Corsica 11, Corsica 14 and Puglia 5), and all individuals from Tunisia and Algeria 

are almost equally split between both clusters.

The Q-plot obtained using the “neutral” loci subset (Figure 2b) is nearly identical to the one 

with all  the loci,  but with individual  genomes from eastern locations  being slightly more 

assigned to cluster “1” than in Figure 2a, and can be interpreted in the same way.

The Q-plot produced using only the 259 (12.9 %) “non-neutral” loci  (Figure 2c), however, 

does bear a different clustering pattern from the previous ones. In this case, the East – West 

split  is  more  evident,  as  eastern  individual  genomes’ attribution  to  each cluster  is  not  as 

evenly split, but rather displays a more pronounced attribution to cluster “2” than in Figure 2a. 

The opposite is also true for western individuals, but to a lesser extent.

The PCA clustering method (largest eigenvector values of 0.0405 and 0.0299) is essentially 

concordant with the previous methods, revealing two loosely defined groupings (Supporting 

Figure 2).

4.3 Risk of non-adaptedness (RONA)
A summary of  the  RONA analyses  for  both  low (RCP26) and a  high  (RCP85) emission 

scenario predictions can be found in Figure 3 and Supporting Table 8. The most represented 

environmental  variables are  “Precipitation of Driest  Month” (71 SNPs,  mean R²=0.1570), 

“Isothermality” (35 SNPs, mean R²=0.2143) and “Mean Temperature of Driest Quarter” (29 

SNPs, mean R²=0.1501). The values of RONA per sampling site are always higher for RCP85 

than for RCP26, except for  “Precipitation of Driest Month” in  Tunisia  where RCP85 has a 

lower RONA than RCP26, and in  Kenitra where they are the same (the “Precipitation of 

Driest Month” variable in Kenitra is not predicted to change from current conditions of 0 mm² 

regardless of the model).
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Under the RCP26 predictions, the highest RONA values for “Precipitation of Driest Month” is 

Landes (0.0369), for “Isothermality” is Puglia (0.0461), and for “Mean Temperature of Driest 

Quarter” is  Catalonia (0.1281). Under the RCP85 predictions  Landes presents the highest 

RONA for “Precipitation of Driest Month” (0.1115) and Catalonia presents the highest values 

of RONA for “Mean Temperature of Driest Quarter” (0.3888) and “Isothermality” 0.0686). It 

is important to note that the high RONA values of Catalonia are approximately twice as high 

as the second highest RONA value on the RCP26 prediction and close to three times as high 

for  RCP85,  marking  this  location  as  the  most  likely  to  become  deprived  of  cork  oak 

individuals in the future.

5 Discussion
In this study, Quercus suber individuals were sampled across the species’ distribution range to 

assess population structure, impact of local adaptation and provide an estimate of the RONA 

value of each sampled location.

Due to the relatively large size of  Q. suber’s genome  (Zoldos,  Papes,  Brown, Panaud, & 

Siljak-Yakovlev, 1998) a genome reduction technique, GBS, was used to discover SNPs for 

this species. There is no “standard” parameter set to call SNPs on GBS datasets, since this  

will ultimately depend on the organism being studied. The stringent approach used in this 

study was, however, deemed preferable to alternatives that could result in more SNPs being 

called at the cost of lowering confidence in the called variants, eventually biasing analyses 

results. In fact, since no biological replicates were performed for this study, a conservative 

approach was always preferred as to minimize biases in the results.

After stringent quality filtering, a set of 1,996 SNPs was used in this study. This number is 

lower than that  of some studies  with similar  data  (Berthouly-Salazar  et  al.,  2016),  which 

18

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409



obtained ~22k SNPs (albeit using a more frequent cutting enzyme), but still more than  (De 

Kort et al., 2014), which obtained 1630 SNPs, very close to that of (Escudero, Eaton, Hahn, & 

Hipp, 2014) and (Pais, Whetten, & Xiang, 2017). Even though this number may seem small, 

in the universe of  Q. suber’s genome of ~750 Mbp, this  is to date the largest number of 

molecular markers available for this species and represents a step forward to increase the 

power of population genetics studies.

5.1 Population genetic structure
Past studies  (Magri et al., 2007) have characterized Q. suber as a highly structured species, 

with an evolutionary history shaped by large effect  events,  such as plate tectonics.  These 

were, however, mostly based on plastidial DNA data, which is known to not always provide a 

comprehensive view on a species’ evolutionary history (Kirk & Freeland, 2011). The nuclear 

markers developed for this work provide a somewhat different perspective.

Hardy & Weinberg Equilibrium analysis revealed that few individual markers deviated from 

expectations.  Only ~9 % reveal a heterozygote deficit,  and only ~4 % reveal a deficit  of 

homozygotes. These values do not indicate the presence of assembly bias.

The obtained values of FIS are higher than those of unstructured European oaks when analysed 

with the same type of markers, such as Quercus robur or Quercus petraea (Guichoux et al., 

2013), but are nonetheless relatively low in general, which is compatible with low levels of 

population structuring.

Similar to what is observed with FIS, FST values are on average (0.0541) higher than on the 

above mentioned unstructured oak species (0.0125)  (Guichoux et al., 2013), but lower than 

other  well  structured  trees  such  as  eucalypti  (0.095)  (Cappa  et  al.,  2013). These  results 

corroborate what the clustering analyses reveal: an incomplete segregation of the species in 
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two clusters, as seen on Figure 2. Although clustering analyses using all loci do not provide a 

clear  structuring signal (and the “TI” method clearly favours a scenario of a  single large 

panmictic population), the produced  Q. suber Q-plots do show some degree of segregation 

between western and eastern individuals. This can be derived both from  Figure 2a and Figure

2b,  which  are,  very  similar,  and  can  be  interpreted  in  the  same  way  –  as  incomplete 

segregation between individuals from eastern and western locations.

Figure 2c, where the Q-plot was produced using only loci putatively under selection, should 

not be used to infer population structure, but can be be compared to the Q-plot obtained using 

only “neutral”  loci  to  interpret  the role  of  local  adaptation  in  shaping  Q. suber’s  genetic 

background. In Figure 2c, the division between western and eastern individuals is clearer than 

in Figure 2a and B. Furthermore, the generally observed difference pattern is similar to what 

cen be seen in the locations of “Monchique” and “Sardinia”: individual attributions to the 

“dominant”  cluster  in  the  “neutral”  Q-plot,  become  even  more  pronounced  in  the  “non-

neutral”  Q-plot.  This  is  expected  if  local  adaptation  is  responsible  for  these  differences 

(otherwise,  the  differences  between  “neutral”  and  “non-neutral”  Q-plots  should  be  more 

random).  This  evidence,  combined  with  the  relatively  low  pairwise  FST and  FIS values, 

suggests a balance between local adaptation and gene flow. Whereas the former is responsible 

for maintaining the species’ standing genetic variation across the species range and the latter 

for the species’s response to local environmental differences. Intense gene flow would also 

explain the relatively low proportion of outlier SNPs, which may be counteracting reactions to 

weak selective pressures. At the same time, this balance may provide the species a relatively 

large genetic variability to respond to strong selection  (De Kort et al., 2014; Kremer et al., 

2012).
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Data from this work does not seem to support the four lineages hypothesis proposed in (Magri 

et al., 2007), however, it is also not incompatible with it, if it is assumed that nuDNA and 

cpDNA can have different evolutionary histories. In fact, it has been argued that for other tree 

species plastidial lineages exist due to population contractions and expansions from glacial 

refugia,  but high gene flow erases any evidence of their  existence in the nuclear genome 

(Eidesen et al., 2007).

Two hypotheses can thus be proposed to explain the currently observed genetic structure:

1. Balance between gene flow and local adaptation is responsible for both creating and 

maintaining the current level of nuclear divergence. Whereas local adaptation tends to 

cause divergence between contrasting regions, this effect is countered by species wide 

gene flow. Population contractions in refugia locations during glacial periods explain 

the occurrence of plastidial lineages, which are absent in the nuclear genome due to 

very intense gene flow.

2. Differential hybridization of Q. suber with Q. cerris in the East (Bagnoli et al., 2016) 

and with Q. ilex s.l. in the West (Burgarella et al., 2009) is responsible for the observed 

nuDNA structuring pattern and balance between gene flow and local adaptation is 

responsible  for  maintaining  it.  Combination  of  these  phenomena  can  thus  be 

considered the cause for the observed levels of East-West differentiation.  Since  Q. 

suber always acts as a pollen donor in these hybridization events (Boavida, Silva, & 

Feijó,  2001). Under  this  hypothesis,  Q.  suber would  maintain  a  high  nuclear 

population  effective,  even  during  glacial  periods,  but  restrict  plastidial  lineages’ 

geographic scope as suggested in  (López de Heredia, Carrión, Jiménez, Collada, & 

Gil, 2007), which is further supported by the different dispersal capabilities of pollen 

and acorns (Sork, 1984). This scenario would result in large effective population size 
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differences between nuDNA and cpDNA, which can be an alternative explanation for 

cpDNA lineages to simple population contractions to glacial refugia.

The proposed hypotheses are supported by the SNP data presented here, but further studies 

are needed to confirm them. As such, the issue will remain open for investigation.

5.2 Outlier detection and environmental association analyses
The method used to detect outlier loci flagged ~0.9 % of the total SNPs, which is in line with 

what was found on other similar studies (Berdan, Mazzoni, Waurick, Roehr, & Mayer, 2015; 

Chen et al., 2012). Of the 17 outlier markers found, none could be matched to an annotated 

location in  Q. lobata’s genome. This is likely due to a combination of factors, such as the 

distance  between  Q.  suber and  Q.  lobata,  and  the  incomplete  annotation  of  Q.  lobata’s 

genome. On the other hand, it emphasizes the need for more genomic resources in this area, 

which can potentially provide important functional information of these SNPs in  Q. suber’s 

genome, that will at least for now remain unknown.

The environmental association analyses (EAA) served two purposes in this  work. On one 

hand, the reported associations work as a proxy for detecting local adaptation, and on the 

other hand, allow the attribution of a RONA score to each sampling site. Q. suber is known to 

be very sensitive to precipitation and temperature conditions  (Vessella et al., 2017), and as 

such, it was expected beforehand that some of the markers obtained in this study were to be 

associated with some of these conditions (Rellstab et al., 2016). In order to understand how 

important  the  found  associations  are  for  the  local  adaptation  process,  it  is  necessary  to 

understand the putative function of the genomic region where each SNP was found. Querying 

the  available  sequences  against  Q.  lobata’s  genome  annotations,  has  provided  insights 

regarding some of the markers’ sequences putative function. The proportion of sequences that 
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were a match to an annotated region, however, is rather small – only ~4.4 % of the queried 

sequences could be matched to such regions.

Of the  10 SNPs associated with an environmental variable that returned hits to  annotated 

regions of Q. lobata’s genome,  two were matched to regions annotated as close to animal 

genes, and one matched a region annotated as a chloroplastidial region, leaving 7 SNPs as 

interesting to explore for downstream analyses. While all these associations are potentially 

interesting to explore, doing so falls outside the grander scope of this work.

Of these markers, it is interesting to remark, that SNP 158, associated with the variable “Mean 

Temperature of Driest Quarter”, for example is located in a region annotated as “Similar to 

TRE1: Trehalase”,  which is  known to play a  role  in drought stress  (Houtte et  al.,  2013). 

Likewise, SNP 168, associated with the variable “Precipitation of Driest Month”, is located in 

a region matching the annotation of “Similar to PER47: Peroxidase 47”, which is known to 

play a role in drought response (Li et al., 2017).

Like  these  two  examples,  more  of  the  SNPs  found  have  associations  to  environmental 

variables which are putatively located in genes involved in functions which are important in 

responding to the very variables they are associated with. This fact flags these markers as 

particularly useful to focus on in downstream studies.

5.3 Risk of non-adaptedness
Although the RONA method is a greatly simplified model (its limitations are described in 

Rellstab et al., 2016), it provides an initial estimate of how affected Q. suber is likely to be by 

environmental changes (at least as far as the tested variables are concerned). Furthermore, it is 

important  to  remark  that  due  to  Baypass being  limited  to  a  univariate  method,  the  same 
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constraint also applies to the RONA analysis, meaning that multi-loci associations are not 

considered.

The implementation developed for this work, named pyRONA suffers from most of the same 

limitations  as  the  original  application,  even  though  it  is  based  on  an  arguably  superior 

association  detection  method  (Gautier,  2015),  (although  the  original  LFMM  (Frichot, 

Schoville,  Bouchard,  & François,  2013) method is  also available  to  use in  pyRona since 

version 0.3.0)  and introduces  a  correction to  the average values  based on the R² of each 

marker association by using weighted means. The automation achieved by using this new 

implementation, easily allows two different emission scenarios (RCP26 and RCP85) to be 

tested and compared.

With the exception of Catalonia, which seems to have an exceptionally high highest RONA 

value under both prediction models, the other locations present relatively low RONA values 

for the tested variables. The variable “Mean Temperature of Driest Quarter” appears to be the 

tested variable that requires the greatest changes in allele frequencies to ensure adaptation of 

the species to the local projected changes. These RONA values, are nevertheless smaller than 

those presented in  (Rellstab et al., 2016).  This might be due to various factors, such as the 

different variables tested, the geographic scope of the study, the species’ respective tolerance 

to  environmental  ranges,  the  differences  between  species’ standing  genetic  variation,  the 

association detection method, or, more likely, a combination of several of these factors.

Notwithstanding,  the  obtained  results  seem  to  indicate  that  Q.  suber is  generally  well 

genetically equipped to handle climatic change in most of its current distribution (with the 

notable exception of Catalonia). Despite cork oak’s long generation time, it seems reasonable 

that  during  the  considered  time  frame  current  populations  are  able  to  shift  their  allele 

frequencies (2 % to 12 % on average, depending on the predictive model) due to a relatively 
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high standing genetic variation, which according to (Kremer et al., 2012) should really work 

in the species’ favour in the presence of strong selective pressures.

This study, however, is limited to the considered environmental variables. Other factors that 

were not included in this work may have a larger effect on Q. suber’s RONA. Inferring future 

adaptive potential of species is not yet commonplace practice (Jordan, Hoffmann, Dillon, & 

Prober, 2017; Rellstab et al., 2016), however, combining this type of study with ecological 

niche modelling approaches has the potential to greatly improve the accuracy of both kinds of 

predictions.

5.4 Final remarks
In  this  study,  new  nuclear  markers  were  developed  to  shed  new  light  on  Q.  suber’s 

evolutionary history,  which is  important  to  understand,  in  order  to  attempt to  predict  the 

species response to future environmental pressures (Kremer et al., 2014).

Despite the relatively large geographic distances involved, the nuclear markers used in this 

work  indicate  a  lesser  genetic  structuring  than  previously  thought  from cpDNA markers, 

which clearly segregated the species in several well defined demes (Magri et al., 2007). The 

SNP data from this work can thus be used to propose two new hypotheses to replace the 

current  view of  a  deep  genetic  structure  as  evidenced  by  cpDNA.  The  observed  genetic 

structure  can  be  explained  either  by  balance  between gene  flow and local  adaptation,  or 

alternatively, differential hybridization of Q. suber with Q. ilex s.l. in the West and Q. cerris 

in the East being responsible for geographic differences’ origin, which are then maintained by 

the  mentioned  balance  between  gene  flow  and  local  adaptation  (albeit  more  research  is 

required to confirm this second hypothesis).
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Despite  the  genetic  structure  homogeneity,  outlier  and  association  analyses  hint  at  the 

existence of local adaptation. The RONA analyses suggest that this balance, between local 

adaptation and gene flow, may be key in  Q. suber’s response to climatic change. It is also 

worth considering that despite the species’ likely capability to shift its allele frequencies for 

survival  in  the  short  term,  the  effects  of  such  changes  in  the  long  term  can  be  quite 

unpredictable  (Feder, Egan, & Nosil, 2012; Lenormand, 2002), and only very recently have 

they began to be understood (Aguilée, Raoul, Rousset, & Ronce, 2016).

This study starts by providing a new perspective into the population genetics of Q. suber, and, 

based on this  data,  suggests  an initial  conjecture  on the  species’ future,  despite  the  used 

technique’s limitations. Even though studies regarding Q. suber’s response to climatic change 

are not  new  (Correia et  al.,  2017;  Vessella  et  al.,  2017),  this  is  the first  work where this 

response is investigated from an adaptive perspective.

The software, pyRona, was developed and is provided in hopes that the method is adopted by 

the larger scientific community to estimate the Risk of non-Adaptedness for other species, and 

eventually, make an impact in determining species conservation strategies. In this regard, the 

RONA results  can  be  used in  informing assisted migration projects  (Aitken & Bemmels, 

2016). In the specific case of the cork oak, European commercial stocks can be expected to 

benefit  from  the  introduction  of  trees  (and  therefore  alleles)  adapted  to  more  extreme 

temperature and precipitation conditions. As for which ones, should be further studied, but the 

genes that were functionally explored in this work, should provide a good starting point.

In  the  near  future,  it  is  expected  that  improvements  are  made  to  the  RONA method.  In 

particular,  using  more  sophisticated  association  testing  (including  the  use  of  multivariate 

methods)  and combining this approach with ecological niche modelling should yield much 

improved  insights  into  species’ response  to  climatic  change.  These  changes  should  be 
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supported by expanding the use of the method to other species, which have both genetic and 

climatic data available.

6 Data Archiving Statement
Raw  GBS  data  is  available  on  NCBI’s  Sequence  Read  Archive  (SRA)  as  “BioProject” 

PRJNA413625.

A docker image containing the analysis process, software and “assembled” data is available in 

https://hub.docker.com/r/stunts/q.suber_gbs_data_analyses/.

The software pyRona is available in gitlab, and mirrored on github.
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8 Tables

Table 1: Coordinates and number of sampled individuals for every sampling site.

Sample site
Latitude (decimal 

deg.)
Longitude (decimal 

deg.)
Number of sampled 

individuals

Algeria 36.5400 7.1500 5

Bulgaria 41.43 23.17 6

Catalonia 41.8500 2.5333 5

Corsica 41.6167 8.9667 6

Haza de Lino 36.8333 -3.3000 5

Kenitra 34.0833 -6.5833 6

Landes 43.7500 -1.3333 5

Monchique 37.3167 -8.5667 6

Puglia 40.5667 17.6667 6

Sardinia 39.0833 8.8500 6

Sicilia 37.1167 14.5000 6

Sintra 38.7500 -9.4167 5

Taza 34.2000 -4.2500 5

Toledo 39.3667 -5.3500 5

Tunisia 36.9500 8.8500 6

Tuscany 42.4167 11.9500 6

Var 43.1333 6.2500 6

Total: - - 95
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Table  2:  Summary  of  BLAST hits  for  loci  with SNPs  associated  to  one  or  more  environmental  variables. 
“MTDQ” and “MTWQ” stand for “Mean Temperature of Driest Quarter” and “Mean Temperature of Wettest 
Quarter” respectively.

SNP name Note (Similar to) Associations

SNP 158 TRE1: Trehalase (Arabidopsis thaliana) Mean Temperature of Driest Quarter

SNP 168 PER47: Peroxidase 47 (Arabidopsis thaliana) Precipitation of Driest Month

SNP 233
CPSF160: Cleavage and polyadenylation specificity factor subunit 1 (Arabidopsis 
thaliana)

Annual Mean Temperature

SNP 333 Ascc1: Activating signal cointegrator 1 complex subunit 1 (Mus musculus) Mean Temperature of Driest Quarter

SNP 455 GLCAT14A: Beta-glucuronosyltransferase GlcAT14A (Arabidopsis thaliana) Precipitation of Driest Month

SNP 619 GBP6: Guanylate-binding protein 6 (Pongo abelii) Precipitation of Driest Month

SNP 834 NAC098: Protein CUP-SHAPED COTYLEDON 2 (Arabidopsis thaliana) Longitude

SNP 880 TPP1: Thylakoidal processing peptidase 1%2C chloroplastic (Arabidopsis thaliana) Mean Temperature of Warmest Quarter

SNP 1134
EMB2654: Pentatricopeptide repeat-containing protein At2g41720 (Arabidopsis 
thaliana)

Mean Temperature of Driest Quarter

SNP 1589
At1g19525: Pentatricopeptide repeat-containing protein At1g19525 (Arabidopsis 
thaliana)

Temperature Seasonality
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9 Figures

Figure 1: A map of cork oak (Quercus suber) distribution. Shaded land areas represent the species' range. White 
dots represent the sampling locations. Adapted from EUFORGEN 2009 (www.euforgen.org).

Figure 2: MavericK clustering plots for K=2. Sampling sites are presented from West to East. “a” is the Q-value 
plot for the dataset with all loci, “b” is for the dataset with only “neutral” loci, and “c” if for the dataset with 
only “non-neutral” loci.
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Figure 3: Risk of Non-Adaptedness plot for the three SNPs with most associations. Bars represent weighted 
means (by R² value) and lines represent standard error. (a) is the plot for RCP26 and (b) is for RCP85 prediction 
models.
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