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ABSTRACT 

The weather is an important driver of the wildfire incidence because it strongly influences fuel 

availability and flammability. In the Mediterranean climate, the spatial and temporal patterns 

of fire weather present high variability, which help to understand the variable fire regimes. To 

assess this link in the Iberian Peninsula and the role of fire weather on fire incidence variability, 

this work identified pyro-regions, characterized the fire regimes in these regions and compared 

them with the spatial and seasonal distribution of several components of the Canadian Forest 

Fire Weather Index (FWI) System. A cluster analysis was performed on monthly normalized 

burnt area (NBA) series for the 1980 – 2015 period in each administrative division of the Iberian 

Peninsula (Portuguese districts and Spanish provinces), which revealed four pyro-regions 

(Northwest, North, Southwest and East) as well as significant spatial and temporal variability 

of NBA patterns. A separate analysis for 1980 – 1997 and 1998 – 2015 revealed noteworthy 

changes in the border of pyro-regions caused by changes in NBA seasonal patterns in some 

administrative regions. The analysis of the fire weather risk distribution for 1980 – 2017 

included the assessment of extreme fire weather days, defined as days with Daily Severity 

Rating (DSR) above the 95th percentile, for the summer fire season, and as days with Drought 

Code above the 95th percentile, for the winter-spring fire season. The distribution of the monthly 

extreme fire weather days is highly correlated with the NBA seasonal variability and explains 

the differences between seasonal wildfire characteristics and the recent changes in the border 

administrative regions. The analysis of the fire weather patterns for large wildfires disclosed 

that these events were linked with extreme DSR days, especially in the NW pyro-region. These 

findings highlight the strong link between climate variability and fire regimes in the Iberian 

Peninsula, and can therefore help assess the impacts of climate change and to project future 

burnt area patterns. 
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1. Introduction 

Wildfires cause severe damage and fatalities every year around the world, and most of the 

consequences, particularly injuries and deaths, are caused by large/extreme wildfires. In 2017, 

the Iberian Peninsula (hereafter Iberia) was highly affected by large wildfires, which caused 

121 fatalities and burned 718 000 ha (San-miguel-ayanz et al., 2018). Large wildfires have also 

occurred recently in other regions with a Mediterranean type of climate, such as in California 

(USA), Greece, and Chile in 2017 and 2018 (Barrera et al., 2018), also leading to fatalities and 

property damage. Large fires are just one component of the fire regime but are also able to 

change other aspects such as the fire incidence space time patterns, frequency, seasonality or 

severity, among others (Gill and Allan, 2008). Therefore, mitigating and managing fire damage 

requires a deep understanding of fire regimes, and especially of the occurrence of large 

wildfires, their spatial distribution, and potential changes in the future. 

In addition to landscape characteristics and human factors, weather conditions (especially 

precipitation, wind, air temperature and humidity) and climate variability (at monthly and 

longer time scales) have a very strong influence on fuel availability, flammability, fire spread, 

and, therefore, play an important role on wildfire activity and incidence (Telesca and Pereira, 

2010; Flannigan et al., 2013; Pereira et al., 2013; Hernandez et al., 2015; Sousa et al., 2015; 

Parks et al., 2016; Trigo et al., 2016). In regions of transition between wet and dry climate, fire 

weather patterns have high spatial and temporal variability (Venevsky et al., 2018). It is 

therefore important to characterise the links between weather conditions and current fire 

regimes, to understand how changes in the former might affect the latter. 

Fire weather risk is usually assessed with fire weather indices. The Canadian Forest Fire 

Weather Index System (CFFWIS) (van Wagner and Pickett, 1985; Van Wagner, 1987), has 

been used to model current and future fire activity, as well as to help forest and fire managers 

as well as national authorities in prevention and suppression activities all over the world (Li et 
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al., 2008; Wotton, 2009; Flannigan et al., 2013, 2016) and, especially, in the Mediterranean 

(Amatulli et al., 2013; Pereira et al., 2013; Bedia et al., 2014). More recently, Jimenez-Ruano 

et al. (2018) studied several fire weather danger rating indices, including the Fire Weather Index 

(FWI), concluding that these indices could provide useful information about upcoming fire 

activity up to two months ahead of time, and that they could explain seasonal variability but not 

necessarily ongoing trends. On the other hand, Pérez-Sánchez et al. (2017) showed that the FWI 

is the most suitable index for semiarid regions, such as SE Iberia. While global burned area 

appears to have declined in recent decades (Doerr and Santín, 2016), it is possible that recent 

climate change has already affected fire weather and fire incidence in some regions (Abatzoglou 

and Williams, 2016). 

The Mediterranean part of Iberia can be a good example of recent changes in other 

Mediterranean regions due to the high fire incidence (Rasilla et al., 2010; Sousa et al., 2015; 

Trigo et al., 2016; Rodrigues et al., 2019). Wildfire activity is not the result of a random process, 

neither in time nor in space, and several factors (weather, climate, human, and landscape 

factors) contribute for the existence of time, space, and space-time wildfire clusters (Parente et 

al. 2016). Different methods have been developed, tested and used to detect clustering patterns 

in fire incidence (Pereira et al., 2015; Tonini et al., 2016; Kanevski and Pereira, 2017). Several 

studies developed zoning approaches with the purpose of identifying regions with similar fire 

regime, using different fire data analysis, such as burnt area tendency (Silva et al., 2019), intra-

annual pattern of burnt area (Sousa et al., 2015; Trigo et al., 2016), fire activity and fire weather 

risk (Jimenez-Ruano et al., 2018) or other variables that affect fire (Moreno and Chuvieco, 

2013). These studies show that the analysis of existing burnt area and meteorological data for 

the last few decades can help to detect the impacts of recent climate changes on fire weather 

danger and risk and, perhaps more importantly, on fire regimes. 
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The main objective of this work was therefore to identify and characterise pyro-regions in Iberia 

in two 18 year time periods: 1980-1997 and 1998-2015, and to identify and analyse recent 

changes in these regions due to changing weather and fire regime. The second objective was to 

study the fire regime in each pyro-region using fire weather indices, assess the role of extreme 

fire weather, and analyse the role played by the recent evolution of extreme weather patterns in 

changes to the borders of pyro-regions. Finally, the third objective was to go beyond these 

studies and assess the capacity of fire weather risk indices to predict the occurrence of major 

fires in Iberia in recent years. A Summary Figure regarding the framework of this manuscript 

is in Appendix A. 

2. Materials and methods 

2.1 Wildfire regime in the Iberian Peninsula 

In Europe, wildfires have higher incidence and consequences in the Mediterranean region 

(Batllori et al., 2013; Camara et al., 2014). The analysis of the fire incidence in Europe reveals 

that the southern European countries (Portugal, Spain, France, Italy and Greece) were the most 

affected in the 1980 – 2017 period. The Iberian countries (Portugal and Spain) account for 68% 

of the total number of fires (NF) and 60% of total burnt area (BA) and these wildfires caused 

extensive and diverse damage (Cardil and Molina, 2015; San-miguel-ayanz et al., 2018; 

Molina-Terrén et al., 2019).  

The fire regime in Iberia is particularly sensitive to weather and climate variability. High fire 

incidence is associated to anomalous atmospheric circulation and thermodynamic patterns 

(Pereira et al., 2005; Trigo et al., 2006; Hoinka et al., 2009; Rasilla et al., 2010; García-Ortega 

et al., 2011; Amraoui et al., 2015) as well as extreme events such as heatwaves and droughts 

(Russo et al., 2017; J. Parente et al., 2018; Parente et al., 2019). Spatial and temporal patterns 

of fire incidence are linked with fire weather types, with distinct patterns for different regions 
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(Rasilla et al., 2010; Trigo et al., 2016), and fire weather parameters have been shown to be 

good predictors of burnt area (Pereira et al., 2013; Sousa et al., 2015).  

There is an extensive body of literature on the characteristics and factors of the fire regime in 

Iberia. In Portugal, the spatial and temporal distribution of wildfires presents clustering patterns 

(Telesca and Pereira, 2010; Pereira et al., 2015; Parente et al., 2016; Tonini et al., 2016; 

Kanevski and Pereira, 2017). The temporal pattern of both metrics of fire incidence (number of 

wildfires and burnt area) is characterised by a main summer fire season and a secondary spring 

peak, both driven by the type of climate and climate variability, especially the occurrence of 

extreme weather and climate conditions (Pereira et al., 2005; Trigo et al., 2006; Amraoui et al., 

2015). The spatial pattern reveals two different fire regimes, at north and south of the Tagus 

River (respectively the western and southwestern regions of Iberia), associated to human and 

other biophysical drivers, including weather and climate (Pereira et al., 2015; Parente et al., 

2016). Those drivers form the basis for mapping susceptibility and structural fire risk (Parente 

and Pereira, 2016; Leuenberger et al., 2018). 

The influence of weather and climate variability is particularly significant for large/extreme 

wildfires. The largest wildfires in western Iberia tend to occur during drought periods and 

heatwaves, associated with easterly or southerly winds, characterized by a very hot and dry air 

mass advected from northern Africa (Pereira et al., 2005; Amraoui et al., 2015; J. Parente et al., 

2018; Parente et al., 2019; Rodrigues et al., 2019). 

In Spain, there is a strong evidence that the magnitude of wildfire risk conditions is influenced 

by atmospheric circulation patterns, showing substantial regional differences, while a 

combination of short and long term climate variability is needed to explain episodes of very 

large wildfires (Rasilla et al., 2010). A recent work (Rodrigues et al., 2019) showed that 

wildfires have different explanatory factors in each region: (i) in the northwest region, wildfires 

are mostly caused by eastern wind during summer and southern wind during winter; (ii) in the 
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northern Mediterranean coast (Catalonia), wildfires are promoted by northerly winds; (iii) in 

the southern regions (Andalucía), wildfires are linked to cyclonic or south-eastern wind and 

extreme heat episodes during summer; and, (iv) in mountainous areas, wildfires are related to 

adiabatic heating of the air flow. In north-eastern Iberia, enhanced firefighting capability has 

reduced the number of wildfires and fire sizes in mild and dry years, but wildfires occurring in 

wind-dominated situations are still the most difficult to control and have not diminished over 

time (Duane and Brotons, 2018). Other recent studies showed that the number of wildfires in 

NE Spain during the 1970 – 2007 period presents a negative trend, combined with an also 

slightly negative trend in burnt area (Turco et al., 2014). 

2.2 Fire Weather Index and Meteorological Data 

The Fire Weather Index (FWI) and Daily Severity Rating (DSR) are two widely used 

components of the CFFWIS (van Wagner and Pickett, 1985; Van Wagner, 1987). The FWI 

rates fire intensity while the DSR evaluates the difficulty to control wildfires. The basic 

structure of FWI (Van Wagner and Pickett, 1975; de Groot, 1987) is the following: 

 FWI is the result of two other fire behaviour indices, the Initial Spread Index (ISI) and 

the Buildup Index (BUI): 

o ISI is a numeric rating of the expected spread of fire and depends on the wind 

speed and of the Fine Fuel Moisture Code (FFMC), which is an indicator of the 

relative easiness of ignition and the flammability of fine fuel and computed with 

rainfall, wind speed, air temperature and relative humidity (Van Wagner, 1987); 

o BUI rates the total amount of fuel available for combustion by combining two 

fuel moisture codes: the Duff Moisture Code (DMC), which depends of 

temperature, relative humidity and rainfall, and provides an indication of fuel 

consumption; and, the Drought Code (DC), which is a numeric rating of the 
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average moisture content of deep, compact organic layers, and an useful 

indicator of seasonal drought effects, computed with air temperature and rainfall. 

 ISI and BUI are computed with 3 fuel moisture codes, which aim to numerically rate 

the moisture content of different layers of forest floor fuels, in a “standard” mature pine 

stand; 

 ISI is computed with wind and Fine Fuel Moisture Code (FFMC); 

o FFMC refers to the thin (1-2 cm deep) surface layer of litter and other cured fine 

fuels with the lowest fuel load; FFMC change rapidly and only have a short-term 

memory (3 days); 

 BUI results from the Duff Moisture Code (DMC) and Drought Code (DC):  

o DMC, represents moderate depth duff layer (5-10 cm) of loosely-compacted 

organic layers, with average fuel load and a drying rate time lag of 12 days;  

o DC indicate the moisture content of deep (10-20 cm) compact organic layer, 

with the highest fuel load, only affected by significant rainfall and very slow 

drying rate (time lab of 52 days).   

The DSR, FWI and all its components were calculated for the 1980 – 2017 period using the 

Van Wagner and Pickett, 1975 equations and program as well as daily values at 12h00 of air 

temperature (at 2 meters), relative humidity (at 2 meters), wind speed (at 10 meters, including 

the meridional and zonal components), and 24 hour accumulated total precipitation. Relative 

humidity was calculated from dew point temperature and temperature at noon using the Magnus 

Formula (Alduchov and Eskridge, 1996). These meteorological data were extracted from the 

ERA-Interim reanalysis dataset provided by the European Centre for Medium-Range Weather 

Forecasts (Dee et al., 2011). While the new ERA5 dataset was not available at the time of this 

calculation, the improvements on temporal resolution and other processes are not particularly 
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relevant for this study. ERA-Interim data are regularly updated since 1979 and it is currently 

based on an assimilation data system, with a temporal resolution of 12 hours (Berrisford et al., 

2009; Dee et al., 2011). The spatial resolution of the data set is approximately 80 km (T255 

spectral) on 60 vertical levels from the surface up to 0.1 hPa; However, data are also provided 

at 0.125º × 0.125º resolution, based on a bilinear interpolation technique for continuous 

parameters (Liu et al., 2018). 

The analysis focused on the main indices: DSR, as well as ISI, BUI and DC, since (de Groot, 

1987):  

 DSR is one of the most used indices, and the FWI is frequently used to inform the 

general public about fire weather danger conditions; 

 ISI already reflects the influence of FFMC while BUI already reflects the influence of 

DMC, but not so much of DC; 

 FFMC and DMC relate with processes with shorter time scales than that of this study, 

as FFMC has a short-term memory of weather conditions and DMC fuels have much 

shorter drying rates; 

 FFMC and DMC are proxies of, respectively, the ease of ignition/ignition probability 

and of the probability of lightning fire start, but in Iberia high fire incidence occurs after 

long dry periods and natural/lightning wildfires are extremely rare (Parente et al., 2018; 

Rodrigues et al., 2018).  

A more in-depth analysis of FFMC and DMC supporting the selection of the fire weather 

indices used in this study is provided in Appendix B. 

2.3 Fire Data 

The Normalized Burnt Area (NBA) was computed for each month of the 1980 – 2015 period 

and for each administrative region of Iberia: 18 Portuguese districts and 48 Spanish provinces. 
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Only the Spanish provinces and islands correspond to the NUTS3 administrative division. NBA 

is equal to the monthly burnt area divided by the area of the district/province, presented in 

permillage (‰), and this normalization process allows the proper comparison of burnt areas 

between administrative regions with different areas. When compared with dividing the burnt 

area by the forested or vegetated area of each region, this normalization procedure has the 

advantage of allowing a comparison of the results with those of previous studies (Sousa et al., 

2015; Trigo et al., 2016). 

Wildfire data for Spain were obtained from the Dirección General de Medio Natural y Politica 

Forestal (ADCIF, 2018) and for Portugal were provided by the national Institute for the 

Conservation of Nature and Forests (Instituto da Conservação da Natureza e das Florestas, 

ICNF) (ICNF, 2018). The period for which homogeneous wildfire data are available 

(1980 – 2015) is slightly less than the period covered by the weather data (1980 – 2017). Both 

datasets comprise detailed information on burnt area (by land cover type), duration of fire (date 

of ignition and extinction) and location (district/province, municipality and parish/local name) 

and have been widely used in many and recent wildfire studies (Pereira et al., 2011; Sousa et 

al., 2015; Trigo et al., 2016; Rodrigues et al., 2019). We selected this level of aggregation to 

provide comparable results with previous studies; this resolution is appropriate for an analysis 

at the scale of the Iberia and provides information at the level at which landscape management 

is usually performed. 

Following the procedures adopted by Trigo et al. (2016), missing data for the Spanish provinces 

of Álava (for 1980 – 1984), and Navarra (1980 – 1984 and 1994 – 2002) were corrected with 

the long-term monthly mean NBA values for the 1980 – 2005 period. This correction had a very 

limited impact, as these regions have mean annual burnt area below 0.5% of the total province 

area in Álava and below 0.1% in Navarra (Trigo et al., 2016). The method of counting the 

number of wildfires in Portugal changed considerably in beginning of the 1990’s, affecting the 
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dataset completeness (Pereira et al., 2011). Additionally, Jiménez-Ruano(2017) reveals that the 

fires smaller than 1 ha were not fully compiled in the Spanish database until 1988. Therefore, 

to unify and homogenize the datasets, only fires with burnt area greater or equal to 0.1 ha were 

used in this study. However, the removal of these small fires has a very small influence (0.3% 

of burnt area in 1980 – 2005) in the monthly and annual total burnt area in Portugal (Pereira et 

al., 2011), so the effects in Spain are probably also small. 

2.4 Cluster Analysis 

For comparison purposes, a cluster analysis of the NBA spatial distribution was performed 

using the k-means clustering algorithm, previously used for a similar purpose by Trigo et al. 

(2016) and Sousa et al. (2015). In this study, cluster analysis is used to detect if the pyro-regions 

remain “stable” i.e., if they include the same districts/provinces, which will detect if any 

administrative region changed the NBA variability pattern. This algorithm was applied to the 

monthly NBA of the 66 administrative divisions, arranged in a T-mode correlation matrix, using 

correlation as the distance measure, and tested with 4 and 5 clusters. However, tests with 5 

clusters did not provide easily interpretable results. Data from the insular Baleares province 

were also used in this analysis for comparison purposes but were not included in subsequent 

work. The purposes of this procedure are to identify the provinces with the same seasonal NBA 

pattern, distribute the provinces by the 4 pyro-regions previously identified for 1980 – 2005 by 

(Trigo et al.,2016; Sousa et al.,2015). The analysis was conducted independently for two 

subsequent periods, 1980 – 1997 and 1998 – 2015, as well as for the entire study period 

(1980 – 2015), to explore potential changes in the spatial and temporal patterns of fire 

distribution and fire regimes in recent decades. The selection of these two periods seemed to be 

the most straightforward given the available data, but there are some indications of significant 

changes in the fire regime in some years of both studies and countries (Parente et al., 2016; 

Jiménez-Ruano et al., 2017). A possible bias in spatial clustering should be mentioned as a 
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consequence of the spatial smoothing of the ERA data, meaning that a cluster analysis based on 

weather station data might lead to results with lower spatial coherence. 

2.5 Extreme days 

 In this work, extreme days were defined as:  

(i) days when DSR was greater than the monthly 95th percentile for the summer/hot fire 

season/semester (May to October), i.e. the months where cumulated fraction of NBA 

reaches 90% of the total; 

(ii) days when DC was greater than the monthly 95th percentile, for the winter/cold fire 

season/semester (November to April). 

This definition aimed to assess the link of the NBA seasonal variability with extreme fire 

weather in each pyro-region. The dual approach between summer and winter was chosen due 

to the Mediterranean type of climate of Iberia (Kottek et al., 2006; Rubel et al., 2017). This 

temperate type of climate is characterized by wet and mild winters/springs, which promote the 

development of vegetation; and by hot and dry summers, which promote the hydrological and 

thermal stress of the vegetation (Pereira et al., 2013). This type of climate is the main 

responsible for the high seasonality of the temporal distribution of the fire incidence metrics 

with much higher values during the summer months of July, August and September (Telesca 

and Pereira, 2010). 

Since the peninsula's vegetation is adapted to these conditions, high fire incidence is mainly 

promoted by extreme weather (heat waves) and climatic (drought) conditions (J. Parente et al., 

2018; Parente et al., 2019). As pointed out by Amraoui et al. (2015) extreme fire activity in 

Iberia during summer and winter is associated with relatively different anomalous weather 

conditions, respectively abnormally high values of air temperature and low values of humidity. 

Therefore, DSR was used to identify extreme days during the summer/hot season/semester, as 
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it accounts for both air temperature and humidity; while DC was used to identify extreme days 

during the winter/cold fire season/semester, as it rates drought conditions in the lower layer of 

the soil and better accounts for prolonged drought. In summary, DC is more suitable than DSR 

for spring and winter months because most of burnt area in spring and winter is associated to 

dry conditions and air temperature is relatively low. The winter season analysis focused on 

March, due to both the relatively high number of fires and burnt area in this month, especially 

in the N pyro-region, and since it also has a high number of ignitions due to agricultural 

practices. DC anomalies in this month were also computed for each pyro-region, using the 

spatial average for the period 1980 – 2015, to assess the link between DC and NBA/number of 

fires. 

Although the 90th percentile is usually defined as an extreme day threshold (Bedia et al., 2012; 

Tsinko et al., 2018), the 95th percentile was chosen because it is more suitable to detect extreme 

values in relatively long period of analysis. It was computed using data of the same month for 

the same period of NBA data (1980 – 2015). Although fire incidence is concentrated from 

February to May and from June to October, the extreme days were set for each month to check 

the temporal distribution of the extreme days throughout the year. The extreme day definition 

is particularly suitable to identify summer extreme days (Bedia et al., 2012), since relevant 

meteorological variables, fire weather indices and NBA present high seasonal variability with 

a (major) peak during summer. The comparison with monthly percentiles and the differentiation 

between the hot and cold seasons/semesters aimed to remove (at least partially) the typical 

seasonal cycle of precipitation and air temperature in Mediterranean climates, since low 

extremes of precipitation in the cold season can be considered normal during summer months.  
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3. Results and Discussion 

3.1 Burnt area and pyro-regions 

The cluster analysis for 1980 – 2015 revealed the same pyro-regions identified by Sousa et al. 

(2015) and Trigo et al. (2016) for 1980 – 2005 (Table 1 and Figure 1). These are the Northwest 

(NW), North (N), East (E) and Southwest (SW) pyro-regions, which present different seasonal 

distributions of NBA. However, the cluster analysis for 1980 – 1997 and 1998 – 2015 sub-

periods differed in five frontier provinces which changed their pyro-region (Figure 1).  

 

Figure 1: Pyro-regions identified for the 1980 – 2015 period: NW (blue), N (green), SW (yellow) and E (orange). 

The blue circles identify administrative divisions that change from the SW to the NW pyro-region from 

1980 – 1997 to 1998 – 2015. The orange circle represents a province that changes from the SW to the E pyro-

region between 1980 – 1997 and 1998 – 2015. The black circle around the number identify the provinces where 
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observed seasonal distribution did not completely correspond to the algorithm result. The numbers identify the 

administrative regions listed in Table 1. 

 

Table 1: Composition of the pyro-regions identified for the period 1980 – 2015 in the Iberian Peninsula, showing 

the number and name of the administrative regions (Portuguese districts and Spanish provinces) which integrate 

each pyro-region. Underlined administrative regions are those who changed their pyro-region, when analysing the 

two sub-periods (1980-1997 and 1998-2015). 

Pyro-regions Portuguese Districts/Spanish Provinces 

Northwest (NW) 

Aveiro (1), Braga (2), Coimbra (3), La Coruña (4), Leiria (5), Orense 

(6), Pontevedra (7), Porto (8), Viana do Castelo (9), Vila Real (10) and 

Viseu (11). 

North (N) 

Álava (12), Asturias (13), Burgos (14), Cantabria (15), Guipúzcoa (16), 

La Rioja (17), Leon (18), Lugo (19), Navarra (20), Palencia (21) and 

Vizcaya (22). 

East (E) 

Albacete (23), Alicante (24), Almeria (25), Baleares (26), Barcelona 

(27), Cádiz (28), Castellón (29), Cuenca (30), Gerona (31), Granada 

(32), Huesca (33), Lérida (34), Málaga (35), Murcia (36), Tarragona 

(37), Teruel (38), Valencia (39), Zaragoza (40). 

Southwest (SW) 

Ávila (41), Badajoz (42), Beja (43), Bragança (44), Cáceres (45), 

Castelo Branco (46), Ciudad Real (47), Córdoba (48), Évora (49), Faro 

(50), Guadalajara (51), Guarda (52), Huelva (53), Jaén (54), Lisboa (55), 

Madrid (56), Portalegre (57), Salamanca (58), Santarém (59), Segovia 

(60), Setúbal (61), Sevilla (62), Soria (63), Toledo (64), Valladollid (65) 

and Zamora (66). 
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The NW pyro-region covers the western provinces of Galicia in Spain and the north-western 

part of Portugal and has the highest NBA values. The N pyro-region covers the extreme north 

of Spain and is characterized by the lowest NBA values in summer and the second highest in 

winter months. The E pyro-region includes the Mediterranean region of the Peninsula, extends 

from the eastern Pyrenees to Gibraltar, and has the third highest NBA values. The SW pyro-

region covers a large area of the south-western and central Peninsula, having the second highest 

NBA values in summer. In the provinces of Léon (18), Segovia (60), Soria (63) and Toledo 

(64), the observed seasonal distribution did not completely correspond to the algorithm output; 

some of these provinces were also “outside” the pyro-regions determined by Trigo et al. (2016). 

Overall, the seasonal variability of NBA in Iberia in 1980 – 2015 is characterized by a 

prominent summer peak in the 4 pyro-regions, and secondary lower peak in March in the N and 

NW pyro-regions (Figure 2, top panel). The ratio between NBA in August and March is the 

main criteria separating the NW and SW pyro-region. However, significant differences to this 

general temporal pattern exist between different pyro-regions: 

 In the NW, NBA has two peaks of fire incidence during the year: a relatively small one 

centred in March (monthly mean of NBA is 0.96‰) and a substantially higher one in 

August (8.47‰); July and September also present high values of NBA (>2.95‰), which 

means that burnt area in the NW pyro-region occurs mostly in Summer. As for inter-

annual variability, this is the pyro-region with the highest NBA values in a single year 

(the maximum is almost 4.0‰), pointing to the dominance of years with large fires, 

especially in August; 

 NBA in the N pyro-region also presents two peaks, the first also centred in March 

(0.79‰) and the second in September (0.72‰), but the NBA is slightly higher in 

winter/spring than in summer. The high NBA in December is due to an outlier, i.e., a 

very high NBA in just one specific year; 
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Figure 2: Monthly averages of the NBA (in permillage, ‰) (top panel); box-whisker plots of monthly NBA time 

series in each pyro-region (bottom panel) for the 1980 – 2015 period.  
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 In the E pyro-region, the NBA has only one clear summer peak, with the highest values 

in July (1.10‰) and August (0.72‰); 

 Finally, in the SW pyro-region, the NBA also has one peak in the summer months, 

especially in August (1.99‰), July (1.38‰) and September (0.83‰). 

An uncertainty analysis was performed in each pyro-region to assess if the extreme values (in 

this case, values above the 97.5 percentile) can significantly affect the NBA long term average. 

The results (confidence intervals at 95%) reveal that, in general, extreme values do not affect 

the intra-annual pattern in any of the four pyro-regions. However, the similarity between the 

two annual peaks in the N pyro-region can easily change by the occurrence of extreme wildfires 

with the ability to change the relatively low NBA in any of the two fire seasons. 

An important distinction between the NW pyro-region and those of the rest of Iberia is that the 

NBA in winter months in the N and NW is higher (more than the double) than in the W and E. 

Another relevant distinction, this time between the east and west halves of Iberia, is that NBA 

in the summer months is higher in the NW and SW than in the N and E pyro-regions. The 

differences between the NW and SW are due to the NBA peak in March in the former. 

The seasonal variability of the NBA in the five administrative regions that changed pyro-region 

from 1980 – 1997 to 1998 – 2015 (Figures 3a and 3b) was analysed in detail. In Guadalajara, 

the summer peak moved from August to July while the maximum NBA almost doubled (from 

0.48‰ to 0.88‰), conditions which classify it as a member of the E pyro-region. The other 

four regions (Bragança, Guarda, Lisboa and Zamora) changed from the SW to the NW pyro-

region, mostly due to differences in the ratio between NBA in August and March, which is the 

main criteria separating these two regions: 
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 In Bragança and Guarda, the pyro-region change was due to an NBA increase in March, 

accompanied by a lower NBA increase (Bragança) or no change (Guarda) in August. 

The ratio changed from 43 to 7 in Bragança and from 68 to 26 in Guarda. 

 In Lisboa and Zamora, the pyro-region change followed a significant NBA decrease in 

August, together with little changes to the NBA in March. Ratio changed from 186 to 

23 in Lisboa and from 5 to 2 in Zamora. 

The 95% confidence intervals of average NBA were also computed to assess if the extreme 

values affect the results (Figure 3); the results show that extreme values do not compromise the 

intra annual pattern. 

 

Figure 3a: Monthly averages of the NBA (in permillage, ‰) with 95% confidence intervals for the 1980 – 1997 

and 1998 – 2015 in four administrative regions that changed pyro-region from the first to the second sub period. 

Solid lines describe the intra-annual variability; dashed lines define the 95% confidence intervals. 
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Figure 3b: Same as Figure 3a, but only for one administrative region. 

 

The pyro-region arrangement shown in Figure 1 agrees well with the Köppen climatic 

classification of Iberia (Figure 4). According to Kottek et al. (2006) and Rubel et al. (2017) the 

Iberian Peninsula can also be divided in four climatic regions: 

 The north-western region has a Csb type of climate (temperate with dry and warm 

summer), influenced by the Atlantic Ocean and very humid in the winter months, with 

conditions for fast vegetation growth but also for wildfire occurrence. It corresponds to 

most of the NW pyro-region and a small (western) part of the N; 

 The region covering most of the Cantabria and the north-eastern region, as well as some 

mountainous areas in the east, has Cfa or Cfb climates (temperate without a dry season 

and hot or warm summer, respectively), with the low rainfall seasonality creating 

unfavourable conditions for wildfire occurrence and spread. It corresponds to most of 

the N pyro-region and a small (northern) part of the E; 

 Most of the E pyro-region has the steppe climate (BSh and BSk), with less available 

vegetation to burn than the other Iberian regions (del Barrio et al., 2010); 
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 Finally, most of the southwest has the Csa type of climate (temperate with a dry and hot 

summer), which is less humid than NW in winter, implying that the vegetation is not 

very dense and grows slowly. It corresponds to most of the SW pyro-region, and small 

parts of the E pyro-region. 

A visual inspection clearly suggests that the shape and size of clusters fit Iberia's climate types, 

i.e., that climate drives the fire regime in Iberia. However, this conclusion is not based on a 

quantitative assessment of the relationship between climate type and pyro-regions, and 

therefore a statistical significance cannot be ascribed to it. 

 

Figure 4: Köppen climate classification in the Iberian Peninsula (Kottek et al., 2006; Rubel et al., 2017). 

 

3.2 Fire Weather patterns 

The box-whisker plots of the fire weather indices in each month for the 1980 – 2015 period 

(Figure 5) disclose, in general, a similar fire weather patterns in each pyro-region. BUI, which 
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represents the fuel available for consumption, has a significant peak in summer (June to 

September, with the highest value in August), and significantly lower values in the other 

months. Extreme BUI values, however, are very distinct in each pyro-region, due to the 

combination of climate, climate variability and predominant type of vegetation. For example, 

the highest BUI in August is in the E (250), followed by the SW (190), NW (110) and N (70).  

 

Figure 5: Box and whisker plots of monthly BUI (top left), DC (top right), ISI (bottom left) and DSR (bottom 

right), for the 1980 – 2015 period. It is important to note the adoption of different vertical axis for a proper 

comparison of the seasonal pattern of the fire weather indices in each pyro-region. 

 

The DC (indicating seasonal drought effects on forest fuels) has a seasonal pattern similar to 

that of BUI, strongly influenced by annual climate cycle and also by the type of vegetation. The 

highest peak of DC occurs in August, but the extremes are typically registered in September 
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with the highest values in E (~800), NW (500) and N (350). The exception is the SW pyro-

region, where extreme DC occurs in August (650) and September (600). July and October have 

considerably high, but lower DC values.  

The highest mean value of ISI (expected spread of fire, highly dependent on wind values) 

usually occurs in July, except for the NW pyro-region where it occurs in August. The ISI pattern 

in the E pyro-region has the highest seasonal variability, similar to the NBA seasonal pattern, 

with a peak in July and also a high value in August. 

The seasonal pattern of DSR is a combination of the indexes presented before. The highest 

mean monthly value occurs in August in E (16), NW (6) and N (4), although the E pyro-region 

has the highest extreme in July (22). In the SW, however, the highest DSR mean value is in 

July (13). 

Fire depends on weather, vegetation and ignition sources (Krebs et al., 2010). The N pyro-

region is characterized by high concentration of vegetation but relatively low values of DSR 

and few ignitions (13% of total), therefore leading to low levels of NBA. However, the number 

of ignitions increases with appropriate weather conditions, especially associated with southern 

winds, causing adiabatic heating of the air flow in the Cantabria mountainous area (Rodrigues 

et al., 2019). 

In the NW pyro-region, there is also a high concentration of vegetation; nevertheless, there are 

more ignitions (56% of total) and higher DSR in summer months. This leads to many small 

wildfires that can evolve into large wildfires under extreme fire weather conditions. The two 

other pyro-regions, SW and E, present higher values of DSR but low vegetation cover (there 

are even some steppe regions in parts of the E). Ignitions are not as common as in the NW pyro-

region (24% in SW and 7% in E), but DSR is usually considerably much higher than in the N 

and NW pyro-regions. The relatively few ignitions have less probability of spreading into a 
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large fire due to the type and density of the vegetation. However, weather conditions are the 

worse for firefighting and the most suitable for the occurrence of large/extreme wildfires. 

In general, FWI indexes present a general similar seasonal pattern in all pyro-regions, with a 

peak in summer (centred in August) and considerably higher values from June to September, 

although with different values. The exception occurs in the E pyro-region, where the highest 

ISI mean value occurs in July, possibly explaining the different NBA seasonal patterns. 

Therefore, the NBA summer peak can be explained by the simultaneous fire weather peak in 

the pyro-regions. However, the NBA winter peak, even being small compared with the summer 

peak, is more difficult to explain only using summer fire weather, especially in the N and NW 

pyro-regions. 

3.3 Extreme Days 

Table 2 presents the monthly NBA in descending order, highlighting the months with higher 

NBA contributing to a cumulated fraction (CF) of 90% of the total NBA in each pyro-region 

for the 1980 – 2015 period. A link between burnt area and extreme days was found, showing 

that each pyro-region has a correspondent intra-annual extreme days pattern, with high 

correlation in the NW, SW and E pyro-regions (0.92 in NW and E, 0.94 in SW) but not in the 

N region (0.46). 

The winter peak of NBA in the N and NW pyro-regions can be justified by meteorological 

factors when using DC. Based on the Number of Extreme Days (NED), an analysis between the 

DC anomalies, for the 1980 – 2015 period, and the NBA in March, was performed for each 

pyro-region (Figure 6). 

 

Table 2: Monthly NBA and cumulative fraction (CF) in each pyro-region for 1980 – 2015 period. Months are 

sorted by descending order of NBA. Blue: months adding up to at least 50%; green: remaining months adding up 
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to at least 80%; yellow: remaining months adding up to at least 90%. Filled: warm season; Vertical lines: cold 

season.  

 

 

Figure 6: NBA (blue line) in March (in permillage) and DC anomaly (red line), for the 1980-2015 period, with 

correlation (R), for each pyro-region. 

 

Month NBA CF Month NBA CF Month NBA CF Month NBA CF

3 0.79 0.18 8 8.47 0.45 7 1.10 0.39 8 1.99 0.41

9 0.72 0.35 9 3.53 0.64 8 0.72 0.65 7 1.38 0.69

8 0.59 0.49 7 2.97 0.80 9 0.23 0.74 9 0.83 0.86

2 0.56 0.62 3 0.96 0.86 6 0.23 0.82 6 0.24 0.91

4 0.39 0.71 10 0.82 0.90 10 0.13 0.86 10 0.16 0.95

12 0.33 0.78 6 0.60 0.93 4 0.10 0.90 3 0.08 0.96

10 0.26 0.84 4 0.49 0.96 3 0.06 0.92 2 0.05 0.97

1 0.24 0.90 2 0.27 0.97 12 0.06 0.94 5 0.04 0.98

7 0.23 0.95 5 0.22 0.98 5 0.05 0.96 4 0.04 0.99

5 0.10 0.97 11 0.13 0.99 2 0.05 0.98 11 0.02 0.99

6 0.07 0.99 12 0.09 1.00 1 0.04 0.99 12 0.02 1.00

11 0.06 1.00 1 0.07 1.00 11 0.02 1.00 1 0.01 1.00

N NW E SW
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In fact, the correlation between NBA in March and the DC anomaly is high in the NW and N 

pyro-regions, respectively 0.79 and 0.65. In the NW pyro-region, the four years with the highest 

NBA in March (2012, 2000, 1997 and 2009) also present a significant positive DC anomaly. 

These are also the years with the highest NBA in the N pyro-region, except in 1981, where the 

DC anomaly is slightly negative; in this year there was a winter drought, but DC was smoothed 

by a rainy March. In the SW pyro region, despite the lower NBA in March, the correlation is 

also surprisingly high (R=0.70), and 3 of the 4 years with the highest NBA values also present 

strong positive DC anomalies. However, the correlation is much lower in the E pyro-region 

(R=0.39). 

The high values of NBA in March can be explained by the combination of a lack of 

precipitation, revealed by positive anomalies of DC, with agricultural practices generating a 

large number of wildfires that can spread due to the type of vegetation (Jurdao et al., 2012; 

Dacamara et al., 2014; Trigo et al., 2016). 

Box-whisker plots of monthly averages of NED were plotted together with monthly averages 

of NBA and number of fires, for each pyro-region (Figure 7). Large NED generally corresponds 

to the higher values of monthly NBA and number of fires, also when comparing the seasonal 

pattern in the SW and E pyro-region (Figure 5). The results show that the month with higher 

mean NED in the NW and N pyro-regions is August, but in the E and SW is July. 

An analysis in each pyro-region indicates that: 

 In general, the NW has the highest NED during summer months, but also presents 

extreme values of NED in March, agreeing well with the NBA and number of fires 

seasonal pattern in this pyro-region (Figure 6). This fact, together with the vegetation 

type and the high number of ignitions, can explain the higher values of the NBA in this 

pyro-region; 
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Figure 7: Box-whiskers plots of monthly number of extreme days (NED) in each pyro-region, monthly NBA 

(brown dashed line) and average fire density (green dashed line), both in permillage, for the 1980-2015 period. 

Outliers are represented in black circles. 

 

 In the N region, the seasonal pattern of NED also agrees well with the NBA and number 

of fires, with one month of delay after in March and one month of anticipation in 

September. Further research is needed to explain this behaviour. The highest value of 

number of fires along with the also high value of NED in March helps understand the 

peak of the NBA in this month and not in April. This result can explain the difference 

between the pyro-regions N and NW in the warm season (especially in summer) and 

also explain the higher values of NBA in the cold season in this pyro-region; 

 In the SW, the higher NED between June and September is clear, and these are the 

months with the higher number of fires and NBA; 
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 Finally, in the E, July is the month with the highest mean value of NED and the highest 

NBA. August has, however, the highest extreme values of NED. A particular month is 

April, with a small peak of NED, that also agrees with the relatively higher values of 

NBA in this month, for the cold season. April has the two highest outliers of NED in 

this pyro-region (19). 

3.4 Extreme fire weather changes in last decades 

Given the link between climate variability/fire weather and NBA, we compare the monthly 95th 

DSR (for July, August and September) and the 95th DC (for March) percentiles for the two sub 

periods (1980 – 1997 and 1998 – 2015) to assess if the meteorological factors explain the NBA 

intra-annual variability and the administrative region change between pyro-regions (Figures 1, 

3a and 3b). These months were chosen because they have the highest NBA in the SW, NW and 

E pyro-region. Analysing the results for those months, it is visible that March has small 

variations in DC, except in the Tagus valley, the extreme southeast and the Ebro valley, where 

there is a particularly strong variation in the transition with the Pyrenees Mountains. In July, 

most of Iberia has an increase of DSR, except in the southwest. August also presents an increase 

in almost all the Peninsula, with small exceptions in the extreme north and parts of the western 

edge. Finally, September has decreases of DSR in southwestern and northeastern Iberia with 

the remaining areas presenting an increase. 

The obtained results for the analysed administrative regions (Figure 8) indicate that: 

 In Bragança, extreme DC increased in March. This pattern is in accordance with the 

increase of the NBA in this province that changed from the SW to NW pyro-region. The 

increase of extreme DSR in August and September is also visible, in accordance with 

the increase of NBA in those months. However, the link between the increase of NBA 
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in July and extreme DSR is not so clear, since most of province has a observed a 

decrease of extreme DSR; 

 

Figure 8: Differences of the 95h percentile of DC, between 1980 – 1997 and 1998 – 2015, for March (upper left); 

the same for DSR, for July (upper right), August (lower left) and September (lower right). Yellow circles indicate 

the 5 provinces that changed their pyro-region between 1980 – 1997 and 1998 – 2015.  

 

 In Guarda, extreme DC also increased in March, consistent with the increase of NBA. 

The NBA increased in August and decreased in September and the DSR increased in 

some parts of the province but decreased in others. It is important to mention that the 

variations for the summer months are relatively smaller than in March, due to the 

relatively higher values. In July, the higher NBA is accompanied by a decrease of 

extreme DSR, contrary to what was expected; 
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 In Lisboa, the extreme DC in March is higher in the last period, agreeing well with the 

increase in NBA. In July and August, the decreases in extreme DSR are also in line with 

the decrease in NBA, especially in August. However, the results are contradictory in 

September, with the decrease in DSR and an increase in NBA; 

 In Zamora, the increase in NBA is associated with an increase (in some parts) of extreme 

DC. This relationship is also not completely clear for July and August, where lower 

NBA values are associated with a decrease in extreme DSR in some parts. In September, 

the DSR extreme values are higher in the last period; 

 Finally, in Guadalajara the results agree with the link between the extreme weather and 

NBA, especially in July and August. Both extreme DSR and NBA increased in these 

months. In March, the difference of NBA is almost null and the DC differences are not 

clear, with increase in some parts and decrease in others. In September, the results are 

dubious due to an increase of extreme DSR in a larger area and a decrease in a small 

area. 

Additionally, a change in the correlation between the NBA in March and the DC anomaly 

is visible after 1990 in the N, NW and SW pyro-regions. This correlation is much higher in 

the last period (1991 – 2015), comparing with 1980 – 1990 for the N (R=0.72 with R=0.31, 

respectively), NW (R=0.85 with R=0.13) and SW (R=0.79 with R=0.11) pyro-regions. This 

is consistent with a change from a fuel-limited to a drought-driven fire regime proposed by 

other authors (Pausas and Fernández-Muñoz, 2012). 

The results suggest that meteorological factors can explain the changes of NBA intra-annual 

variability and pyro-region composition in most provinces. However, it is also important to 

note that results are not completely clear in some months, possibly highlighting that NBA 

does not only depends on fire weather, but also on other local human and natural factors, 
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such as type of vegetation, population density and activities, agricultural practices and land 

use.  

3.5 Large fires 

The study of the fire weather in the location and during the occurrence of large fires may help 

to complement the understanding of extreme weather on extreme wildfires. The largest wildfire 

in the Iberian Peninsula occurred in the municipality of Oliveira do Hospital (central Portugal, 

NW pyro-region) on October 15 2017, and burned 64 321 ha (EFFIS, 2018). The DSR in 

October 15 was 58, which is nearly 4 times extreme day limit in NW (Figure 9, top left panel). 

This extreme value is the highest in the study period (1979 – 2017) and considerably higher 

(42%) than the second highest value (41, in August 2015). The weather on that day was 

influenced by unusual synoptic conditions, with the approximation of the Hurricane Ophelia to 

Iberia, with strong and very dry southern winds from North Africa. The exceptional fire weather 

conditions were combined with a severe drought that started earlier in the year, which led to 

vegetation dryness. 

The second case study is the wildfire at the Arouca municipality (northern Portugal, NW pyro-

region), from August 7 to 17 2016, which burned a total of 26 593 ha (EFFIS, 2018). It was the 

largest wildfire in the Iberian Peninsula in that year. Values of DSR in the nearest point of the 

wildfire ignition were extreme during the days the wildfire remained active, reaching a 

maximum of 39.6 (Figure 9, top right). This was the second highest DSR in the NW pyro-region 

during the study period. The highest value of the DSR in this region was also registered in 

October 15 2017 (50); some likely reasons why it did not lead to wildfires are the possible lack 

of ignitions and the burning of the vegetation in the previous year. 
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Figure 9: Historical DSR values (blue line) for Oliveira do Hospital (top left); for Arouca (top right); for Serra do 

Caldeirão (bottom left) and for Valencia (bottom right). Also shown is the extreme day threshold for each pyro-

region, for 1980-2014 (red line); boxes show the DSR occurred in the studied large fires. 

 

Another case study is the Serra do Caldeirão (Algarve, Portugal, SW pyro-region), a place 

where two large wildfires occurred. The first ran from July 26 to 30, 2004, burning 27 784 ha 

and the second last from July 18 to 21, 2012, affecting 26 442 ha (EFFIS, 2018). DSR values 

during the days the wildfire remained active were not extreme in the second fire (Figure 9, 

bottom left). This fact can be explained by the climate of this region, which is prone to higher 

DSR values in the summer and, therefore the threshold for extreme days is also higher than the 

two previous case studies in the NW pyro-region. In addition, the number of ignitions in this 
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pyro-region is much lower than in the NW. Nevertheless, both wildfires burned in severe DSR 

conditions (maximum of 32), higher than the extreme day threshold (25). 

Finally, the fourth case is the wildfire in Dos Aguas (Valencia, Spain, E pyro-region), starting 

on June 28, 2012, and continuing to burn in the first days of July, affecting 34 424 ha (EFFIS, 

2018). This wildfire started in an extreme day (DSR was 20 and the threshold for extreme day 

is 18) and the conditions for fire spread deteriorated considerably in the second day, when DSR 

reached a maximum of 30 (Figure 9, bottom right). In the last day of June of 2012, DSR dropped 

to 13 and the wildfire started to be extinguished. Comparing to other extreme days, the highest 

DSR value (70) was notably larger than the one observed during this wildfire. This region has 

a higher DSR average than that of the previous case studies, and has also the driest conditions 

in the Iberian Peninsula, an earlier fire peak in the summer (in July), less vegetation cover and 

lower ignitions. Fire prone conditions in the region are usually a combination of drought (more 

common than the other fire pyro-regions) and a cyclonic or south-eastern extreme heat episode 

during summer (Rodrigues et al., 2019). 

 

4. Conclusions 

Fire regime and fire weather were characterized in the Iberian Peninsula for present-day climate 

conditions (1980 – 2015). Results were compared with the findings of previous studies (Sousa 

et al., 2015; Trigo et al., 2016) to detect potential changes. The pyro-regions developed in the 

previous studies for 1980 – 2005 remained essentially unchanged for the prolonged 

1980 – 2015 period, highlighting the different fire regimes in the Iberian Peninsula. However, 

when analysing changes between 1980 – 1997 to 1998 – 2015, five border administrative 

divisions moved from the SW to the NW pyro-region, while another moved from the SW to the 

E, due to changes in the NBA seasonal pattern. 
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FWI indexes presented, in general, a similar inter annual pattern in the pyro-regions, with a 

main peak in summer, centred in August, although with different values; in the E region, ISI 

showed a peak in July instead of August, possibly explaining the different NBA seasonal 

patterns. Climate types were shown to be good rough estimators of the pyro-region size, 

location, and characteristics in the Iberian Peninsula, which suggests that changes in the types 

of climate, as those projected by Rubel and Kottek (2010), may lead to lead to changes in the 

fire regime of the pyro-regions. 

DSR and DC could explain the NBA modifications in most of months, but in some cases the 

link was not completely clear, highlighting that the relationship between NBA and 

meteorological conditions may need to be complemented with the effects of other local 

landscape or human driving factors. In particular, the winter/spring peak of NBA in the N and 

NW pyro-regions could not be justified with DSR alone, but could be explained by a 

combination of drought (through DC) and agricultural practices, generating a large number of 

wildfires that can spread due the type of vegetation and to a lack of precipitation, as suggested. 

An analysis of the intra-annual pattern of extreme fire weather days (days with DSR > P95 in 

summer or DC > P95 in winter-spring) in the 4 pyro-regions allowed for an explanation of the 

differences between the N and NW pyro-regions in summer, and of the higher values of NBA 

in the spring/winter season, especially in March. The NED seasonal pattern agreed well with 

the patterns of NBA and number of fires in the NW region, and also in the N region with small 

displacements. Large NED generally corresponded to the higher values of NBA and number of 

fires, also when comparing the seasonal pattern in the SW and E. 

The 2 very large wildfires which occurred in the NW pyro-region were clearly driven by days 

with extreme DSR, in some cases the highest occurred in the observed period. However, this 

link between large fires and extreme DSR was not so evident in the SW and even less in the E 

pyro-region.  
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These results highlight and help to cement the link between climate and fire regime and can 

therefore help to predict the impacts of climate change in Iberia. However, it will remain very 

difficult to assess climate change impacts in fire regimes because they also depend on human 

(ignitions, land cover changes) and natural (vegetation structure) drivers, which are not always 

considered in climate change studies (Pereira et al., 2013; Parente et al., 2016). A fire regime 

model which can relate all these variables (instead of only using climate) and a detailed analysis 

of the area burned during extreme days could bring significant progress in future works. 
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