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My dissertation introduces a new materialist theory of scientific progress built on a 

novel characterization of scientific work and an analysis of progress appropriate to it. Two 

questions, crucial for understanding scientific progress, are answered: 

Why is it possible for scientists at a given time to have more epistemic abilities than 

scientists at an earlier time? 

How can knowledge acquired in the past be used in on-going or future research? 

I argue that these questions are best answered by analyzing science as a form of 

labor. The elements of the labor process, involving both intellectual and material means, 

provide a starting-point for the systematic study of how scientific abilities evolve.  

As a unit of analysis, the labor process exposes features of the dynamics of 

knowledge accumulation that traditional analyses do not. I analyze historical cases from 

chemistry and the Scientific Revolution, attending carefully to how scientific work is 

conducted and conceived. First, I argue that scientific progress consists not just in the 

growth of theoretical or empirical knowledge, as in traditional philosophy of science, but 

also in the growth of know-how. The tools of science play a crucial role in determining the 

abilities scientists can and must have to do science. Tools also determine how scientists’ 

abilities change over time, by enabling, but also constraining, the incorporation of 

knowledge into the labor process. I argue that an extremely important mechanism of 

progress in science consists of a feedback loop between the production of new knowledge 

and instrument construction. This process requires the integration, and transformation into 

material form, of different kinds of knowledge. As the process is repeated over the long 

term, scientific work is transformed because it becomes less dependent on native human 

epistemic abilities.  
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Second, the evolution of scientific abilities depends on ambient ideological 

conditions: Social attitudes towards different kinds of work are critical, as are notions about 

the proper object of science.  

What results is a picture of scientific change involving the interactions of different 

kinds of knowledge and in which internal and external factors, as well as instrumental 

rationality, play a significant role. 

. 
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1.0 INTRODUCTION 

What causes scientific progress? Progress is a kind of change, but it is not identical 

to change. As will be discussed in more detail in chapter 2, progress is a goal-relative 

change, where the goal can be either backward-looking or forward-looking, depending on 

whether it is at the beginning or the end of an activity. A traditional answer to what causes 

scientific progress is that science has a special method of inquiry, the “Scientific Method,” 

the application of which leads to progress, in the sense that scientists either move closer to 

the destination (knowledge, truth, approximate truth, or whatever) or farther from the 

starting-point (e.g., later theories are more effective at solving problems than earlier ones).  

To ask what causes scientific progress is to ask a question about the mechanism(s) 

by which science makes progress. This is a different question than what constitutes 

scientific progress. The two questions are related, of course, because we need to know what 

progress is in order to identify the mechanisms causing it.  

As I will discuss in more detail in chapter 2, the notion of progress adopted in this 

dissertation is that it is constituted by the growth of knowledge. The latter will be 

understood in a broad sense, involving not just theoretical knowledge, or propositional 

knowledge more generally, but also knowledge of how to do things, or what Ryle called 

‘knowledge-how’ or ‘knowing how.’1 I intend this project to be primarily explanatory and 

descriptive rather than normative. For that reason, I choose a conception of progress that 

is derived from scientific practice and that forecloses minimally on what is to count as 

‘progress.’ 

Conversely, studying the mechanisms of change in science can reveal candidates 

for what might count as progress. Though this dissertation will be largely concerned with 

mechanisms responsible for progress, the study of such mechanisms will suggest novel 

candidates for what should constitute progress. The idea that progress may be constituted 

                                                 

1 Ryle (1949), chapter II. 
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by the transcendence of the limitations of native human epistemic abilities will be discussed 

in chapter 7.  

This dissertation project starts from the view that whatever the “Scientific Method” 

amounts to, it involves a synthesis of manual and intellectual labor. This view is not 

original, and in fact it was the source of some controversy in mid-20th century debates on 

the origins of the Scientific Revolution. In what became known as the “Zilsel Thesis,” 

Edgar Zilsel, a historian and philosopher of science and member of the Vienna Circle, 

claimed that “[s]cience was born when, with the progress of technology, the experimental 

method eventually overcame the social prejudice against manual labor and was adopted by 

rationally trained scholars.”2 On Zilsel’s view, then, modern science results from a 

synthesis of manual and intellectual labor, and hence requires both manual and intellectual 

tools. 

Not everyone in science studies has shared this view. The sociologist Joseph Ben-

David wrote that “the subject matter of science is nature and the tools of science are systems 

of thought.”3 Alexandre Koyré, an influential historian of the Scientific Revolution, could 

not abide the idea that the development of technology or the rise of superior artisans had 

any significant impact on the rise of modern science: 

Their science [that of Galileo and Descartes] is made not by engineers or craftsmen, but by 

men who seldom built or made anything more real than a theory. The new ballistics was made not 

by artificers and gunners, but against them. And Galileo did not learn his business from people who 

toiled in the arsenals and shipyards of Venice. Quite the contrary: he taught them theirs. Moreover, 

this theory [of the influence of the crafts and technology on the Scientific Revolution] explains too 

much and too little. It explains the tremendous scientific progress of the seventeenth century by that 

of technology. And yet the latter was infinitely less conspicuous than the former. Besides, it forgets 

the technological achievements of the Middle Ages.4 

He championed the arch-rationalist explanation that “it is thought, pure 

unadulterated thought, and not experience or sense-perception, as until then, that gives the 

basis for the ‘new science’ of Galileo Galilei.”5 Koyré and like-minded historians in the 

                                                 

2 Zilsel (2000 [1942]),), p. 544. 

3 Ben-David (1971), p. 1. 

4 Koyré (1968), p. 17. 

5 Koyré (1968), p. 13. 
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mid-20th century, such as A. Rupert Hall and Charles Schmitt,6 were reacting to a recent 

trend in the history and historical sociology of science, exemplified by Zilsel and Leonardo 

Olschki among others, of explaining the Scientific Revolution by appealing to the role of 

artisans and technology.  

In general, philosophers have been inclined to simply ignore the role of technology 

and the manual aspects of scientific work in their discussions of scientific progress. Perhaps 

one reason for this neglect is that the traditional philosophical focus has been on the 

justification of scientific theories. As a result of this focus on justification, philosophy of 

science has largely concerned itself with the intellectual aspects of scientific method. To 

the extent that progress is claimed to occur through theory change, the former consists of 

the fact that the successor theory is more justified than its predecessor. Given this focus, 

the cause of progress is the application of a method for producing better justified theories, 

where “method” is typically understood as a set of rules or procedures for choosing theories 

in light of evidence. A classic example of such an approach is Lakatos’ (1970) rational 

reconstructions of the history of science. He argued that “philosophy of science provides 

normative methodologies in terms of which the historian reconstructs ‘internal history’ and 

thereby provides a rational explanation of the growth of objective knowledge.”7 Lakatos 

characterizes these “methodologies” as “a set of … rules for the appraisal of ready, 

articulated theories” and also as “theories of the rationality of scientific progress.”8 As 

Sankey and Nola (2007) note, this approach to the history of science makes methodology, 

so understood, “the main explanatory driver of scientific progress,” with non-

methodological factors being left to external history of science.9  

More recently, even a practice-oriented philosopher of science like Hasok Chang 

has held that “if scientific knowledge is getting better, it must mean that our current 

scientific beliefs are more justified than our previous beliefs (or at least that we have a 

                                                 

6 Hall (1959); Schmitt (1969), pp. 89-90 and 94-95. For an overview of the reception of Zilsel’s 

ideas by historians in the mid-20th century, see Conner (2005), pp. 276-281. 

7 Lakatos (1970), p. 91. 

8 Lakatos (1970), p. 92 and 105. 

9 Sankey & Nola (2007), p. 101. In their own book on Theories of Scientific Method, Sankey and 

Nola focus on justification as well (e.g., (2007), p. 20). 



4 

larger number of beliefs, which are as justified as the beliefs we used to hold).”10 He 

explains scientific progress as the result of a process of “epistemic iteration” through 

successive standards of belief, with each succeeding standard building on, but also 

correcting, its predecessor. On this view, progress arises from the application of the 

appropriate criteria for accepting new standards of belief: the principle of respect for earlier 

standards, the greater precision of the later standards, the self-consistency of the later 

standards, their coherence with other things we believe, and the ability to coherently revise 

beliefs based on the earlier standards in light of the later ones. Progress comes about 

because scientists accept new standards for such reasons. The “mechanism of progress”11 

consists entirely in relating later standards of belief to earlier ones in this self-correcting 

and cumulative manner; the “technical infrastructure” of science has no place in the 

mechanism except as a possible object of belief.12 

But science is as much about doing as about believing. Consider Chang’s well-

known account of the development of temperature standards. In Inventing Temperature 

(2004) and “Scientific progress: beyond foundationalism and coherentism” (2007), Chang 

describes a succession of increasingly precise instruments, starting with the hands and 

ending with the high-precision Beckmann thermometer, for estimating warmth.13 Each 

instrument provided a standard for beliefs about the temperatures of bodies. Each 

instrument in the sequence also provided a standard for assessing the reliability of its 

successor. Once the successor was accepted, it in turn provided a standard for correcting 

measurements made with its predecessor. Thus the new beliefs formed with the successor 

                                                 

10 Chang (2007), p. 2. 

11 Chang (2007), p. 10. 

12 I here make use of Joseph C. Pitt’s (2000, 2011) term ‘technical infrastructure of science’ which 

Pitt (2000, p. 136) defines as “the historically defined set of mutually supporting sets of artifacts 

and structures without which the development and refinement of scientific knowledge is not 

possible” (emphasis in original). Though Pitt’s focus on the role of artifacts, institutions and division 

of labor in the development of scientific knowledge is similar to mine, Pitt appears to conceive of 

progress exclusively as theoretical progress, whereas I favor a broader conception, as will become 

clear in chapter 2. 

13 Chang (2004), pp. 47-48 summarizes the process of developing numerical thermometers starting 

from the senses; Chang (2007), pp. 9-11extends the analysis to Beckmann thermometers.  
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were more justified in virtue of the greater precision of the latter, and the old beliefs formed 

by means of the predecessor became more justified in virtue of the corrections. So there 

was overall progress in the justification of beliefs and the standards by which they were 

justified. 

What this explanation leaves out are the conditions determining the invention, 

production, and use of the instruments themselves. Each new temperature standard had to 

be invented, produced and used, and each one of these activities was made possible by the 

conditions within which the scientists were working.14 Here is a partial list of these 

conditions: 

a. Goals 

b. Means and objects of inquiry 

c. Mental conceptions, including background knowledge and theory but also 

attitudes, cultural understandings and beliefs 

d. Technological and organizational forms of production and exchange 

e. Relations to nature, that is, the human-nature relationship and the instrument-

nature relationship mediating it 

f. The human-instrument relationship (e.g., is the instrument a manual implement 

or a machine?) 

g. Institutional arrangements, e.g., publishing practices, credit systems and 

scientific societies. 

All of these conditions are necessary for scientific action. Moreover, they are 

important for the growth of knowledge, because they determine what scientists are able to 

do towards acquiring knowledge. In other words, they determine scientific abilities. That 

is, they determine what experiments can be performed, what hypotheses can be tested, what 

kinds of phenomena can be discovered, what calculations can be performed, and so on. 

                                                 

14 To be fair, in subsequent writings (e.g., Chang 2012) Chang has broadened his analysis of 

scientific practice to include his well-known “systems of practice,” which include “epistemic 

activities.” I discuss these in chapter 2. That said, to my knowledge he has not updated his theory of 

epistemic iteration to incorporate systems of practice. 
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In short, philosophical theories of how knowledge grows tend to explain progress 

as the result of the application of a method consisting of rules of reasoning about new 

theories, standards, etc. This way of explaining the growth of knowledge is insufficient, 

however, because it neglects the conditions of scientific action. 

For reasons I will provide shortly, this observation raises the following fundamental 

question for understanding how science makes progress: 

1. Why is it possible for scientists at a given time to have more epistemic abilities 

than scientists at an earlier time? 

For an epistemologically oriented explanation of scientific progress, a crucial 

ability to explain is how scientists are able to make use of background knowledge acquired 

in past research ((c) above). Scientific knowledge does not grow simply by the addition of 

one item of knowledge after another, but because scientists try to further their knowledge 

on the basis of what they have learned. This raises a second fundamental question: 

2. How is it possible for knowledge acquired in the past to be used in on-going or 

future research? 

Let me explain why these questions are important.  

The first question concerns abilities. An ability is a power of an agent that relates 

the latter to an action.15 So if we want to explain scientific actions, a complete explanation 

will include an account of why scientists are able to do what they do. For example, let’s 

say we want to explain an event such as that chemist X analyzed chemical Y using 

technique Z. Clearly, part of the explanation would appeal to X’s motives. But merely 

appealing to motives would be insufficient, for it leaves out of the explanation the factors 

enabling X to realize her motives. In order to understand why she has the ability to analyze 

Z, we need to understand the instrumentation, techniques, division of labor, background 

knowledge and beliefs that enabled her to carry out the analysis.  

This example highlights the fact that focusing on abilities avoids excessively one-

sided analysis in terms of either “objective” or “subjective” factors. For example, an ability 

depends on the means available for action, such as instruments or organizational structures. 

But it also depends on the properties of individual agents, such as their methods of 

                                                 

15 Maier (2014). 
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reasoning, beliefs, desires, attitudes, skills, etc. Put slightly differently, abilities connect 

the individual, the material and the social. Because it encompasses these factors, ‘ability’ 

is a broad enough category to explain scientific action and change.  

This category may not be pleasing to empiricist historians and philosophers, who 

tend to be hostile to the use of modal notions. Better to focus on what scientists actually 

did, why they did it and how. Though defending the use of modal notions in historical 

explanations would require much more space than I can devote to it here, a short answer is 

that we want to be able to explain why scientists are in a position to do what they do, why 

the conditions are such that certain courses of action are feasible and others are not. 

Appealing to the motivations of the scientists, for example, is insufficient for explaining 

the particular course of action taken, since acting requires not just motivations but also the 

means to achieve them. Indeed, a motive that is concrete enough to explain an action has 

to be formulated in terms of the means available for satisfying it. It is not enough to want 

to analyze a chemical; one must want to use a particular technique in order to take an action 

towards analyzing it. But concretizing motives in this way requires an understanding of 

what can and cannot be done in given circumstances, and hence an understanding of what 

the agent is in a position to do. 

From a historical perspective, explaining why scientists are in a position to act as 

they do provides insight into the long-term dynamics of scientific change, which is the 

time-scale with which this project is concerned. For example, if we want to know why 

discovery A was made at time t whereas discovery B was only made much later, then 

showing that scientists were in a position to discover A at t but were only in a position to 

discover B at a much later time provides a partial contrastive explanation of the sequence 

(partial because motivations would also play a role, of course). Another explanandum is 

the convergence of discoveries. Suppose two scientists, working independently, make the 

same discovery during a certain historical period. Showing that they were working under 

similar conditions—concerned with similar questions, using similar tools, presupposing 

similar background knowledge, etc.—helps to explain the convergence. Moreover, the 

identification of similar conditions may indicate that the science of the time was on a 

specific trajectory, in that the discovery would probably have been made during that period, 

even if these particular scientists had not made it themselves.    
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As historians and philosophers of science, however, we are not concerned with just 

any abilities, but with abilities that contribute to the production of knowledge. As I will 

discuss in more detail in chapter 2, an epistemic ability is the ability to engage in a mental 

or physical action that is intended to contribute to the production or improvement of 

knowledge in a particular way, and according to discernible rules. A striking characteristic 

of scientific change in the modern era has been that scientists have acquired a huge number 

of epistemic abilities that they did not have in the past, and this growth has been directly 

responsible for the growth of knowledge (and indeed might constitute such growth, on the 

view of knowledge adopted here). So if we want to explain the growth of knowledge, we 

will want an account of what makes the acquisition of these abilities possible.  

This point holds even if the only knowledge we are concerned with is theoretical 

knowledge. In empirical science, the growth of theoretical knowledge depends on the 

acquisition of new empirical information, which in turn depends on scientists’ abilities to 

acquire such. But theorizing itself also involves actions, and depends on the means 

available for theorizing, for example mathematical tools, calculation aids, and concepts. A 

fortiori, an account of what makes the acquisition of epistemic abilities possible is 

necessary if we want to explain the growth of knowledge in the broad sense invoked at the 

beginning of the chapter, which includes know-how. Indeed, abilities may be constitutive 

of the latter (I delay discussing this issue until the next chapter), in which case such an 

account is clearly needed if we are to explain the growth of that knowledge. Even if know-

how turns out not to consist of abilities, or even to be propositional after all, as some 

philosophers believe, the relevance of the know-how for explaining scientific change (and 

therefore progress) depends on whether scientists are in a position to exercise it. For 

example, let us grant that a scientists knows how to build an instrument in the purely 

discursive sense of being able to provide a set of instructions for how to build it. If she is 

not in a position to actually build the instrument, the trajectory of her research will 

presumably be different from the trajectory when she is in such a position and acts on it. 

Thus, the relevance of the know-how for explaining scientific changes depends on whether 
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scientists have the corresponding ability. It follows that abilities remain relevant, even if 

know-how is conceived independently of them.16     

The second question concerns the application of prior knowledge. Another feature 

of scientific progress is that once knowledge is acquired, it does not necessarily lie idle on 

a shelf but is potentially useable for the purpose of acquiring new knowledge. Thus science 

is able to make use of what it has learned in order to learn more, and indeed the mechanisms 

by which it does so seem to be responsible for much of its progress. Among intellectual 

endeavors, science is perhaps uniquely able to incorporate what it learns not just into its 

thinking, but also into its conditions of action. Thus the two questions are interrelated, for 

the growth of knowledge does not remain external to the process by which knowledge is 

acquired but modifies it, enhancing scientists’ epistemic abilities. Some mechanisms by 

which it does so will be the subject of chapter 7. As will be discussed in chapter 8, the 

application of prior knowledge is a major driver of changes in scientific practice. A 

complete explanation of scientific progress will need to provide an account of how this is 

possible.   

The dissertation may be viewed as an application of the Zilsel thesis to the topic of 

scientific progress. My contention in this dissertation is that thinking about science as a 

labor process is a useful way of addressing these questions. Tools (including past results), 

activities, skills, division of labor, products, and “ideological” conditions (e.g., attitudes 

towards work) are all involved in doing science. In the labor process, the various conditions 

of scientific action are combined and enable the agents of the process to engage in 

production. So if we want to explain how and why the agents are able to produce what they 

produce, we need to understand science as labor. We also need this understanding to 

explain how prior knowledge can be used in on-going research. Rules of reasoning are 

important, of course, but so are these other aspects of scientific work that tend to be 

overlooked by philosophers of science.  

                                                 

16 For a discussion of some of the issues involved in applying the category of know-how to scientific 

practice, see Chang (2017). See Stanley & Williamson (2001) for an influential reductionist account 

of ‘knowing how’ in terms of knowledge-that.  
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I will provide support for these claims by examining some historical cases. The 

dissertation is structured as follows. Chapter 2 defends the labor process as a unit of 

analysis for studying the growth of scientific abilities, and relates that unit to the notion of 

scientific progress. At the core of the labor process is the relation of production between 

humans and instruments. This relationship is essential for understanding the agents’ 

abilities, manifested in production, and for the evolution of those abilities over time. 

Moreover, it is essential for understanding how prior knowledge can be exploited in 

production, including in the production of knowledge. Chapter 3 is about how modern 

experimental science was constituted in the 17th century. It is argued that social attitudes 

towards different kinds of work, notions about the proper object of science, and beliefs 

about how instruments and human faculties are related were important factors in the 

emergence of an experimental science in the early modern period. Thus, what might be 

called ‘ideological’ conditions affecting the evolution of scientific abilities are identified. 

Chapters 4, 5 and 6 concern the Instrumental Revolution in chemistry, a period of rapid 

change in chemical instrumentation in the mid-20th century. In chapter 4, this episode is 

analyzed as a transformation of labor. It is argued that this episode was an instance of a 

distinct kind of revolution in science, involving radical changes in the means of production 

and corresponding changes in the cognitive aspects of chemical analysis. Chapter 5 

explores some of the impacts of the transformation on the rate of progress of the field. The 

impact on the rate of progress is assessed by examining how heuristic features of chemical 

analysis were affected by the changes. It is argued that methods development in chemical 

analysis became more dynamic and that compound identification became more efficient. 

In chapter 6, some classical models of scientific change are applied to this case and 

critiqued. An alternative model is developed based on this critique. The model builds on 

Larry Laudan’s (1984) “reticulated” model of scientific change, significantly augmenting 

it with new categories and modifying the old ones. It is argued that the new model is more 

descriptively accurate of scientific practice, and that it addresses questions (1) and (2) 

above better than Laudan’s and the other models do, because it, unlike they, incorporates 

changes in instrumentation and systems of labor.  Chapter 7 elaborates on one particular 

aspect of this model, the relationship between instruments and prior knowledge. A novel 

mechanism of progress, involving the interaction of instrument construction and prior 
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knowledge, is identified that, I argue, suggests a novel way of understanding scientific 

progress. In chapter 8 I argue that the focus on abilities has the potential to transform our 

understanding of old philosophical issues. Directions for future research are also suggested.  
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2.0 MODELS OF SCIENCE AND SCIENTIFIC PROGRESS 

2.1 Introduction 

The purpose of this chapter is threefold. First, I would like to situate the view of 

science as labor with respect to the larger science studies literature. I have two reasons for 

this. Though the view of science as labor is not original to me, as was pointed out in the 

previous chapter, it is nevertheless a heterodox view and will perhaps be unfamiliar to 

many readers trained in mainstream history and philosophy of science. Furthermore, 

situating this view with respect to the larger literature will help make both the proposed 

unit of analysis—the labor process—and the rationale for using it, clearer and more precise.  

Second, I would like to elaborate on the two key concepts introduced in the previous 

chapter, scientific progress and epistemic abilities. Finally, I would like to show why a 

labor-process analysis is promising for answering the two questions concerning abilities 

and knowledge posed in the introduction.  

This chapter is structured as follows. The second section will discuss contemporary 

philosophical views on the nature of scientific progress and argue for the adoption of one, 

recently proposed by Moti Mizrahi, for the purposes of this dissertation. In the third section, 

three models of how science has been thought about in science studies will be discussed. 

What one might call an “intellectualist” model will be considered, according to which the 

interesting products of science are ideas, and scientific method is cashed out in terms of 

cognitive procedures. This model has dominated traditional philosophy of science. Then 

the labor process model will be discussed, a model that aims to do justice to the obviously 

crucial roles of expertise and conceptual thought in science while simultaneously 

emphasizing the equally crucial importance and historicity of material practices therein. 

Finally,17 there is also a “sociological“ model, which focuses on interactions between 

                                                 

17 As far as this dissertation is concerned. I do not claim to provide an exhaustive list of models of  

science in science studies. 
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scientists or on institutions in order to explain the actions of scientists or the genesis of 

scientific facts and concepts.  

Though the intellectualist model has dominated discussions of scientific progress 

in history and philosophy of science, it tends to underestimate the role of abilities and 

instruments in scientific change and progress. On the other hand, a concern with these 

elements of scientific practice falls naturally out of the labor process model. Among 

authors who have considered science as a form of labor, however, there has not been much 

interest in applying this model to the analysis of the causes and nature of scientific progress.  

 

2.2 Scientific progress 

Although the issue of scientific progress is not as central in the preoccupations of 

historians and philosophers of science today as it was in the 20th century, it continues to 

attract interest from philosophers for at least two reasons. First, it seems hard to deny that 

modern science makes rapid and significant progress, but it is very difficult to articulate 

exactly what this progress consists of. There is therefore a conceptual problem of 

articulating a satisfactory notion of scientific progress. Second, scientists (or at least natural 

scientists, who are the focus of this dissertation) seem to be able to make progress better 

than people in other realms of human intellectual endeavor. How does science differ from 

these other endeavors in such a way as to make better progress? There is therefore a 

problem of demarcating science from other intellectual fields in a way that is explanatory 

of the superior progress of the former.18  

The focus of this section will be the first question, what is scientific progress? I 

need an answer to the conceptual question in order to assess whether progress occurred in 

                                                 

18 This problem is similar to, but distinct from, Popper’s concern with demarcating science from 

pseudo-science. Popper was concerned with what makes a theory scientific or non-scientific. The 

question here is what features of science enable it to make better progress than other intellectual 

fields.   
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a given scientific episode. First, I will describe some general features of progress, 

summarizing Niiniluoto (2015). As he points out, it is important to distinguish progress 

from mere change or development. ‘Progress’ is an axiological concept, and therefore has 

a normative dimension lacking in neutral descriptive concepts like ‘change’ or 

‘development.’ Progress is usually conceived as progress towards some goal, where the 

goal can be either backward-looking or forward-looking, depending on whether it refers to 

the starting point or to the destination point of an activity. In the philosophy of science, for 

example, Kuhn famously argued that scientific progress consisted in achieving better and 

better problem-solving ability, relative to earlier states of science, rather than in coming 

closer and closer to “one full, objective, true account of nature.”19 As implied in the 

previous sentence, progress is also usually conceived as involving some notion of ‘better.’ 

According to Niiniluoto (2015),  

In general, to say that a step from stage A to stage B constitutes progress means that B is 

an improvement over A in some respect, i.e., B is better than A relative to some standards or criteria. 

In science, it is a normative demand that all contributions to research should yield some cognitive 

profit, and their success in this respect can be assessed before publication by referees (peer review) 

and after publication by colleagues. Hence, the theory of scientific progress is not merely a 

descriptive account of the patterns of developments that science has in fact followed. Rather, it 

should give a specification of the values or aims that can be used as the constitutive criteria for 

“good science.” 

In addition to these formal characteristics of progress, a discussion of progress in 

any concrete case should specify the type of progress at issue. Given the material, social 

and epistemic dimensions of science, different types of progress can be defined. For 

example, increased funding of research may constitute economic progress, the rising social 

status of scientists and their institutions may constitute a kind of professional progress, and 

the increase of scientific knowledge constitutes cognitive progress. Here, I will focus on 

cognitive progress, construed as an increase of knowledge. However, it is worth pausing 

to note that this is not the only conception of cognitive progress that philosophers have 

entertained. A brief review of some varieties of scientific progress follows. 

                                                 

19 Kuhn (1996 [1962]), p. 171. 
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2.2.1 Varieties of scientific progress 

Bird (2007, 2008) identifies three approaches to characterizing scientific progress: 

(i) an epistemic approach (E), (ii) a semantic approach (S), and (iii) a functional-internalist

approach (FI). Bird characterizes each approach as a criterion for judging whether a 

scientific episode constitutes progress: 

(E) An episode constitutes scientific progress precisely when it shows the 

accumulation of scientific knowledge.  

(S) An episode constitutes scientific progress precisely when it either (a) shows 

the accumulation of true scientific belief, or (b) shows increasing approximation to 

true scientific belief. 

(FI) An episode shows scientific progress precisely when it achieves a specific 

goal of science, where that goal is such that its achievement can be determined by 

scientists at that time (e.g., solving scientific puzzles). 

Proponents of (E), like Bird, believe that scientific progress requires the 

accumulation of justified beliefs, whereas proponents of (S), like Rowbottom (2008), 

Niiniluoto (1987), or Popper (1979) believe that it requires only the accumulation of true 

beliefs.  

(FI) refers to views such as those of Kuhn (1962/1996) and Laudan (1977) 

according to which progress is a matter of success in fulfilling a function, that of solving 

problems or puzzles. For both Kuhn and Laudan, theoretical truth is unattainable. In 

Kuhn’s case, it is unattainable because evidence for the truth of a theory is always mediated 

by the theory itself and therefore presupposes its truth, or as Mizrahi & Buckwalter (2014) 

put it, Kuhn holds theoretical truth to be transcendent. In Laudan’s case, it is unattainable 

because the pessimistic meta-induction tells us that current successful theories are probably 

false, just like their discarded predecessors. On the other hand, puzzle solutions are 

attainable. For Kuhn, a puzzle is solved when a proposed solution is sufficiently similar to 
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a relevant paradigmatic puzzle-solution. For Laudan, a problem phenomenon P is solved 

by a theory T when P can be deduced from T. T, however, need not be true, according to 

Laudan. For neither Kuhn nor Laudan does solving a puzzle involve knowledge, at least if 

knowledge is understood in the classical way as requiring truth. On the other hand, the 

achievement of a solution can be determined by scientists at the time of solution, by 

comparison to the paradigm in Kuhn’s case or by demonstrating that it follows from an 

accepted theory in Laudan’s. 

In an interesting (2013) paper, Moti Mizrahi argued that none of these conceptions 

of progress fit the way scientists evaluate their own progress. He argues for a broader 

conception of progress that takes into account ‘knowledge-how.’ Since I think this broader 

conception is essential for understanding how the labor process contributes to scientific 

progress, I will now describe Mizrahi’s view and how it illuminates the nature and 

dynamics of scientific progress.  

2.2.2 The broad conception of scientific progress 

Basing his argument on evidence from scientists’ reflections on progress, Mizrahi 

argues that scientists employ a broad conception of progress that includes different kinds 

of knowledge. The four kinds he identifies are: 

(EK) 

(TK) 

(PK) 

(MK) 

Empirical Knowledge: Empirical knowledge usually comes in the form of experimental 

and observational results.  

Theoretical Knowledge: Theoretical knowledge usually comes in the form of well-

confirmed hypotheses. 

Practical Knowledge: Practical knowledge usually comes in the form of both immediate 

and long-term practical applications. 

Methodological Knowledge: Methodological knowledge usually comes in the form of 

methods and techniques of learning about nature.20 

20 Mizrahi (2013), p. 380. 
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An example of each kind is provided below, taken from Mizrahi’s account of Ivan 

Pavlov’s study of the physiology of digestion: 

(EK) 

(TK) 

(PK) 

(MK) 

knowing that stimulation of gastric secretion of acid and pepsin and stimulation of 

pancreatic secretion of digestive enzymes starts with the anticipation of the ingestion of 

desirable food. 

knowing that stimulation of pancreatic secretion of digestive enzymes is mediated by 

input to the stomach and pancreas from efferent nerves (i.e., nerves that carry impulses 

away from the brain or spinal cord) of the vagus; knowing that the stimulation of 

secretion induced by connecting environmental stimuli with appearance of tasty 

food is a conditioned reflex. 

knowing how to treat peptic and duodenal ulcer disease with selective vagotomy (in 

selective vagotomy, the branches of the vagus nerve to the gall bladder and pancreas are 

left intact; usually performed to reduce secretion of acid and pepsin by the stomach to 

cure a peptic ulcer); knowing how to treat gastric acid-related disorders with 

selective muscarinic receptor antagonists. 

knowing how to study the anatomy of conscious animals by using surgical techniques, such 

as the Pavlov gastric pouch.21 

Mizrahi provides further examples from cosmology and Karl Landsteiner’s 

discovery of blood groups. 

Mizrahi draws on Ryle’s (1946, 1949) distinction between “’knowing that p’ 

(propositional knowledge) and ’knowing how to p’ (knowledge of skills).”22 He suggests 

that empirical knowledge and theoretical knowledge are kinds of “knowledge-that” 

whereas practical knowledge and methodological knowledge are forms of “knowledge-

21 Mizrahi (2013), p. 381. 

22 Though they do not refer to Ryle or his distinction, the view of Baird and Faust (1990) is consonant 

with Mizrahi’s: “according to most philosophers, improved theories account for the progress of 

scientific knowledge. Technicians, engineers and experimenters […] are able to make devices work 

with reliability and subtlety when they can say very little true, or approximately true, about how 

their devices work. Only blind bias would say that such scientists do not know anything about nature. 

Their knowledge consists in the ability to do things with nature, not say things about Nature” (p. 

147). 
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how.” If this means, however, that no propositional knowledge is involved in PK and MK, 

then the identification of the latter two with Ryle’s conception of know-how seems 

incorrect because, as I will discuss further in the section on the labor process model (2.3.2), 

methodological knowledge does involve propositions. For example, knowledge of how to 

build an instrument involves what Kletzl (2014) calls “engineer theory,” which “contains 

propositional knowledge of how to manufacture an artifact.”23 Conversely, theoretical 

knowledge has a material form (e.g., equations, symbols, diagrams, etc.) that the theorist 

needs to know how to physically manipulate. So TK is not purely propositional, either.  

 It is beyond the scope of this dissertation to enter into the philosophical debates 

over whether knowledge-how is independent of knowledge-that, or what exactly 

knowledge-how consists of. Nevertheless, I will resolve the discrepancy noted above by 

observing that Mizrahi’s characterizations and examples of the four kinds of knowledge 

suggest that, at least in the scientific context, knowledge-how is intrinsically linked to the 

goal of performing an action (treating ulcers, studying anatomy, etc.), whereas knowledge-

that is not. True, the latter may describe actions or presuppose them, as in the appearance 

of tasty food in the Pavlovian example, but these actions need not be goals. In contrast, 

know-how necessarily involves an action as a goal.  

So if we want to explain the growth of scientific abilities, it is reasonable to group 

PK and MK together as “know-how,” and TK and EK as “knowledge-that,” provided that 

we distinguish the two groups according to the action criterion rather than Ryle’s 

proposition criterion. This grouping is consonant with what seems to me an intuitive and 

plausible understanding of knowledge-how, that it is a sort of ability, insofar as both 

abilities and knowledge-how, distinguished according to the action criterion, relate agents 

to actions.24  

Abilities are both explanans and explanandum with respect to the growth of 

knowledge. The growth of epistemic abilities partially explains the growth of knowledge. 

                                                 

23 Kletzl (2014), p. 122. According to Kletzl, engineer theory can also contain pictorial 

representations of how to achieve the desired goal, e.g., flow charts of how to build an instrument.  

24 For a review of the philosophical debates on how “knowledge-how” and “knowledge-that are 

related, as well as on the subtleties involved in conceiving of know-how as ability, see Fantl (2008). 
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But the growth of knowledge results in the growth of abilities, insofar as the knowledge is 

exercised in the labor process. This circularity is as it should be, for it is one of the ways in 

which science builds on what it has learned, as noted in the introduction.  

Mizrahi summarizes the broad conception thus: 

Granted that PK and MK both count as scientific knowledge, and hence that their 

accumulation counts as scientific progress, my proposed account of scientific progress is the view 

that scientific progress is constituted by the accumulation of scientific knowledge, where scientific 

knowledge consists of each the [sic] following: EK, TK, PK, and MK. Each of these counts as 

scientific knowledge; the accumulation of each advances science.25 

This conception presents a multi-dimensional picture of scientific progress, where 

TK, EK, MK and PK each represent a dimension of knowledge within which progress can 

be made. A given research episode can make progress along any one, or several, of the 

dimensions. So, progress in TK, or what we might call ‘theoretical progress,’ is constituted 

by theoretical advances, for example the accumulation of additional well-confirmed 

hypotheses or, perhaps, the ruling out of erroneous ones. Progress in EK, or what we might 

call ‘empirical progress,’ consists in the accumulation of experimental and observational 

results. Progress in MK, or what we might call ‘methodological progress,’ is constituted 

by the accumulation of methods and techniques for studying nature. And progress in PK, 

or what we might call ‘practical progress,’ is achieved by discovering practical 

applications.   

 What I would like to add to Mizrahi’s conception is the consideration that when 

we observe how these forms of knowledge are produced, this neat picture gets more 

complicated, for progress in one kind of knowledge cannot be explained separately from 

progress in the other kinds. Scientific instruments are a good illustration of this 

interdependence. Scientific instruments are frequently constructed with the aid of all four 

forms of knowledge, though philosophers have focused mostly on the theoretical 

knowledge (TK) embodied in them. The goal of construction is usually know-how, 

especially methodological knowledge (MK), since scientists must know how to study 

nature in order to acquire TK or EK about it. Successful construction affords scientists the 

ability to study this or that natural phenomenon.  

                                                 

25 Mizrahi (2013), p. 383. 
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The improvement of scientific instruments constitutes progress in MK.26 A sketch 

of the telescope’s development will provide an example.27 For most of human history, the 

only way to study distant objects was by using the eyes. Reading lenses became available 

in Italy in the thirteenth century. In the early seventeenth century, spectacle-makers in the 

Netherlands invented the spyglass. Basing his work on this model, Galileo constructed 

several research-level telescopes of varying quality but was only able to observe all the 

phenomena reported in Siderius Nuncius with the best of them (Spelda 2017). In the 

following decades, astronomers inserted cross hairs, facilitating precise alignment of 

telescopes on objects, and micrometers, to measure small angular distances and diameters. 

They also developed stable, precise mountings and large arcs with precisely divided and 

marked scales against which the telescope’s alignment could be noted when pointed at 

celestial objects. In 1757, John Dollond was able to correct chromatic aberration in the 

refracting telescope by inventing the achromat, a combination of glass lenses that enabled 

more precise measurements of positions of faint stars. In the late 19th century, the telescope 

was coupled with photography, and the photographic reflecting telescope became the basic 

instrument of astronomy. This instrument allowed far larger quantities of data to be 

collected than with previous telescopes predicated on ocular observation. Space telescopes 

allow traditional optical telescopes to escape the interference of the Earth’s atmosphere. 

The development of non-optical telescopes has allowed forms of electromagnetic radiation, 

such as radio, infrared, gamma or X-ray, to be detected that are completely inaccessible to 

human vision, allowing ever more kinds of objects at ever greater distances to be detected.  

Our knowledge of how to study distant objects, make more precise measurements, 

and handle large amounts of data was massively increased, which means that our MK was 

massively increased. But progress in MK had consequences for EK and TK as well. The 

application of that MK in astronomical observations led to a massive increase in 

observational results, which means that our EK was massively increased. This EK then led 

                                                 

26 In section 2.4.2, I will refine this picture by introducing the category of “instrumental knowledge” 

(IK), which is distinct from MK. Nevertheless, in the scientific context, improvements in 

instruments usually afford MK as well as IK. 

27 The following information is provided in Hetherington (2003). 
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to theoretical advances, for example in gravitation theory and big-bang cosmology, and 

hence TK. 

Importantly, all four forms of knowledge were required in the development of the 

telescope. PK was involved, for instance in glass-making and lens-crafting techniques that 

were used to make spectacles and spyglasses and which provided the basis for producing 

research-grade lenses, or in the photographic techniques that were combined with 

telescopy. MK was involved, for example in the achromat, the invention of which 

represented knowledge of how to make more precise measurements of faint stars. EK was 

involved, for example in the results from earlier generations of telescopes that provided 

calibration for later ones. So, of course, was TK, for example in the optical and 

electromagnetic theories that were employed in the design of new telescopes.  

In short, what this brief example of the telescope suggests is that progress in MK is 

dependent on progress in the other dimensions of knowledge. The same holds for the other 

forms of knowledge. The role of theory in the development of technology (PK) is well-

known, and leads to the view of the latter as “applied science.” Theory isn’t always required 

for PK: for example, spectacles were invented long before there was any good theory of 

how they corrected vision (indeed, before Kepler they were not considered to correct vision 

at all but rather to magnify images).28 But only when Kepler’s optics came around was 

there a convincing explanation of their effects, which probably had consequences for the 

development of ophthalmology.  

Even purely theoretical developments presuppose MK. For example, Einstein’s 

development of the theory of general relativity depended on the availability of the tensor 

calculus, for the awareness and understanding of which Einstein was indebted to his 

mathematician friend Marcel Grossmann (Norton 1984). In contrast with the infinitesimal 

calculus, tensor calculus allows physical equations to be presented in a form that is 

independent of the choice of coordinates on the space-time manifold. Thus we can say that, 

having learned the tensor calculus, Einstein knew how to derive equations that he did not 

know how to derive with the infinitesimal calculus. Moreover, confirmation of the theory 

                                                 

28 The explanation of corrective vision offered before and by Kepler is discussed in more detail in 

section 3.3. 
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depended on progress in EK, for example the discovery of the precession of the perihelion 

of Mercury or Eddington’s observation of the solar eclipse in 1919.  

Thus when we combine the broad conception of progress and knowledge with the 

labor-process view’s focus on the process of production and the means of production, an 

interdependence of the different forms of knowledge becomes evident that is relegated to 

the background, if not completely ignored, when we take a more static approach or when 

we focus primarily on theory. Let us return to question (2) posed in chapter 1: 

2. How is it possible for knowledge acquired in the past to be used in on-going or 

future research? 

From the foregoing, it is clear that the answer will depend on how the different 

forms of knowledge are integrated, and this integration depends crucially on the mediation 

provided by the means available for scientific work. This idea will be the main theme of 

chapter 7.  

This all sounds very holistic, raising the question to what extent errors in one 

dimension of knowledge undermine not just the progress made therein, but the progress 

made in the other dimensions. For example, will a theory that turns out to be false 

undermine the methodological progress predicated on it?  

Though I will not try to settle the question here, I will provide grounds for thinking 

the holism might not be as threatening as it may seem. The reason is that this conception 

of knowledge and progress introduces a heterogeneity in scientific knowledge. The 

evaluative criteria appropriate to TK and EK are different from those appropriate to MK 

and PK. TK and EK are forms of propositional knowledge, and so are evaluated according 

to their truth and falsity. In contrast, as forms of knowledge-how MK and PK are evaluated 

according to the success and failure of actions enabled by them. Moreover, whereas the 

truth-value of a proposition is binary in standard logic, success and failure admit of 

continuous degrees.  

This heterogeneity can affect the dynamics of progress. For example, astronomers 

employing Newtonian physics sought to know the trajectories of planets. They had to learn 

how to compute them, which involved knowing how to solve the equations of Newtonian 

physics. Newton and his 18th century successors, like Euler, had shown how to come up 

with such equations in the first place. Then the precession of the perihelion of Mercury was 
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discovered, and Einstein came along and showed that Newtonian physics was false and 

should be replaced by general relativity. 

In this example, the MK involved in computing Newtonian planetary trajectories 

did not suffer the same fate as the TK. Though the TK was shown not to be knowledge 

after all, the MK—the abilities to compute the trajectories, to solve the equations, or to 

represent Newton’s laws using the calculus—remained. Moreover, this MK was not made 

redundant by the downfall of the theory, but continues to be used in applications involving 

static, weak gravitational fields.29 Thus, the PK based on classical physics was partially 

preserved. 

This example suggests that the heterogeneity between the different forms of 

knowledge may block holistic upheaval. Much more would have to be said to establish this 

point; I leave this as a question for future research.30  

In any case, the holism of the broad conception of progress seems appropriate for 

capturing the dynamics of scientific change. This conception is therefore, in my view, 

descriptively accurate. One may object that even if it is, it does not follow that from a 

normative point of view, we are obliged to accept this conception. One may dispute 

                                                 

29 One might object that the applicability of the MK is due to the fact the Newton’s theory of gravity 

holds in the static, weak-field limit of Einstein’s theory. If it did not, the MK would be inapplicable. 

Therefore, the MK depends on the approximate truth of Newton’s theory. In reply, I will point out 

that the claim about  holding in the limit is, of course, true in the sense that the relativistic equations 

converge on the classical ones in that limit, but whether the convergence preserves the truth or 

approximate truth of Newton’s theory seems like a complicated question that I cannot address here. 

From a conceptual point of view, in any case, the world according to general relativity is a very 

different place than according to classical physics. Moreover, this objection would at best undermine 

the relevance of the MK, not whether we still know how to do those things. 

30 Douglas (2014), p. 62 makes a similar point when she observes that “[t]heories or paradigms may 

come and go, but the ability to intervene in the world, or at least predict it, has staying power. We 

can think of explanatory frameworks and understandings lost in paradigm change (e.g. an intuitive 

grasp of what light is, a sense of place in the universe, a clear grasp of what makes something a 

species), but we are hard pressed to think of a predictive or manipulative capacity that has been 

lost.” I note that she is here identifying a form of progress that consists of an accumulation of 

abilities, which is consonant with the progress in knowledge-how that has been under discussion in 

section 2.2.2. 



25 

whether some of these kinds of scientific change constitute progress, or even whether 

progress should be conceived in terms of an accumulation of knowledge rather than, say, 

truths. In an example I will discuss in detail in chapters 4-6, the adoption of powerful 

spectrometric techniques by chemists in the 20th century caused progress in the theoretical 

knowledge of molecular structures, but virtually halted progress in the empirical 

knowledge of the reactions of natural products. Now, from a normative point of view it 

might be the case (for example) that in the end we will want to exclude empirical 

knowledge from the definition of progress (though I doubt it). For the purpose of exploring 

and applying the labor process model in particular case studies, however, I think it is more 

prudent not to foreclose on the possibilities for progress offered by the situations we will 

be examining.  

Returning to (S), (E) and (FI), Mizrahi (2013) argues that neither (S) nor (E) 

satisfies the broad conception of progress. Methodological know-how and practical 

applications do not require truth. (E) is broader than (S), since reliable methods and 

justification are necessary for the accumulation of knowledge. On the other hand, to the 

extent that knowledge is understood as a kind of belief, (E) would seem to exclude know-

how, and hence MK and PK, assuming these are not reducible to propositional knowledge.  

On the Laudan and Kuhn versions of (FI), it is clear that the broad conception does 

not fit since these versions exclude the accumulation of TK. Perhaps their views could 

accommodate accumulation of knowledge-how, say in the form of an ever-greater ability 

to solve problems. But an ability is not itself a solution to a problem or puzzle, though it 

can be useful for solving a problem or puzzle. More importantly, not all scientific 

knowledge is knowledge of the solution to a puzzle.31 Much EK is like this. For example, 

accumulating and cataloguing observations, say anatomical data or maps of the night sky, 

may involve problem-solving and may help to solve problems, but a catalogue of 

observations does not seem like the sort of thing that is the solution to a problem or puzzle. 

Serendipitous discoveries result in progress, but they are unsought and therefore not 

solutions to a pre-existing puzzle.32 

                                                 

31 As pointed out by Bird (2007), p. 68. 

32 Van Andel (1994) defines serendipity as “the art of making unsought findings.” 
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In summary, the conception of scientific progress I will be working with in this 

dissertation is as follows. Following Mizrahi, knowledge is conceived as consisting of four 

forms, theoretical, empirical, methodological and practical. Progress consists in the 

accumulation of knowledge, where the knowledge can be of any one of these forms. As I 

have argued above, it follows from this conception that progress is made holistically, with 

achievements in the different dimensions of knowledge being played off against each other. 

The holistic dynamics are tempered, however, by the heterogeneity of the components with 

respect to the evaluative criteria used to assess progress in the different dimensions of 

knowledge. This imparts some measure of stability to the overall accumulation of 

knowledge. 

Thus far in this chapter, we have been largely concerned with the topic of scientific 

progress. In the following section, I turn to the other side of the coin, the nature of the 

activity that achieves that progress. 

2.3 Three models of science 

2.3.1 The intellectualist model 

In general, what I am calling “intellectualist” views tend to reduce the content of 

science to ideas and logical relations between ideas, the history of science to the history of 

ideas, 33 and the method of science to cognitive operations. Textbooks frequently adopt an 

intellectualist stance. For example, Neil Campbell’s classic textbook on biology states that 

“[w]hat really advances science ... is a new idea.”34 Samir Okasha’s (2002) introduction to 

                                                 

33 Laudan’s (1977) book on Progress and its Problems states that the history of science “at a first 

approximation, can be regarded as the chronologically ordered class of beliefs of former scientists” 

(158). Later, he writes that “[i]f the philosopher would learn something from history, he must make 

himself a servant to it—at least to the extent of dealing with actual cases and actual beliefs” (170). 

34 Campbell (1993), p. 18.  
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the philosophy of science furnishes an example. The first chapter, “What is science?” opens 

by asking what common feature is possessed by all the activities uncontroversially 

recognized as science—e.g., physics, chemistry, and biology—and that distinguishes them 

from non-scientific intellectual activities like art or theology. He considers several 

candidate common features throughout the chapter, for example: the attempt to understand, 

explain and predict our world; the method of inquiry; or the construction and nature of 

scientific theories. Okasha then concludes by casting doubt on the very project of seeking 

“some common feature shared by all the things we call ‘science,’ and not shared by 

anything else.” He suggests that the sciences are related to each in the same way as games 

are related to each other according to Wittgenstein: though there is a loose cluster of 

features most of which are possessed by most sciences, any particular science may lack 

any of the features in the cluster and still be a science. What is not in doubt, however, is 

that aspect of science that is relevant to discussing the question of what science is: the 

question is answered by appealing to the history of modern scientific ideas, starting with 

Copernicus’ heliocentric model of the universe, through Darwin’s theory of evolution, and 

ending with contemporary cognitive science based on the idea that the human mind is 

similar to a computer. The chapter on “Scientific change and scientific revolutions” is 

similarly idea-centric: though “scientific change” could involve myriad aspects of science, 

the first sentence clarifies what is at issue: “Scientific ideas change fast.”35 

Carl Hempel’s 1966 textbook, Philosophy of Natural Science, has been credited 

with defining the philosophy of the natural sciences for generations of students.36 The table 

of contents indicates that the book is concerned with logical relations of support between 

evidence and hypotheses and with the nature of scientific theories: 

1—Scope and Aim of This Book 

2—Scientific Inquiry: Invention and Test 

3—The Test of a Hypothesis: Its Logic and Its Force 

4—Criteria of Confirmation and Acceptability 

5—Laws and Their Role in Scientific Explanation 

35 Okasha (2002), p. 77. 

36 Salmon (1992), p. 3. 
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6—Theories and Theoretical Explanation 

7—Concept Formation 

8—Theoretical Reduction 

The 1992 textbook Introduction to the Philosophy of Science, authored by members 

of the History and Philosophy of Science department at the University of Pittsburgh, is 

framed in part as a response to Hempel’s failure to take account of the bearing of history 

of science on the philosophy of science. Despite more emphasis on particular sciences and 

incorporating a chapter on scientific change, however, the book shares Hempel’s theory-

centric orientation, as indicated by the table of contents:  

PART ONE: GENERAL TOPICS IN THE PHILOSOPHY OF SCIENCE 

1—SCIENTIFIC EXPLANATION 

2—THE CONFIRMATION OF SCIENTIFIC HYPOTHESES 

3—REALISM AND THE NATURE OF THEORIES 

4—SCIENTIFIC CHANGE: PERSPECTIVES AND PROPOSALS 

PART TWO: PHILOSOPHY OF THE PHYSICAL SCIENCES 

5—PHILOSOPHY OF SPACE AND TIME 

6—DETERMINISM IN THE PHYSICAL SCIENCES 

Six more chapters on particular sciences follow, focusing largely on theoretical 

issues within each science.  

There is also intellectualism about the scientific method. For example, Steven 

Gimbel begins his (2011) textbook Exploring the Scientific Method by asking “[w]hat 

actually is the scientific method?” He then proposes to answer the question by first 

answering three interrelated question about science: 

(1) WHAT IS A SCIENTIFIC THEORY?

⁝

(2) HOW DO SCIENTISTS COME UP WITH THEIR THEORIES?

⁝ 
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(3) WHAT MAKES SOME THEORIES BETTER THAN OTHERS?37

Two of the three questions are about theories. The second question, it turns out, 

largely concerns the cognitive operations involved in coming up with a theory: 

Is it [the theory] the result of a strict logic applied to undeniable first truths or to 

observations made in the lab or in the world around us? Is it a matter of creativity and insight where 

any old idea can be introduced as a scientific hypothesis no matter how outlandish and bizarre? 

What role do politics and the biases of the times play?38 

How scientists come up with their theories (laws, to be exact) is also the primary 

concern of Langley, Simon, Bradshaw & Zytkows’ 1987 book Scientific Discovery: 

Computational Explorations of the Creative Process. Their goal is to simulate the human 

thought processes involved in the discovery of scientific laws by developing artificial-

intelligence programs to do the same. Key to their approach is “the hypothesis that 

scientific discovery is a species of normal problem-solving.” One of the virtues of this 

hypothesis, according to the authors, is that “[i]t preserves a framework in which all forms 

of serious human thought—in science, in the arts, in the professions, in school, in personal 

life—may reveal their commonalities.”39 A running example of problem-solving in the first 

chapter is the missionaries-and-cannibals puzzle: 

Three missionaries and three cannibals are trying to cross a river in a boat that holds no 

more than two persons. Everyone knows how to row. Missionaries may never be left on either bank 

with a larger number of cannibals, because the missionaries will then be eaten. How can the party 

cross the river? 

By reducing scientific discovery to problem-solving, these authors eliminate 

important differences between the former and logical puzzles like the above.40 The role of 

37 Gimbel (2011), p. ix-x. 

38 Gimbel (2011), p. ix. 

39 Langley et al. (1987), p. 6. 

40 Jutta Schickore ‘s (2018) article on scientific discovery indicates that the philosophical study of 

discovery tends to reduce the latter to a reasoning process: “There are three main lines of response 

to the disciplinary distinction tied to the context distinction [between discovery and justification]. 

Each of these lines of response opens up a philosophical perspective on discovery ... Discovery is 

conceived as an analyzable reasoning process, not just as a creative leap by which novel ideas spring 
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data production in discovery, for example, or the tacit knowledge that may be presupposed 

in the judgment that something new has been discovered, have no place here. This last 

assertion is not intended as a criticism of Langley et al.’s approach, but merely to point out 

that such an approach leaves out important features of scientific practice. The point 

generalizes: though the intellectualist model is appropriate for addressing many important 

questions about science, it leaves out other important features, and it overreaches to the 

extent that it is taken to grasp the “essence” of science. 

2.3.2 The labor process model 

The model of science as a labor process conceptualizes science as a synthesis of 

intellectual and manual labor. It posits a closer relationship between scientific work and 

ordinary material labor than views of science that understand it as a primarily intellectual 

and creative activity. Skills, know-how and material practices are important for 

understanding how science works, what kinds of change are possible, and what kinds of 

change are significant. The emphasis is on the performance of science rather than its results. 

Scientific change is viewed as resulting from changes in the labor process, which again has 

both intellectual and manual (or material) components.  

To some extent, this last point can be explained in terms of the four forms of 

knowledge described in section 2.2.2. Scientists draw on TK and EK to do their work, but 

they also draw on MK and even PK. Chemists, for example, draw on their knowledge of 

molecular composition and structure, but they also need to know how to analyze complex 

organic substances in the lab. The changes in chemistry described in chapters 4, 5 and 6 

resulted from changes in the TK and EK used by chemists to determine molecular structure 

and composition, for example the introduction of quantum theory or the use of 

spectroscopic data. But it also resulted from changes in the MK and PK employed, for 

                                                 

into being fully formed ... All of these responses can be described as theories of problem solving, 

whose ultimate goal is to make the generation of new ideas and theories more efficient.” 
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example the switch from wet-chemical to physical methods of data production or the 

application of new materials in the equipment (e.g., superconductors rather than glass).  

I wrote “to some extent,” because the four forms of knowledge each have 

intellectual and material aspects. A theory isn’t just an abstract idea, but has a material 

form (e.g., equations, diagrams, etc.). A method isn’t just a set of instruments and manual 

operations, but often involves principles and rules describing how to do something, as well 

as other kinds of background propositional knowledge.  

The same holds for ordinary manual labor. Carpentering, for example, is not just 

about manipulating tools on wood, but involves background knowledge such as the 

different kinds of wood that are appropriate for a given purpose. Thus carpentering 

involves MK, knowing how to wield the tools of the craft, as well as EK, knowledge of 

kinds of wood and their properties.41 Conversely, intellectual work relies on propositions 

and equations, but also on the ability to manipulate material means of representation, for 

example symbol systems.42  

Thus, the distinction between TK and EK on the one hand, and MK and EK on the 

other, is not the same as the distinction between intellectual and manual labor. This latter 

distinction is not as straightforward as it might seem either. One might try to distinguish 

between them by focusing on the organs that are used in the labor. What I am calling 

‘intellectual’ labor is sometimes called ‘mental’ labor, and might be identified with work 

carried out primarily in the brain. The sociologist Harry Braverman defined it thus.43 

Examples of mental labor include thinking, discussing, reading, writing, calculating, 

arguing, describing, and explaining. In ‘manual’ labor, on the other hand, labor is carried 

                                                 

41 Chazal (2002), pp. 125-132 (« Qu’est-ce que l’habileté manuelle ? ») contains an excellent 

discussion of the kinds of knowledge involved in manual work: « Car les gestes que l’habileté 

manuelle suppose ne sont jamais nus. Nous voulons dire qu’ils s’accompagnent d’une mise en œuvre 

de savoirs, de capacités d’abstraction, de capacités de se projeter dans l’espace et le temps. En 

effet, l’adaptation des gestes demande de toute façon une connaissance des matériaux, une 

connaissance minimum de la géométrie, une connaissance de l’algorithme qu’il s’agit 

d’intérioriser. Toute technique se double d’une technologie aussi fruste soit-elle. » 

42 Damerow (1996). 

43 Braverman (1998 [1974]), p. 79. 



32 

out primarily with other parts of the body, especially the limbs and the torso. Examples of 

manual activities are carrying, hammering, sawing, and walking. Tentatively and 

informally, perhaps one could put the distinction as follows: in intellectual work, the bulk 

of the effort is thinking, whereas in manual work, the bulk of the effort is physical 

(involving bodily movements). There is obvious overlap between the two, since intellectual 

work always requires some physical activities and vice-versa. Thinking is often based on 

the manipulation of symbols, for example, and even simple physical activities require 

purposiveness, and hence intention and thought, if they are to be labor.  

On the other hand, notions like ‘primarily’ and ‘bulk’ are vague, and suggest a 

quantitative distinction that is probably hard to make precise. How much thinking is 

necessary before an activity counts as intellectual? Writing is an undeniably physical 

activity, as the bodily aches and occupational injuries associated with writing-intensive 

jobs attest, yet a philosopher writing a book is certainly performing intellectual labor. 

Moreover, conscious physical activities always include a mental component, regardless of 

how “manual” they are. Even simple manual activities like shovelling or hammering 

require attention, purpose and dexterity (and hence, some thought about how to approach 

the task).  

Perhaps one can distinguish between intellectual and manual labor on functional 

grounds. Manual labor is labor in which cognition is aimed at manipulating the body in 

order to achieve some productive, physical effect, tool use for example. Intellectual labor 

is labor in which cognition is aimed at manipulating ideas. Such a view is expressed by 

Damerow & Lefèvre (1981): 

Mental labor is an immaterial activity dealing with a mental object and employing material 

tools. The object appears only as the meaning of signs, symbols, or other material representations, 

and the mental activity is the transformation of such meanings by objectively manipulating their 

material representations. (397) 

As the reference to material tools and representations indicates, body manipulation and tool 

use enter into intellectual labor, but only as secondary aims, conditional on the first. 

Conversely, ideas enter into manual labor, but subordinated to the primary aim of achieving 

a productive, physical effect. 

Whatever the case may be, it is clear that the distinction between the kinds of 

knowledge and that between the kinds of labor are not identical. Nevertheless, focusing on 
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manual labor tends to reveal the roles of MK and PK better than focusing on intellectual 

labor. By concentrating on the latter, one can be all too easily be absorbed by the products 

of the work, TK and EK, and lose sight of the various abilities that were brought to bear in 

the work itself. In manual labor, on the other hand, the roles of action, and hence abilities 

and MK and PK, are evident.  

Thus, conceptualizing science as a synthesis of intellectual and manual labor is an 

intentionally holistic way of conceptualizing scientific work that can provide insight into 

the holistic nature of scientific knowledge and progress. As should be obvious from the 

foregoing, this view does not exclude ideas from playing an important role in scientific 

change, but it does emphasize the constraints on what can be achieved by means of purely 

intellectual activity.  

In this section, I will do two things. First, I will discuss what is involved in the labor 

process model of science in more detail than I have up to now. Then I will review three 

bodies of literature that can be viewed as falling under the rubric of science as labor. First, 

I focus on the views of the Radical Science Journal (RSJ) collective, which for a time in 

the late 1970s and early 1980s explicitly applied the labor process model to the study of 

science and technology. Second, I will discuss the theory of Edgar Zilsel, who explained 

the Scientific Revolution in terms of the merging of intellectual and manual labor. Third, I 

examine a better known and longer-lived tradition that emerged in roughly the same period 

as the RSJ, according to which science is a practice. This tradition focuses on the 

performative aspects of scientific work and on the processes by which individual 

performances give rise to stability at the community level. 

2.3.2.1 Excursus on the labor process 

If science is a labor process, then it is not a fundamentally different kind of activity 

from other forms of labor. Consequently, a reasonable starting-point for the analysis of 

science as labor is an understanding of the labor process in general. All authors that I am 

aware of who have self-consciously applied this category to science have started from 

Marx’s discussion of the labor process in chapter 7 of Capital, and I will follow them in 

this regard. I will supplement Marx’s discussion with Harry Braverman’s clarifications in 

Labor and Monopoly Capital (1974), a work that sparked renewed interest in the evolution 
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of labor processes under capitalism and directly inspired the Radical Science Journal 

collective. 

According to Marx, labor is 

a process between man and nature, a process by which man, through his own actions, 

mediates, regulates and controls the metabolism between himself and nature. He sets in motion the 

natural forces which belong to his own body, his arms, legs, head and hands, in order to appropriate 

the materials of nature in a form adapted to his own needs.44  

He identifies three “simple elements” of the labor process: “(1) purposeful activity 

(zweckmässige Tätigkeit), that is work itself, (2) the object on which that work is 

performed, and (3) the instruments of that work.”45 This analysis subdivides the process 

into three basic categories: purposeful activity, object of labor, instrument of labor. Which 

category a thing falls under is determined by its specific function in the labor process. As 

its function changes, so does the category to which it belongs. The same thing may function 

as raw material or instrument of labor, as for example cattle may serve as raw material for 

the production of food or as instruments for the production of manure.46 Similarly, the 

category of purposeful activity need not be exclusively attached to individual humans. 

Work may be carried out by teams of workers, for instance, or by machines.  

Marx characterizes an instrument of labor as “a thing, or a complex of things, which 

the worker interposes between himself and the object of his labour and which serves as a 

conductor, directing his activity onto that object.” In doing so, the worker avails himself of 

“the mechanical, physical and chemical properties of some substances in order to set them 

to work on other substances as instruments of his power, and in accordance with his 

purposes.” Though it might seem as if the worker’s purposeful activity was restricted to 

his own actions, not the actions of the substances on each other, Marx views the entire 

process as subordinated to the worker’s aims, a point he makes by way of quoting Hegel’s 

Logic on the “cunning of reason”:  

Reason is as cunning as it is powerful. Cunning may be said to lie in the intermediative 

action which, while it permits the objects to follow their own bent and act upon another till they 

                                                 

44 Marx (1976), p. 283. 

45 Marx (1976), p. 284. For the original, see Marx (1959), p. 193. 

46 Marx (1976), pp. 288-289. 
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waste away, and does not itself directly interfere in the process, is nevertheless only working out its 

own aims.47 

This point is important for understanding the role of designers in the labor process, 

for their purposes may be realized in the labor process even though they are absent.  

Though in this chapter Marx writes as if labor were the activity of individual 

humans, he later explains that it is not necessarily so. The fundamental reason is that labor 

requires different functions the fulfillment of which need not all be carried out by the same 

individual: 

In so far as the labour process is purely individual, the same worker unites in himself all 

the functions that later on become separated. When an individual appropriates natural objects for 

his own livelihood, he alone supervises his own activity. Later on he is supervised by others. The 

solitary man cannot operate upon nature without calling his own muscles into play under the control 

of his own brain. Just as head and hand belong together in the system of nature, so in the labour 

process mental and physical labour are united. Later on they become separate; and this separation 

develops into a hostile antagonism. The product is transformed from the direct product of the 

individual producer into a social product, the joint product of a collective labourer, i.e., a 

combination of workers, each of whom stands at a different distance from the actual manipulation 

of the object of labour.48 

Though initially all the functions required for work may be united in a single 

individual, later on they can be divided among different individuals. As I will discuss in 

greater detail below, the idea that some of these functions can also be delegated to 

instruments will play an important role in this dissertation. For the time-being, it is worth 

noting that two kinds of division are mentioned in this passage. There is the basic division 

of functions, whatever their nature, among different workers (the “collective labourer”). 

Then there is the separation of mental and physical labor as a result of which functions of 

conception, design and supervision may become the purview of different workers than 

those who execute the physical operations necessary to produce the product.  

It may be worth pausing here to ask whether human labor differs significantly from 

the activities of other living beings. As Braverman points out, “the human species shares 

with others the activity of acting upon nature in a manner which changes its forms to make 

                                                 

47 Quoted in Marx (1976), p. 285. 

48 Marx (1976), p. 643. 
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them more suitable for its needs.”49 So is there any difference between humans and other 

species? In a famous passage, Marx answers the question by suggesting a distinction 

between instinct-guided labor and conception-guided labor: 

We are not dealing here with those first instinctive forms of labour which remain on the 

animal level … We presuppose labour in a form in which it is an exclusively human characteristic. 

A spider conducts operations which resemble those of the weaver, and a bee would put many a 

human architect to shame by the construction of its honeycomb cells. But what distinguishes the 

worst architect from the best of bees is that the architect builds the cell in his mind before he 

constructs it in wax. At the end of every labour process, a result emerges which had already been 

conceived by the worker at the beginning, hence already existed ideally. Man not only effects a 

change of form in the materials of nature; he also realizes his own purpose in those materials. And 

this is a purpose he is conscious of, it determines the mode of his activity with the rigidity of a law, 

and he must subordinate his will to it.50   

Following Braverman, one might say that the “directing mechanism” of work in 

animals is instinct, whereas the corresponding mechanism in humans is the “power of 

conceptual thought.”51 Due to their exceptionally large brain, humans have a capacity for 

doing work that is “well-conceptualized in advance and independent of the guidance of 

instinct.”52 Though there are cases of animals learning and using tools, the difference 

between those rudimentary abilities and the human capacities for learning, conception and 

tool-use are great enough to warrant the distinction between labor as an activity of living 

beings in general and specifically human labor.  

To conclude this section, I will emphasize three features of labor that will be 

especially relevant for the analyses of the following chapters: 

1. The labor process presupposes a system of functional relations between agents 

on the one hand and instruments and objects of labor on the other. 

2. Labor essentially involves the transformation of existing materials by agents, 

who carry out the transformation by means of existing means of production, to 

produce new products. 

                                                 

49 Braverman (1974),  

50 Marx (1976), p. 284.  

51 Braverman (1974), p. 32. Italicized in the original. 

52 Braverman (1974), p. 33. 
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3. This transformation is carried out in order to obtain a product that is not readily 

available in the environment. 

4. The instruments are hybrid, in that they have both social and material 

properties. 

(1), of course, reflects Marx’s tripartite analysis of the labor process. It also reflects 

the fact that any labor process involves a division of functions among the agents and 

between the agents and artifacts. 

 (2) differentiates labor from other practices. There must be materials and means of 

production existing outside the agents, and a product likewise at the end of the process. 

This differentiates labor from e.g., recreational activities, which need leave behind no 

product,53 and practices involving largely human-human interactions, like negotiations and 

more basic communicative interactions like the expression of thoughts and feelings. The 

materials, instruments and products need not be material objects. For example, Ravetz 

(1971) holds that scientists investigate the properties of classes of intellectually constructed 

things and events. A chemical substance, for example, is a class defined intensionally by 

certain properties of its members.54 The goal of the investigation is the establishment of 

new properties of these classes. If the investigation is successful, the object itself is 

transformed, precisely because the class is defined in terms of its properties. Althusser 

(1963, 1965) likewise maintained that scientists use existing theories to transform existing 

concepts into new, scientific concepts. That said, scientific work also depends on 

straightforwardly material transformation, as when a sample of a chemical substance is 

produced synthetically or some physical phenomenon is produced in the laboratory. 

                                                 

53 One might object that there are some kinds of work, like teaching or music-playing, that leave 

behind no product. In reply, I would claim that the notion of “product” should be understood 

liberally, to include not just physical objects but useful effects in general, which includes things like 

skills and experiences. So understood, it makes sense to view teaching as productive, since it 

produces bearers of skills and knowledge. Music-playing produces the experience of listening to 

music. It should also be noted that the highlighted features are not intended to be necessary and 

sufficient conditions for what counts as ‘labor.’ So, for example, in some contexts we might want 

to consider music-playing as work and in others as recreation.   

54 Ravetz (1971), p. 111. 
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(3), the necessity of transformation, distinguishes labor from mere use of the natural 

endowment: “to seize upon the materials of nature ready-made is not work; work is an 

activity that alters these materials from their natural state to improve their usefulness.”55 

The necessity of transformation in science arises from the fact that new knowledge of the 

sort scientists care about is not readily available in the social and natural environment but 

must be produced through alteration of the existing stock of knowledge and means of 

production. The production of a phenomenon in the laboratory that cannot be observed in 

its “pure” state in nature is an example. So might elaborating a theory and producing 

evidence for it. On the other hand, certain kinds of work, like attending a conference to 

report on research results, would not count as labor according to (3), unless the interactions 

at the conference were somehow important for the result itself. If they were not, then it 

might be best to categorize them as what the sociologist Elihu Gerson calls ‘metawork,’ 

work devoted to organizing work that is to be done56 (or, the conference example suggests, 

disclosing work that has already been done).  

Finally, (4) reminds us of nature’s essential role in the labor process. For example, 

if the instrument is a hammer and the objects are loose nails and pieces of wood, then what 

the agent does in the process is determined by his or her own social and material 

properties—e.g., his physical strength, his assigned task, etc.—as well as the social and 

material properties of the hammer, nails, and wood—that hammers are, in his society, used 

for knocking together pieces of wood, that the nail is harder than the wood, etc. Since both 

social and material properties are subject to change, the labor process also has a historical 

character. 

This historical character makes progress possible. So does the fact that the process 

is purpose-driven, a point driven home by Marx’s analogy of the bee and the architect. 

Since labor is purposive, progress can be assessed relative to the purpose(s) of the 

producers, or relative to alternative purposive employments of the means of production. 

But those purposes themselves must be formulated in terms of the means available (a point 

to which I will return in section 2.3.2.3) which gives progress a certain path-dependence. I 

                                                 

55 Braverman (1974), p. 31. 

56 Gerson (2013). 
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use the latter term in the sense of Peacock (2009), p. 107, according to which it means that 

evolution is conceived as a path: “As with any path, one’s position on it is determined by 

the course that path has taken, and one cannot simply ‘undo’ the path one has trodden nor 

efface one’s current position on it.” In the case of labor, for example, in general one cannot 

switch methods of production at will—one is to some extent stuck with the instruments 

that the past history of development has bequeathed. This dependence of later 

developments on earlier ones imparts temporal directedness to the overall developmental 

process. Thus the historical character of the labor process both makes progress possible, 

but also constrains its direction. 

Moreover, since the labor process involves both conception and execution, progress 

in the development of labor depends on both intellectual and material factors, some of 

which go beyond mere “purposes.” Ideology, for example, plays an important role in 

shaping worker’s attitudes towards their work, and hence how they produce, what they 

produce, and for whom they produce it. This fact will be important in chapter 3. 

Furthermore, the labor process involves not just a relation of production between workers, 

but also between the workers and their instruments. In chapters 4 and 5, it will be 

demonstrated on a historical case that this relationship can play a critical role in scientific 

progress.  

Finally, as a unit of analysis the labor process gives us conceptual elements for 

explaining the abilities displayed by the agents in production. Means of labor, object of 

labor, purposes, division of labor and ideology are all so many conditions of action that 

contribute to explaining the agents’ abilities. 

With this excursus complete, I now turn to the literature review, starting with the 

Radical Science Journal collective. 

2.3.2.2 The Radical Science Journal collective 

The key insight of the RSJ collective is that particular labor processes are not 

neutral with respect to purposes and values: 

Capitalist production and reproduction presents its own form of social organization as due 

to objective necessity, be it natural or technical. The subversive potential of labour process analyses 
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lies in undermining that apparent necessity by revealing the social relations built into the concepts, 

techniques and technologies that mediate human labour.57 

The concept of the labor process and its sub-categories offer a framework that encourages 

us at every step to grasp the human purposes at the heart of science, technology, medicine, or any 

practice. … A labor process perspective offers the possibility of recovering the intentions already 

embodied in facts, theories and artifacts.58 

Based on the contributions collected in the two volumes put out by the collective 

on Science, Technology and the Labour Process in 1981 and 1985, the participants appear 

to have been mainly interested in how capitalist purposes and values structured the ways 

in which science and technology are applied in ordinary material production. A few of the 

contributions, however, apply the labor process model to “pure” science. For example, 

Yoxen (1981) develops a labor-process account of the history of molecular biology: 

… I want to draw out some more implications of the labour process perspective on 

molecular biology, by considering the significance of the integration of concepts like ‘program,’ 

‘message’ and ‘code’ into a reductionist biological framework. What lies behind the idea of a genetic 

program? Again I should say stress [sic] that I am not saying that the idea that organisms are 

programmed is a biased or deformed account of reality, a misconception occasioned by capitalism. 

What I am asking is why it should be that we attempt to apprehend nature as programmed? Why do 

we frame and analyse the manifold of nature in this way? What is it that leads us to this way of 

formulating questions?59 

As these quotations indicate, the collective was concerned with identifying the 

contingent aspects of scientific work and thought, in particular those aspects that might be 

caused by the social relations within which scientific work takes place. Yoxen, for 

example, in answering the questions at the end of the quoted passage emphasizes the 

interdependence of scientific concepts and ideas, forms of scientific organization, and 

economic forces.  

The perspective of the RSJ collective may be related to the “cunning of reason” 

Marx sees at work in the instrument of labor. Does the fact, if it is a fact, that artifacts 

embody intentions entail that human agency is still in some sense present, even in the 

absence of direct intervention by humans? Moreover, if instruments embody or determine 

                                                 

57 Levidow & Young (1985), p. 4. 

58 Young (1985), p. 208. 

59 Yoxen (1985), p. 102. 
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certain goals and not others, then the choice of an instrument to achieve independently 

given goals may not be not neutral with respect to them, and may in practice encourage 

goal revision. This topic will come up in the chapters on the Instrumental Revolution. 

Another contribution in Science, Technology and the Labour Process that will be 

relevant in the third chapter is Nathan Rosenberg’s “Marx as a Student of Technology.” 

The author asks the question, “What are the characteristics of technologies which make it 

possible to apply scientific knowledge to the productive sphere?”60 Rosenberg points out 

that not all technologies permit the application of scientific knowledge to production to the 

same extent. On his reading of Marx’s account of the Industrial Revolution, the decisive 

step in the latter was not the discovery of new power sources, as is commonly thought, but 

rather  

the development of a machine technology which was not heavily dependent upon human 

skills or volitions, where the productive process was broken down into a series of separately 

analyzable steps. The historic importance of the manufacturing system was that it had provided just 

such a breakdown. The historic importance of Modern Industry was that it incorporated these 

separate steps into machine processes to which scientific knowledge and principles could now be 

routinely applied. … When this stage has been reached, Marx argues, technology become, for the 

first time, capable of indefinite improvement.61  

Rosenberg’s answer to his question involves a specific division of functions 

between humans and machines, one involving the marginalization of human skills and 

volitions in the labor process.62 In chapter 4, I will ask a question analogous to Rosenberg’s, 

but with respect to science: what are the characteristics of scientific instrumentation that 

make it possible to apply scientific knowledge to science itself? Moreover, the idea that 

                                                 

60 Rosenberg (1981), p. 15. 

61 Rosenberg (1981), p. 17. 

62 Though coming from a different intellectual tradition, the philosopher Etienne Balibar had earlier 

made a similar point in the structural Marxist classic Reading Capital (2009 [1965]):  

 

The machine-tool makes the organization of production completely independent of the characteristics of human labour-power 

… This separation makes possible the constitution of a completely different type of unity, the unity of the means of labour 

and the object of labour. … This unity is expressed in the emergence of technology, i.e., the application of the natural sciences 

to the techniques of production. But this application is only possible on the existing basis provided by the objective unity of 

the means of production (means and object of labour) in the labour process. (p. 268) 
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instruments tend to allow an indefinite sequence of improvements over human abilities will 

be a leitmotif in this dissertation, as explained in section 2.4.2 below. 

2.3.2.3 Edgar Zilsel and the merging of intellectual and manual labor 

In his classic 1942 article on “The Sociological Roots of Science,” Zilsel asks why 

modern science emerged when and where it did. Why the modern period and not antiquity? 

Why Europe and not China? Though elements of modern science could be found in 

antiquity and non-European cultures, modern science emerged only under the conditions 

of early capitalism. Zilsel asks, what sociological process made the emergence possible? 

His answer involves four background conditions, all related to the rise of 

capitalism. First, the centers of culture shifted from manors and monasteries to towns. 

Second, machines were increasingly used for the production of goods and for warfare. 

Third, competition undermined the traditionalism of the Middle Ages in favor of an 

individualistic spirit. Fourth, feudal traditions and customs were replaced by the more 

rational methods of early capitalism. 

Against this background, Zilsel identifies three strata of intellectual activity in the 

period from 1300 to 1600: the universities, humanism, and labor. The universities were 

dominated by scholasticism. Though rationally trained, university scholars endeavored to 

explain “the ends and meanings of the phenomena” rather than investigate causes or 

discover physical laws. They remained largely aloof of technological developments. The 

humanists were a class of literati that appeared in Italian cities in the 14th century. They 

depended on the upper classes for patronage and employment. Though they developed the 

methods of scientific philology, the humanists, like the scholastics, neglected causal 

research, physical laws and quantitative investigation. 

A common and central characteristic of the university scholars and humanist literati 

was that they despised manual labor. They distinguished between the liberal and 

mechanical arts, and considered only the former worthy of well-bred men. 

Meanwhile, various types of manual worker emerged. Economic competition 

stimulated them to inventions. Thus the artisans, the mariners, the shipbuilders, carpenters, 

foundrymen and miners pioneered empirical observation, experimentation and inquiry into 

causes. The 15th century saw the rise of “superior artisans” in the arts, engineering, surgery, 
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musical instrument-making, the production of measuring-instruments, surveying and 

navigation. These superior artisans included famous Renaissance figures like da Vinci, 

Cellini and Dürer. Their measuring-instruments were forerunners of modern physical 

instrumentation, and their quantitative rules of thumb anticipated physical laws. What the 

superior artisans lacked and the scholars and literati had, however, was a “methodological 

training of intellect,” which involved the ability to carry out research in a systematic 

fashion.  

The key break-through for the emergence of modern science was the collapse of 

the social barrier between the academically trained scholars and the superior craftsmen, 

which occurred when the former adopted the methods of the latter. This happened around 

1600 with the work of Gilbert, Galileo and Bacon.63  

It is worth noting that for Zilsel, science is a kind of labor, but one that involves an 

essential intellectual and theoretical component. In effect, Zilsel offers a genealogy of the 

modern scientific method: The academically trained scholars contributed one component 

in the form of logical training, learning, and an interest in theory, whereas the manual 

workers contributed an interest in causation, experimentation, measurement, quantitative 

rules of operation, disregard of authority, and cooperation. On his view, the scientific 

method consists of two skill sets: training in systematic and logical inquiry on the one hand, 

skills for the manipulation and control of the natural world on the other. Technology is 

important in his story, because it is through the development of technology that the latter 

skill set was acquired over generations. The development of technology was accompanied 

                                                 

63 Rossi (1970) concurs that there was a change in attitudes towards labor among philosophers in 

the Renaissance and early modern period: “A new view of labor, of the function of technical 

knowledge, and of the significance of artificial processes through which nature was altered and 

transformed clearly makes its way into the work of artists and experimentalists of the fifteenth 

century and into the treatises of engineers and technicians of the sixteenth century. This trend is 

discernible even at the level of philosophy: in those social groups which were much taken up with 

problems of this type, there emerged an appraisal of the arts that was quite different from the one 

which had traditionally prevailed. It was now argued that some of the methods employed by 

technicians and artisans to modify and alter nature might also be useful for acquiring a real 

knowledge of natural reality” (p. x).  
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by the development of a class of superior artisans. Once these skill sets were combined, 

the stage was set for the successes of modern science.  

The quote from Zilsel in the introduction, according to which modern science was 

born when the experimental method was adopted by scholars, might appear to equate all 

science with experimental science. Zilsel himself was aware of this problem, and in an 

unpublished manuscript he acknowledged that the astronomy of the solar system was 

highly successful without any experiment.64 He explains this success as a matter of luck, 

that we happen to live in a solar system where “superimposed effects belong to very 

different orders of magnitude and therefore can be separated comparatively easily.” Were 

it not for this “extraordinary fact,” “Copernicus, Kepler, and Newton would not have 

achieved much.” In my view, however, Zilsel does not go far enough with his own mode 

of explanation. As the examples from cosmology and chaos theory discussed in the 

appendix suggest, and as my discussion of Kepler’s attempt to improve the quality of ocular 

astronomical observation in chapter 2 will reinforce, the development of technology and 

the correlative skills have been important in non-experimental sciences as well.  

A view conceptually related to Zilsel’s is Jerome Ravetz’s (1971) depiction of 

science as a kind of craft. He describes scientific work as having a “peculiar” character, 

“as a special sort of craft work operating on intellectually constructed objects.”65 This view 

leads him to stress the craft component in scientific method, the universality of pitfalls, the 

uncertain nature of criteria of adequacy in scientific assessment, and the interpersonal 

nature of some components of scientific communication. The scientific use of tools is 

doubly “craft-like:” first, because the use of particular tools requires a craftsman’s 

competence, and second, because the tools chosen at a given time influence the direction 

of future work. The scientist must therefore be able to assess the sorts of problems that the 

use of particular tools would allow him and his colleagues to deal with and whether these 

problems are optimal for progress in his field, and this assessment involves the sort of 

uncertainty that can only be navigated with a craftsman’s expertise and tacit knowledge.  

                                                 

64 See his “Problems of Empiricism” in Zilsel, Krohn & Cohen (2000), p. 176. 

65 Ravetz (1971), p. 146. 
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Ravetz applies the model of science as craft labor to construct a historical argument 

to the effect that whereas, from the 17th to the 19th century, science was conducted in 

accordance with its craft nature, it increasingly adopted industrialized methods of 

production as it entered the 20th century. Where the craft worker worked alone, or with a 

few apprentices, industrialized science requires substantial capital, a large group of 

scientists, a clear division of labor between them, and common goals to be set and managed 

by a scientific director. Ravetz argues that this industrialization of science has made it 

subservient to the state and to industry. In order to avoid the resulting “debasement” and 

“corruption” of science and the use of its results toward socially and ecologically 

catastrophic ends, the nature of science as a craft must be recognized and taken into account 

in the planning of science.  

I mention Ravetz in order to highlight an important feature of the labor-process 

model. Ravetz is an essentialist about science. He believes that science has an optimal 

developmental pathway that reflects its nature as a special craft. Now, the labor-process 

model emphasizes the role of purposes in determining the nature of the labor process. In 

his defense of the Hessen-Grossman thesis, to be discussed in the next section, Freudenthal 

& Mclaughlin (2009) give a useful account of how to conceive of purposes in labor-process 

analyses. A purpose is a need that can explain an action. In order to explain an action, needs 

must be formulated in terms of the means available. For example, in order to explain why 

a person is eating, it is not sufficient to point to their need for nourishment. The need must 

be concretized in terms of the type of food available to the person at the time and place of 

eating. A purpose is a need formulated in terms of the means available for satisfying it. The 

means available, however, are not up to the sole choice of the scientist, but depend on 

contextual factors like the level of technological development in the broader society, the 

division of labor the scientists can lean on, etc.  

It follows that the activity of the scientist—the kind of labor he or she performs—

is indeed determined by his or her judgments of the needs of research, as Ravetz points out, 

but only once those needs are concretized in terms of the means available. These means 

may in turn dictate different ways of working. Galileo formulated his need to study the 

heavens in terms of the recently invented spyglass. Since there were no professional 

instrument-makers of research-grade telescopes at the time, Galileo did indeed adopt a 
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craft-style of working, both because of the skills he needed to make his telescopes and 

because both the telescopes of the time, and the instruments required to make them, were 

adapted to craft labor.66 By way of contrast, in the 1880s the Paris Observatory director 

Ernest Mouchez formulated his need to study the heavens in terms of recently developed 

photographic techniques. Since the individual astronomer, even assisted by apprentices, 

was incapable of processing the large amounts of data thereby obtained, Mouchez imitated 

mass production techniques by assigning data processing to large teams of human 

computers who were not professional astronomers. In a further move imitating mass 

production, the processing of the data was standardized in order to produce a 

comprehensive star catalogue comprising the massive quantities of observations gathered 

from the other photographic observatories around the world. Funding for all this work was 

obtained from the French government by appealing to nationalistic sentiments.67 

My point is that the style of labor, craft or industrial, in the two cases was partially 

determined by the interplay between needs and the means available. This claim militates 

against an essentialist view of scientific labor, because it entails that the nature of that labor 

necessarily depends on historically contingent factors outside the scientist’s control. In the 

excursus, I noted that this dependence makes progress path-dependent, because the goals 

of the enterprise will depend on the means available to the scientists and not just on their 

own volition. This path-dependence is generated by the dialectic of means and ends 

inherent in the labor process. 

2.3.2.4 Science as practice 

The view of science as labor naturally raises questions about the skills of the worker 

and how those skills are deployed in the practice of science, or in other words about science 

as a practice. Thus it is not surprising to read constructivists explicitly drawing on the 

science-as-craft-labor tradition: “The third line of work in the constructivist tradition 

                                                 

66 On the absence of professional scientific instrument makers at the time of Galileo’s pioneering 

telescopic work, see van Helden (1983). On the craft character of Galileo’s work in general, and its 

dependence on the instruments available to him, see Lefèvre (2005). 

67 See Bigg (2000) for an account of this episode. 
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broadly conceived has focused on scientific practice in a variety of ways, usually described 

as taking off from Kuhn’s (1962; 1977) and Ravetz’s (1971) pioneering discussions of 

science as craft work.”68 ‘Practice’ is usually understood in the sense of “regularities or 

commonalities in the performance or presuppositions of some community of human 

agents.”69 Practice-oriented researchers therefore focus on the elements of skilled 

improvisation necessary for many individual performances of science, and on the question 

of how these performances can give rise to regularities across the scientific community. 

Clarke & Fujimura (1991) identify several activities involved in scientific practice that 

span the distance between the improvisation required at the individual level and the 

stability observed at the community level, including “constructing doable problems; 

crafting, tinkering and making ad hoc arrangements; and standardizing and stabilizing the 

elements in the situation, including collective actions as disciplining tools to achieve 

continuity.”  

Tools are important elements in stabilization. For example, Clarke (1987) illustrates 

how the recalcitrance of tools (in her case, opossums in embryological research) can 

prevent the emergence of a research tool that is reliable across research situations. Hacking 

(1992) and Pickering (1995) have argued that coherence of the elements of an experimental 

practice has to be achieved in order to stabilize it. On their view, the resistance of the 

instrument is an important obstacle in the achievement of coherence, say, with theory. As 

mentioned above, Ravetz (1971) has argued that tools impart what might be called a certain 

“path-dependence” on scientific research, and so the proper selection of tools requires 

expert judgment.70 

It should be noted that the sense of practice as a regularity is not the only one that 

has been endorsed in the literature. Rouse (2002) defends a normative conception of 

practice according to which 

[the] constituent performances [of the practice] are appropriately regarded as answerable 

to norms of correctness or incorrectness. Not all practitioners perform the same actions or have the 

                                                 

68 Clarke & Fujimura (1991), p. 4.  

69 Rouse (2002), p. 161. See also Landecker (in press).  

70 See Peacock (2009) for a discussion of path-dependence in the production of scientific knowledge. 
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same presuppositions, but practitioners and other constituents of a practice are accountable for 

performances or presuppositions that are inappropriate or otherwise incorrect.71  

On the normative conception, a practice is defined by the norms of correctness or 

incorrectness to which its constituent performances are answerable, rather than by an 

underlying regularity of action or belief.  

Chang (2011) articulates an activity-based view of scientific practice that seems to 

fall under the normative conception: 

A serious study of scientific practice must be concerned with what it is that we actually do 

in scientific work … This way of thinking leads into the analysis of scientific practice in terms of 

epistemic activities. An epistemic activity is a coherent set of mental or physical actions (or 

operations) that are intended to contribute to the production or improvement of knowledge in a 

particular way, in accordance with some discernible rules (though the rules may be unarticulated). 

Because activities are rule-bound systems of actions, they are inherently normative in the sense that 

the actions within an activity are continually evaluated in terms of their conformity to the rules.72 

This activity-based view is intended to encompass both intellectual and manual 

aspects of scientific work: “everything from calculating to smelling, from glassblowing to 

computer simulation, from synthesizing specific pharmaceuticals to explaining the 

structure of the universe.” Epistemic activities are generally practiced in relation to others, 

forming what Chang (2012) calls a ‘system of practice.’ A set of epistemic activities forms 

such a system when they are performed with a view to achieving certain aims. The system 

is coherent when the constituent activities combine effectively to achieve the aims of the 

system; this kind of coherence differs from the logical notion of coherence as consistency 

between propositions.73 

Chang recommends using activity-based analysis to refresh topics in the philosophy 

of science that have traditionally been understood as being about the propositional aspects 

of scientific work. In this dissertation I aim to do something akin to Chang’s 

recommendation with respect to questions about scientific progress, in particular what it 

consists of, how it is achieved and what distinguishes it from the forms of progress 

exhibited by other intellectual endeavors.  

                                                 

71 Rouse (2002), p. 169. 

72 Chang (2011), p. 209. 

73 Chang (2012), p. 16. 
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Lefèvre (2005) worries that conceptualizing science as a social practice tends to 

reduce science to mutual interactions between people, which interactions are not conceived 

as conditioned by non-social factors. (By “non-social factors” Lefèvre has in mind the 

material character of the means of scientific work). “The popular references to scientists’ 

‘negotiations’ about observations, conjectures, conclusions, or concepts are indicative of 

this understanding of the social relations among scientists. However, is it really plausible 

to take the relations of tradesmen on the market place as standard for the social relations of 

scientists?”74 Lefèvre argues that it is not, because such a conception ignores the “hybrid 

character of the production process,” the fact that the material means of labor blend social 

and natural properties. That a given object serves as a tool is determined in part by its 

human users, but their use of it is in turn constrained by the natural properties of the object. 

Lefèvre emphasizes that the material means of production react back on the social 

organization of labor and the forms of cooperation and communication.  

This dependence of the social on the material holds not only for ordinary material 

labor processes but also for science, as the history of science shows.75 The material means 

of science include not only things that resemble, or in fact are, production apparatuses, like 

certain observational instruments or, say, distillation apparatuses. They also include 

“material means of scientific thinking” like diagrammatic representations or numerical 

notations. These material means of thinking “delineate a horizon of what results scientists 

can achieve and even what results are conceivable or probable.”76 The application of the 

material means of science generates a surplus of knowledge, which arises from “the simple 

but rarely sufficiently acknowledged fact that humans can gain more knowledge from the 

use of a means than was needed to invent it in the first place.”77 

The dependence of science on material means informs the perspective of this 

dissertation. Though Lefèvre alludes to a “surplus of knowledge” that is created from the 

application of material means, he does not inquire into the details of how this surplus is 

                                                 

74 Lefèvre (2005), p. 205. 

75 Lefèvre (2005), pp. 211-214. 

76 Lefèvre (2005), p. 217. 

77 Lefèvre (2005), p. 215. 
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generated in science, or into how the development of the material means influences 

scientific progress. I will develop the connection between surplus knowledge and scientific 

progress in chapter 7. 

2.3.3 The sociological model78 

Joseph Ben-David’s (1971) study of The Scientist’s Role in Society offers a helpful 

categorization of sociological approaches to the study of science.79 Ben-David identifies 

two basic kinds of sociological explananda. A sociological theory may explain the 

behavior of scientists and scientific activity, or it may seek to explain the basic concepts 

and the logical structure of science (or both). He also identifies two basic kinds of 

explanans. On the one hand, the explanatory variables can be predominantly interactional, 

involving the way scientists interact, for example the division and coordination of scientific 

work, citation patterns, and “habits of consultation.” On the other hand, the variables can 

be predominantly institutional, involving things individual scientists have no control over, 

for example the scientists’ socially specified roles in a given country, the size and structure 

of scientific organizations, and different features of the economy, the political system, 

religion and ideology. This categorization entails four approaches to the sociology of 

science: “an interactional study of either scientific activity or the conceptual and logical 

structure of science, and an institutional study of the same two aspects.” 

Though for the purposes of this dissertation I think it is unnecessary to catalogue 

the many sociological approaches that have been applied to the study of science, a few 

approaches are worth mentioning due to their similarity to the labor process model 

discussed in the last subsection. An example of the institutional approach is the classic 

work of Boris Hessen and Henryk Grossmann in the 1930s, which has recently been 

defended by Freudenthal & McLaughlin (2009). Their work overlaps with the labor process 

                                                 

78 Though some of the approaches considered in the previous subsection may be considered 

“sociological,” I have chosen to exclude them from this subsection because of their focus on the 

craft aspects of science. 

79 Ben-David (1971), p. 2. 
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model because they conceptualize science as one kind of labor within the system of social 

production. On Freudenthal and McLaughlin’s reconstruction, Hessen’s “The Social and 

Economic Roots of Newton’s Principia” (1931) advanced three theses, the first of which 

was independently proposed by Grossmann and the second of which Grossmann also later 

assented to.  

—The first thesis concerns the relation of economic and technological developments in the 

early modern period and the relation of these two to the emergence of modern science: Theoretical 

mechanics developed in the study of machine technology. 

—The second thesis draws the converse conclusion: In those areas where seventeenth-

century scientists could not draw on an existing technology (heat engines, electric motors and 

generators) the corresponding disciplines of physics (thermodynamics, electrodynamics) did not 

develop. 

—The third thesis concerns the ideological constraints placed on science in England at the 

time of the “class compromise” or “Glorious Revolution” (1688): Because of this compromise 

Newton drew back from fully endorsing the mechanization of the world picture and adapted his 

concept of matter so as to be able to introduce God into the material world.80 

The first and second theses are the ones of interest here. They exemplify Ben-

David’s institutional approach in that the level of development of technology is not 

something an individual scientist can control. For example, the impact of technology on 

scientific concept formation is significant for understanding scientific change because it 

explains, according to Hessen and Grossmann, why certain abstract concepts arise when 

they do. As summarized by Freudenthal & McLaughlin: 

When (1) various different kinds of labor have been separated from the motive power 

applied in performing them, then motive power could also be conceptualized separately, and when 

(2) various kinds of the motion (circular, straight) produced by various motive powers (e.g., water, 

animal, man) could also be transformed one into the other by appropriate transmission machines, 

then it also made sense to form concepts of abstract motion and force …81 

The Hessen-Grossmann theses differ from the labor process model, however, 

insofar as the role of technology in science is limited to providing observational material 

to stimulate concept formation and theorizing. The labor process model, in contrast, 

emphasizes the use of technology in science.  

                                                 

80 Freudenthal & McLaughlin (2009), pp. 2-3. 

81 Freudenthal & McLaughlin (2009), p. 14. 
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A classic example of an interactional approach that emphasizes the use of 

technology in science is Latour and Woolgar’s (1986) social constructivism. On their view, 

theories and facts are constituted by social constructs. Scientific change arises through 

scientists constructing facts in the lab by means of communication, persuasion and the use 

of apparatuses. Latour and Woolgar explain laboratory dynamics in terms of a model of 

competition: the personality, institutional affiliation, and rank of the researcher, the nature 

of the research, and its potential for future investigations count as much as strength of 

argument, cogency of evidence or style of reasoning.  

Their view resembles the model of science as a labor process in that it focuses on 

the necessary intervention of human labor in the production of knowledge and especially 

on the role of instruments in that process. As is well-known, Latour and Woolgar (1986) 

treat scientific instruments as “inscription devices,” apparatuses that provide some sort of 

symbolic output. An inscription device is “any item of apparatus or particular configuration 

of such items which can transform a material substance into a figure or diagram which is 

directly usable by one of the members of the office space.”82 So a scale on an apparatus is 

an “inscription device” if it provides information about a new compound, a machine if it 

weighs something, a checking device when it is used to verify an operation. In short, an 

apparatus is used as an “inscription device” when it is used in an argument such as that 

involved in the construction of a bioassay profile. 

The labor process model, however, does not entail the more controversial epistemic 

claims they make, such as that “the phenomena are thoroughly constituted by the material 

setting of the laboratory. The artificial reality, which participants describe in terms of an 

objective entity, has in fact been constructed by the use of inscription devices.”83 If such 

claims amount to the view that warranted scientific belief is in the end about the activities 

of scientists and not about states-of-affairs in nature, that is not the view that will be 

defended here: in my view, the labor process model is compatible with the view that 

scientists do in fact learn about phenomena other than their own activities. Indeed, as 

suggested by the role of the means of production in labor and the hybrid character of these 

                                                 

82 Latour & Woolgar (1986), p. 51. 

83 Latour & Woolgar (1986), p. 64. 



53 

mentioned in the excursus and stressed by Lefèvre, nature plays an essential role in the 

labor process. This role is presumably reflected in the content of scientific knowledge, 

though I will not try to work out exactly how here.  

The claim that the production process is hybrid, both social and natural, may be 

contrasted with Latour and Woolgar’s view that “[i]t would be wrong to contrast the 

material with conceptual components of laboratory activity.” 

The inscription devices, skills, and machines which are now current have often featured in 

the past literature of another field. Thus each sequence of actions and each routinized assay has at 

some stage featured as the object of debate in another field and has been the focus of several 

published papers. The apparatus and craft skills present in one field thus embody the end results of 

debate and controversy in some other field and make these results available within the walls of the 

laboratory.84 

That apparatus “embody the end results of debate and controversy” is only true for 

certain aspects of the apparatus. As Davis Baird has emphasized, the materiality of 

instruments exerts its own constraints on their construction.85 This materiality is not always 

theorized or conceptualized, and is not always the subject of social processes like debate 

or controversy. For example, in their account of the construction of the first cyclotron Baird 

and Faust write that  

The information … in the practices which are passed from teacher to apprentice, at 

laboratories such as the Berkeley Radiation Laboratory, constitutes some of the resources for an 

instrument builder. Pyrex has proved to be a good material for constructing vacuum systems. Some 

unrecorded engineer figured out the spring system for converting linear motion into circular motion; 

now this small problem is solved. Experience too has taught us about the use of moving metal parts 

in a vacuum, and how to use acetone to detect leaks … We do not expect there to be a general theory 

for the conversion of linear motion into circular motion; instead there are techniques for doing so. 

There are fairly general theories about materials such as Pyrex, but no such theory would have as a 

consequence the fact that Pyrex is commonly a good material for the construction of vacuum 

systems. Such a consequence depends too directly on the specific contingencies of how 

experimental practice evolved. Still, the use of Pyrex does serve as an important technique in 

vacuum system construction.86   

                                                 

84 Latour & Woolgar (1986), p. 66. 

85 See Baird & Faust (1990), Baird (2004). 

86 Baird & Faust (1990), p. 171. 
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The “fact” that Pyrex is a good material for generating a vacuum was not theorized, 

according to them, and was presumably not the outcome of debate or controversy but rather 

determined empirically, by constructing a vacuum system with Pyrex and measuring the 

vacuum. True, the measurement technique might have been the outcome of debate, but the 

fact that Pyrex and not window pane or brass was found to be the best material for the 

vacuum system constitutes a material “remainder” over and above what can be obtained 

from theory and debate.87 

The claim by Latour and Woolgar that phenomena are constituted by the material 

setting has a consequence for scientific change: a change in how facts are constructed 

entails a change in the phenomena. Latour and Woolgar write that “[i]t follows that if our 

observer [the anthropologist in the laboratory] was to imagine the removal of certain items 

of equipment from the laboratory, this would entail the removal of at least one object of 

reality from discussion.” For example, they claim that “[t]he molecular weight of proteins 

could hardly be said to exist except by virtue of the ultracentrifuge.”88 Though Latour and 

Woolgar do not discuss the topic of scientific “progress,” given what they say about the 

construction of facts it would seem that traditional philosophical notions of scientific 

progress in terms of the accumulation of truths or knowledge ought to be unavailable to 

them.89 On the other hand, it seems reasonable to suppose that they could entertain a notion 

of progress in terms of the improvement of the persuasive power of the material techniques 

available for producing inscriptions, of the acceleration of fact construction through better 

methods for conducting and ending debate and controversy over the facts, or of reforms of 

the institutional structures shaping the interpersonal dynamics within the laboratory and 

between laboratories. In other words, for Latour and Woolgar the notion of the scientific 

progress would have to concern the social characteristics of science, and not the semantic 

and epistemic characteristics philosophers have traditionally been concerned with. 

                                                 

87 See Baird & Faust (1990), sections 2 and 3 for the details of the cyclotron’s construction. 

88 Latour & Woolgar (1986), pp. 64-65. 

89 For example, they consider “the tendency to think of the inscription [produced by an inscription 

device] in terms of confirmation, or evidence for or against, particular ideas, concepts, or theories” 

to be part of the “mythology” of the laboratory, a view that suggests agnosticism (at least) about the 

possibility of accumulating justified beliefs (p. 63).  
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The views of Hessen and Grossmann also have implications for scientific change 

and progress. According to the Hessen-Grossmann thesis, the rate of development of major 

new theories depends on the rate at which new technologies are developed. Moreover, the 

development of new technologies leads to the formation of more abstract concepts to cover 

the increasing diversity of technologically-produced phenomena. More abstract concepts 

expand the explanatory scope of theories, which may be considered a form of progress. 

The notion that technology both constrains and makes possible scientific achievement is 

similar to Lefèvre’s emphasis on the material means as conditions of possibility of 

scientific work. The effect of technology on the scale and rate of knowledge production 

will be discussed in the context of the Instrumental Revolution in chemistry in chapters 4 

and 5. 

Summarizing the bearing of the sociological approach on the question of scientific 

change and progress, it may be said that this approach focuses on social variables that 

explain change and that are not taken into account by the intellectualist approach. The 

latter’s focus on the history of ideas tends to be blind to variables such as the social 

characteristics of science or the kinds of technology existing in the broader society. The 

sociological approach does overlap with the labor process model, for example in the 

emphasis on the technological dependency of science and on science as a form of labor. 

This overlap is as it should be, for in recent decades there has been increasing interest 

among philosophers of science in the social practices of scientists and the epistemic effects 

of these practices (see section 8.2.3 on social epistemology).  

On the other hand, social variables are not always central in an analysis based on 

the labor process model. Examples of social variables are the technology available in the 

broader society, social prejudices concerning intellectual and manual labor, the value 

attached to science by society, the uses made of science or of scientific activity in general, 

the organization of research, or the modes of transmission and diffusion of scientific 

knowledge. Though social variables are probably always relevant to the labor process, they 

are not necessarily central. This can be seen even in Marx’s work, where the category is 

introduced as a universal condition of human existence before its particular form under 

capitalism is treated.  
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What is central is an understanding of science as the activity of embodied beings 

who rely on tools to acquire knowledge of the world. This understanding can be taken in 

either a sociological direction or a philosophical one. In this dissertation, for example, I 

have tried to take the latter direction by asking questions concerning scientific progress, 

understood as an interdependent accumulation of different forms of knowledge, that are 

raised by this understanding of science.  

2.4 Scientific progress and the labor process model 

The labor-process perspective focuses attention on two elements that are critical for 

answering the two questions posed in the introduction: 

1. Why is it possible for scientists at a given time to have more epistemic abilities 

than scientists at an earlier time? 

2. How is it possible for knowledge acquired in the past to be used in on-going or 

future research? 

Those elements are abilities and instruments. In this section, I will do two things. First, I 

will discuss the nature of abilities, in particular what I called ‘epistemic abilities’ in the 

introduction. Second, I will discuss how instruments are related to the acquisition of 

abilities and the use of prior knowledge. 

2.4.1 Abilities in philosophy of action and in philosophy of science 

As stated in the introduction, an ability is a kind of power.90 Powers, at first pass, 

are all and only those properties that (i) are possessed by agents and (ii) are typically 

expressed by the modal auxiliary ‘can.’ A power is an ability if and only if it relates an 

agent to an action. An ‘agent’ will here mean an entity capable of purposive action. Not all 

                                                 

90 Since I am not a philosopher of action, I rely here on John Maier’s (2014) review of abilities in 

the philosophy of action.  
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powers are related to actions: for example, understanding a sentence is not typically an 

action, whereas uttering one typically is. In this taxonomy, I have the power to understand 

English sentences, but not the ability. But I do have the ability to utter them.  

What exactly is an ability? According to Maier (2014), a widely used, approximate 

analysis of ‘ability’ is the following: 

 (CA) S has the ability to A if and only if S would A if S tried to A.  

This conditional analysis serves as something of a default analysis of abilities in the 

literature on the subject. However, it has been subjected to some criticism, and 

there appears to be little consensus on what the true analysis of abilities is. It is beyond the 

scope of this dissertation to try to solve this problem. For our purposes, the intuitive 

idea that abilities are powers that relate agents to actions will suffice.  

As noted in section 2.2, whether or not ability should be identified with know-

how appears to be an open question in the philosophy of action and epistemology. 

Some philosophers of science have identified the two.91 In general, abilities have not seen 

much explicit discussion in the philosophy of science. They are, however, essential 

to both Kuhn’s and Laudan’s conceptions of scientific progress as increasing 

problem-solving ability (see section 2.2.). For example, Laudan (1977) claimed that 

“progress can occur if and only if the succession of scientific theories in any domain 

shows an increasing degree of problem-solving effectiveness.” In his 1969 post-script 

to The Structure of Scientific Revolutions, Kuhn held that “the demonstrated ability 

to set up and to solve puzzles presented by nature is, in case of value conflict, the 

dominant criterion for most members of a scientific group” (205). The high value 

accorded to puzzle-solving ability in the natural sciences has for consequence that “later 

scientific theories are better than earlier ones for solving puzzles in the often quite 

different environments to which they are applied” (206). Abilities also underlie the 

versions of realism defended by Ian Hacking in his (1983) and Hasok Chang in his 

(2012). Hacking (1983) memorably proclaimed that “if you can spray them [electrons and 

positrons] then they are real” (24; italics in original). In a similar vein, Chang (2012) 

bases his ‘active realism’ on the view that “at least when considering knowledge as 

it  exists embedded in a system of practice, we can gain new and better 

91 E.g., Baird & Faust (1990), p. 147; Mizrahi (2013), p. 385; Chang (2017), p. 2. 
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insights by thinking of knowledge not as consisting in belief but in ability—an ability to 

do certain things reliably as intended, without being foiled by resistance from reality” 

(215).  

Chang’s notion of a ‘system of practice’ will help us narrow the category of ability 

to properly scientific abilities, or what I called epistemic abilities in the introductory 

chapter. A system of practice, in science, is a coherent set of epistemic activities performed 

with a view to achieving certain aims.92 An ‘epistemic activity’ is “a coherent set of mental 

or physical actions (or operations) that are intended to contribute to the production or 

improvement of knowledge in a particular way, in accordance with some discernible 

rules.”93 These rules need not be articulated. Among epistemic activities, Chang includes 

classic scientific activities like explaining, hypothesizing, testing and observing, but also 

more unusual or contemporary ones like smelling, glassblowing, and computer simulation 

(provided these are performed in order to acquire scientific knowledge, of course).  

In Chang’s account, the difference between an action and an activity seems to be 

one of level of description. What might be considered an action at one scale, might be 

considered an activity on a lower level of description. Consider Chang’s analysis of the 

combustion-analysis of chemical substance: 

The structure of actions and processes is not atomistic in a reductive way, unlike the 

structure of things and statements. Each epistemic activity can itself be analyzed as a system of 

activities, but the “component” activities are not necessarily simpler than the “whole” activity in an 

absolute sense, and the analysis can go on indefinitely. For example, take the combustion-analysis 

of a chemical substance. This can be analyzed as consisting of various other activities: burning the 

target substance; absorbing the combustion-products using other chemicals; weighing with a 

balance; making percentage-calculations; etc. And those component activities in themselves consist 

of other activities; for example, the activity of weighing with a balance consists in placing samples 

and weights on balance-pans, reading the number off the scale, etc. Now it may seem that we are 

getting to simpler and simpler activities as we continue in our analysis of actions, hopefully to reach 

a rock-bottom of atomic operations ... [But] [t]here is no lowest level of description, and no clear 

                                                 

92 Chang (2012), p. 16. 

93 Chang (2011), p. 209. 
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end to the process of activity-analysis. Rather, the analysis should be carried out wherever, and as 

far as, it is productive.94 

Chang uses “activity” and “action” interchangeably, and some of the activities he mentions, 

like reading the scale or smelling, could just as easily be called actions. Perhaps one way 

of putting Chang’s point concerning levels of description is this: A is an activity if it can 

be analyzed into constituent actions, and A is an action if it is the (always provisional, 

according to Chang) end-point of an analysis of an activity. Thus A can be both an activity 

and an action, depending on its position in the analysis. 

If we grant that an epistemic activity involves a set of actions, the successful 

performance of the activity will require a set of abilities relating the agent to the actions. 

Each of these abilities is what I call an ‘epistemic ability.’ Following Chang’s lead for 

epistemic activity, I here define an epistemic ability as the ability to engage in a mental or 

physical action that is intended to contribute to the production or improvement of 

knowledge in a particular way, and according to discernible rules. When one has acquired 

the ability to engage in each of the actions required for an epistemic activity, and when one 

has acquired the “second-order” ability to perform these actions in the coherent, rule-bound 

fashion necessary for the success of the activity, then one has also acquired the ability to 

perform that activity.  

For example, scientific observation typically involves several distinct actions or 

subsets of actions: sample preparation, manipulation of instruments, reading of the 

instruments, data reduction, and various other actions involved in data processing. When 

one has acquired the various abilities required for these actions, and can perform them 

coherently and according to the rules necessary for a successful outcome, then one has 

acquired the ability to observe. Scientific training largely involves the acquisition of a 

massive variety of epistemic abilities. 

Abilities are intimately connected with instruments, because many actions can only 

be performed by means of the latter. In the next subsection, then, I will discuss how 

instruments are related to the acquisition of abilities and the use of prior knowledge. 

                                                 

94 Chang (2012), p. 17. 
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2.4.2 Abilities, instruments, and scientific progress 

The conditions of action determine the abilities an agent can exercise. Thus my 

physical make-up enables me to jump two feet vertically, but not four. Galileo’s telescope 

enabled him to observe the moon and other objects in the solar system, but not objects 

outside it. The conditions of action thus delimit a horizon of possible actions for the agent. 

By ‘horizon’ I mean that the conditions simultaneously make possible, but also limit, 

actions for the agent. Tools allow humans to expand their abilities beyond what is permitted 

by their natural endowment. For example, whereas I am incapable of constructing a lengthy 

text simply by exercising my memorial abilities, with writing instruments in hand I can 

write hundreds of pages.  

Even simple manual tools expand the horizon of possible actions well beyond what 

humans can do in virtue of their natural endowment. Nevertheless, the expansion remains 

limited because actions by means of manual tools are still highly dependent on native 

human abilities.95 Machines, on the other hand, introduce a qualitative shift by virtually 

emancipating the horizon of possible actions from the constraints imposed by native human 

abilities. Machines are not simply complex tools. At least since the Industrial Revolution, 

they have tended to replace and displace human labor, which can have significant effects 

on the potential for action and the potential for progress of the labor processes in which 

they are incorporated. 

These considerations on tools and abilities hold for scientific labor as well. 

Consider again the example of the telescope sketched in section 2.2.2. Every stage in the 

sketch resulted in new possibilities for action, for example: 

• Observing details of planetary surfaces 

• More precise aligning of telescopes on objects 

• Measuring small angular distances and diameters 

• Noting the telescope’s alignment more precisely 

• Measuring the positions of faint stars 

                                                 

95 The notion of a native human ability is discussed in some detail in chapter 7. 
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• Collecting larger quantities of data

• Processing larger quantities of data

• Escaping the interference of the Earth’s atmosphere

• Detecting non-visible radiation

Every stage expanded the horizon of possible actions accessible to humans to study 

distant objects. But this expansion was only possible because the developmental process 

came increasingly to depend on the capabilities of artifacts to do things that humans cannot 

do. It began with native human abilities to see and compute and ended with today’s high-

tech detecting and computing telescope systems.  

Rather than focus on the human aspects of science as labor, as do Zilsel and Ravetz, 

I will focus on the human-instrument relationship that mediates the relationship between 

the inquirer and nature. The human-instrument relationship falls out of the labor process 

model as an essential component of scientific activity. The instruments of science play a 

crucial role, not just in the production of knowledge, but in the historical transformation of 

the production process itself. This transformation can be caused by extra-scientific forces, 

for example commercial instrument-makers seeking to expand their markets. But as I will 

elaborate in the following paragraphs, there is a mechanism internal to science that 

promotes this transformation: instruments provide a means for applying scientific 

knowledge to scientific work. This can be seen by considering a well-known topic in the 

philosophy of science, the relation between theory and instruments, in the light of the labor 

process model.  

Before moving to that topic, and given the role of instruments in this dissertation, I 

think it appropriate to offer a working definition of a ‘scientific instrument:’  

(SI) A scientific instrument is a material thing, or complex of things, that the  

scientist interposes between him- or herself and the object of knowledge and that 

serves to acquire knowledge of the object. 

I write “complex of things” because some instruments are complex assemblages of devices, 

each one of which carries out one or more functions. Thus an instrument might consist of, 

say, a source of radiation, a sample handler, a detector, devices for controlling the 

instrument and processing the signal, etc. Scientific instruments can vary greatly in 

complexity, ranging from a chemist’s beaker to a massive particle collider.  
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“Interposes” can be understood in causal terms. The instrument serves as an 

intermediate in a causal chain linking the scientist and the object of knowledge. If we want 

to gain knowledge of a system S, we construct S or otherwise causally interact with S and 

observe what happens. This is the purpose of experiments, but also applies to observational 

sciences, as when telescopes are used in astronomy.  This causal interpretation becomes 

problematic, however, when we consider instruments that are used for theorizing, as when 

computer simulations are carried out to compute properties of natural systems. The 

computer is not an intermediate in a causal chain including the natural system, and so might 

not count as a scientific instrument according to (SI).  

One way to respond to this problem is to note that uses of the computer in science, 

like simulations or data processing, are derivative of causal chains including the natural 

system, in the sense that they transform knowledge of the world already gained by means 

of experimentation and observation. This knowledge can take two forms. It can take the 

form of data, which are fed to the computer in digitized form for processing. Or it can take 

the form of mathematical descriptions of real physical systems, descriptions that are 

presumably derived from experience. Either way, what the computer does presupposes 

causal interactions upstream of it. 

On the other hand, this response seems to preclude more speculative theorizing, 

which may be only distantly informed by experiment or observation, from counting as 

science. This restriction may be too much for some. Moreover, the causal interpretation 

ignores what is perhaps most significant about instruments like computers and other 

thinking aids, namely that they are used for purposes of cognition about natural systems. It 

seems more pertinent to say, in the simulation case, that the scientist interposes the 

computer between herself and the target system in order to help her think about the system 

than that she interposes it in order to mediate some causal interaction with the system. The 

computer serves as an intermediate in an inferential chain, rather than a causal one, leading 

to knowledge of the system. 96  Similarly, the use of compass and ruler in Greek geometry 

                                                 

96 For computer simulations as inferences, see Beisbart & Norton (2012). 
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allowed geometers to gain insight into the regularities of constructions that can be 

accomplished by means of them.97 

So I would prefer to leave ‘interposes’ polysemous, signifying either causal or 

cognitive mediation. This vagueness is as it should be, given that scientists both interact 

with nature and reason about it (this duality will be a theme of the next chapter). Indeed, 

even instruments that interact causally with the object of knowledge can be understood as 

cognitive mediators, since the causal interactions are valued precisely because they help 

scientists learn about their domains. 

Given the four-fold conception of progress I am adopting, and the fact that 

‘knowledge’ appears in my definition of ‘scientific instrument,’ it is in order to say what 

kinds of knowledge scientific instruments can afford. An obvious use is to acquire 

observational and experimental knowledge, EK. But they can also be used to acquire 

theoretical knowledge, as discussed above. Arguably, PK might also be gained by means 

of scientific instruments. For example, forensic science makes use of various instruments, 

like mass spectrometers, breatholyzers, DNA sequencers and computers, to obtain 

knowledge relevant to police work.  

On the other hand, MK does not seem like the sort of knowledge that can be the 

ultimate goal of scientific instrument use. Scientists use instruments in order to learn about 

nature, not in order to learn techniques or methods for learning about nature. One exception 

to this is that instruments can sometimes be used to improve the means themselves, as when 

an instrument is used for calibration, either of itself or of another instrument. More 

generally, instruments are used in methods development. But the latter is not the ultimate 

goal of that use of instruments, for the methods thus developed are merely ways of 

employing the instruments in order to acquire TK, EK or PK.  

A familiar question in the philosophy of science is whether instruments are 

embodied theory, or theories are merely disembodied tools.98 The familiar debates on the 

theory-ladenness of observation tend to be concerned with the first disjunct, whereas other 

familiar debates on the boundary between science and technology tend to be concerned 

                                                 

97 Lefèvre (2005), p. 218; Netz (1999), pp. 14-19 and 34-35..  

98 For an overview of this topic, see Gooday (2000). 
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with the second. In this dissertation, I will focus on instruments as embodied knowledge. I 

use ‘knowledge’ rather than ‘theory’ to take into account certain craft aspects of scientific 

instrumentation. When philosophers talk about instruments as embodied theory, what they 

typically have in mind is an ‘explanatory theory.’ An explanatory theory is, roughly, a 

theory that explains the outputs of an instrument in theoretical terms. This theory 

corresponds to TK in the classification of section 2.2.2. The construction of a sophisticated 

instrument, however, also requires a huge amount of PK. First, it requires an ‘engineer 

theory,’ already mentioned in 2.2.2, i.e. a systematic set of propositions and pictorial 

representations connected with engineering skill. Such a theory contains propositional 

knowledge of how to construct an artifact and is a highly developed form of the 

propositional side of PK noted in 2.2.2. There are also the many abilities needed to put the 

theory into action. Perusal of a textbook like Moore, Davis and Coplan’s Building Scientific 

Apparatus (2009) suggests a plethora of abilities, such as the ability to work with materials; 

to draw; to blow glass; to use hand tools; to master techniques for manipulating light; to 

troubleshoot and identify the sources of problems in a welter of apparatus; mathematical 

abilities for calculating signal-to-noise ratios, etc. Some knowledge has to be acquired 

through experience: many abilities have to be acquired through practice, and some EK has 

to be discovered by trial and error, for example, the appropriateness of different materials 

for different constructions (Baird & Faust 1990). Finally, in some cases replacements have 

to be found for the decision-making processes and subjective judgments of human 

experts.99  

 In focusing on instruments as embodied knowledge, however, I am not interested 

in the relation between instruments and knowledge as a static logical relationship, but 

rather as an achievement. Here I am hearkening back to an earlier stage in the appreciation 

of the role of instruments in science, that of the 17th century scientific revolutionaries. 

Whereas nowadays the possibility that instruments could embody knowledge is considered 

                                                 

99 For examples of automating these aspects of scientific work, see: Schmidt & Güntert (2015) for 

NMR spectroscopy, Morris et al. (2003) for X-ray crystallography, and Perlin & Sinelnikov (2009) 

for forensic DNA analysis. Galison (1997) and Perovic (2011) discuss debates in microphysics on 

the value of automating high-energy experiments. 
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mundane, this was not the case for the likes of Descartes, Huygens or Kepler. As noted by 

Spelda (2017),  

The presentation of optical devices as resulting from effectively applied theory was very 

important for the new natural philosophy. Telescopes and microscopes showed that by the use of 

rational and technological approaches another relationship could be established between the 

investigative mind and nature, which in its fundamental elements refuses to show itself 

spontaneously to the human vision. The telescope and the microscope embodied the rational and 

methodical surpassing of natural sensory experience with the help of the technical expansion. 

Theoretical comprehension of the qualities of lenses opened the way to the methodical and 

planned improvement of optical instruments in the context of the limited technological possibilities 

of the time. Therefore the extent of scientific experience too is not given and unchangeable but 

created technically and transforms itself over time.100 

The “other relationship” alluded to in the first paragraph is the unmediated 

relationship between human senses and nature favored by Aristotelian natural philosophy. 

The latter tended to discourage the use of instruments for scientific observation, because 

of the Aristotelian view that the human eye was set up as it is to provide reason with 

adequate images of the constitutive elements of nature—instruments were superfluous or 

even harmful for accurate observation, and the attempt to know about natural phenomena 

that could not be sensed was discouraged.101 For the new natural philosophers, however, 

the possibility of embodying knowledge in instruments paved the way for greater progress 

in knowledge than would have been possible without it.  

Why might this possibility exist? The usual answer is that instrumentation provides 

access to objects of inquiry that are inaccessible by means of our native human abilities.102 

A complementary, but less obvious, answer that more directly affects the temporal 

                                                 

100 Spelda (2017), pp. 11-12. 

101 Hutchison (1982) uses primary sources to argue that the Scholastics restricted science to entities 

and properties that could be observed through the senses, deeming the restriction “a major 

epistemological impasse not surmounted until the seventeenth century.” Smith (1981, 1990) details 

the privileged role of the senses for cognition in the Scholastic world-view. Eamon (1994) provides 

several examples of 17th-century natural philosophers calling for the use of instruments to go beyond 

the realm of the senses. 

102 The notion of a native human ability, as well as the answer sketched here to the question of 

progress through instrument development, are discussed in greater detail in chapter 7.  
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characteristics of scientific research is that the instrument’s contribution is not necessarily 

fixed once and for all but can be enhanced over time, more so than the native human 

abilities. This is due to what might be called a “second-order” capability, what I will call 

‘plasticity.’ By ‘plasticity’ I intend the capability of being made to assume a desired form. 

Technology is more plastic than humans. The degree to which the latter are plastic is 

constrained fundamentally by human biology. In contrast, the plasticity of instruments is, 

in principle, only constrained by the laws of nature, though in practice it must be adapted 

to human users.  

The plasticity of instruments is extremely important for scientific progress, because 

the ability of instruments to significantly extend the range of experience is often not given 

in the early prototypes, but must be achieved through a sometimes lengthy and difficult 

process of development. For example, the earliest telescopes were only capable of two or 

three-fold magnification; much optimization was required to develop telescopes useful for 

astronomical research. Indeed, van Helden (1977) goes so far as to claim that the 

improvability of the telescope is part of what makes it a scientific instrument. 

The plasticity of instruments as a factor in scientific progress is generally neglected 

in recent philosophy of science. Though Rescher (1978) makes technological innovation 

the basis of scientific progress, he does not inquire into the structural features of technology 

that make this innovation possible. Robert Ackermann’s (1985) theory of scientific 

progress is based on progress in instrumentation. For example, he writes that 

It will be argued that the history of instrumentation provides an unidirectional explanation 

of progress, in that later, more refined instruments are uniformly preferable to earlier instruments 

directed toward obtaining data in the same domain, and that this fact is essential to understanding 

the creation of what will be called data domains for scientific theory.103 

To my knowledge, however, he does not focus explicitly on plasticity, preferring 

to focus on the relationship between theory and data. Humphreys (2004, 2011) makes 

similar technological dependence claims to Rescher, and hints at the contrasting plasticities 

of humans and instruments in the following passage: 

The situation with the concept of computational tractability is in some ways the inverse 

image of the situation regarding what counts as observable. Minimalist empiricists had a very 

                                                 

103 Ackermann (1985), p. 34. 
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narrow conception of what is observable, whereas the domain of what is considered here as 

observable with the aid of technological advances is much larger. With the concept of computational 

tractability the wide domain of recursive functions is drastically reduced in size to obtain the set of 

functions that are tractable with the aid of contemporary computational science. But within the 

domain of this technologically enhanced conception there remains a parallel, for what is considered 

computable goes far beyond what is actually calculable by the limited powers of humans, and it is 

not a permanent boundary but one that is a function of technological progress.104  

This passage has the additional virtue of pointing out that theorizing in the 

mathematical sciences is not just dependent on improvements in observational technology 

but also on the computational technology available for theorizing itself. 

Spelda (2017) gives many examples, from Hooke, Gassendi, Huyghens, Galileo 

and others, showing that the optimism of the new natural philosophers was based on the 

plasticity of instruments.105 For example, in his major work Dialogue Concerning the Two 

Chief World Systems (1632) Galileo has Sagredo ask whether the new observations and 

discoveries made with the telescope will ever cease, to which Salviati replies that “if its 

(i.e., the instrument’s) progress follows the course of other great inventions, one may hope 

that in time (progresso del tempo) things will be seen that we cannot even imagine at 

present.”106 

Salviati’s reply above suggests that plasticity is a condition for progress in 

instrumentation, since it is what makes the hope of seeing unimaginable things rational. In 

order to understand this kind of instrumental progress, it may be helpful here to refine our 

notion of methodological progress. As described in section 2.2.2., methodological progress 

results from the accumulation of methological knowledge. In order to understand the 

relationship between abilities, instruments and progress, we need a conception of 

methodological progress that focuses more explicitly on abilities and instruments. Here I 

will draw on Kitcher (1993), where Kitcher points out that  

instruments and experimental techniques are valued because they enable us to answer 

significant questions. One instrument (or technique) may do everything another does and more 

                                                 

104 Humphreys (2004), p. 124. 

105 Spelda (2017), pp. 2, 6, 8, 10, 11, 12. 

106 Galileo (1967 [1632]), p. 67. Quoted in Spelda (2017), p. 2.  
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besides. If so, then we make instrumental (or experimental) progress by adopting a practice in which 

the former instrument (technique) replaces the latter.107 

Put in terms of capabilities (a more passive term than ‘ability,’ which I prefer to 

reserve for agents), we might define ‘instrumental progress’ as follows: 

(I) An episode constitutes scientific progress when it shows the adoption of a

practice in which an instrument (technique) with more capabilities replaces one 

with fewer.

Instrumental progress improves our ability to learn about nature, and therefore

contributes to methodological progress. Outside the context of inquiry, it might also 

contribute to progress in PK since, of course, increasing instrument capability adds to the 

range of applications that can be achieved by the use of instruments. For example, 

microwave technology can be used for studying chemical reactions but also for cooking. 

By analogy with epistemic abilities, I will define an epistemic capability as the 

capability of an instrument to engage in an operation that is intended (not by the instrument, 

obviously) to contribute to the production or improvement of knowledge. The epistemic 

abilities of agents are dependent on the epistemic capabilities of their instruments. For 

example, a scientist’s ability to observe distant objects will depend on the capabilities of 

her observational equipment. Returning to the telescope example, if astronomers have the 

ability to observe objects that do not emit in the visible spectrum, they have it because the 

telescope they are using has the capability to detect non-visible radiation. If it does not, 

then they will not. 

It follows that plasticity is a condition for instrumental progress. The importance 

placed on the presentation of optical devices as applied theory suggests that the new natural 

philosophers perceived a new mechanism of progress made possible by the mediation of 

instruments in the human-nature relationship. MK, PK, TK or EK acquired at one stage of 

science could be embodied in instruments, thereby adding to their capabilities. This 

instrumental progress would then allow more knowledge to be acquired at a subsequent 

stage. The process could be repeated, leading to cumulative and cyclical progress in the 

107 Kitcher (1993), p. 117. 
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long term. In the words of a physicist writing in 1945, instruments provide an avenue for 

“the application of science to science itself.”108 

Does instrumental progress constitute methodological progress? If that were the 

case, the invention of a new instrument would amount to a form of MK. However, the fact 

that instruments can sometimes contribute to both MK or PK, depending on the context, 

suggests that it may be useful to add a fifth kind of knowledge to Mizrahi’s original four, 

one that focuses more narrowly on instruments, abilities (or capabilities) and actions and 

that is independent of its potential contribution to MK or PK. Hence I will propose 

instrumental knowledge as a kind of knowledge: 

(IK) Instrumental Knowledge. Instrumental knowledge usually comes in  

the form of instruments or techniques for carrying out operations or actions. 

For comparison, recall Mizrahi’s MK: 

(MK) Methodological Knowledge: Methodological knowledge usually comes in  

the form of methods and techniques of learning about nature. 

The main change, of course, is that “learning about nature” has been replaced by 

“carrying out operations or actions” in order to account for the possibility of non-scientific 

contexts of use. Just like MK, PK, TK and EK, IK is derived from scientific practice and 

is intended to be descriptively accurate. Moreover, it would seem to be a form of 

knowledge-how, for, as defined, IK constitutes knowledge of how to carry out certain 

operations or actions.  

In summary, here is a sketch of how the various ideas proposed in section 2.4 work 

together. My interest in instruments as embodied knowledge is fundamentally pragmatic, 

for I view the embodiment of knowledge as a method for exploiting prior knowledge in the 

acquisition of new knowledge. The “embodiment of knowledge” here refers to the 

108 Klopsteg (1945), p. 572 (emphasis in original). In the text, the application is in fact what Klopsteg 

calls “instrumental technology,” or “the science and art of applying instruments” to scientific 

problems. 
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construction and development of instruments. This construction and development 

illustrates the interdependence of different forms of progress. Moreover, the possible extent 

of construction and development depends on the plasticity of the technology in question. 

When a new instrument is developed, an item of instrumental knowledge has been gained. 

If the instrument has more capabilities than one it replaces, then such an episode counts as 

instrumental progress. The latter contributes to methodological and practical progress (and 

may eventually to theoretical and empirical progress as well). The augmented instrumental 

capabilities increase the epistemic abilities of the agents who use the instruments, since the 

abilities of the former depend on the capabilities of the latter.  

Viewing science as a labor process, and putting it in relation to scientific progress, 

has thus suggested several new notions pertaining to instruments, abilities and progress: 

plasticity, the interdependence of different forms of progress, instrumental progress, 

epistemic abilities, and instrumental knowledge. Let us now return to our two guiding 

questions: 

1. Why is it possible for scientists at a given time to have more epistemic abilities 

than scientists at an earlier time? 

2. How is it possible for knowledge acquired in the past be used in on-going or 

future research? 

We see that the answer to the first question, sketched in the previous paragraph, is 

epistemologically richer than one might have thought at the outset. Moreover, the answer 

to the first question depends on the answer to the second, for the increase in abilities 

depends on the possibility of exploiting prior knowledge.  

In the next chapter, we will examine another feature of labor, namely the 

ideological conditions under which it takes place. An interesting result is that the onset of 

the dynamic of instrumental progress that started during the Scientific Revolution may 

have been heavily influenced by such conditions. 
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3.0 HISTORICAL-EPISTEMOLOGICAL CONSIDERATIONS ON THE 

ORIGINS OF THE SCIENTIFIC METHOD 

3.1 Introduction 

In chapter 1, I claimed that the scientific method involves a synthesis of mental and 

manual labor. In this chapter, I will consider the origins of modern science in the 16th and 

17th centuries. I will provide grounds for thinking that attitudes towards labor played a 

critical role in the emergence of modern science. These attitudes concerned the possible 

role of manual labor in science; the means of scientific labor, i.e., the means by which 

knowledge of the natural world was to be acquired; and the proper object of science. 

In light of Spelda’s study, one historical question one can ask is, why did the 

embodiment of knowledge in instruments become a conscious and valued strategy for 

progress by scientists when it did? What impediments to this strategy existed beforehand, 

and how did the natural philosophers of the early modern period overcome them? In this 

chapter, I will examine some texts from the history and historiography of the Scientific 

Revolution and suggest some hypotheses as to why the embodiment of knowledge in 

instruments became a conscious and valued strategy when it did. In doing so, I will show 

the utility of the conception of science as labor. As observed above, the labor process 

involves a number of heterogeneous elements, including tools, activities, skills, division of 

labor, raw materials and products, and “ideological” conditions (e.g., attitudes towards 

work). The focus of chapter 3 is on the latter conditions. It will be argued that social 

attitudes towards different kinds of work, notions about the proper object of science, and 

beliefs about how instruments and human faculties are related were important factors in 

the emergence of an experimental science in the early modern period. These ideological 

factors constituted so many conditions affecting the evolution of scientific abilities. 

The first part of the chapter will discuss attitudes towards manual labor and the role 

of “maker’s knowledge” in science. I will argue that Aristotelian views of natural 
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philosophy and the arts tended to discourage the full-blown acceptance of manual labor 

and maker’s knowledge as components of scientific method. 

The second part of the chapter will concern Kepler’s optical theory as developed in 

the Ad Vitellionem paralipomena (Supplement to Witelo) of 1604.109 I will argue that his 

treatment of the eye as an instrument is a solution to a different kind of problem than the 

one that animated his Perspectivist predecessors, who accepted the Aristotelian theory of 

perception and cognition. Superficially, both Kepler and the Perspectivists appear to be 

concerned with figuring out how vision works. But whereas the latter were concerned with 

how to achieve certainty in perception, the former is concerned with how to achieve 

certainty in measurement. These two problems involve different relations to the means of 

acquiring knowledge. The problem of the certainty of our perceptions is anthropocentric 

in the sense that it concerns the certainty of the knowledge acquired by means of the human 

perceptual apparatus. In contrast, the problem of certainty in measurement is non-

anthropocentric in the sense that the human perceptual apparatus is not required to produce 

a measurement. The eye just happened to be the main instrument of astronomical 

measurement at the time, and Kepler treats it as such. I conclude that Kepler’s theory of 

vision, and his use of it in the Optics, suggests an egalitarian attitude towards the means of 

observation and helped to prepare the conceptual ground for the instrumentalization of 

scientific observation.  

3.2 The Scholastics, manual labor and the role of maker’s knowledge in science 

3.2.1 Introduction 

In “The Development of Scientific Method in the School of Padua” (1940), John 

Herman Randall famously claimed that Scholastic philosophers, largely based at the 

                                                 

109 I will use Ad Vitellionem to refer to the original Latin in the Gesammelte Werke and Optics to 

refer to William Donohue’s translation. 
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University of Padua, developed what would later become known as “the scientific method” 

through a cooperative critical effort, spanning several generations, directed at the 

Aristotelian texts on logic. With the exception of mathematization, the basic method used 

by the great scientists of the seventeenth century emerged complete from this effort. What 

became known as the “Randall thesis” was seminal because it challenged the orthodox 

view that the scientific method had been developed against the methods of the scholastics, 

supposedly more interested in disputation than the discovery of novelty.  

In section 3.2, I propose to assess the plausibility of Randall’s claim.  I argue that 

as a matter of empirical fact, the claim is implausible. I further argue that there are 

conceptual reasons for thinking it unlikely that such a method could have emerged from 

within a purely Aristotelian framework. My reason for revisiting the Randall thesis is that 

it is an appropriate foil for the view of science as labor, for an implication of the thesis is 

that the human-instrument relationship, or the notion of production, did not play an 

important role in the emergence of the modern scientific method. By exploring why these 

elements were missing from the scholastic methodological development, we will learn 

something about the nature of modern science and the historical conditions for its 

emergence. 

The section is organized as follows. I describe Randall’s main theses in the 

following subsection. In section 3.2.3, I review the contributions the Scholastics made to 

the development of scientific method, as described in Randall’s paper. In section 3.2.4, I 

discuss empirical arguments by Charles Schmitt that cast doubt on the claim in question. 

In section 3.2.5, I discuss the relationship between experimental science and Aristotelian 

philosophy of science. I argue that some sort of rupture with the latter was necessary for 

an experimental science to emerge, because the Renaissance Aristotelians took an 

essentially passive attitude towards observation, relying on the world to act on the observer 

in order to have experiences rather than producing the experiences themselves. In my view, 

experiments perform an essential function in the modern scientific method: the production 

of observational situations not readily available in the socio-natural environment. I then 

discuss Edgar Zilsel’s equally famous thesis, from the 1940s as well, that the merging of 

artisanal and intellectual traditions in the early modern period produced the modern 

scientific method, suggesting that it provides a plausible explanation for how forms of 
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know-how essential for experimentation made their way into the scientific method. In 

section 3.2.6, I consider two conceptual paths by which an Aristotelian experimental 

science could have emerged. First, I suggest that the conception of logic as an instrument, 

defended by Jacopo Zabarella and Paulus Vallius, might have produced such a rupture from 

within Scholasticism, had the tradition not fallen into decline. I then examine a recent 

(2004) argument by William R. Newman that the medieval alchemists developed an 

Aristotelian experimental science on the basis of Aristotle’s concept of perfective art. I 

argue that though the concept clearly allows for a more permissive attitude to 

experimentation than has generally been thought compatible with Aristotelianism, the 

license to experiment is restricted by the teleological framework of the latter. I offer 

concluding remarks in the final section.   

3.2.2 Randall’s two theses 

Randall claims that “the basic idea of an experimentally grounded science of the 

mathematical structure of nature appeared as soon as Europeans began to explore the 

wisdom of the ancients … the idea of such a science, and much of its method and concepts, 

were in the possession of Europeans from the twelfth century on” (179). Though Randall 

mentions in passing Augustine, Arabic versions of Alexandrian science, and Archimedes, 

the influence that does most of the work in Randall’s account of the development of 

scientific method is Aristotle. Randall argues that the basic idea of experimental science 

was developed by Scholastic philosophers and some physicians, largely in Padua, through 

a process of constructive criticism of the Aristotelian texts on scientific method, especially 

the Posterior Analytics.  

From the beginning of the fourteenth century … there set in a persistent and searching 

reconstruction of the Aristotelian tradition, which, when directed to the Physics, led by gradual 

stages to the mechanical and mathematical problems of the Galilean age, and when directed to the 

Logic led to the precise formulation of the method and structure of science acclaimed by all the 

seventeenth-century scientists. 
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With the exception of the mathematical element, the elaboration of the method that 

was eventually adopted by the great scientists of the 17th century was essentially complete 

with the work of Jacopo Zabarella, who lived from 1533 to 1589.   

This claim supports two related, but distinct, theses. First, there is the well-known 

thesis of continuity or “Randall thesis” according to which 17th century science took over 

a method ready-made from the Scholastics. The only thing remaining to be added was the 

mathematical component, a task accomplished by Galileo. Second, there is also what I will 

call the Internalist Thesis, according to which the “idea of an experimentally grounded 

science” was developed by means of an internal critique of Aristotelian ideas on causal 

demonstration. By an “internal critique” I mean that the system of concepts of the 

Aristotelian theory of causal demonstration—effect, cause,110 reason, fact, experience, 

syllogism, demonstration ‘of the fact’ and ‘of the reasoned fact’—provided the framework 

within which an extended debate took place over the nature of the inferential relationships 

between cause and effect that are suitable for scientific demonstration and discovery. 

According to the Internalist Thesis, this critique was sufficient to produce an 

experimentally grounded scientific method, minus the math. It is this thesis, rather than the 

continuity thesis, that I will examine and critique here. 

An experimentally grounded scientific method involves (at least) two components 

(not including mathematical methods). One is a method for analyzing experiences in order 

to infer claims that reach beyond those experiences. According to Randall, the Paduan 

Scholastics of the late Middle Ages and Renaissance developed a method for inferring 

causal relationships from observation. This component is primarily a way of organizing 

one’s thinking about what experience is telling us about the world. The other component 

is an experimental method that allows one to make the observations required in order to 

solve scientific problems. This component involves thought, of course, but it also crucially 

involves acting on the world in such a way as to produce the requisite experiences.  

In order to satisfy the Internalist Thesis, then, the school of Padua must have 

developed both of these methodological components. The question I will address in the 

                                                 

110 In this context ‘cause’ (from the Greek aitia) means any of the four Aristotelian causes: final, 

material, formal and efficient. 
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next section is, what grounds has Randall given us for thinking that the thesis was in fact 

satisfied? 

3.2.3 The Scholastics’ contribution to scientific method according to Randall 

According to Randall, the Scholastics inherited from Aristotle the idea that 

scientific knowledge is obtained by the use of syllogisms to demonstrate a causal 

relationship between the premises and the conclusion. In the Posterior Analytics I.13, 

Aristotle distinguished between two types of demonstration, demonstration tou hoti and 

tou dioti, which were translated in the medieval Latin commentaries as demonstration “of 

the fact” and “of the reasoned fact.” The latter kind of demonstration aimed to prove the 

reason why the given fact obtains. The Scholastics called these two forms of demonstration 

demonstratio quia and demonstratio propter quid, respectively. Whereas the former proves 

the cause of an effect, the latter proves effects through their causes. A famous example of 

such proofs, provided by Aristotle, is the pair of syllogisms connecting the fact that the 

planets do not twinkle with the fact that they are near the Earth. One member of this pair 

goes as follows: 

a. The planets do not twinkle. 

b. What does not twinkle is near the Earth. 

c. Therefore, the planets are near the Earth. 

This syllogism is an example of demonstratio quia, for it starts from the effect, that 

the planets do not twinkle, and concludes with the cause, that the planets are near the Earth. 

In order to connect these two facts through a demonstratio propter quid, the major and 

middle of the proof must be reversed: 

d. What is near the Earth does not twinkle. 

e. The planets are near the Earth. 

f. Therefore, the planets do not twinkle. 

Here the cause, that the planets are near the Earth, is the minor premise of the 

argument and the effect is the argument’s conclusion. According to Aristotle, the proof of 
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the reasoned fact is superior to the proof of the fact because it proceeds by way of 

explanation, showing how the effect results from the cause.111 

For Aristotle, then, the theory of scientific demonstration was a theory of proof. 

According to Randall, the great service of Paduan Scholasticism was to transform this 

theory of proof into a theory of discovery. The Scholastic debate over the proper method 

for identifying causes was initiated by Pietro d’Abano in 1310 (185-188). D’Abano 

identified the two kinds of demonstration with two ways of teaching: demonstration quia 

was the “resolutive” way of teaching, whereas demonstration propter quid was the 

“compositive” way of teaching. Doing so modified the Aristotelian theory in two ways. 

First, it changed the question from a purely logical one of how causes and effects should 

be related in syllogisms to a methodological one of how to teach science. Second, d’Abano 

considered the resolutive way to have a legitimate claim to being science, albeit only 

because the weakness of the human mind required it to start from experienced effects in 

order to grasp causes.  

The physician Jacopo da Forlì was the first to connect the two kinds of 

demonstration with the scientific discovery process. In 1475, he showed that the method 

of medical diagnosis was nothing other than a way of resolving effects into their causes 

(188-189).  The medical teacher Hugo of Siena went a step further in 1489 by arguing that 

any complete science requires a double procedure to attain knowledge of causal 

relationships (189-190). To obtain knowledge of causes, one must discover them through 

their effects. Conversely, effects are known by relating them to causes as the consequences 

of the latter. The idea that the resolutive and compositive methods were merely successive 

phases of one method raised the question of whether the method was circular, since it 

appeared to infer effects from causes that had themselves been inferred from those same 

effects. From the end of the 15th century on, Paul of Venice, Agostino Nifo, Zabarella and 

others defended the method against the charge of circularity. Nifo introduced an important 

distinction between two kinds of knowledge of the effect. The first kind is obtained through 

sensory observation. Knowledge of the effect by the senses is the starting point from which 

the cause is inferred. Once the cause is inferred, a second kind of knowledge of the effect 

                                                 

111 Posterior Analytics I. 13. 
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can be obtained by deducing it from the cause. Since the two ways of knowing the effect 

are different, there is no circularity in the method. Nifo also introduced the idea that hidden 

causes can only be conjectured, and that knowledge of such causes is always less certain 

than their effects, since the latter are known by the senses (193-194). Randall views this 

idea as the original formulation of the method of hypothesis (194).  

According to Randall, Nifo’s formulation of the method marks a significant break 

with the theory of the Posterior Analytics and the tradition of theological scholasticism that 

stayed close to it. The break occurs because Nifo makes the truth of the causes inferred 

from sense-experience dependent on that experience, whereas previously their truth had 

been grasped by “sheer intellectual vision” (194).  

Though Randall mentions several more contributors, the most important for my 

purposes is Jacopo Zabarella. For Zabarella, logic was not a science in its own right, but 

rather an instrument for “producing knowledge of the unknown from the known” (197). 

The sciences themselves were nothing other than applied logic. The role of scientific 

method was to reveal the necessary connections between things. Since all such connections 

are causal, according to Zabarella, the role of method was to establish causal relations 

between things. Zabarella had a relatively complex understanding of the method. First, he 

identified a resolutive method, which infers an unknown cause from a known effect. At 

this stage, both the effect and the cause inferred from it are known only confusedly. A 

“mental consideration” of the cause, however, allows it to be known distinctly. After this 

second stage, the effect can be demonstrated from the cause, so allowing the effect to be 

known distinctly now as well. 

An important feature of Zabarella’s resolutive method is that it allows two kinds of 

causal inference. Demonstration a signo allows us to infer causes whose instances cannot 

be observed by the senses. “Induction,” on the other hand, allows us to infer causes whose 

instances can be so observed (198). For example, we can observe instances of the laws of 

motion simply by observing moving bodies. In induction, the analysis of instances yields 

knowledge of the universals they instantiate. In contrast, no instances of first matter can be 

observed, and so the latter must be inferred by demonstration a signo. Randall thinks the 

distinction between the two kinds of cause anticipates that of Newton between the 

mathematical principles of physical theory and the specific forces acting on bodies (198). 
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He emphasizes the importance of Zabarella’s induction, which allows the first principles 

of science to be discovered. These had formerly been taken to be indemonstrable, for it was 

generally assumed that something could only be demonstrated through something else on 

which it depends, an obvious impossibility with first principles. Zabarella’s originality lay 

in showing that the first principles could be inferred by grasping the observed effects as 

particulars instantiating a universal, intelligible structure like the laws of motion (198-199). 

He thus set the stage for the mathematization of natural philosophy, though he left that final 

step to Galileo. 

Randall provides plausible grounds for thinking that the Paduan Scholastics made 

significant contributions to the development of modern science. The theory of proof in the 

Posterior Analytics was transformed into a methodology of discovery that anticipates the 

hypothetico-deductive method. Different ways of knowing were distinguished, in 

particular the distinction between the knowledge afforded by the senses and that afforded 

by causal inference. Different kinds of causes were identified, and the valid inferential 

relationships between cause and effect were elucidated. Distinguishing features of 

scientific experience vis-à-vis ordinary observation were established. Nevertheless, one is 

entitled to ask whether these contributions amounted to the experimentally grounded 

scientific method characteristic of modern science. For a curious feature of Randall’s 

article is that, despite all of the contributions documented in it, no mention whatsoever is 

made of how the effects so carefully analyzed by Zabarella and his colleagues are to be 

produced. For Randall’s Scholastics, scientific method is solely an affair of the head, what 

happens after the effect is observed. Where exactly is the experimental part of the 

“experimentally grounded scientific method” bequeathed by them to be found? 

3.2.4 Schmitt on experience and experiment in Zabarella 

Charles Schmitt picks up on this question, raised by Randall’s article, in his own 

(1969) piece “Experience and Experiment: A Comparison of Zabarella’s View With 

Galileo’s in De Motu.” In the course of assessing Randall’s continuity thesis, Schmitt 

analyzes Zabarella’s texts on natural philosophy in order to see how the terms experientia 
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and experimentum are used there. He finds that whereas experientia figures prominently in 

Zabarella’s natural philosophy, experimentum seldom appears, and when it does it is not at 

all clear that it means the same thing as the modern term “experiment.” His main conclusion 

is that “experimentum does not function as a central technical term in his [Zabarella’s] 

philosophy in the way in which experientia might be said to do.”112 According to Schmitt, 

for Zabarella experientia appeared to mean “intelligent personal experience or observation 

of the external world,” and he used it frequently to resolve disputes in natural philosophy. 

Schmitt argues that Zabarella was a careful and avid observer of technological processes 

and natural phenomena. Nevertheless, though Zabarella made use of information gained 

from previous experiences or observations to solve scientific problems, he did not 

“consciously, and with forethought, attempt to test a particular theory or hypothesis by 

devising a specific experiment or observational situation by which to resolve the 

question.”113 Schmitt distinguishes between a science based on experience of the natural 

world and one based on experimentation:  

In the first case, the experiential aspect, which is utilized, is derived from what has been 

observed to have occurred previously and is hence unplanned; in the second case, the experience 

which is considered to be relevant has been planned out beforehand. Consequently, in the second 

case, one decides the question at hand on the basis of the results of the chosen observational 

experience. In short, experiment necessarily involves foresight and planning; experience does not.114 

Schmitt concludes that though Zabarella qualifies as an empiricist, he does not 

qualify as an experimentalist. 

As will be made clear from what follows, I think Schmitt’s distinction between 

experience-based and experiment-based science is quite illuminating with regard to the 

possibility of a purely internal development of an experimental science within the 

Aristotelian conception of science. For the time-being, suffice it to say that if Schmitt is 

correct, it follows that Zabarella probably did not use or conceive of an experimentally 

grounded scientific method. Since Randall presents Zabarella as the culmination of the 

Paduan Scholastics’ contribution to scientific method, it therefore seems unlikely that their 

                                                 

112 Schmitt (1969), p. 105.  

113 Schmitt (1969), p.105. 

114 Schmitt (1969), p. 106. 
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method had an experimental component. Schmitt’s analysis suggests, then, that as a matter 

of empirical fact the Internalist Thesis is probably incorrect.  

Schmitt does not try to explain the absence of experiment in Zabarella’s 

methodology. In the following section, the question I will turn to is whether an 

experimental science was possible, given the constraints imposed by a purely internal 

development of the Aristotelian conceptual system.  

3.2.5 The experimental method as production 

In this section I will suggest that the experimental method is centered around the 

concept of production. Some quotations from Schmitt will illustrate the naturalness of 

describing experimentation in terms of production: 

Implicit in all of Galileo’s uses of experientia [in the De motu] is the assumption that the 

observer plays merely a passive role: he does not produce an experience, but he has one. He is a 

mere observer in a world which can act upon him in a variety of ways. These actions of the physical 

world upon the receptive observer result in experience.115 

Here [in the Discorso intorno alle cose che stanno in su l’acqua o che in quella si muovono] 

for the first time the mathematical-Archimedean approach developed in the De motu is coupled with 

a more positive attitude toward experimentation and the manual ability to actually carry out the 

necessary experimental procedures. 

Production, or productive activity, is the key concept in experimentation because 

the scientist must produce an observational situation that is not given to him by the natural 

or social worlds. To put it in economic terms: the experimentalist is responding to a 

situation of scarcity. By “productive activity” I intend an activity that produces an object 

of use external to the producer. The experimenter must design such situations, select and 

make use of artificial boundary conditions, control variables, construct and use 

instruments, make measurements, and so on. The goal is to produce a situation that is itself 

capable of producing an outcome of interest for solving the problem at hand. This goal is 

given discursive form by the formulation of what might be called a “when-then” 

proposition, in which the antecedent describes an experimental situation and the 

                                                 

115 Schmitt (1969), p. 114. Italics in the original. 
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consequent, a prediction of what will occur whenever that situation is realized.116 An 

example of such a proposition is Huygens’ isochronism theorem: “if a body descends along 

a path described by a cycloid, then the time of descent is the same regardless of the point 

along the path from which its descent begins.”117  

The experimental method is centered around the concept of production rather than 

causation. The latter concept is perhaps important for explaining why the experimental 

situation affords the outcome it does, but the activity of experimentation itself must be 

conceived as productive activity.118 Experimentation has all the basic elements of any labor 

process: a purpose, expressed as a when-then proposition; instruments of labor, such as 

measuring instruments, mathematical techniques, boundary conditions, etc.; and an object 

of labor, either the natural objects on which the instruments are employed or, perhaps, the 

interaction between the objects and the instruments.119 The chief difference with ordinary 

labor processes is that experimentation presupposes much greater freedom of exploration: 

“successful research needs to have the freedom to pursue unforeseen results and traces, to 

shift the focus of attention to unexpected by-products of the process under investigation, 

in other words, to yield to the drive of promising digressions that emerge in the course of 

the work.”120 It is also important for the practitioners to conceive of their own activity as 

productive, since the conscious element is obviously essential in the formulation of when-

then propositions, the design of the experiment and selection of instruments, the ability to 

recognize unanticipated opportunities for research, and every other step in the process. 

According to the view of experimentation that I have just sketched, the activity of 

producing effects is part and parcel of what it is to do science. There are grounds for 

thinking that such a view would have been difficult to accept within an Aristotelian 

framework. To my knowledge, there is very little evidence of Aristotle having performed 

experiments, though he appealed to experience quite often, at least in his biological 

                                                 

116 I borrow the notion of a “when-then” proposition from Smith (2002), p. 142. 

117 Smith (2002), p. 142. 

118 I write “perhaps” so as not to foreclose on the views of those who do not think causation is an 

essential component of explanation. 

119 For a defense of the concept of science as labor, see Lefèvre (2005). 

120 Lefèvre (2005), p. 218. 
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works.121 In his philosophy of science, Aristotle distinguished between three kinds of 

science: (i) theoretical science, which includes natural philosophy, first philosophy, and 

mathematics; (ii) practical science, which includes politics and ethics; and (iii) productive 

science, which includes crafts like medicine, agriculture, ship-building, etc.122 The key 

difference between the theoretical sciences and the productive sciences is that the former 

seek knowledge for its own sake, whereas the latter are aimed at the production of beautiful 

or useful objects. Based on this division, it seems reasonable to suppose that an Aristotelian 

could view productive activity as a means for producing objects that would further the goal 

of seeking knowledge for its own sake. But it does not seem reasonable to suppose that he 

could view it as an autonomous component within theoretical science. To echo Ian 

Hacking, experimentation could not have a “life of its own” within theoretical science, but 

would remain an external practice, though it might be enlisted to support the aims of 

theoretical science if the requisite experiences could not be obtained in other ways. 

A passage in Zabarella suggests that he retained Aristotle’s distinction between the 

theoretical and the practical or productive sciences. In On Methods, Zabarella argues that 

the “arts” are not a form of scientific knowledge: 

when we speak about methods, we give regard to the contemplative sciences, whose end 

is to know scientifically. For methods bring forth scientific knowledge of things unknown and so 

are the instruments of speculative sciences. Scientific knowledge, said properly, has a place in them 

but does not in the arts and all the other practical disciplines, which are concerned with contingent 

things and seek after action or bringing about an effect, not scientific knowledge … Scientific 

knowledge, therefore, properly speaking, does not have a place there; [what  does have a place is] 

some sort of knowledge of something not necessary (unless from supposition of an end) and not 

itself inquired after for its own sake but for the sake of practical activity.123 

                                                 

121 Lloyd (1987). 

122 Shields (2015). 

123 “Pro huius dubii solutione sciendum est quòd quando de methodis loquimur, scientias 

contemplativas respicimus, quarum finis est scire, methodi namque scientiam rerum ignotarum 

pariunt, quare scientiarum speculativarum instrumenta sunt, in his enim scientia propriè dicta locum 

habet, non in artibus et aliis omnibus operatricibus disciplinis, quae in rebus contingentibus 

versantur et actionem, vel effectionem, non scientiam quaerunt. In his igitur propriè dicta methodus 

non datur, sicuti neque propriè dicta scientia neque vera necessitas. Si quam enim necessitatem 

habent, eam tantùm habent, quae dicitur ex suppositione finis, ut si hic homo sanandus sit, 
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On this view, learning how to, say, build and operate a device that produces 

concentrated beams of polarized electrons would count as “bringing about an effect,” and 

therefore would not count as scientific knowledge, but using observations of the effects 

produced by that device to demonstrate violations in weak neutral current interactions 

would (to use Hacking’s example).124 The builders would not be engaging in scientific 

activity as builders of the device, but only as analyzers of the data produced by it. Hence 

Zabarella’s assertion that scientific knowledge “said properly” has a place only in the 

contemplative sciences. “Knowledge for its own sake” appears to exclude knowledge of 

how to manipulate the natural world, no matter how involved the latter knowledge is, 

because it is conditioned by an end: instruments are built in order to test theoretical claims, 

bring about effects, or acquire data. In the context of natural philosophy, “knowledge for 

its own sake” appears to be restricted to causal relations, since these are necessary 

connections between things.125 The know-how itself required to discover the necessary 

connections is not part of the science.  

It is to the credit of Edgar Zilsel and other researchers, focused on the possible 

contributions the crafts and technology might have made to the emergence of modern 

science, to have challenged conceptions of science based on strict divisions between 

theoretical and productive activities. Zilsel was a contemporary of Randall’s whose well-

known article “Sociological Roots of Science” appeared in 1942, just two years after 

Randall published his own article on the school of Padua. Though Zilsel does not mention 

Randall, in some respects his article can be read as an externalist reply to just the sort of 

argument Randall is making. Zilsel emphasizes the importance of skills learned in the 

period of early capitalist production for the development of an experimental scientific 

method. His thesis is that such a method arose from the merging of the methods of superior 

artisans with those of university scholars during the Renaissance and early modern period. 

According to Zilsel, public intellectual life during the Renaissance was dominated by the 

                                                 

necessarium est talibus remediis uti, simpliciter autem iis uti non est necessarium. Scientia igitur 

propriè dicta ibi locum non habet, sed cognitio quaedam rei non necessariae, nisi ex suppositione 

finis et ipsa non per se quaesita, sed propter operationem.” Zabarella (2013 [1578]), pp. 156-159. 

124 Hacking (1983), ch. 16. 

125 Zabarella (2013), p. 137. 
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Scholastics and the humanists. The Scholastics dominated at the universities, whereas the 

humanists received patronage and employment from the upper classes. A common and 

central characteristic of both strata of intellectuals was that they despised manual labor. 

They distinguished sharply between liberal and mechanical arts, and considered only the 

former to be worthy of the “well-bred man”.126  

As capitalism developed, however, a class of superior artisans emerged that 

included artist-engineers (Brunelleschi, da Vinci, Cellini, etc.), surgeons, musical 

instrument-makers, makers of measuring instruments (such as compasses, astrolabes and 

cross-staffs), surveyors and navigators. This class developed technology and pioneered the 

use of empirical observation, experimentation and what Zilsel calls “causal research.”  The 

measuring instruments these artisans produced and used were the forerunners to modern 

scientific instrumentation, and their quantitative rules of thumb were forerunners to 

physical laws. What the superior artisans lacked, however, was a “methodological training 

of intellect,” which up to now had been restricted to the scholars and humanists.  

In short, Zilsel’s thesis is that there was a social barrier between the analytical and 

the experimental components of the scientific method, and that “as long as this separation 

persisted, as long as scholars did not think of using the disdained methods of manual 

workers, science in the modern meaning of the word was impossible.”127  This situation 

started to change around 1600: 

the rise of the methods of the manual workers to the ranks of academically trained scholars 

at the end of the sixteenth century is the decisive event in the genesis of science. The upper stratum 

could contribute logical training, learning, and theoretical interest; the lower stratum added causal 

spirit, experimentation, measurement, quantitative rules of operation, disregard of school authority, 

and objective co-operation.128 

Zilsel singles out Gilbert, Galileo and Bacon as pioneers who combined the 

methods of the manual workers and academics, a move that resulted in the “Scientific 

Revolution.”  

                                                 

126 Zilsel (2000), p. 12. 

127 Zilsel (2000), pp. 14-15.  

128 Zilsel (2000), p. 17. 
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As might be expected, Zilsel’s account of the genesis of modern science was 

controversial and continues to be so.129 Schmitt, for example, takes issue with Zilsel’s 

characterization of the scholastics and in particular accuses him of “caricaturing” 

Scholastics like Zabarella as an “ivory tower academic, innocent of experience and of 

knowledge of technology.”130 In a footnote, Schmitt casts doubt on the priority Zilsel 

accords manual workers in the development of an experimental science: 

Although a good deal has been written concerning the influence of technology and 

craftsmanship on the emergence of ‘modern science’ and ‘scientific method’ during the 16 th and 

17th centuries, little attempt has been made to relate this tradition to the continuing tradition of 

natural philosophy in the universities (e.g., see Zilsel, ‘The Sociological Roots …’, p. 550). The 

examples we have cited from Zabarella are by no means unique … Without a doubt Leonardo, 

William Gilbert, and Galileo were influenced by technology, but to a significantly greater degree 

than those stodgy conservatives who held university chairs?131 

On Zilsel’s behalf, I think it is still possible to answer “yes” to Schmitt’s question, 

despite the allegedly contrary evidence Schmitt claims to have provided. For his criticism 

of Zilsel is based, I believe, on an oversimplification of the latter’s argument. In the passage 

to which the footnote is attached, Schmitt writes that his analysis of Zabarella’s practice of 

natural philosophy shows that  

Zabarella had at least some awareness of the practical techniques used by the artisans of 

his time, something which most interpreters of Renaissance technology and craftsmanship have 

denied to university professors who were supposedly trapped in an ivory tower where no demeaning, 

practical considerations were allowed to enter.132 

As this and the passages quoted above make clear, Schmitt thinks that Zilsel’s claim 

is that the university scholars were unaware, or had no knowledge of, technology and the 

crafts. It is certainly true that Zilsel caricatures the Scholastics to the extent that his claims 

about the pioneering role of the artisans imply that the Scholastics had no interest in 

empirical observation or causal thinking. Randall, for one, offers plenty of evidence that 

                                                 

129 Pastorino (2017), p. 768. In his (2017), Pastorino argues that Francis Bacon’s philosophy of 

experimentation was influenced by Bacon’s experience supervising the drafting of patents while he 

served as a solicitor and attorney general during the reign of James I. 

130 Schmitt (1969), p. 127. 
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they were deeply interested in the causal analysis of experience. But Zilsel’s essential point 

has nothing to do with what individual university professors happened to be aware of or 

have knowledge of (if by the latter is meant propositional knowledge), as Schmitt would 

have it. The point is that, for the most part, they did not themselves employ the techniques 

used by the artisans of their time; at most they observed the artisans using them, as Schmitt 

documents for Zabarella’s case. The scientific method consists of (at least) two skill sets: 

training in systematic and logical inquiry on the one hand, skills for the manipulation, 

production and control of natural objects on the other. The latter skills were acquired, 

claims Zilsel, over generations by the development of technology and handicraft 

production. This development was a necessary but not sufficient condition for the 

emergence of modern science, for the latter also required more narrowly intellectual skills 

such as those developed by the Scholastics. Technology itself is mainly important in 

Zilsel’s account because it represents the skills necessary for experimentation. Once these 

skill sets were combined by Galileo, Bacon and others, modern science could take off. In 

short, Zilsel’s story is about the merging of manual and intellectual labor, forms of labor 

that tended to be separated by status and prejudice in pre-capitalist societies. 

I should probably add that my reading of Zilsel departs somewhat from the letter 

of his account. In its strong form, the Zilsel thesis is that both the bulk of the empirical 

content of science, as well as the experimental methodology, resulting from the Scientific 

Revolution came from craftsmen. In the terminology introduced in chapter 2, they provided 

the EK and MK of early modern science. Zilsel attributes what some would consider the 

most important features of science—research into causes, laws of nature, emphasis on 

empirical observation, quantitative measurement, skepticism towards authority, 

transgenerational cooperation—to the influence of craftsmen, leaving to the scholars only 

logical training and a systematic approach to research. I suspect that such a strong version 

of the thesis is hard to defend. What I take from Zilsel, in any case, is that know-how in the 

form of manual skills and the abilities to produce and use instrumentation are essential to 

modern science, and that the weakening of social barriers was an important factor in 

making this form of knowledge important in science. My use of Zilsel is thus guided by 

the broad conception of knowledge discussed in the first chapter.  
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In this connection, I think a few comments on a possible objection to my reading 

of Randall may be in order here. The objection starts from the fact that Randall does not 

claim that the philosophers at Padua developed their method in a bubble, but rather that 

they developed it “in fruitful commerce with the physicians of its medical faculty” (178). 

He further mentions the contributions of several medical writers and physicians, such as 

the Pietro d’Abano, Jacopo da Forli, and Hugo of Siena mentioned above. Given the 

manifest influence of medicine on the development of the method, my imputation of the 

Internalist Thesis to Randall would appear to be a case of false attribution.  

I have described the Internalist Thesis as the claim that the idea of an 

experimentally grounded science was developed by means of an internal critique of 

Aristotelian ideas on causal demonstration. On my reading of Randall, the physicians made 

the following contributions to this development. First, they pointed out the methodological 

utility of Aristotle’s theory of proof, both with regard to teaching as well as to discovery 

(187-189). Second, they provided empirical material for the refinement of causal analysis, 

in the form of diseases or anatomical demonstrations.  

The first contribution found new uses for Aristotle’s theory of proof. But as far as 

one can tell from Randall’s account, it was always presupposed that the conceptual and 

logical requirements of teaching and discovery were to be satisfied by drawing on, with 

perhaps some adjustments, the resources of Aristotle’s system. For example, the terms 

resolution and composition, which Pietro d’Abano, following Galen, used to designate two 

different ways of teaching, were identified with demonstration from effects to causes and 

from causes to effects, respectively (187-188). 

The second contribution provided a spur for the philosophical critique of Aristotle. 

Yet, in the form of experience, new empirical material had always played a significant role 

in the Aristotelian tradition, starting with Aristotle.  But at no point does it seem to have 

occurred to the philosophers discussed by Randall that experimental interventions, like 

dissection, were something the natural philosopher should do. For this, they would have 

had to conceive of their own activity as productive, a conception that I argued above was 

discouraged by the division between theoretical and productive sciences and by the elite 



95 

social prejudice against manual labor.133 Therefore I do not think the influence of the 

medical discipline represents a threat to the internalism I have attributed to Randall.134 

3.2.6 Ways forward?  

3.2.6.1 Logic as instrument 

I argued above that Aristotelianism contains an inherent bias against viewing 

productive labor as a properly scientific activity. By way of concluding this paper, I will 

suggest that the late Scholastics did not remain hermetically sealed against ways of thinking 

derived from production, but on the contrary were starting to reconceptualize science as a 

productive activity around the time their tradition went into decline.  

My evidence that such a reconceptualization was afoot is the view of logic 

advanced by Zabarella and the Jesuit Paulus Vallius that logic is an instrument, not a 

science or an art. Zabarella argued for this view in his “De natura logicae” of the Opera 

Logica, published in 1578, Vallius in his Logica, published in 1622 (though probably 

written much earlier135). According to Antonino Poppi, the puzzle Zabarella tried to solve 

in his work on the nature of logic was twofold.136 On the one hand, Aristotle did not have 

a term corresponding to “logic,” even though he pioneered its study. It was therefore 

unclear where the discipline was to be located within Aristotle’s tri-partite division of the 

sciences. Thomas Aquinas, Duns Scotus and others held that it should be considered a 

                                                 

133 In Promethean Ambitions (2004), William Newman argues that the notion of a ‘perfective art’ 

in Aristotle provided the starting-point for the development of an experimental Aristotelianism in 

the Middle Ages. I critique Newman’s view in the next section. 

134 To be fair, in his (1926) The Making of the Modern Mind, Randall does mention the influence of 

the crafts on scientific development (pp. 217-219). He credits them with sustaining the interest in 

mathematics during the Renaissance, and with accumulating “a body of experience and knowledge 

about nature quite independent of the traditional lore.” But they are absent in his discussions of 

scientific method (pp. 219-224, 262-266).  

135 According to Mancosu (1996), p. 19. Wallace (1992), p. 24 suggests that Vallius followed 

Zabarella chronologically in dealing with this question. 

136 Poppi (2004), pp. 42-44 and 55-57. 
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theoretical science, along with natural philosophy and mathematics.137 On the other hand, 

it was also unclear how logic is related to the intellectual virtues Aristotle lists in the 

Nichomachean Ethics, where it is conspicuously absent despite its importance as an 

intellectual state of the soul. Zabarella solved both of these puzzles by arguing that logic is 

an instrumental habit of mind. It could not be a theoretical science, he argued, because 

these aim at knowledge for its own sake, which is knowledge of necessary and immutable 

truths. Logic, on the other hand, deals with the discernment of truth from falsity in human 

concepts of reflection, and therefore with a contingent object.138 So while logic can serve 

the sciences to acquire knowledge, it cannot itself be a theoretical science. Nor can it be a 

practical or productive science, because it does not produce an external reality but instead 

operates exclusively within thought. In a similar vein, Zabarella argues that logic, in 

contrast to the intellectual virtues listed in the Ethics, is not a habit sought for its own sake 

but rather because it serves the acquisition and operation of the virtues, which are ends in 

themselves.  

Vallius, for his part, agreed with Zabarella that logic was an instrumental habit, 

though differing with Zabarella on its object. For Vallius, logic directs the operations of 

the intellect by employing beings of reason as instruments of knowledge. He concluded 

that logic could not be a science because the latter has for object real beings and their 

causes, not mind-dependent ens rationis.139 

The characterization of logic as an instrument appears to be an innovation of late 

Scholasticism, one not made by Aristotle himself or his medieval followers.140 Galileo 

appears to adopt this understanding of logic in his logical methodology.141 Though Randall 

mentions Zabarella’s instrumental characterization of logic, he sees it as a step in the 

transformation of the syllogism from a structure of proof to a method of causal inference 

(197). I think it is interesting that the concept of the instrument, closely connected with 

                                                 

137 Wallace (1992), p. 24. 

138 Wallace (1992), pp. 58-60. 

139 Wallace (1992), p. 24. 

140 The title Organon, meaning “tool,” was used by medieval scholars to refer to a body of Aristotle’s 

texts that included his logical works, but was not used to refer to logic itself. 

141 Wallace (1992). 
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those of production and labor, should make its appearance within Scholasticism at the same 

time as the developments described by Zilsel. Wallace (1992) claims that the conception 

of logic as instrument was an element of continuity connecting Galileo with the Scholastic 

tradition.142 On the other hand, Wallace views Galileo’s emphasis on experimentation as a 

point of discontinuity between them. Understood as a form of productive activity, however, 

experimentation seems at least conceptually connected with the innovation introduced by 

Zabarella and Vallius. Perhaps further reflection on the nature of instruments would have 

encouraged the Scholastics to incorporate manual labor within their conception of natural 

philosophy, thereby creating the possibility of a truly experimental Scholastic science. 

3.2.6.2 Newman on the “perfective arts” 

In Promethean Ambitions (2004), William R. Newman appeals to the history of 

medieval and early modern alchemy to make a strong case against what he calls the 

“noninterventionist fallacy.” This fallacy consists of  

the very widely held idea, common not only among historians of science but also among 

students of Aristotle, that the Stagirite and his followers were fundamentally nonexperimental or 

even actively opposed to experiment, because experimentation involved intervention in natural 

processes.143 

In book 2, chapter 1 of the Physics, Aristotle states that “[o]f things that exist, some 

exist by nature, some from other causes,” the other causes being human production of 

artefacts. The characteristic of natural things is that  

each of them has within itself a principle of motion and of stationariness (in respect of 

place, or of growth and decrease, or by way of alteration). On the other hand, a bed and a coat and 

anything else of that sort, qua receiving these designations—i.e., insofar as they are products of 

art—have no innate impulse to change. 

Aristotle concludes that “nature is a principle or cause of being moved and of being 

at rest in that to which it belongs primarily, in virtue of itself and not accidentally” (192b9-

23). Thus the feature of artifacts that sets them apart from things in nature is that “[n]one 

                                                 

142 Wallace (1992), p. 301. 

143 Newman (2004), p. 238. 
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of them has in itself the principle of its own production” (192b29-30). To the contrary, 

artifacts have their origin in in the maker: 

All art is concerned with coming into being, i.e., with contriving and considering how 

something may come into being which is capable of either being or not being, and whose origin is 

in the maker and not in the thing made; for art is concerned neither with things that are, or come 

into being, by necessity, nor with things that do so in accordance with nature (since these have their 

origin in themselves).144 

On this view, art would appear to be largely irrelevant to an understanding of 

natural things. 

According to Newman, such a watertight separation between the artificial and the 

natural is qualified later in the Physics when Aristotle introduces the concept of a 

“perfective art.” At Physics II 8 199a15-17, Aristotle adds that art can function in two 

different ways: “generally art partly completes what nature cannot bring to a finish, and 

partly imitates her.” For Newman, the distinction introduced here “allowed the possibility 

of having two distinct types of art, one that perfects natural processes and brings them to a 

state of completion not found in nature itself and another that merely imitates nature 

without fundamentally altering it.”145 A common example of a perfective art is medicine, 

because the aim of medicine is not to lead the human body to an unnatural state, but rather 

to bring it to its natural condition of health by eliminating impediments.  

The objective of Promethean Ambitions is to argue that medieval and Renaissance 

alchemists, working within an Aristotelian conceptual framework, relied on this concept 

of a perfective art to defend their work from attacks by “orthodox” Aristotelians that hewed 

to a strict division between nature and art. For the latter, the apparent replication of natural 

phenomena in the laboratory was a superficial imitation of nature that did not provide true 

understanding of it. For the former, in contrast, such experimentation was not merely 

imitation but the setting up of conditions under which a natural process could complete 

itself. Doing so allowed the natural philosopher to understand how the process works. One 

of Newman’s strongest examples is the work of Themo Judaei, a 14th-century alchemist 

who had studied under the great Parisian Scholastic Jean Buridan. In what Newman calls 

                                                 

144 Nichomachean Ethics 6.4, 1140b1-23.  

145 Newman (2004), p. 17.  
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“a fully generalized credo on the advantages of what can only be called maker’s 

knowledge,” Themo argues for the value of replicatory experimentation: 

Likewise it must be known that it is said in the title of the question: “just as the rainbow or 

halo etc.,” because it is difficult to know well the composition or manner of composing metals, just 

as it is difficult to know the way of generating the rainbow. And unless we knew how to make or to 

see the rainbow and its color, as well as the halo, by means of art, we would hardly be led to an 

understanding of the rainbow or the halo—how they come to be thus. Similarly, we would hardly—

or never—know the composition of gold or silver unless we knew it through art; indeed, through art 

we can more completely know the operation of nature. And for this reason the question was placed 

under the aforesaid form.146 

Newman interprets this passage as indicating that Themo has assimilated the notion 

of a perfective art to the replication of a natural phenomenon, and cites in support of this 

interpretation an assertion of Themo’s that the artificial rainbow is a case of art aiding 

nature (artem invantem naturam).147 Thus, Aristotle’s concept of an art that completes 

nature provided a conceptual bridge from the natural to the artifactual by means of which 

alchemists like Themo defended their work. 

Such evidence undermines the non-interventionist thesis because it shows, not only 

that at least one strand of Aristotelianism championed experimentation, but also that in 

doing so it did not break with Aristotle’s own thought. This evidence would appear to 

undermine the view that experimentation was excluded for Aristotelians because it 

interfered with natural processes. Newman quotes Peter Dear as a proponent of this view: 

The natural course of a process could [only] be subverted by man-made, artificial causes, 

because art replaced nature’s purposes with human purposes. An aqueduct, for example, is not a 

natural watercourse; it reveals the intention of the human producer, which thwarts that of nature…. 

                                                 

146 Themo, Quaestiones, question 27, 203r–203v: ¶“Item sciendum quod dicitur in titulo questionis: 

sicut iris vel halo etc. quod difficile est cognoscere bene compositionem vel modum componendi 

metalla sicut et difficile est cognoscere modum generationis iridis: et nisi per artem sciremus facere 

vel videre iridem et colorem eius et halo: vix duceremur ad cognitionem iridis seu halo quomodo 

fierent sic: similiter quod vix vel nunquam sciremus compositionem auri vel argenti: nisi per artem 

sciamus: vel per artem possumus scire completius operationem nature. Et propter hoc mota fuit 

questio sub forma predicta.” Quoted in Newman (2004), p. 248. 

147 Newman (2004), p. 248. 
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The Aristotelian distinction between art and nature depended on seeing human purposes as separate 

from natural ones and hence irrelevant to the creation of a true natural philosophy.148 

Dear’s view is undermined if one allows that man-made, artificial causes could 

have an application beyond realizing human purposes, namely, completing those of nature. 

Such, according to Newman, was exactly the use made of artificial causes by the medieval 

alchemists. 

To return to the main theme of section 3.2.6, the concept of a perfective art suggests 

another way forward for the Scholastics. Randall’s Scholastics were largely concentrated 

on Aristotle’s methods of reasoning, as expounded in the Organon, especially the Posterior 

Analytics. The alchemists, on the other hand, focused on Aristotle’s detailed studies of the 

natural world, such as the biological works, the Meteorology and the Parva naturalia.149   

This difference of focus suggests a revised Internalist Thesis, one suitably expanded 

beyond the theory of causal demonstration. Perhaps a conceptual route to the experimental 

method existed within Aristotelianism after all. 

I think it is worth pointing out, however, that the passage of the Physics that 

Newman draws on for the concept of a perfective art is more supportive of Dear’s position 

than Newman allows. Here is a more extensive quotation of the passage from which 

Newman only quotes that “generally art partly completes what nature cannot bring to a 

finish, and partly imitates her”: 

Further, where a series has a completion, all the preceding steps are for the sake of that … 

Each step then in the series is for the sake of the next; and generally art partly completes what nature 

cannot bring to a finish, and partly imitates her. If, therefore, artificial products are for the sake of 

an end, so clearly also are natural products. The relation of the later to the earlier terms of the series 

is the same in both. 

… If then it is both by nature and for an end that the swallow makes its nest and the spider 

its web, and plants grow leaves for the sake of the fruit and send their roots down (not up) for the 

sake of nourishment, it is plain that this kind of cause is operative in things which come to be and 

are by nature. And since “nature” means two things, the matter and the form, of which the latter is 

the end, and since all the rest is for the sake of the end, the form must be the cause in the sense of 

“that for the sake of which.” 

                                                 

148 Dear (1995), p. 155. Quoted in Newman (2004), p. 240 (Newman’s emphasis). 

149 Newman (2004), p. 289. 
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Now mistakes come to pass even in the operations of art: the grammarian makes a mistake 

in writing and the doctor pours out the wrong dose. Hence clearly mistakes are possible in the 

operations of nature also. If then in art there are cases in which what is rightly produced serves a 

purpose and if where mistakes occur there was a purpose in what was attempted, only it was not 

attained, so must it be also in natural products, and monstrosities will be failures in the purposive 

effort. Thus in the original combinations the “ox-progeny” if they failed to reach a determinate end 

must have arisen through the corruption of some principle corresponding to what is now the seed. 

…Moreover, among the seeds anything must have come to be at random. But the person 

who asserts this entirely does away with “nature” and what exists by “by nature.” For those things 

are natural which, by a continuous movement originated from an internal principle, arrive at some 

completion; the same completion is not reached from every principle; nor any chance completion, 

but always the tendency in each is towards the same end, if there is no impediment.150 

This passage has two features that support Dear’s position. First and most 

importantly, it stresses the distinction between natural and human purposes. The distinction 

is here grounded in the notion of a formal cause. Newman tends to neglect the formal cause 

in favor of the existence, or lack thereof, of an internal principle of movement. But this 

passage makes clear that the internal principle is entirely subordinated to the purpose “for 

the sake of which” the movement happens. Second, though Newman focuses on the idea 

of art “completing” nature, the passage suggests that Aristotle has a fairly negative 

conception of such an art, as an artificial compensation for the “mistakes,” “failures” 

“corruptions” and “impediments” that prevent the natural purpose from being realized. 

Granted, this negative conception does not exclude a more liberal understanding of 

“completion,” but the spirit of the passage is more restrictive than permissive. 

So while I agree with Newman that Dear no doubt exaggerates the restriction 

imposed by the distinction between human and natural purposes on the use of “artificial 

contrivances” in natural philosophy, nothing in Aristotle’s reflection on perfective art 

suggests that it is wrong to think that that distinction dictates what counts as an acceptable 

ontology for Aristotelian natural philosophy. The acceptable ontology is the class of 

                                                 

150 Physics II.8.199a9-199b18. My emphasis. Charlton’s (1970) translation does not differ in 

substance from the one by Hardie and Gaye used here and in Barnes’ (1991) The Complete Works 

of Aristotle. 
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processes fulfilling a natural purpose. In slogan form, one might put the ontological point 

as teleology dictates scientific ontology. 

In my view, all that the “perfective art” passage licenses is the completion of a 

natural purpose by artificial means. This concept therefore enlarges the scope of what 

counts as a natural process—to the artificial engineering of the conditions necessary to 

complete some natural purpose. But there are many processes studied by modern science 

that do not seem to be accomplishing any natural purpose. The development and study of 

processes for making things that do not exist in nature—synthetic compounds, new 

elements, instrument-specific phenomena like mass-spectral fragmentations or particles 

created through high-energy collisions—arise from human purposes, not natural ones. I 

conclude that the concept of a perfective art does not license a fundamental role for 

“maker’s knowledge” in science, in which processes serving human purposes count as 

legitimate objects of scientific inquiry. In modern science, teleology no longer dictates 

ontology.151 The concept of a perfective art therefore does not settle the question whether 

some break with Aristotelianism was necessary to achieve a full-blown experimentalism. 

3.2.7 Conclusion 

The moral of this section is that the incorporation of instrumentation and 

experimentation as fundamental components of the scientific method was not trivial. It was 

discouraged by dominant attitudes towards manual labor and the division of labor between 

theoretical and productive sciences, as well as by beliefs about the proper object of 

scientific inquiry. Even Newman, a champion of the idea that there was an Aristotelian 

tradition of experimental science, has to locate the latter in a minority current that was 

constantly having to defend its very raison d’être to a hostile mainstream.152  

                                                 

151 Klein (2008) and Des Chenes (2007) make similar points in response to Newman’s critique of 

the non-interventionist fallacy. 

152 See, for example, Newman (2004), pp. 242-250, 250-256, 269, 281, 286, 289. Vickers (2008) 

argues that Newman’s own evidence demonstrates a “massive consensus” among philosophers, 

theologians and artisans that alchemical transmutation was impossible.    
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What also emerged in the discussion of the Randall theses is that the role of manual 

labor in the story is not merely that of a social background condition, as for example, 

Hessen and Grossmann conceived the contribution of technology to the development of 

physical theory (see chapter 1). Nor does it serve as merely a social explanans of the 

explananda provided by intellectual history. As note above, Edgar Zilsel took this 

approach: while taking for granted the fruits of the Scientific Revolution as recounted in 

intellectual histories—research into causes, laws of nature, emphasis on empirical 

observation, quantitative measurement, skepticism towards authority, transgenerational 

cooperation—Zilsel gave these developments a sociological spin, by attributing the 

scientific method mostly to superior artisans and limiting the contributions of the scholars 

to logical training and a systematic approach to research. In contrast, what I emphasized 

above is the emergence of know-how as both a component of scientific method—as 

represented in the use of instrumentation and in experimentation—and a product of 

scientific research. Know-how is not merely a background condition to modern science, 

but rather a constitutive part of it, and to my knowledge, at least, it is not the usual focus 

of intellectual history. We thus see the value of the broad conception of progress discussed 

in the first chapter: it allows us to identify kinds of progress that may not be as easily 

discerned by more traditional types of analyses, be they intellectual or social. 

3.3 From perception to measurement in Kepler’s Optics 

3.3.1 Introduction  

In section 3.3 I will study the relationship between Kepler’s efforts to improve 

astronomical observation, on the one hand, and the manner in which he theorizes about the 

functioning of the eye, on the other. Certain modern commentators have drawn negative 

epistemological consequences from his treatment of the eye. By treating the eye like an 

instrument no different in essence from an artificial one, it is alleged that Kepler introduced 

a fundamental worry about the certainty of our perceptions. My purpose in section 3.3 is 
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not so much to refute the allegation as to accentuate a more positive epistemological moral. 

The “instrumentalization” of the eye by Kepler should be viewed as an example of a 

general strategy for dealing with systematic measurement error, one that shifts the focus of 

research onto sources of error and (hopefully) results in their correction. Thus if we focus 

on the certainty of measurement, as opposed to perception, Kepler’s approach is 

empowering rather than undermining. The study will largely consist of an analysis of 

selected passages from the Ad Vitellionem paralipomena (Frankfurt, 1604), or what I will 

refer to henceforth as the Optics, following the English translation by William H. Donahue. 

Why focus on Kepler? Certainly, Kepler’s awareness of experimental error has 

been noted before (Hon 1987, 2004). Likewise, Kepler’s treatment of the eye as an 

instrument has been discussed earlier (Gal & Chen-Morris 2010a and b, 2013; Straker 

1976). These latter authors, however, have considered Kepler’s “instrumentalization” of 

the eye (the term is from Gal & Chen-Morris 2013) significant mainly because they think 

it heralds a modern world-view in which humans are alienated from nature. This 

epistemologically and metaphysically pessimistic interpretation draws its force from the 

assumption that the only general epistemological problem Kepler’s theory is relevant to is 

the same problem that animated his Perspectivist predecessors, namely how it is that 

humans can have perceptions of the world that correspond to the way it truly is, or in other 

words how veridical perception is possible. On this assumption, Kepler’s solution raises 

epistemological worries that the Perspectivists’ did not, and so the epistemological balance 

seems negative.  

In contrast, I will argue that there is a different, more positive sense in which the 

instrumentalization of the eye breaks with the Perspectivists. Kepler’s mode of theorizing 

is relevant to a different problem than that of veridical perception, though one that is also 

quite general: how to achieve accurate measurements by means of vision. The 

conceptualization of the eye as an instrument is simply an appropriate way of dealing with 

this problem. The appropriateness of this conceptualization derives from the fact that 

measurement is not essentially anthropocentric, in the sense that the human perceptual 

apparatus is not required to produce a measurement. Below, I characterize measurement as 

involving inter alia (i) a physical interaction, which is used to (ii) selectively represent the 

entity in terms of the value of some physical parameter that characterizes the entity (iii) in 
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order to obtain information about the entity. But in general, there is no reason why the 

physical process of interaction with, and representation of, the entity must be carried out 

by a human; an instrument can usually do it as well or better. On this view, measurement 

is inherently “instrumental” or “non-anthropocentric” in that the physical interaction and 

production of the representation that are at its core need not be carried out by a human or 

involve human perceptual faculties. What matters is whether there are sources of error in 

the process that create uncertainty in the measured value. My interpretation of the Optics 

is that Kepler understands measurement along these lines, and that his treatment of the eye 

as an instrument simply follows from its use in measurement.   

Though I wrote above that measurement is inherently non-anthropocentric in the 

sense specified, it does not follow that it is radically non-anthropocentric. On the contrary, 

the measurement process is always tethered to the agents’ purpose of obtaining 

information, and its aim is to produce a representation that is conceived by the agents and 

serves their purposes. The commentators alluded to above have tended to see in Kepler’s 

optics a radically de-subjectivized theory, an interpretation that supports the negative 

morals drawn from it. Thus, in this discussion I will be contrasting two interpretations of 

Kepler’s optics, what I will call a ‘Naturalist Interpretation’ on the one hand, and a 

‘Metrological Interpretation’ on the other. The Naturalist Interpretation holds that, in 

contrast with the tradition that preceded him, Kepler was responsible for naturalizing 

vision, in the sense of purging the theory of vision of any essential role for human agency. 

According to the Metrological Interpretation, Kepler subordinates his theorizing about 

vision to the requirements of accurate measurement, which does retain a role for human 

agency in the manner mentioned above.  

Though Kepler is directly concerned only with astronomical measurement, I show 

that the benefit of conceptualizing the eye as an instrument has nothing specifically to do 

with astronomy, but rather with the characteristics of measurement in general.  For this 

reason, I argue, Kepler’s theory of vision suggests an egalitarian attitude towards the means 

of observation and helped to prepare the conceptual ground for the instrumentalization of 

scientific observation. 

The section is organized as follows. In subsection 3.3.2, I review the claims of some 

of the commentators mentioned above, focusing especially on Ofer Gal’s and Raz Chen-
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Morris’s claim that Kepler’s work represents the “disappearance of the observer” in 

modern science and philosophy. Subsection 3.3.3 compares Kepler’s and the 

Perspectivists’ theories of vision. I introduce the distinction between the problem of 

certainty in measurement, as contrasted with the problem of certainty in perception, in 

subsection 3.3.4, and argue for the non-equivalence of the two. In subsection 3.3.5, I 

consider the problem of certainty in measurement in more detail, drawing on Pierre 

Duhem’s classic analysis of criteria for the assessment of observation reports in physics. I 

also provide evidence that both measurement and the assessment of observation reports are 

a central concern in the Optics, and that “observation,” for Kepler, is essentially accurate 

measurement. Subsection 3.3.6 shows how Kepler’s treatment of the eye is geared towards 

supporting the certainty of measurement. I offer concluding remarks in subsection 3.3.7. 

3.3.2 Gal and Chen-Morris on the “disappearing observer” 

In Baroque Science (2013), Ofer Gal and Raz Chen-Morris make the provocative 

claim that “in the seventeenth century the human observer gradually disappears from 

optical treatises.” They attribute this disappearance to the evolving understanding of the 

eye in optics: 

the observer disappears from optics because of the evolving understanding of the eye as a 

natural, material optical instrument. It is the naturalization of the eye that begets the estrangement 

of the human observer from nature. The naturalized eye no longer furnishes the observer with 

genuine re-presentations of visible objects. It is merely a screen, on which rests a blurry array of 

light stains, the effect of a purely causal process, devoid of any epistemological signification.153  

According to Gal and Chen-Morris, then, it is the assimilation of the eye to the 

category of optical instruments, or what they call “radical instrumentalism,”154 that 

“estranges” the observer from nature. In their view, the scientists most responsible for 

“disappearing” the observer are Kepler, Galileo and Descartes. The movement begins with 

                                                 

153 Gal & Chen-Morris (2013), pp. 15-16 (emphasis in original). See also Gal & Chen-Morris 

(2010a) and (2010b) for similar statements of their view. 

154 Gal & Chen-Morris (2010b). 
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Kepler: “The human observer starts slipping out of optics when Kepler turns his optical 

opus magnum, the Ad Vitellionem paralipomena [1604] to artificial observations.”155 The 

alleged disappearance of the observer in Kepler’s optics was no minor event, they argue, 

for it eliminated “the import of optics as the epistemological anchor for all other sciences” 

by turning vision “into a mystery.”156 A few years later, Galileo, in his exchange with the 

Jesuit Horatio Grassi on the observation of comets, seems to deny any epistemic privilege 

of naked eye observation over instrument-mediated observation. Descartes brings this 

movement to maturity with his radical doubt (influenced by his own theory of vision).157 

Gal and Chen-Morris (GCM henceforth) are not alone in viewing Kepler’s optical 

work as introducing a source of epistemological anxiety. A. Mark Smith describes the 

anxiety in terms of a “problem of correspondence” between the physical causes of sight 

and their perceptual effects: 

By disjoining the physics of light from the psychology of sight, both domains subject to 

wholly different laws, Kepler brought the problem of correspondence into stark relief. How can we 

be sure that our internal impressions of external objects match them in a meaningful way? Kepler’s 

model of retinal imaging destroys all hope of establishing such certainty because physical cause and 

perceptual effect are nothing like each other.158 

According to Smith, there was no such problem for Kepler’s perspectivist 

precursors, because “the perspectivist account was designed to ensure that the objective 

cause of vision, in the form of luminous color, corresponds to its subjective effects 

according to a rigidly interconnected succession of intentional species.”159 Thus, rather 

than focus on how the eye’s relation to instrument-aided observation was conceived, as 

GCM do, Smith attributes the epistemological anxiety ushered in by Kepler to a 

155 Gal & Chen-Morris (2013), p. 16. 

156 Gal & Chen-Morris (2013), pp. 24-26. 

157 Gal & Chen-Morris (2013), chs 1 and 3. They also cite Hooke as a later representative of radical 

instrumentalism. 

158 Smith (2015), p. 370. My emphasis. 

159 Smith (2015), p. 369. 
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discontinuity between the laws governing the differing domains of optical physics and 

visual psychology.160  

Straker (1976) connects the discontinuity between the domains to a general anti-

humanist tendency of the 17th century: 

Kepler has essentially replied [to the question how the retinal picture is cognitively 

processed and interpreted], ‘That’s not my department;’ the philosophers will have to worry about 

that. We should recognize, however, that such disdain is one mark of the New Science of the 17th 

Century; one might as well ask Galilei, or, indeed, Newton, for the cause of gravity as to try to insist 

that Kepler tell us the nature of visual perception from a human perspective. ….  Both [Kepler and 

the artists he emulated] are estranged from the actual having of a visual experience, and as a result 

of that estrangement, we find encouraged a visualisation of seeing in which, paradoxically, the seer 

is seen as a passive, optical receptacle. The soul, which in an earlier view actively participated in 

the seeing of things that are seen, is now pushed back behind the eye where it resides in severe 

danger of absolute eviction.161 

The historian Vasco Ronchi doubted that such an apparently de-subjectivized theory could 

still be called ‘optics:’  

It is impossible to go on studying a science which completely abstracts from human eyes, 

and still call it optics: this would be optics also valid for blind men. What happens in front of the 

retina is not optics, but just physics.162 

Ultimately, such anxiety may be traceable back to E. A. Burtt’s thesis that the 

primary/secondary quality distinction of the seventeenth century scientific revolutionaries 

introduced a new set of worries about humanity’s metaphysical and epistemological 

situation. For example, writing of Galileo’s version of the distinction, which he views as a 

radicalization and making explicit of Kepler’s, Burtt claims that  

It is a fundamental step toward that banishing of man from the great world of nature and 

his treatment as an effect of what happens in the latter, which has been a pretty constant feature of 

the philosophy of modern science, but bringing in its train the big metaphysical and especially 

epistemological problems of modern philosophy. Till the time of Galileo it had always been taken 

                                                 

160 For a dissenting view on whether Kepler himself thought there was such a discontinuity between 

the two domains, see Baker (2016). 

161 Straker (1976), p. 21. My emphasis. 

162 Ronchi (1963), p. 622.  
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for granted that man and nature were both integral parts of a larger whole, in which man’s place was 

the more fundamental.163 

The elimination of any priority of man in nature, and the treatment of man as a 

natural effect, is echoed in GCM’s claims about the disappearance of the observer 

accompanying Kepler’s alleged naturalization of the eye. 

3.3.3 Kepler and the perspectivists 

Since in this paper we are concerned with the nature of scientific observation as 

Kepler understands it, I will focus here on GCM’s assessment of the epistemological 

consequences of Kepler’s optical work. What exactly is the “mystery” into which vision 

has been turned at Kepler’s hands? In the Optics, Kepler holds that images of visible objects 

are generated when light rays originating from the objects strike an opaque screen: 

let us embrace the true opinion described in this chapter, and established by irrefutable 

examples [experimenta]: that from the sun, and from the colors illuminated by the sun, there flow 

out forms [species] similar to each other; and that in this flow itself they are diluted, until they strike 

upon a medium that is in some proportion opaque, and there they represent their source; and that 

vision occurs … when the opaque wall of the eye is colored in this manner, the vision being confused 

when the images of different colors are intermingled, and distinct when they are not intermingled.164 

Thus, on Kepler’s theory the perceiver’s access to the world is mediated by the 

image, which he calls a “painting” (pictura) created on the retina (the “opaque wall of the 

eye”) by the illumination of light rays.  

This is in contrast to the perspectivist view. According to this view, light (called 

lux) and color are formal characteristics of the surfaces of bodies. Vision occurs because 

these characteristics are propagated as physical species from the surfaces of visible objects. 

                                                 

163 Burtt (1932), p. 78. See Daston (1991) for a retrospective overview of Burtt’s legacy. 

164 Kepler (2000), p. 48. “Amplectamur ergo veram sententiam hoc capite descriptam, et 

irrefutabilibus experimentis stabilitam, à Sole scilicet, et à coloribus Sole illustratis, defluere 

species consimiles, ipsoque fluxu attenuari, donec in medium quacunque ratione opacum incidant, 

ibique suum fontem depingant : fierique visionem … cum opacus oculi paries hoc modo pingitur, 

confusam, cum confunduntur ibi picturae variorum colorum, distinctam, cum non confunduntur.” 

Kepler (1939), pp. 41-42, Kepler (1604), p. 33 (italics in original).  
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They are received in the lens of the eye and replicated there as a punctiform visible species. 

The replication is ensured by visual spirits produced by the brain and infusing the lens, 

which spirits sense the species emanating from the object in a pointwise fashion. This 

visible species is then transmitted to the optical nerve and thence to the common sense and 

imagination, where it is replicated more abstractly as a sensible species. The reasoning 

faculty then replicates the latter yet more abstractly as an intelligible species, according to 

the conceptual core of the object.165 The overall progression is from a brute sensory 

representation in the eye to an increasingly abstract and conceptual representation in the 

mind. This process was very important from the point of view of Aristotelian epistemology, 

since all our concepts and the first principles of science were supposed to be acquired 

through the abstraction of concepts and principles from experience, following Aristotle’s 

account in the Posterior Analytics. This was how the major Perspectivist authors, Roger 

Bacon (ca. 1214-1292), John Pecham (ca. 1230-1292) and Witelo (ca. 1230-after 1280) 

conceived the process. All three followed closely the account of Arab scholar Ibn Al-

Haytham (965?-1040/41), or “Alhacen” in Latin. For example, A. Mark Smith gives the 

following account of Bacon’s explanation of visual sensation: 

… by adopting the Alhacenian model of punctiform radiation, Bacon can explain the act 

of visual sensation in essentially the same way as Alhacen. Each point of lux [a formal characteristic 

of objects that makes them luminous] and illuminated color on a visible object’s surface multiplies 

its species radially to every exposed point on the surface of a facing eye, and thence to every exposed 

point on the lens’s anterior surface. Likewise all points of lux and color on the visible object’s 

surface radiate their species to each point on the eye’s surface and thence to a single exposed point 

on the lens’s anterior surface.  

The result is utter confusion on the lens’s surface, but because of its sensitivity, the lens 

makes coherent sense of this confusion by selecting only the species that reach it orthogonally, since 

they make the strongest impression. The rest, having reached it along weaker, oblique paths, are 

ignored. All the individual impressions selected in this way comprise a pointillist representation of 

the object’s surface that constitutes what we (not Bacon) might call the visible species. Each 

impressed species at a given point within this composite visible species multiplies straight through 

the glacial humor toward the center of sight within a cone of radiation based on the object surface. 

Refracted at the interface between glacial and vitreous humors, the visible species multiplies in 

proper upright and left-to-right order into the hollow optic nerve and thence to the optic chiasma, or 

                                                 

165 Smith (2015), p. 278. 
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“common nerve” (nervus communis), where it is fused with its counterpart from the other eye. It is 

there, as well, that the final sensor (ultimum sentiens) apprehends the species to complete the 

sensitive phase of vision.166  

This process is illustrated in Figure 3.1a: 

(a)                                                                    (b) 

Figure 3.1 (a) A. Mark Smith’s reconstruction of the process of visual sensation, according to the 

Perspectivists. Smith (2015), p. 186. (b) A woodcut of 1503 from Gregor Reisch’s account of 

psychology and cognition in the Margarita Philosophica (“Philosophical Pearl”). The woodcut 

illustrates how the process of visual sensation was, for the Perspectivists and their followers, 

connected with the process of cognition. 

Since my focus is on what happens in the eye, the “replication” carried out by the 

lens deserves some comment. The interaction between the lens and the species of lux and 

color was conceived by analogy with physical contact, in that the lens would “feel” the 

impingement of the species striking it the way one would feel a physical blow. Stronger 

impressions would last longer as afterimages, and could even be painful, as for example 

looking at sunlight creates a long-lasting afterimage and causes pain.167  Witelo is clear on 

this point: 

                                                 

166 Smith (2015), p. 264. 

167 Smith (2015), p. 188. 
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Vision does not take place without pain (dolore) and suffering (passione) endured by the 

substance of the eye. From which it is clear that the eye ought to be of an adequate disposition in 

[its] health in order to prosecute completely the [process of] vision. 

Indeed since the glacial receives the form of light and color, and light and color toil in the 

glacial, that work will necessarily be not without pain, however often that pain may not be felt, 

simply because it is not strong enough. In truth strong lights narrow the [pupil of the] eye and hurt 

(ledunt) the same manifestly, as is clear in the sun’s light, or in light reflected by polished bodies to 

the eye.168 

Perpendicular impressions would be stronger than oblique ones, allowing the visual 

spirits to distinguish between them and select only the former, thus ensuring the coherence 

of the representation entering the eye. The lens also maintained the relative spatial positions 

of the entering rays. As far as I can tell, the selection results in the passage of the selected 

species into the eye. For example, Ibn al-Haytham claimed that “the sentient member [the 

lens] receives and feels these forms; and they pass through it according to both its 

transparency and its sensitive virtue.”169 The physical species are therefore “replicated” in 

the sense that a certain subset of them are allowed to pass through the eye such that their 

relative positions, and thus the coherence of the image, are maintained.  

Besides assuring coherence, the lens had another function, this one associated with 

the visual cone model that originated with extramissionist accounts of vision. As implied 

in the preceding discussion, the “classical” Perspectivists were intromissionists, i.e., on 

their account of vision the latter occurs by means of rays entering the eye rather than 

emitted by it. Euclid and Ptolemy, on the other hand, had theorized vision in terms of a 

visual cone of emitted rays, with its vertex in the eye and its base defining the field of view. 

The Perspectivists followed Ibn al-Haytham, who flipped the visual cone from 

                                                 

168 Unguru (1991), p. 122. 

“Visio non fit sine dolore et passione a substantia oculi abiciente. Ex quo patet visum oportere 

convenientis dispositionis in sanitate esse ad hoc ut complete exerceat visionem.  

Quoniam enim glacialis recipit formam lucis et coloris, et lux et color operantur in glacialem, 

erit necessario illa operatio non sine dolore, quamvis quandoque non sentiatur ille dolor, ut cum 

non est valde fortis. Luces vero fortes angustiant visum et ledunt ipsum manifeste, ut patet in luce 

solis, vel in luce reflexa a corporibus tersis ad visum” [Unguru (1991), p. 310 (Perspectiva III.16)]. 

According to Smith (2015), p. 273, Witelo’s Perspectiva was completed ca. 1275 CE.  

169 De Aspectibus II 1., Prop. 4, p. 26. Quoted in Smith (1981), p. 582. 
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extramission to intromission. According to his theory, the intromitted rays do not actually 

meet at the vertex, because they are refracted at the interface of the lens and vitreous humor 

so as to be funneled into the optic nerve, which was thought to be hollow. Yet even though 

the rays do not meet, they are felt by the lens, which posits them meeting virtually in the 

middle of the eye. This virtual “center of sight” (centrum visis) was “the viewpoint from 

which everything encompassed by the cone of radation is perceptually judged according to 

its spatial characteristics and location.”170 By attributing this further role to the visual 

spirits, the Perspectivists were able to secure a good deal of the explanatory framework of 

the visual cone model. 

It is worth pointing out that this theory puts a heavy burden on the visual faculty to 

interpret the impressions correctly. Each point of the eye is being simultaneously struck by 

oblique rays from every point in the field of vision, including peripheral objects outside 

the cone of vision. The lens was thought to have an active power of selection, and authors 

like Bacon talked about the visual spirits making active judgments: “the eye [itself] 

necessarily makes judgments and has the power of sight, though incompletely.”171 Witelo 

distinguishes between two kinds of vision, one of which appears to involve active judgment 

by the eye: 

First we call simple sight that act by means of which the form of the visible object is 

received for the first time directly in the surface of the eye, while we call intuition that act by means 

of which the eye inquires diligently and thoroughly after the comprehension of the form of the 

object, not [being] content with the mere reception but [striving for] a profound examination.172 

                                                 

170 Smith (2015), p. 188. 

171 Lindberg (1996), p. 67. “[O]culus necessario habet iudicium et virtutem videndi, licet 

incompletum." (Bacon, Perspectiva I.5.3). This passage will be discussed more in section 3.3.6.  

172 “Aspectum primum simplicem dicimus illum actum quo primo simpliciter recipitur in oculi 

superficie forma rei vise, intuitionem vero dicimus illum actum quo visus veram comprehensionem 

forme rei diligenter perspiciendo perquirit, non contentus simplici receptione sed profunda 

indagine” [Unguru (1991), p. 351; Perspectiva III. 51]. I wrote that this quotation appears to 

attribute the power of judgment to the eye because a few paragraphs later Witelo invokes the 

“observer” (videns), and not just the eye, as the subject of intuition: “And so if the observer will 

have wanted to obtain a certification concerning the form of the whole visible object, he will have 

moved both eyes until their centres may be opposite to any parts or points of the surface of the 
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Importantly, a dead eye—one separated from its owner or belonging to a deceased 

individual—would not produce a representation. Veridical perception was guaranteed by 

the properties of the visual spirits. These properties were themselves inferred from the 

needs of human cognition, according to Aristotelian epistemology. So this theory of vision 

was essentially teleological in conception.  

Both GCM and Smith insist that the visual process, according to the perspectivists, 

is supposed to yield a veridical representation of external objects provided that they are 

viewed under appropriate normative conditions (adequate lighting, appropriate distance 

from the object, the eye is healthy, etc.)173 and that the reasoning faculty can rectify visual 

deceptions arising from reflection and refraction. This veridicality derives from the fact 

that there is supposed to be a point-to-point replication of the object’s surface at each stage 

of the process.174 There was, as GCM put it, “a particularly privileged relation between 

between source and image” in perspectivist optics. Hence it is possible to find strong 

perspectivist assertions like the following one from John Pecham that GCM are fond of 

quoting: “vision takes place by the arrangement of the species on [the surface of] the glacial 

humour [i.e., the surface of the lens] exactly as [the parts] of the object [are arranged] 

outside … unless this were so, the eye would not see the object distinctly.”175 Though this 

                                                 

visible thing opposed to it, and then, since both radial axes will be incident to any of the points, by 

the 32nd [prop.] of this [book], the complete intuition of the entire form will be achieved in this 

manner.” It is therefore ambiguous whether the eye or the entire cognitive apparatus is intuiting the 

form. The original reads: “Si itaque videns voluerit certificari de forma totali rei vise, movebit ambos 

visus donec medium eius opponatur cuilibet partium vel punctorum superficiei rei vise sibi opposite 

et tunc, quia ambos axes radiales, per 32 huius, incident unicuique punctorum, fiet hoc modo intuitio 

completa totius forme."  

173 According to Smith (2015), pp. 192-193, Alhacen adumbrated eight conditions for normative 

viewing: that there be adequate distance between eye and object, that the object face the eye directly 

enough to be properly seen, that there be adequate illumination, that the object be of an adequate 

size, that it be adequately opaque, that the intervening medium be adequately transparent, that there 

be adequate time for proper perception, and that the eye be adequately healthy.  

174 Smith (2015), pp. 369-370; Gal & Chen-Morris (2013), pp. 20-24. 

175 Quoted in Gal & Chen-Morris (2013), p. 22, (2010a), p. 198 and (2010b), pp. 137-138. Italics 

added by GCM. It is possible that the translation, by David Lindberg, that GCM are using 
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translation may be misleading as to the degree of correspondence asserted by Pecham (see 

footnote 187), it supports GCM’s case by getting across both (i) the correspondence of the 

visible species to the visible object and (ii) a teleological element in the perspectivist 

explanation of vision (in Pecham’s case, that the correspondence is explained by the 

requirement of distinct perception) that GCM emphasize.176  

Kepler’s theory of retinal image formation is illustrated in Figure 3.2a. The globe 

represents the lens, and the semi-oval represents the retina. The diagram is slightly distorted 

in that the real lens is not completely spherical but is hyperboloidal in the back, and the 

retina is more or less spherical in shape. These distortions, however, don’t affect the basic 

mechanism of vision. I use the word “mechanism” knowingly, for there is no role for visual 

spirits in image formation here. The rays from points in the visual field enter through the 

pupil and then are refracted twice by the lens in such a way as to focus on the retina. The 

focusing of the rays at points on the retina creates an inverted picture of the visual field. 

The following points are worth noting. First, the production of the picture is “mechanical,” 

in that it depends entirely on the organization of the material parts. There is no active power 

of selection or judgment operating here. Second, and famously, Kepler has no account of 

how the picture thus formed is then perceived and judged by the cognitive faculties. Third, 

a dead eye is just as effective as a living eye in producing the retinal image. This follows 

from its mechanical operation.    

                                                 

exaggerates the degree of correspondence Pecham is asserting for the visible species. The original 

reads: “Visionem fieri per hoc, quod in glaciali est ordinatio speciei sicut exterius rei ... quod nisi 

fieret oculus rem distincte non videret” (Perspectiva communis I.37a{40a}).   I am told that the Latin 

word sicut corresponding to ‘exactly’ in the translation is best translated ‘just as’ or ‘like’ or even 

perhaps ‘in some way’ (personal communication from Dr Tawrin Baker, Department of History and 

Philosophy of Science, University of Pittsburgh). See Pecham (1970), pp. 120-1. 

176 E.g., Gal & Chen-Morris (2013), p. 21; (2010a), pp. 193, 196-7, 199, 204, 206. 
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(a)                                                                              

 

(b) 

 

Figure 3.2 (a) A. Mark Smith’s reconstruction of the process of visual sensation, according to Kepler. 

Source: Smith (2015), p. 362. (b) An analysis of image formation in a pinhole camera by Giora Hon 

and Yaakov Zik. Note how the image of the sun (bottom right) results from a combination of images 

of the pinhole. This process leaves a penumbra of width KC” around the true image of the sun. 

Source: Giora Hon, Yaakov Zik, 'Kepler's Optical Part of Astronomy (1604): Introducing the 

Ecliptic Instrument', Perspectives on Science, 17:3 (Fall, 2009), pp. 307-345.  © 2009 by the 

Massachusetts Institute of Technology.    
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In contrast, the correspondence of Kepler’s retinal picture to the object it represents 

is subject to two sources of doubt. First, the picture is not the result of the transmission of 

intentional species from the object but rather the result of light rays bouncing off the object 

and landing on a screen. So whether or not the resulting picture corresponds to the object 

depends entirely on the paths followed by the rays and on the mechanism by which they 

enter the eye and are projected onto the retina. There is no guarantee of resemblance to the 

object; for example, in the camera obscura, to which Kepler compares the eye,177 “the 

projected image consists of an infinite number of overlapping images of the aperture that 

combine to take the shape of the luminous object”178 (Figure 3.2b). Whether or not the 

images are combined in such a way as to take the shape of the object depends on structural 

features of the eye or instrument. Defects in these features may cause errors of vision, such 

as image distortions or multiplications. For the perspectivists, on the other hand, the 

resemblance of the visible species to the object was due entirely to the sensitivity of the 

visual spirits, not to the structure of the eye. So long as there was an adequate flow of visual 

spirits from the brain to the eye, and so long as the lens was undamaged, this sensitivity 

guaranteed that the physical species impinging on the lens passed through as a coherent, 

point-to-point representation of the object. Second, once the picture is produced on the 

retina, Kepler has no account of how the intellect manages to judge the image and thereby 

perceive the object of which it is the image. The incompleteness of the theory is made more 

bothersome by the fact that the picture on the retina turns out to be an inversion of the real 

object.  

That said, it is possible that Smith and GCM exaggerate the difference in degree of 

certainty between the perspectivist and Keplerian accounts. As noted above, the interaction 

between the lens and the species radiated by the object of vision yields a punctiform, two-

dimensional representation of the object. Arguably, the perspectivists would have had to 

include an inference from this representation produced in the lens to the object itself, and 

therefore would involve an “interpretative leap” analogous to that required by Kepler’s 

                                                 

177 E.g., Kepler (2000), p. 184. 

178 Smith (2015), p. 353 and Kepler (2000), chapter 2. 
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account.179 Is the argument of Smith or GCM that the mechanism of species transmission 

simply allowed for fewer ways in which the inference could go wrong? Or is it that the 

species accounting for each point bore a likeness to the point of origin in the object? One 

might contrast the latter case with the image in the camera obscura. There, though the 

resulting image resembles the projecting object, each individual patch of light resembles 

the aperture. There is thus no necessary likeness between the elements of the image and 

the elements on the surface of the object. It is simply a matter of chance, resulting from the 

nature of light together with the conditions of the chamber, that the light rays happen to 

combine in such a way as to constitute an image resembling the object. Perhaps this is the 

specific source of uncertainty affecting Kepler’s theory. 

If despite the reservation broached at the beginning of the last paragraph we grant 

the Smith/GCM view that perception was more subject to doubt on the Keplerian account 

of the eye than the perspectivist, it is well to recall here that Kepler sets out to investigate 

optics in order to enable astronomers to make “technically-sound” observations (artificiosa 

observationes) of celestial objects. Given these sources of doubt, however, how can we 

trust images of these objects produced by light? According to GCM,  

we can trust images, whether on the pavement or on the retina, whether far away or nearby, 

because they are outcomes of a purely natural, causal process that we can investigate through 

experimenting and theorizing. This means that we can trust observations of stars as much as those 

of books, and we can trust instrumental, artificial observations as much as we trust our eyes.180 

It is unclear what GCM take to be the contrasting case here, but presumably the 

species account of vision, with its role for judgment and its teleological element, is not a 

“purely natural, causal process.” In any case, after Kepler it seems that the trustworthiness 

of vision or of instrumental observation now depends on the state of science itself, on our 

“experimenting and theorizing.” Some would see this development as grounds for 

optimism, since observation itself is now amenable to empirical inquiry and presumably 

improvement resulting therefrom. But GCM emphasize that the Kepler’s account of vision 

comes at “a steep epistemological price:” “if the instrument is not prone to error more than 

                                                 

179 Smith, (2015), p. 369. 

180 Gal & Chen-Morris (2013, p. 24. 
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the eye, it is immediately implied that the eye is as vulnerable to error as the instrument.”181 

This vulnerability affects the very structure of vision, on which they quote Kepler: “for it 

has been demonstrated most clearly, from the very structure [conformatione] of vision, that 

it frequently happens, that an error befalls the sense of vision.”182 

Surely, Kepler’s predecessors were aware of the existence of visual errors? GCM 

admit that “[v]isual errors are of course nothing new” but maintain that “[i]n the 

Aristotelian paradigm, errors are created by the intervention of the human imagination; the 

visual data are indubitable.”183 This indubitability of the image is supposed to contrast with 

Kepler’s theory, where the perceived images themselves are subject to the two doubts 

mentioned above. Since the process of image formation no longer guarantees the reliability 

of the resulting image, the optical scientist now needs to provide a demonstration that the 

pattern on the screen (of the retinal wall, the camera obscura, etc.) does indeed correspond 

to the projected object. She cannot hope to escape doubt by means of this stratagem, 

however, for “[t]he real doubt does not arise from the possibility of error but from the need 

for such demonstration, and is all the more devastating for that.”184 

How did Kepler get us into this epistemological bind? He is certainly no skeptic; 

on the contrary, “Kepler’s optics is as much epistemologically oriented as traditional 

optics.” Indeed, this situation results from Kepler’s effort to put astronomical observation 

on a more secure footing: 

instead of guaranteeing the veridicality of our visual knowledge in general, it aims at 

supporting the empirical underpinning of his new astronomy, and of long-distance instrumental 

observation in particular. More crucially, it fulfills this immediate task at the expense of the general 

epistemological assuredness provided by traditional optics.185 

                                                 

181 Gal & Chen-Morris (2013), p. 25. 

182 Gal & Chen-Morris (2013), p. 25, italics added by the authors; Kepler (2000), p. 236. 

“Demonstratum enim est euidentissimè, ex ipsa visus conformatione, fieri crebrò, ut visui error 

accidat, dum lucida nimis magna existimat.” Kepler (1939), p. 197; (1604), p. 221. 

183 I will say more about the causes of error, according to the perspectivists, in section 3.3.6, with 

reference to Roger Bacon’s treatment in the Perspectiva.  

184 Gal & Chen-Morris (2013), p. 25. 

185 Gal & Chen-Morris (2013), p. 24. My emphasis. 
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In other words, Kepler has traded general epistemological “assuredness” for a more 

specific kind of epistemological assuredness. In trying to solve the problem of how to 

observe distant objects, Kepler has opened the door to skeptical worries about observation 

in general. Kepler has won a narrow scientific victory at the cost of a general epistemic 

defeat. 

This defeat arises from Kepler’s egalitarian treatment of eye and instrument as 

species of “natural, causal processes.” In the following sections, I will argue that GCM 

unfairly minimize the epistemological pay-off of Kepler’s instrumentalization of the eye 

because they underappreciate the scope of the scientific problem he is dealing with. In the 

course of the discussion, I will show that the problems Kepler is concerned with would 

affect the perspectivists also, and indeed would be problems on any theory of vision. So 

his solutions to them are “general” too, in a sense. 

3.3.4 Error, perception and measurement 

For the moment, I note that the notion of “error” is underspecified in their analysis. 

There are different kinds of error that can affect observation, depending on the context. 

Ordinary observation, for example, can be misled (in extreme cases) by hallucination, a 

fact which gives rise to traditional skeptical worries about the possibility of our perceptions 

being manipulated by evil demons and the like. It can also be misled by non-normative 

viewing conditions (adequate lighting, appropriate distance from the object, ill-health of 

the eye, etc.). This is not the kind of error, however, that is of concern to scientists. ‘Error’ 

has a different meaning for scientists, a meaning that is quite general and that cannot be 

reduced to the ‘error’ of ordinary observation. When scientists speak of error, they usually 

have in mind the kinds of error that affect measurement. There are three basic kinds. First, 

there is non-systematic, random measurement error associated with vagaries of observation 

and vagaries of the environment, beyond those we can control for, that yield a residue of 

imprecision and uncertainty in our measurements. Then, there is systematic measurement 

error associated with inadequate schematic models of our instruments and observation 

procedures, which yield biased error in interpreted experimental results. Finally, there is 
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“real” error—true physical deviations from the predictions of our theories. Thus the 

distinction between ordinary observation and scientific observation (at least, scientific 

observation of the kind relevant to measurement-based sciences like astronomy) reveals 

two general epistemological problems concerning observation: 

1. how to achieve certainty in our perceptions; and 

2. how to achieve certainty in our measurements. 

The two problems are not equivalent. From an empirical perspective, there is much 

measurement in science that does not depend on perception. For an extreme example, 

sophisticated experiments in contemporary physics (e.g., the Large Hadron Collider, 

LIGO, unmanned space probes to other planets, etc.) rely on “observations” carried out by 

instrumentation that, besides being highly automated, interacts with the measured entities 

in ways that are impossible for human perceivers. The only role for human perception here 

is reading the processed results off computer screens and print-outs. From a philosophical 

perspective, I do not think there is a good a priori reason to think that in general, the 

solutions to (2) will be equivalent to, or even harmonize with, the solutions to (1).  

How is this lack of dependence possible? As suggested in the previous paragraph, 

I do not think “instrumental observation” is necessarily a kind of visual or perceptual 

observation. Vision need not enter into the acquisition of instrument-mediated knowledge 

at all, except in the mundane sense of reading processed results. That is to say that vision 

need not enter in a way that would make the ‘error’ to which ordinary observation is prone 

relevant to the quality of the instrument-mediated knowledge. Instrument-mediated 

knowledge of the kind of interest to Kepler is acquired through measurement, and as such 

is acquired by different methods, and is subject to different criteria of certainty and error, 

than the methods used to acquire ordinary visual knowledge. In short, these seem to be 

different kinds of activity altogether. GCM may be committing a category mistake by 

assuming that instrumental observation is a species of visual observation. 

More precisely, the mistake would consist in thinking that measurement is related 

to vision as a particular kind to a more general category. On the contrary, I claim that they 

belong to different categories of activity: 

a. Vision belongs to the category of ordinary sensory observation, which has its 

own criteria of certainty and error. 
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b. Measurement, on the other hand, is a process of material representation, which 

has different criteria of certainty and error.  

I will elaborate on (b) in the next paragraph, but for the moment I will point out that 

I am not claiming that ordinary observation is irrelevant to measurement. I grant that 

ordinary observation is indispensable to our use of the results of measurement. But I do not 

grant that it is essential to the production of the results themselves. 

In order to make sense of the idea that measurement is a process of material 

representation, I will provide the following approximate characterization of 

measurement.186 A measurement is: 

i. A physical interaction with an entity, which is used to 

ii. selectively represent the entity in terms of the value of some physical parameter 

that characterizes the entity 

iii. in order to obtain information about the entity. 

This representation is itself material, generally taking the form of locating the entity 

on a scale. With this clarification of the nature of measurement, we can now see why it is 

that much measurement in science does not depend on human perceptual faculties: in 

general, the physical process of interaction with, and representation of, the entity can be 

carried out by an instrument as well as a human. On this view, measurement is inherently 

“instrumental” or “non-anthropocentric” in that the physical interaction and production of 

the representation that are at its core need not be carried out by a human or involve human 

perceptual faculties.  

Accurate measurement is therefore facilitated (at least) by knowledge of how the 

process works and of what features of the process may introduce errors in the 

representation. This knowledge must be acquired by inquiry into the nature of the process. 

Measurement has a modal aspect, because it presupposes a representation of what could 

happen—that the physical parameter could take on any of the values represented on the 

scale. This modal aspect distinguishes it from ordinary observation: In ordinary 

observation, we do not need to locate the object on a previously recognized space of 

possible values, because under normal conditions, we directly observe the actual state of 

                                                 

186 The characterization is loosely based on van Fraassen (2008), pp. 179-180. 
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the object. The main question is whether those conditions obtain. Moreover, we observe 

its actual state in relation to ourselves.  This is what Currie (1995) calls the perspectival 

aspect of seeing: “from what perspective I see things depends on the location of my body—

or at least of my eyes—relative to the things I see.”187 Whereas measurement provides 

information relative to the space of possible outcomes built into the instrument, seeing 

provides what Currie calls “egocentric” information, information about an actual state of 

affairs relative to the perceiver’s state “here and now.” For example, it is easy for a viewer 

to make small mistakes about the distances and directions of objects relative to him or her. 

It is even possible to makes mistakes concerning temporal egocentric information; for 

example, for astronomical distances we are prone to think that what we see tells us how 

the seen object is now, because we do not account for the time required for light to travel 

from the object to us.  

Currie contrasts egocentric information with the information provided by 

photographs. These do not convey egocentric information, because seeing a photograph 

does not provide the viewer with information about where the object photographed is in 

relation to the viewer.188 Since photographic information is not egocentric, the types of 

discriminatory errors characteristic of vision do not apply to the seeing of photographs. I 

submit that a fortiori, there is even less overlap between vision and measurement. 

It follows that the considerations that come into play in evaluating the certainty of 

measurements are not the same as those that are relevant in evaluating the certainty of our 

perceptions. Because measurement is a process of material representation, it suffers from 

                                                 

187 Currie (1995), p. 66. 

188 Of course, when combined with information from other sources, photographs can provide 

information for an inference to egocentric information. If the viewer knows where and when the 

photograph was taken, where he or she is now, and what time it is now, the viewer may infer that 

the photographed scene stands in a certain spatiotemporal relation to his or her time-slice. For 

example, if I see a photograph of a May 1st parade in Paris taken in 2017, when I am in Pittsburgh 

on May 1st, 2018, and was there also on May 1st, 2017, I can infer that the event depicted took place 

a year ago and several thousand kilometers away from where I am now and where I was then. But 

the egocentric information available in ordinary seeing is not obtained by inference from the visual 

experience together with other information. Egocentric information can be obtained by non-

perceptual paths. 
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errors that arise from the contributions of the process to the result, which may cause the 

latter to deviate from the true value. Certainty can be approached, but only a posteriori, by 

identifying those contributions and accounting for the difference they make to the result. 

My claim is that this understanding of error and certainty guide Kepler’s theorizing 

in the Optics. At this point, the difference between the perspectivists and Kepler concerning 

vision may be put thus. For the perspectivists, the key epistemological problem was: how 

is it that humans can have perceptions of the world that correspond to the way it truly is, 

or in other words how is veridical perception possible? Their theory was designed to 

explain this correspondence. Kepler’s conceptualization of the eye as an instrument is 

aimed at a different problem than veridical perception: how to achieve accurate 

measurement by means of vision. If this interpretation of Kepler is correct, then one would 

expect Kepler’s theorizing to have the following characteristics: 

1. That the errors Kepler is interested in are errors specific to measurement. 

2. That at least some of the specific sources of error dealt with in the Optics would 

be neutral with respect to differences between theories of vision. This neutrality 

arises from the fact that sources of error will inevitably be located in sites 

external to the human perceptual apparatus, in the experimental set-up, for 

instance, or in relational features of the experiment. 

3. That certainty is achieved not by an a priori guarantee of correspondence 

between the world and our perceptions of it, but a posteriori, by identifying and 

correcting for sources of error. Perspectivist theory provided such an a priori 

guarantee because according to it, the visual spirits ensured a faithful 

representation of the visual field, and the mind had direct access to this 

representation.  

In the next two subsections, I will argue that these three “predictions” are borne out 

by the Optics. Kepler displays a keen interest in systematic error; he deals with problems 

that are neutral between theories of vision; and he identifies and corrects for sources of 

error by focusing research on causes of error built into the measurement process.  
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3.3.5 The problem of the certainty of measurement 

I will begin with a brief philosophical excursus. I am not the first to note the 

difference between the certainty of ordinary observation and that of scientific observation.  

For example, Pierre Duhem, writing at the beginning of the 20th century, observed that 

[a]n experiment in physics being quite another matter than the mere observation of a fact, 

there is no difficulty in conceiving the certainty of an experimental result to be of quite another order 

than that of a fact merely observed by the senses. It is similarly understandable that these certainties 

of such different sorts should become known by entirely distinct methods.189 

The difference between an experiment in physics and “the mere observation of a 

fact,” according to Duhem, is that observation (in the sense of the sensory observation of 

the experimental apparatus) in physics is always accompanied by an interpretation of what 

has been observed. So in analyzing the methods by which the two certainties are known, 

Duhem focuses on testimony, the linguistic expression of that interpretation. Duhem goes 

on to describe differences in the criteria by which testimony of ordinary observations on 

the one hand, and scientific observation reports based on performed experiments on the 

other, should be evaluated.  In order to evaluate the former, it suffices to know whether the 

observer is sincere, “sound enough in mind not to confuse the play of his imagination with 

perceptions,” and sufficiently knowledgeable of the language she uses to express her 

thought clearly. If the three criteria are satisfied, then when the observer “says he has 

observed a fact, the fact is certain.” In Duhem’s example, if the observer reports having 

seen a white horse in a certain street at a certain date and time, then dishonesty, 

hallucination, memory etc. might leave room for doubt. But if he satisfies the criteria, then 

there is little room for serious questioning.  

In contrast, experimental scientists are rarely questioned on grounds of honesty or 

veridical perception. The relevant criticism of scientific observational reports involves 

                                                 

189 Duhem (1982 [1906]), p. 158. A few decades later, Gaston Bachelard famously maintained that 

there was a break between the methods of la connaissance commune and those of modern science 

(e.g., Bachelard (1949), ch. VI). Though the reference to Duhem might seem dated to some readers, 

it has the virtue of providing a clear exposition of differences between how certainty is achieved in 

ordinary observation and how it is achieved in measurement.  
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criticisms of interpretation. Duhem identifies four steps in the critical analysis of scientific 

observation reports. First, identify the theories employed by the scientist to interpret the 

experiment. Second, assess whether the theories are employed properly in the 

interpretation. Third, assess the relationship between the idealized experimental set-up, as 

reported, say, in a schema of the experiment, and the actual experimental set-up, including 

the instruments employed. Fourth, assess the degree of approximation involved in the 

interpretation of the result.190 

The third step is the most important for understanding Kepler’s approach to 

observation in the Optics, though the first and second are also relevant. One of the main 

points of assessing the relationship between the idealized experiment and the actual 

experiment is to determine whether all the important causes of systematic measurement 

error have been eliminated and all the desirable corrections made. Throughout the Optics, 

Kepler displays a deep concern with identifying sources of systematic error in visual 

observation and correcting for them.191 Indeed, there is reason to think that Kepler 

conceives of observation itself as being distinguished from mere perception in virtue of 

involving safeguards against error, as the following quotation from the Conclusion 

suggests: “up to this point we have dealt with the deceptions of vision, and, treating the 

subject through the procedures and precautions of observing, we have brought it down 

pretty much within the limits of books 4, 5, and 6 of Ptolemy’s Almagest.”192 Here 

observation is distinguished from vision in virtue of involving “procedures and 

precautions.”  

On this score, I note in passing that there is some ambiguity in the meaning of 

Kepler’s use of the term artificiosa observatione in the subtitle of the Optics. The part of 

the subtitle in which the term appears is “DE ARTIFICIOSA OBSERVATIONE ET 

ÆSTIMATIONE DIAMETRORUM deliquiorumq́; Solis & Lunæ” which Donahue 

translates as “on the Technically Sound Observation and Evaluation of the Diameters and 

                                                 

190 Duhem (1982), pp. 158-163. 

191 Hon (1987) discusses Kepler’s awareness of experimental error in the Paralipomena. 

192 Kepler (2000), p. 432. “Hactenus itaque de visus deceptionibus egimus; remque per obseruandi 

modos et cautiones traductam, penè intra limites libri 4. 5. et 6. in Opere Magno PTOLEMAEI 

deuoluimus.” Kepler (1939), p. 378; (1604), p. 449.  
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Eclipses of the Sun and Moon.” GCM, on the other hand, consistently translate the term as 

“artificial observation” and even treat “artificial” as equivalent to “instrumental,” as in the 

passage, quoted above, where they gloss Kepler as suggesting that “we can trust 

instrumental, artificial observations as much as we trust our eyes.” According to several 

Latin dictionaries that I consulted, however, the primary meaning of artificiosus was 

“skillful” (hence Donahue’s translation as “technically sound”).193 Though artificiosus 

could be used in the sense of “artificial” as opposed to “natural,” this was apparently a 

secondary meaning of the term. If the Donahue translation is the correct one (though I’m 

not in a position to ascertain this), then this rendering of the subtitle indicates that what is 

important for Kepler is not so much that observation be done via instruments, but rather 

that it be done with skill, i.e., with “procedures and precautions.” 

This reading of artificiosa observatione may seem to be in tension with my general 

thesis that Kepler paved the way for the instrumentalization of scientific observation. On 

the other hand, it supports my claim that Kepler conceives of scientific observation as a 

special kind of activity, the reliability of which cannot be ascertained by the criteria of 

ordinary observation. In my view, Kepler paved the way for the instrumentalization of 

scientific observation not simply because he used instruments to observe, but because he 

treated the activity he was concerned with—measurement—as a process that is not 

essentially anthropocentric. So the reading creates tension with my general thesis only on 

the assumption that “instrumentalization” simply refers to the use of instruments. On the 

other hand, if it refers to the non-anthropocentricity of the process for which the instruments 

are used, there is no tension. 

Before continuing, two more points should be made here. First, recall that I 

characterized systematic measurement error as a type of error associated with inadequate 

schematic models of our instruments and observation procedures. To my knowledge 

Kepler never uses the terms ‘systematic’ or ‘experimental error,’ but just ‘error.’ Moreover, 

he does not use the vocabulary of ‘models’ to describe observational errors. Nevertheless, 

as I hope will become clear from the evidence I have extracted from the Optics, Kepler was 

                                                 

193 For example, Cassell’s New Latin Dictionary translates artificiosus as: “(1) skillful, 

accomplished … (2) skilfully made … hence artificial (opp. to natural).” 
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keenly aware of what we would now call biased error arising from sources within the 

instrument, as well from astronomers’ inadequate understanding of the workings of the 

measurement processes they employ. For example, at the beginning of the chapter “On the 

Means of Vision,” Kepler writes that he intends to “explain the deceptions of vision arising 

from the construction of the instrument.”194  So I do not think I commit a malignant 

anachronism by using the term ‘systematic’ or ‘biased error’ to describe the errors he is 

dealing with.  

Second, Kepler’s theorizing about how the eye and other instruments work is 

motivated in part by a re-examination of past claims.195 So the deep concern I attributed to 

him above is displayed not just in his positive contributions but also in the way he reacts 

to past work. For example, in chapter 2, “On the Shaping of Light,” Kepler begins by 

discussing previous measurements of the apparent diameters of the sun and moon. These 

measurements had all exploited what Kepler calls a “theorem” introduced by Aristotle and 

John Pecham (mentioned above, whom Kepler calls “Pisanus”), namely that “the ray of the 

eclipsed sun [is] similarly eclipsed when it is taken through a small hole.”196 This 

“theorem” was the principle underlying measurements of the lunar and solar diameters 

during eclipses: 

… they [Aristotle and Pecham] afforded Reinhold, Gemma, and my teacher Maestlin, the 

opportunity to apply the theorem to a use that is no less noble [than explaining the shape of light 

rays cast through small holes]. For these authors I have named had taught astronomers how to use a 

compass to measure (dimetiri) the magnitudes of solar eclipses, the ratios of the diameters of the 

sun and moon, and the inclinations to the vertical of the circle drawn through the centers of the 

luminaries, avoiding the inadequacy of the eyes, and avoiding the error which generally occurs in a 

bare estimation. And so, from that time, however many solar eclipses were documented by eminent 

mathematicians, it is likely that they were observed (obseruatas) in the way just now described … 

It is indeed well worth while here to see how much detriment would result from the 

ignorance of the proof of this theorem. For since it escaped a number of authors, the result was that 

in believing in the theorem without restrictions they fell into a large error. For however many 

                                                 

194 Kepler (2000), p. 171. “Denique deceptiones visus, ab instrumenti conditione ortas, explicabo, 

et ad vsum astronomicum accommodabo.” Kepler (1939), p. 144; (1604), p. 158.  

195 As noted by Hon & Zik (2009), pp. 309, 332-333, 340.  

196 Kepler (2000), p. 56.  
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eclipses were observed in this way, they all had come out much greater in the sky than it appeared 

in the ray: all showed a much greater lunar diameter in the sky than in the ray. Hence it is that that 

Phoenix of astronomers, Tycho Brahe, in his wonder, was driven to such straits as to pronounce that 

the lunar diameter is always a fifth part smaller in conjunctions than it appears to be in oppositions, 

even though it is the same distance from us in both instances … 

It is my hope in these pages to remove these considerable difficulties, which wall off our 

entry to the prediction of eclipses and to an exact reconstruction of the moon’s motion, by a 

straightforward demonstration of the theorem, and by laying bare the sources of the errors which 

displayed themselves for me to examine through a careful consideration of the solar eclipse that 

occurred in 1600.197  

                                                 

197 Kepler (2000), pp. 56-7. “Caeterum et ARISTOTELES, et is quem dixi PISANUS, ad enodationem 

argumenti pulcherrimum experimentum afferens, de Solis deficientis radio similiter deficiente, cum 

is per angustum foramen recipitur: occasionem REINHOLDO, GEMMAE, et MAESTLINO 

Praeceptori meo 

subministrauit, accommodandi theorema ad vsum non minus nobilem. Nam hi à me nominati 

authores docuerunt Astronomos Eclipsium Solarium quantitates, diametrorum Solis et Lunae 

proportiones, et circuli 

per luminum centra traiecti ad verticalem inclinationes, citra oculorum damnum, citraque errorem, 

qui solet nuda aestimatione committi, circino dimetiri. Ab eo igitur tempore, quotquot Solares 

Eclipses à praestantibus Mathematicis annotatae sunt, modo iam dicto obseruatas esse verisimile 

est: cum praeter hanc nulla alia certa rei, quae in codo fit, metiendae ratio possit institui. 

Verùm hîc operae pretium est, videre, quantum incommodum habeat ignorata theorematis 

demonstratio. Haec enim cum authores aliquos fugerit, factum est, vt theoremati sine limitatione 

credentes in magnum errorem inciderint. Etenim quotquot hoc modo obseruatae sunt Eclipses, 

omnes illae multò maiores in codo euenerunt, quàm apparuit in radio, omnes diametrum Lunae in 

codo multò maiorem exhibuerunt, quàm in radio. Hinc est, quod Phoenix ille Astronomorum, 

TYCHO BRAHE, mirabundus in has coactus fuit angustias, vt diametrum Lunae quintâ semper 

parte minorem esse pronuntiauerit in coniunctionibus, quàm apparet in oppositionibus, quamuis 

vtrinque aequè à nobis absit. Non tamen negarim, alias etiam subesse causas, cur reuerâ nonnihil 

minor appareat Lunae diameter in coniunctionibus, de quibus infra. 

Tantas difficultates, quae aditum nobis ad Eclipsium praescientiam, et ad exactam motus Lunae 

restitutionem obuallant, spero me his pagellis tollere, demonstratione theorematis expeditâ, et 

apertis errorum fontibus, qui mihi ex accurata consideratione deliquii Solaris, quod anno 1600. 

contigit, sese conspiciendos exhibuerunt.” Kepler (1939), p. 40; (1604), pp. 39-40. 
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Kepler goes on to show that a theoretical derivation of the process by which the 

image of the eclipse is formed in the camera obscura reveals that the aperture adds a 

penumbra to the image. Since the previous eminent mathematicians and “phoenixes” of 

astronomy had been unaware of this source of error, they had failed to correct for it when 

measuring the lunar and solar diameters by this method, thus systematically overestimating 

the solar and underestimating the lunar diameter.   

I have quoted this passage at some length, in part because it is typical of Kepler’s 

approach in this work. For example, in the first paragraph it is clear that “observe” 

(obseruare) means “measure” (dimetior) in this context. Moreover, the passage shows the 

relevance of Duhem’s analysis of scientific observation reports. Despite the fact that it may 

be anachronistic to characterize what Kepler is doing as dealing with “idealized models,” 

the passage shows Kepler (i) identifying the method and assumptions underlying the 

astronomers’ observation reports; (ii) criticizing an improper application of the key 

principle underlying the measurement—believing in the theorem without restriction or 

proof; and (iii) revealing how the improper application causes the astronomers to ignore an 

important respect in which the principle idealizes the process of image formation by 

leaving out the contribution of the instrument to the image. We see here that Kepler does 

not question his predecessors on the grounds of honesty, veridical perception and other 

criteria for assessing ordinary observation, but whether they have correctly interpreted the 

measurement process.  

In the Preface to the Optics, Kepler writes that the optical part of astronomy arises 

as a response to the “mediatedness” of the human observer’s relationship to astronomical 

objects: 

But because all celestial observation takes place through the mediation of light or shadow, 

and because the media between the stars and the eye have a variety of modifications, and because 

those things that we observe in the heavens are either motions (whose kinds include retrogradation, 

station, and so on), or arcs (that is, angles at the observer), or luminous bodies; and because all these 

are considered in optical science hence arises the third, optical, part of astronomy.198 

                                                 

198 Kepler (2000), p. 13. “Quia vero omnis obseruatio coelestis fit mediante luce vel umbra, 

mediaque stellas inter et oculum distinctas habent affections, et quae in coelo obseruamus, vel motus 

sunt, quorum species retrogradatio, statio etc. vel arcus, hoc est, anguli ad visum; vel corpora 
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In Chapter 10 on the “Optical foundations of motions of heavenly bodies” it will 

turn out that the observation of motions in the heavens is complicated, both by the fact that 

judgements of relative motion can be confounded by the observer’s own physical 

relationship to the observed bodies, as well as by the fact that the motions have to be 

inferred from positional data. In the Preface, Kepler stresses the importance of 

measurement in astronomy: 

And thus the quantity of the image which the moon or the sun, whether whole or eclipsed, 

shows us, and of the shadow which the earth stretches out to the moon, must be carefully 

investigated by the astronomer. The diameter of the other stars are sought out to the extent that, if 

neglected, they will render the observations uncertain … 199 

In this passage we also see the concern with identifying and eliminating the causes 

of uncertainty in astronomical measurements. 

It is important to recognize that what I have called the “mediatedness” of the 

observer’s relationship to astronomical objects affects both Kepler and the perspectivists. 

For example, the problems of the apparent retrograde or stationary motion of the planets, 

or the interference of the media between the stars and the eyes, are problems that affect 

astronomical observation on any theory of vision. Indeed, many, if not most of the 

observational problems Kepler is concerned with in the Optics are neutral with respect to 

an intentional species account versus Kepler’s light-based account, as well as with respect 

to the “epistemic gap” allegedly created by the latter. I give two examples here. In chapter 

10, Kepler considers the problem of determining the speed of a planet.200 The question is 

whether the planet’s motion is eccentric with respect to vision. This question is important 

because if the motion is eccentric, some parts of its orbit will be farther away from the 

observer than others. Consequently, the planet will appear to pass through unequal arcs in 

                                                 

lucida; omniaque ista in Optica Scientia considerantur; hin oritur tertia pars Astronomiae Optica 

…” Kepler (1939), p. 14; (1604), pp. 1-2.  

199 Kepler (2000), p. 16. “Quantitas itaque specie, quam Luna Solue seu integer seu deficiens nobis 

ostendit, vmbraeque, quam Tellus ad Lunam extendit, Astronomo diligenter est inuestiganda. 

Stellarum caeterarum diametri eatenus quaeruntur, quatenus ignoratae obseruationes infidas 

redditurae sunt, et quatenus eadem circa illa, quae circa Solis et Lunae corporum moles scire 

satagimus.” Kepler (1939), p. 16 ; (1604), p. 4. 

200 Kepler (2000), p. 339; (1939), p. 282; (1604), pp. 328-9. 
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equal periods of time, and will therefore appear to slow down where the arcs appear small 

and speed up where the arcs appear large. That is, the observer’s physical relationship to 

the planet may confound the determination of the speed. Whether his access to the planet 

is perceptually direct, by the conversion of the intentional species sent out by the planet 

into intelligible species in the mind, or indirect, by the interpretation of a picture on the 

retinal wall, is irrelevant to answering the question of eccentricity. 

Another example involves the use of a type of quadrant to measure the angle 

between a pair of stars from the point at which the observer is located.201 More precisely, 

an accurate measurement requires that the point at which the lines connecting each star to 

the observer meet be correctly located (Figure 3.3c). If one were to locate it at the point of 

contact between the eye and the instrument—that is, at the surface of the eye—one would 

introduce a systematic error into the measurement and obtain too large an angle. The reason 

is that the lines drawn from the stars through the upper sights of the instrument do not 

converge at the surface of the eye.  

According to Kepler, the correct point is the center of the eye. I am unclear as to 

whether Kepler intends the center of the eyeball or the center of the lens. Based on his 

diagram of light being refracted through a globe on p. 213 of the Optics, and Smith’s 

reconstruction of it, with retina added, in Smith (2015), p. 362 (see Figure 3.3a and b), the 

point of intersection would appear to be in the lens, and thus significantly off-center with 

respect to the eyeball. If Kepler intends the center of the eyeball, this might be a case of 

Kepler “baking in” certain aspects of the visual cone of the Perspectivists discussed 

above.202  

In any case, the reason he gives for using the center of the eye is that the picture is 

arranged on the retina such that straight lines projected from individual points of the retina 

through the center will fall on the corresponding points of the visible object. The straight 

lines from each star will therefore intersect at the center, thereby allowing a measurement 

of the angle of vision. Presumably, a perspectivist would require that the center of sight be 

used, which Alhacen located in the center of the eyeball, in the vitreous humor between 

                                                 

201 Kepler (2000), p. 227; (1939), p. 190; (1604), p. 212. 

202 I owe this observation to Dr Tawrin Baker. 
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the lens and the optical nerve.203 Though again I am uncertain as to whether Kepler’s center 

and Alhacen’s center are identical, regardless of how the center is determined, Kepler’s 

main point is that using it avoids a systematic error. One would have to deal with this 

source of error regardless of whether one held that the images of the stars formed in the 

eye can be assumed to correspond to their objects by virtue of a transmitted similitude, as 

the perspectivists did, or whether one thought that the correspondence must be inferred 

based on traces left by the causal process of image formation (Keplerian patches of light 

on the retinal wall). Moreover, if Kepler is indeed smuggling in the visual cone model, then 

he is using the perspectivists’ own explanatory success, rather than something new in his 

account of vision, to avoid the error. 

                                                 

203 Smith (2015), p. 186. 
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Figure 3.3 (a) Kepler’s diagram of light refracting through a globe. (b) Smith’s reconstruction. (c) 

Kepler’s diagram of an instrument for measuring the angle of vision between stars. 

 

As Duhem noted, the correction of systematic measurement error requires the use 

of theories, especially of theories concerning the phenomena implicated in the measuring 

instruments.204 Though I have not found instances of the use of the term ‘theory’ in the 

Optics, in Chapter 10 of the Optics he argues that reasoning necessarily intervenes in our 

observation of celestial motions. He starts with a question about the nature of our 

perceptions of these motions: 

                                                 

204 Duhem (1982), pp. 156-158. 
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Since in astronomy, our aim is the contemplation of the motions of the heavens, while 

everything that we know previously came into our sense, therefore, it is worth our while to consider 

whether the motions of the heavens come immediately into the perception of the eyes, and what 

kinds of optical illusions occur in the celestial motions.205 

He then observes that “there exists no way to grasp motion visually except by 

comparison to some things at rest.” He argues that we can be deceived about what is at 

rest, and hence vision may mislead us as to what is moving. He concludes with the 

surprising assertion that the problems of astronomical observation would not be resolved 

merely by bringing us closer to celestial bodies: 

From these things [various reasons why we can be deceived about what is at rest] it follows 

that even if someone were to carry us across to the moon or to another of the wandering stars, and 

the moon’s motion is most highly perceptible because of its swiftness … nonetheless the moon is 

going to appear to be at rest along with us, while the sun and whatever heavenly bodies are at the 

right distance are all going to be thought to be moved with those motions which were proper to the 

moon itself alone, in addition to their own motions.206 

I note again that the problem highlighted here would be important on any account 

of vision. Furthermore, this passage contradicts GCM’s repeated assertion that the main 

problem dealt with in the Optics is one of bridging the distance between humans and 

astronomical objects.207 Kepler is explicit here that closing this distance would not change 

the fact that visual judgments of motion are always comparative and hence involve fallible 

assumptions about what is at rest and what is not.  

                                                 

205 Kepler (2000), p. 335. “Cum sint nobis in Astronomia propositi ad contemplandum coelorum 

motus, omnia verò, quae discimus, prius veniant in sensus, operae pretium est perpendere, an 

coelorum motus immediate incurrant sensum oculorum, et quaenam contingent deceptiones visus 

in motibus coelestibus.” Kepler (1939), p. 279; (1604), p. 324. 

206 Kepler (2000), p. 336. “Ex his sequitur, etsi nos quis in Lunam aut aliud errantium astrorum 

trnasferat, motusque Lunae sit maximè sensibilis, causâ celeritatis, de quo postea, nihilominus 

visum iri Lunam nobiscum quiescere : Solem verò et quaecunque sidera in iusta fuerint 

propinquitate, omnia, praeter suos motus, iis etiam motibus putari moueri, qui fuerint ipsius solius 

Lunae proprii.”  Kepler (1939), p. 280; (1604), p. 327.  

207 Gal & Chen-Morris (2013), pp. 19, 20, 24. 
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Kepler continues by arguing that the speed of the stars cannot be detected by sense 

perception. The motions of the stars must be inferred from their positions as a function of 

time.208 But this inference is to be accomplished by geometrical demonstration:  

the foremost thing we seek in these bodies are their motions, so much to be wondered at. 

But in order that an astronomer be able to fish these out with geometrical demonstrations 

(geometricis demonstrationibus expiscari), one first needs to measure their position with 

instruments.209 

He concludes that “whatever is in our senses concerning the motion of the heavens, 

we have absorbed thanks to the intervention of reasoning.”210  

In addition to these arguments, we should recall Kepler’s derivation of the camera 

obscura’s penumbra in chapter 2. Kepler there refers to what he is doing, and what his 

predecessors should have done, as a “demonstration” (demonstratio) of how the image is 

formed inside the camera. A “demonstration” is here equivalent to a proof211 in the 

geometrical sense of inferring a proposition from definitions and postulates. It thus seems 

safe to conclude that Kepler is theorizing, in the sense of using “a systematic inference 

procedure,” as a means for correcting biased error in observation.  

Whether he is using theory in a more modern sense is a further question. Jardine 

(1984) has attributed to Kepler’s earlier (1600) A Defence of Tycho against Ursus the first 

appearance of a concept of scientific theory as “a systematic body of hypotheses that is 

related to a systematic practice of prediction, observation and instrumentation in some 

domain of inquiry.”212 This is basically the sense in which Duhem understood ‘theory.’ 

Certainly, Kepler’s study of image formation in the camera obscura and the eye, together 

                                                 

208 Kepler (2000), p. 319; (1939), p. 264; (1604), p. 307. 

209 Kepler (2000), p. 319; (1604), p. 165. “Caeterùm quod praecipuum in his corporibus quaerimus, 

sunt eorum motus tam admirabiles. Vt verò hos geomtricis demonstrationibus  expiscari possit 

Astronomus; situm eorum prius instrumentis dimetiatur necesse est.” Kepler (1939), p. 265; (1604), 

p. 307. 

210 Kepler (2000), p. 337. “Itaque quicquid de coelorum motibus est in nostris sensibus, beneficio 

ratiocinationis interuenientis hausimus.” Kepler (1939), p. 281; (1604), p. 327. 

211 Donohue translates demonstration as either ‘demonstration’ or ‘proof.’ See Kepler (2000), pp. 

55-57 and Kepler (1604), pp. 46-48. 

212 Jardine (1984), p. 289. 
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with his use of the results to correct observational practices employing these instruments, 

seems like a reasonably good fit for such a concept. 213 The various propositions he derives 

are related to each other systematically, in that they all follow from the same definitions 

and postulates as well as from each other. Moreover, he uses them to correct 

instrumentation and observational practices, as I will now show for the eye. 

3.3.6 The eye and the problem of systematic measurement error  

Kepler makes an understanding of the eye central to the task of identifying sources 

of observational error: “the occasion of looking into error in vision must be sought in the 

formation and functions of the eye itself.”214 Kepler follows the description of the eye given 

by Felix Platter (1536-1614), Professor of Medicine at Basel from 1560 to his death.215 

Kepler treats the organ as an instrument analogous to the camera obscura, something 

Platter did not do: “For the pupil takes the place of the window, the crystalline takes the 

place of the panel opposite.”216 In the perspectivist account, the crystalline lens was both 

optical and sensitive, optical in that it received visual rays, sensitive in that the function of 

the visual spirits was to “feel” the intentional species and replicate the image of the object 

as a visible species. In contrast, Kepler’s lens is a purely optical device, in the sense of a 

                                                 

213 Straker (1981) seems to have arrived at the same conclusion. 

214 Kepler (2000), p. 171. “Erroris itaque in visu, occasio quaerenda est in ipsius oculi 

conformatione et functionibus.”  

215 Kepler corroborates the description with that of his friend Johannes Jessenius, Professor of 

Medicine at Prague, where Kepler came to know him, and who in turn followed that of the 

pioneering Paduan anatomist Hieronymus Fabricius ab Aquapendente (1537-1619). See Kepler 

(2000), pp. 171-2. Smith (2015), p. 352 notes that Platter’s description to some extent anticipates 

Kepler’s “deadening” of the eye, for Platter’s model locates visual sensitivity entirely in the retina. 

On the other hand, Platter did not explain how the lens projected an image onto the retina. 

216 Kepler (2000), p. 184. “[E]t fit penè idem, quod supra cap. 2. demonstrauimus in clausa camera 

fieri. Nam pupilla est fenestrae loco, crystallinus loco oppositae tabulae.” Kepler (1939), p. 155; 

(1604), p. 173. 
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device that manipulates light217 and that has the effect of refracting the entering light rays 

onto the retina. The upshot for image formation is that whereas for the perspectivists the 

image was formed on the lens, for Kepler it is formed on the retina by projection from the 

lens. 

In general, there are two ways of responding to systematic measurement error: once 

the sources of biased error have been identified, either they are removed or their effect is 

reduced by adjusting the data to compensate for them. Corrections can be built into 

instruments, as for example when thermometers are constructed with a non-linearized scale 

of temperature markings to compensate for non-uniformities in the thermal expansion of 

mercury. Or they can be implemented in the theoretical interpretation of the experimental 

results, for example by applying formulae that take causes of error into account.  

Kepler employs both kinds of response. With the eye, modification of the 

instrument is difficult, especially in his time. Replacing the eye with artificial instruments, 

however, permits both responses.218 In his account of the camera obscura in Chapter 2 of 

                                                 

217 As opposed to a device that enables seeing. Opsis is the Greek word for sight, which it still meant 

in Kepler’s day (Dr Tawrin Baker, personal communication). 

218 Hamou (1999), pp. 236-237 argues that at the time of writing the Optics, Kepler could not 

conceive of substituting (substituer) the camera obscura for the eye, because the idea of adding a 

lens to the instrument could not have occurred to him before Galileo’s disclosure of the telescope’s 

powers. I do not think my assertion in this sentence contradicts Hamou, however, because for 

Hamou substituer instruments for eyes means making the instruments more like the eyes, e.g., by 

adding a lens to the camera obscura. Substitution in this sense is different from my sense of 

“replacing “the eyes with an instrument, which enables one to measure the same quantity by a 

different process altogether. This difference between Hamou and I reflects a difference in how the 

telescope and the camera obscura relate to vision. Whereas the telescope lends itself to an empiricist 

interpretation of its epistemic import, that it extends the visual sense, the camera breaks with vision 

rather than extending it. This in two ways. First, it was used by Kepler and other astronomers for 

measuring parameters of celestial objects, not for seeing distant objects. One could already see the 

sun and the moon; the question was how best to measure their diameters and so on. Second, it 

provided an alternative process for measuring a given quantity, rather than extending the reach of 

an existing, ocular process. The difference is rather like the one between the scientific balance, 

which accentuates the precision of ordinary balances, and the mass spectrometer, which measures 

mass by an entirely different process (Bachelard 1949, p. 103). Paradoxically, given the much 
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the Optics, for example, Kepler explains how the quality of the picture can be altered by 

manipulating the experimental set-up. The size of the aperture, the distance of the latter 

from the wall on which the picture is projected, the distance of the outside object from the 

aperture, the brightness of the ambient light around the object, and even the color of the air 

between the object and the aperture (which Kepler thought was blue) can all affect the 

quality of the picture.219  

More importantly, from a historical perspective, Kepler also shows how his theory 

of the instrument can be used to make corrections to the data on solar and lunar eclipses. 

As noted above, Kepler motivates his account with the observation that previous 

astronomers, including Tycho Brahe, had been unable to calculate the correct apparent 

lunar diameter using camera obscura-observations of eclipses because they did not have a 

“proof” or “demonstration” of why the ray of the eclipsed sun is also eclipsed in the 

picture.220 Straker has shown that though Brahe had an empirical method for correcting 

apparent solar diameters, this method was unsuccessful when extended to apparent lunar 

diameters during solar eclipses.221 In his account of the camera obscura, Kepler derives 

theoretically that the image of the eclipsed sun in the picture will be augmented by a 

penumbra because the shape of the aperture will be mixed in with the shape of the sun. 

Without correction for the size of the aperture, then, the calculation of the apparent 

diameters of the sun and moon will systematically overestimate the diameter of the sun and 

underestimate the diameter of the moon (relative to the apparent diameters in the sky).222 

Using Kepler’s computations, Straker has estimated the error introduced without the 

correction at about 12%.223 

                                                 

greater prestige of the telescope, Kepler’s treatment of the eye as a kind of camera seems like the 

more radical “instrumentalization” from this perspective. 

219 Kepler (2000), pp. 68-69; (1939), p. 59; (1604), p. 53. 

220 Kepler (2000), pp. 57-58; (1939), p. 48; (1604), pp. 39-40. 

221 Straker (1981). 

222 Kepler (2000), pp. 70-71; (1939), pp. 60-61; (1604), pp. 54-55. Hon (1987) claims that Kepler’s 

use of theory-mediated corrections of data was quite innovative for the time. 

223 Straker (1981), p. 271. 
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Despite the advantages of man-made instruments, Kepler demonstrates that 

knowing how the eye works is also useful for correcting observations. Eyeglasses are an 

interesting example. According to Smith (2015), explaining how eyeglasses correct weak 

sight was problematic for the perspectivists, because the key mechanism for sight was the 

passage of the visual spirit from the brain to the lens.224 For the perspectivists, there could 

be no grounds for correcting vision because the visual spirits ensured a faithful replication 

of the visual field. Unless the eye was physically damaged (e.g., by corneal lesions), the 

perspectivists apparently had few explanatory resources for accounting for weak vision 

other than to invoke some problem with the flow of visual spirits to the lens, for example 

a constriction of the optic nerves. This limitation led them to explain the functioning of 

eyeglasses as a form of deception rather than correction: convex lenses were thought to 

compensate for myopia by making objects appear larger and closer than they really are. 

This explanation encouraged physicians to favor treatments designed to improve the supply 

of visual spirits over the use of glasses.  

The recognition by the mid-fifteenth century that concave lenses correct myopia 

represented an anomaly for perspectivism, because these lenses shrink rather than magnify 

the object of vision. Myopia should therefore be worsened rather than improved. The 

perspectivist Francesco Maurolico (1494-1575) was able to deal with the anomaly, but only 

by proposing that myopia is due to improper curvature of the lens’s anterior surface. 225 

The improper curvature has for consequence that the visible species enter the optic nerve 

in too compressed a form, because it alters the path along which the visible species are 

refracted from the lens to the nerve. This explanation violated the perspectivist rule226 that 

the visual spirits in the lens are sensitive to perpendicular rays only. This sensitivity was 

an essential component of the perspectivists’ explanation of why clear vision is possible—

if both perpendicular and oblique rays could be sensed, then the impression at any given 

spot on the lens would be confused.227 Maurolico needed to break this rule, however, 

                                                 

224 Smith (2015), p. 338. 

225 Smith (2015), p. 338-339. 

226 Among other rules. See Smith (2015), p. 340-341 for a discussion. 

227 On the other hand, the perspectivists all gave a secondary description of vision that did take into 

account all of the rays entering the eye (not just the perpendicular ones). This accounted for 
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because his explanation of myopia involves a double refraction of the visual rays—the first 

at the anterior surface of the lens, the second at the posterior surface. In orthodox 

perspectivism, because only rays perpendicular to the anterior surface are sensed, there is 

only a single refraction, at the posterior surface. Thus, though Maurolico’s explanation 

points towards Kepler’s later treatment of the eye as a purely optical device, the function 

of the visual spirits in perspectivist theory was not really compatible with such a treatment. 

This incompatibility is reinforced by the fact that, according to the perspectivists, the single 

refraction at the posterior surface was at odds with how rays would refract in the absence 

of the visual faculty: the refraction of the rays occurs differently in a dead eye (e.g., the eye 

of a dead person) compared to how it occurs in a living one.  

In Kepler’s model of the eye, on the other hand, clarity of vision is the result of the 

way the incoming light rays are refracted by the lens onto points on the retina. The 

sensitivity function is dropped, and the eye is treated as a purely optical mechanism. 

Therefore loss of visual acuity must be explained by a deformation of the organization of 

its material parts. Presbyopia and myopia, for example, can be explained as caused by late 

(presbyopia) or premature (myopia) focusing of light vis-àvis the retina due to structural 

deformations. Therefore the effects of eyeglasses can be explained as corrections to vision 

brought about refractively by the lenses. That is, eyeglasses correct rather than deceive. 

Convex lenses correct presbyopia, for example, by bringing the focus forward to the lens, 

whereas concave lenses correct myopia by bringing the focus back to the retina.228 The 

moral of this non-scientific example is that on a Keplerian approach, any systematic error 

in observation, like presbyopia, has to be explainable in terms of some deformation or 

dysfunction in the mechanism of image formation. The approach thus demands inquiry into 

built-in sources of error. On the perspectivist approach, on the other hand, because so much 

work is done by the sense faculty, the explanation of such errors that produces the least 

                                                 

peripheral vision, and so within this tradition itself there was a tension between the two accounts of 

vision. I thank Dr Tawrin Baker for pointing this out to me. Smith (2015), p. 217 thinks the second 

description of peripheral vision renders Ibn al-Haytham’s visual cone model “incoherent.”  

228 Kepler (2000), pp. 216-218 ; (1939), pp. 181-183; (1604), pp. 200-203. 
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strain with theory locates the source of the error in the production of the faculty rather than 

in the eye. Rather than a demand, there is a positive disincentive to focus on built-in causes. 

This latter point deserves some elaboration. To view the eye as a “purely optical 

mechanism” is, roughly speaking, to reduce its contribution to sight to the organization of 

its material parts. Thus any defect of vision resulting from the eyes has to arise from some 

defect in that organization or the parts. The power of the visual spirits, on the other hand, 

is not due to the material organization of the eye, since they are produced by the brain, 

which produces them by giving form to highly rarefied animal spirits. Indeed, Bacon held 

that the visual power of the eye resided only in the anterior glacial humor, what we would 

call the crystalline lens:  

… only in it does the visual power reside, according to Alhacen and others. For all other 

humours anterior to it are its instruments and exist for its sake. For if the anterior glacial humour 

should be injured, while the others are preserved, sight is destroyed; and if the anterior glacial 

humour is preserved, while injury befalls the others (provided their transparency remains), sight is 

not destroyed but still functions.229 

Similarly, Witelo claimed that “only the glacial [humor] is the proper organ of sight, 

and not the surface of the eye that is part of the sphere of the cornea.”230 

According to Bacon, this visual power flowed to the eye from the common nerve 

at the front of the brain, where the species passed on from the lens of each eye were 

combined into a single species: 

It is thus evident that the eyes are not alone in rendering judgement concerning visible 

things; but judgement begins in the eyes and is completed by the ultimate sentient power, the source 

of the visual faculty, [located] in the common nerve. It is equally clear that the eyes do perceive, 

and not only the common nerve. But since the eyes are connected to the source of the [visual] power, 

and powers flow from it to the eyes, so that the sensitive power is extended through the whole [optic] 

nerve from the common nerve to the eyes, as Alhacen says, therefore the visual act is one and 

                                                 

229 Lindberg (1996), p. 51. “... virtus visiva est tantum in eo, secundum Alhacen et ceteros. Alia enim 

omnia ante ipsum sunt instrumenta eius et propter ipsum. Nam si ipse ledatur, aliis slavis, destruitur 

visio; et si ipse sit salvus et aliis accidat lesio, dummodo maneat eorum dyaphanitas, non destruitur 

visio quin fiat” (Perspectiva I.4.2). According to Lindberg, this text was written in the period 1265-

1268.  

230 “sola glacialis proprie est organum visus, et non superficies oculi, que est pars spere cornee" 

[Unguru (1991), p. 314 (Perspectiva III.18). 
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undivided, carried out by the eyes and the common nerve … the eye [itself ] necessarily makes 

judgements and has the power of sight, though incompletely.231 

On Bacon’s account, the eye’s contribution to sight is almost completely 

determined by the connection of the lens to the common nerve.232 This connection, 

moreover, matters not because of its material organization, but rather because it is a conduit 

for the visual powers. And as noted above, these visual powers are only present in an eye 

attached to a living organism, for an eye that has been severed or whose owner is 

deceased—an eye reduced to its material organization not just in theory, but in reality—

does not produce a visible species.  

When one holds such beliefs about the eye, then, there is not much reason to inquire 

into structural causes of deficient vision. Bacon’s treatment of visual errors in the 

Perspectiva may be symptomatic in this regard. Despite the chapter title “Concerning 

various errors of vision that arise owing to the structure (compositionem) and complexion 

of the eye,” all of the causes of error arise from some source external to the eye itself: 

1. Strabismus—the inability to direct the visual axes of both eyes to the same point 

at the same time. 

2. Visual judgment is impaired by extremes of heat and cold, which damage or 

weaken the eyes. 

3. People who are intoxicated, infirm, or angry may see double, due to vapors that 

are released in each case and which disturb the eyes from their natural position. 

4. Likewise, head injury, dizziness and vertigo also result in the release of vapors 

to the eye, which cause the visible object to appear in motion. 

                                                 

231 Lindberg (1996), p. 67. “Et sic patet quod non solum oculi iudicant de visibili ; sed incipitur 

iudicium in eis, et completur per ultimum sentiens, quod est virtus visiva fontalis in nervo communi. 

Et similiter patet  quod oculi sentiunt, et non solum nervus communis. Sed quoniam oculi ordinantur 

ad virtutem radicalem et ab illa fluunt virtutes ad oculos, et continuatur virtus sensitiva per totum 

nervum a nervo communi ad oculos, ut dicit Alhacen, ideo una est operatio visiva et indivisa, que 

perficitur per oculos et nervum communem ... oculus necessario habet iudicium et virtutem videndi, 

licet incompletum" (Perspectiva I.5.3). 

232 I say almost, both because of the transparency requirement on the humours, and because of the 

aforementioned refraction at the posterior surface of the lens that was necessary to avoid image 

inversion. 
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5. The vitreous humor, which extends from the lens to the common nerve, the 

visual spirits flowing from the common nerve to the eye, and the uvea, all easily 

receive motion. The motion imparted to them can cause a single object to appear 

multiple. 

6. A “foreign humor” can “gather” in the uvea, causing double vision.233 

In each case, exogenous conditions conspire to create visual error.  

In Kepler’s case, on the other hand, the production of the image is due solely to the 

eye’s structure. Therefore, there is a very strong incentive, on this view, to inquire into 

causes within the eye for errors of vision.  

An example of Kepler applying his understanding of the eye to a scientific problem 

is his treatment of the apparent enlargement of bright objects in Chapter 5.234 His 

presentation is a bit confusing, since he starts by stating the problem as if it applied to all 

observers but then shifts the discussion to those with defective vision. So he asks “why it 

is that, to all people without exception, all things that are luminous appear greater in 

proportion to things placed nearby that are less luminous.”235 Then the discussion shifts to 

“those who are weak of sight, and who are otherwise blind to distant things.” Perhaps the 

reason for the shift is that there will always be variations in strength of vision among 

people, even though the variations might not amount to defects like myopia, presbyopia, 

and so on that call for treatment. These variations pose a problem for astronomical 

observation, because they result in discrepancies between estimates of the dimension of 

celestial objects: 

In full moons, it is occasionally the experience, as may be seen in Tycho’s observations, 

that when five or six people are observing the same moon, the estimation of the diameter is inclined 

to vary, ranging from 31 to 36 minutes, according to the vigor of each one’s vision. This is, 

                                                 

233 Lindberg (1996), pp. 171-5. “De variis erroribus visus propter compositionem et complexionem 

oculi” (Perspectiva II.1.3). 

234 Kepler (2000), pp. 232-236. 

235 Kepler (2000), p. 232. “cur omnibus adeò hominibus, quaecunque lucida sunt, maiora appareant 

in proportione, quàm quae sunt iuxta posita minus lucida.” Kepler (1939), p. 194; (1604), p. 217.  
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moreover, the chief controversy about the moon. On 1590 February 22 the moon was observed 22 

times: twice at 31’, six times at 32’, seven times at 33’, six times at 34’, once at 36’.236  

To the near-sighted, like Kepler, the observation of an eclipse differs from those of 

others with better vision: 

Those who are weak of sight, and who are otherwise blind to distant things, imagine for 

themselves a rippling series of ten phases in place of one phase … In the beginnings of lunar 

eclipses, the eclipse is noticed first of all by me, who am laboring under this defect, as well as the 

direction from which the darkness approaches, long before the beginning, while the others, who are 

of the most acute vision, are still in doubt, as happened in the month of May of this year 1603. For 

the rippling of the moon, mentioned above, stops for me when the moon is approaching the shadow, 

and is in great part removed from the sun’s rays.237 

The reason Kepler notices lunar eclipses before others with more acute vision is, I 

gather, that the multiplication of the images of the moon ceases when the illumination of 

the moon by the sun diminishes. His explanation of multiplication of phases is related to 

his explanation of myopia.  In Proposition 28 of Chapter 5, he had explained myopia as 

arising from a defect of the eye that causes the cones of light rays coming from distant 

points to intersect before they reach the retina (the defect being the elongation of the eye 

along its main axis). As a result, the light rays spread out again before reaching the retina. 

This causes the different cones coming from the distant object to “disturb and confuse each 

other.”238 The same effect accounts for the multiplication of images: 

All these things [errors of vision connected with the observation of bright celestial objects], 

and whatever others there are, draw their origin from the retina tunic, but in a different respect. First, 

                                                 

236 Kepler (2000), p. 233. “In pleniluniis interdum vsu venit, vt videre est in obseruationibus 

TYCHONIS, vt quinque vel sex hominibus eandem Lunam obseruantibus, pro cuiusque visus 

acrimonia, diametri census à 31 in 36 minuta vagabundus excresceret. Quae adèo praecipua de 

Luna querela est. Anno 1591. 22. Febr. Luna 22 ies obseruata; bis 31. sexies 32. septies 33. sexies 

34. semel 36.” Kepler (1939), p. 194; (1604), p. 217. 

237 Kepler (2000), p. 233. “Qui sunt imbecilli visu, et qui aliàs ad remota caecutiunt, pro vna phasi 

decem phasium cristatam seriem sibi imaginantur ... In Eclipsium Lunae primordiis mihi, qui hoc 

vitio laboro, primum omnium defectus animaduertitur, atque etiam plaga, vnde ingruant tenebrae, 

longè ante initium, caeteris, qui sunt acutissimo visu, adhuc dubitantibus, vt huius anni 1603. mense 

Maio. Nam mihi dicta Lunae crispatio sistitur, Lunâ ad vmbram accedente, et exutâ Solis radiorum 

parte potissimâ.” Kepler (1939), p. 195; (1604), p. 218. 

238 “[S]e mutuo turbabunt et confundent.” Kepler (2000), p. 217; (1939), p. 182; (1604), p. 202. 
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whatever of this affects those with defective vision finds its occasion from propositions 26 and 27 

above. For the more distant bodies, such as the celestial bodies, gather the radiations from a single 

point, into a single point, before they touch upon the retiform, and, cutting each other at that point, 

they now strike spread out upon the retina. Thus, it is not a single point of the retina that is 

illuminated by a point of the object, and thus it is encircled by many points: white things, however, 

and bright things illuminate its surface strongly. They therefore bring it about that those things which 

are depicted less bright in the same place, where they themselves showed their own boundaries … 

become entirely invisible, and give way to the white things. And so nearly the same thing happens 

in the eye which, above in chapter 2, with regard to the configuration of the ray, I demonstrated to 

happen on a wall.239 

The spreading out of the cones therefore explains both the multiplication of images 

as well as the obscuration of nearby objects by brighter neighbors. Kepler also seems to 

think that the multiplied images can mix in such a fashion as to create a single, larger image, 

thus leading a near-sighted observer to overestimate the size of the object. To what extent 

this explanation is supposed to extend to observers with normal vision, is not clear to me. 

In the following pages Kepler argues that a brighter object will appear larger simply in 

virtue of making a stronger impression on the visual spirit behind the retina, which seems 

rather ad hoc. 

In any case, he concludes that  

from this chapter, Astronomers will ponder this, that ocular perception or reckoning is not 

always to be trusted, however much they are taken into account in the quantity of the diameter of 

the full moon, or of the defect in an eclipse; and consequently, that other more certain procedures 

must not only be brought into consideration, but also one must not rashly disagree with them, on the 

testimony of vision, when it happens that they disagree with vision. For it has been demonstrated 

                                                 

239 Kepler (2000), pp. 233-234. “Haec omnia, et si qua sunt alia, ex retina tunica trahunt originem, 

sed diuerso respectu. Primum quicquid huius accidit visibus vitiosis, occasionem ex propositione 

26. 27. praemissa inuenit. Remotiora nempe, vt sunt corpora coelestia, radiationes ab vno puncto, 

cogunt in vnum punctum, antequam attingant retiformem, seque mutuò secantes in eo puncto, iam 

dilatati in retinam impingunt, sic non punctum retinae à puncto rei, sed superficiecula eius à puncto 

rei, et sic à pluribus punctis cingitur: alba verò et clara fortiter illustrant suam superficiem. Faciunt 

igitur, vt quae ibidem pinguntur minus clara, quà terminos ipsa suos protulerant ... planè 

delitescant, locumque albis cedant, itaque penè idem fiat in oculo, quod supra de radii figuratione 

capite 2. demonstraui in pariete fieri.” Kepler (1939), p. 195; (1604), pp. 218-219.   
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most clearly, from the very structure of vision, that it frequently happens that an error befalls the 

sense of vision, in overestimating the size of bright things.240  

I note in passing that the last sentence of this passage—truncated of the last 

clause—was quoted by GCM as if it expressed a general skeptical worry about vision (see 

section 3.3.3).241 Here we see that the criticism of vision is anchored in the context of 

carrying out specific kinds of measurements. Kepler is concerned with measurement, not 

observation in general. More to the point of the present discussion, the pay-off of Kepler’s 

approach here is similar to that in the case of the eyeglasses. Treatment of the eye as being 

like an instrument (note the reference to the wall in the passage quoted above) demands 

that an internal source, a source within “the very structure of vision,” be found for the 

multiplication of images and the overestimation of size.  

It might be objected that such an approach increases doubt, and therefore my 

interpretation winds up conceding GCM’s point about the epistemic anxiety produced by 

the Optics. But the objection forgets that the commitment to find an internal source of error 

is coupled with a second step, which is to correct for it. Kepler makes this point himself 

when he states his intention to “explain the deceptions of vision arising from the 

construction of the instrument” and then to “accommodate them to astronomical use.” The 

                                                 

240 Kepler (2000), pp. 235-236. “Hoc itaque ex hoc capite Astronomi considerabunt, non semper 

fidendum esse intuitui oculari aut aestimationi, quantumuis consideratae in quantitate diametri 

plenae Lunae, aut defectus in Eclipsi: quare non tantum in consilium adhibendos certiores modos 

alios, sed neque temerè ab iis dissentiendum, visus fiducia, si quando fiat, vt dissentiant illi à visu. 

Demonstratum enim est euidentissimè, ex ipsa visus conformatione, fieri crebrò, ut visui error 

accidat, dum lucida nimis magna existimat.” Kepler (1939), p. 197; (1604), p. 221.  

241 The passage I quoted earlier from the introduction to “On the Means of Vision,” where Kepler 

states his intention “to explain the deceptions of vision arising from the construction of the 

instrument,” is similarly anchored in the context of carrying out astronomical measurements. The 

introduction begins by noting past errors in the measurement of diameters of the luminaries and the 

quantities of solar eclipses. Moreover, Kepler immediately follows up his comment on the 

construction of the instrument with the further intention to “accommodate them [the deceptions of 

vision] to astronomical use” (“ad vsum astronomicum accommodabo.” Kepler (1939), p. 144; 

(1604), p. 158).  
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overall result is progress, in the form of the development of more reliable observation 

procedures. 

3.3.7 Concluding remarks 

As noted in section 3.3.3, GCM claim that the instrumentalization of scientific 

observation by Kepler came with the cost that the eye was now “as vulnerable to error as 

the instrument.” In essence, I have been arguing that the recognition of the eye’s 

vulnerability is an epistemic strength rather than a weakness. However, in order to see this, 

we need to be clear about what epistemic problem it helps us deal with. I argued above that 

the problem of the certainty of measurement is distinct from the problem of the certainty 

of perception. One of the main challenges with determining the certainty of a measurement 

is identifying and correcting for systematic error. Considering the eye to be an instrument 

like any other shifts the focus of research onto causes within the instrument that may be 

responsible for errors in our observations. This shift results in a form of progress, as more 

and more discrepancies in our observations become amenable to explanation and 

correction. Perhaps such an option was available to the perspectivists, though GCM’s and 

Smith’s characterization of the latter as holding that visual data were indubitable would 

seem to preclude that option. Even if they didn’t hold visual experience to be indubitable 

(recall the reservations I broached in section 3.3.3 concerning the indubitability claim), 

they clearly appear to have been less successful at resolving the errors in vision and 

observation that Kepler addressed. An interesting historical question is whether this fact 

was a reason for adopting the retinal theory.  

I have also argued that considering the eye to be an instrument like any other is not 

merely a heuristic, but an approach grounded in the nature of measurement as a process of 

material representation. On this view, measurement is inherently “instrumental” or “non-

anthropocentric” in that the physical interaction and production of a representation that are 

at its core need not be carried out by a human or involve human perceptual faculties. Of 

course, Kepler makes no such claims about measurement, but his actual practice in the 

Optics is compatible with an understanding of measurement along these lines. True, given 
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the instruments employed in the Optics—camera obscura, quadrant, ecliptic, and eye—

human participation in the physical process of measurement was still indispensable, 

especially for the estimation of the parameter of interest (lunar diameter or whatever). We 

are well before the era of automatic recording instruments. But the sub-process of image 

formation is treated as something that can be done just as well by an instrument, namely 

the camera obscura.  

As noted above, both Kepler’s instrumentalization of the eye and his awareness of 

experimental error have been discussed by previous authors. My interpretation of the 

Optics in terms of measurement shows how these two aspects of the Optics are related and 

non-accidental: both stem from the nature of measurement. On this interpretation, the 

instrumentalization of the eye is not epistemologically problematic, for it merely amounts 

to a recognition of the non-anthropocentric nature of the physical process of measurement. 

The general moral that is, I think, implicit in the Optics is that recognizing the 

existence of systematic error is an important step forward in developing reliable means of 

observation and measurement. From the point of view of achieving this goal, then, Kepler’s 

“radical instrumentalism” is empowering rather than undermining. So while Kepler’s 

theory of image formation in the eye may have provided grounds for epistemic anxiety 

concerning ordinary observation, on the other hand it provides grounds for epistemic 

optimism concerning measurements employing the eye or visual instruments. 

3.4 Conclusion of chapter 2 

A common theme of the two main sections of this chapter has been that the 

emergence of the modern scientific method involved certain discontinuities with previous 

ways of conceiving the relation between science, labor and instruments. Indeed, the chapter 

provides grounds for the plausibility of the hypothesis that several features of Aristotelian 

thought impeded the emergence of the modern scientific method. Of course, when stated 

at this level of abstraction the hypothesis is nothing new. Champions and commentators of 

the Scientific Revolution have advanced various versions of such a hypothesis, for 
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example, that Aristotelian thought relied on obscure causal reasoning (occult causes, 

substantial forms), that it did not make sufficient use of quantitative methods, that its 

epistemology and cosmology were mutually reinforcing and therefore not really open to 

test, that it was not experimental, that it placed too much weight on authority, etc. My 

emphasis has been on the way in which scientific activity was conceptualized. I have 

suggested that the pre-revolutionary conceptualization of scientific activity tended to 

involve the neglect of know-how as an important component of scientific method. This 

neglect was manifested in the privileging of knowledge of necessary connections and the 

exclusion of know-how from what was considered science proper, as well as by a strict 

division of labor between theoretical science and the arts. In the second part of the chapter, 

I suggested that the pre-revolutionary conceptualization of sense experience tended to see 

a big difference between how the senses (or at least vision) work and how mechanical 

instruments work. The former were thought to be animated by the soul, and therefore had 

a mode of functioning that differentiated them sharply from the latter, whose effects are 

the result of the organization of their material parts. Kepler contributed to the 

reconceptualization of scientific activity by showing that the eyes function like mechanical 

instruments. In doing so, he changed the problem the theory of the eye was a solution to. 

The key epistemological problem for the Perspectivists was, how is it that humans can have 

perceptions of the world that correspond to the way it truly is, or in other words how is 

veridical perception possible? Kepler’s conceptualization of the eye as an instrument is 

aimed at a different problem than veridical perception: how to achieve accurate 

measurements by means of vision. 

In both parts of the chapter, a connection was drawn between the 

reconceptualization of scientific activity and scientific progress. Progress in the first part 

consisted in the emergence of a full-blown experimental approach, unfettered by previous 

strictures on what constitutes the proper methods and objects of science. Progress in the 

second part consisted in improvements in methods of measurement and, in the long run, 

the improvement of scientists’ ability to study nature through technological change.  

The theme of how scientific activity is conceptualized will remain important in the 

following chapter, where we will examine scientific change resulting from the deliberate 

application of mechanized methods to science. The theme of progress will remain 
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important, for one of the questions to be addressed there is to what extent changes in the 

labor process can be neutral with respect to the goals of the field, and hence with respect 

to the possibilities for progress therein.  

3.5 References 

Aristotle. Nichomachean Ethics. In J. D. Kaplan (Ed.), The Pocket Aristotle. New York: 

Simon & Schuster, 1958. W. D. Ross (Trans.). 

—Physics. In J. D. Kaplan (Ed.), The Pocket Aristotle. New York: Simon & 

Schuster, 1958. R. P. Hardie & R. K. Gaye (Trans.). 

—Aristotle’s Physics, Books I and II. Oxford: Clarendon Press, 1970. W. 

Charlton (Trans). 

—Posterior Analytics, Second Edition. Oxford: Clarendon Press, 1993. J. 

Barnes (Trans.).  

Bachelard, G. (1949). Le Rationalisme appliquée. Paris: Presses Universitaires de France. 

Baker, T. (2016). From Sight to Light: The Passage from Ancient to Modern Optics. 

Studies in History and Philosophy of Science, 

http://dx.doi.org/10.1016/j.shpsa.2016.03.002. 

Burtt, E. A. (1932). The Metaphysical Foundations of Modern Physical Science, 2nd edition 

(revised). London: Routledge & Kegan Paul Ltd. 

Currie, G. (1995). Image and mind. Cambridge, U.K.: Cambridge University Press. 

Daston, L. (1991). History of science in an elegiac mode: E. A. Burtt’s Metaphysical 

Foundations of Modern Physical Science revisited. Isis, 82(3), 522-531. 

Des Chenes, D. (2007). Forms of art in Jesuit Aristotelianism (with a coda on Descartes). 

In B. Bensaude-Vincent & W. R. Newman (Eds), The Artificial and the Natural: An 

Evolving Polarity. Cambridge, MA: MIT Press. 

Duhem, P. (1982 [1914]). The Aim and Structure of Physical Theory (P. P. Wiener, Trans.). 

Princeton, NJ: Princeton University Press. 

http://dx.doi.org/10.1016/j.shpsa.2016.03.002


152 

Gal, O. & R. Chen-Morris. (2013). Baroque Science. Chicago: The University of Chicago 

Press. 

—(2010a). Baroque optics and the disappearance of the observer: from 

Kepler’s Optics to Descartes’ doubt. Journal of the History of Ideas, 71(2), 191-217. 

—(2010b). Empiricism without the senses: how the instrument replaced the 

eye. In C. T. Wolfe & O. Gal (Eds), The Body as Object and Instrument of Knowledge. 

Dordrecht: Springer. 

Hacking, I. (1983). Representing and Intervening. Cambridge, UK: Cambridge University 

Press. 

Hamou, P. (1999) La Mutation du visible.  Villeneuve d’Ascq (Nord) : Presses 

universitaires du Septentrion.  

Hon, G. (1987). On Kepler’s awareness of the problem of experimental error. Annals of 

Science, 44, 545-591. 

—(2004). Putting error to (historical) work: error as a tell-tale in the studies of 

Kepler and Galileo. Centaurus, 46, 58-81. 

Hon, G. & Zik, Y. (2009). Kepler’s Optical Part of Astronomy (1604): introducing the 

ecliptic instrument. Perspectives on Science, 17(3), 307-345.   

Jardine, N. (1984). The Birth of History and Philosophy of Science: Kepler’s ‘A Defence 

of Tycho Against Ursus’ with essays on its provenance and significance. Cambridge, 

UK: Cambridge University Press. 

Kepler, J. (2000). Optics: Paralipomena to Witelo, & Optical Part of Astronomy (W. H. 

Donahue, Trans.). Santa Fe, NM: Green Lion Press. (First published 1604).  

—(1939). Johannes Kepler Gesammelte Werke, Band II. Astronomiae Pars 

Optica. (F. Hammer, Ed.). Munich: C. H. Beck’sche Verlagsbuchhandlung.  

—(1604). Ad Vitellionem paralipomena, quibus astronomiae pars optica 

traditur. Frankfurt: Claudius Marnius & Ioannes Aubrius. 

Klein, U. (2008). Review. The artificial and the natural: an evolving polarity ‐ Edited by 

Bernadette Bensaude‐Vincent and William R. Newman. Centaurus, 50(4), 330-332. 

Lefèvre, W. (2005). Science as Labor. Perspectives on Science, 13(2), 194-225. 

Lindberg, D. C. (1996). Roger Bacon and the Origins of Perspectiva in the Middle Ages. 

Oxford: Clarendon Press.  



153 

Lloyd, G. E. R. (1987). Empirical Research in Aristotle’s Biology. In A. Gotthelf and J. G. 

Lennox (Eds.), Philosophical Issues in Aristotle’s Biology. Cambridge, UK: 

Cambridge University Press. 

Mancosu, P. (1996). Philosophy of Mathematics and Mathematical Practice in the 

Seventeenth Century. Oxford: Oxford University Press. 

Newman, W. R. (2004). Promethean Ambitions. Alchemy and the Quest to Perfect Nature. 

Chicago: University of Chicago Press.  

Pastorino, C. (2017). The philosopher and the craftsman: Francis Bacon’s notion of 

experiment and its debt to early Stuart inventors. Isis, 108(4), 749-768.  

Pecham, J. (1970). John Pecham and the Science of Optics: Perspectiva Communis (D. C. 

Lindberg, Ed.). Madison: University of Wisconsin Press. 

Poppi, A. (2004). Zabarella, or Aristotelianism as a Rigorous Science. In R. Pozzo (Ed.), 

Studies in Philosophy and the History of Philosophy, Volume 39: The Impact of 

Aristotelianism on Modern Philosophy. Washington, D.C.: The Catholic University of 

America Press. 

Randall, J. H. (1940). The Development of Scientific Method in the School of Padua. 

Journal of the History of Ideas, 1(2), 177-206. 

Ronchi, V. (1963). Complexities, advances and misconceptions in the development of the 

science of vision: what is being discovered? In A. C. Crombie (Ed.), Scientific Change. 

New York: Basic Books Inc. 

Schmitt, C. B. (1969). Experience and Experiment: A Comparison of Zabarella’s View 

With Galileo’s in De Motu. Studies in the Renaissance, 16, 80-138. 

Shields, C. (2015). Aristotle. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy 

(Fall 2015 Edition). URL = 

<http://plato.stanford.edu/archives/fall2015/entries/aristotle/>. 

Simson, D. P. Cassell’s New Latin-English English-Latin Dictionary. London: Cassell. 

Smith, A. M. (1981). Getting the big picture in perspectivist optics. Isis, 72(4), 568-589. 

—(2015). From Sight to Light: The Passage from Ancient to Modern Optics. 

Chicago: The University of Chicago Press.  



154 

Smith, G. E. (2002). The Methodology of the Principia. In I. B. Cohen and G. E. Smith 

(Eds.), The Cambridge Companion to Newton. Cambridge, UK: Cambridge University 

Press. 

Straker, S. (1976). The eye made ‘other’: Dürer, Kepler, and the mechanization of light 

and vision. In L. A. Knafla, M. S. Staum, & T.H.E. Travers (Eds), The University of 

Calgary Studies in History No. 1: Science, Technology, and Culture in Historical 

Perspective. Calgary: The University of Calgary. 

—(1981). Kepler, Tycho, and the ‘Optical Part of Astronomy’: the genesis of 

Kepler’s theory of pinhole images. Archive for History of Exact Sciences, 24(4), 267-

293. 

Tal, E. (2012). The Epistemology of Measurement: A Model-Based Approach, Ph.D. 

Dissertation. University of Toronto. 

Unguru, S. (1991). Witelonis Perspectivae Liber Secundus et Liber Tertius. Warszawa: The 

Polish Academy of Sciences Press. 

Van Fraassen, B. C. (2008). Scientific Representation. Oxford: Oxford University Press.  

Vickers, B. (2008). The ‘new historiography’ and the limits of alchemy. Annals of Science, 

65(1), 140-155. 

Wallace, W. A. (1992). Boston Studies in the Philosophy of Science, Volume 137: Galileo’s 

Logic of Discovery and Proof. Dordrecht: Kluwer Academic Publishers. 

Zabarella, J. (2013). On Methods, Volume 2. J. P. McCaskey (Ed. and Tr.). Cambridge, 

MA: Harvard University Press. First published 1578 as part of the Opera Logica. 

Zilsel, E. (2000). The Sociological Roots of Science. In D. Raven, W. Krohn and R. S. 

Cohen (Eds.), Boston Studies in the Philosophy of Science, Volume 200: The Social 

Origins of Modern Science. Dordrecht: Kluwer Academic Publishers. 

 

 

 



155 

4.0 ON “THE APPLICATION OF SCIENCE TO SCIENCE ITSELF:” 

CHEMISTRY, INSTRUMENTS, AND THE SCIENTIFIC LABOR PROCESS 

4.1 Introduction 

In this chapter, we fast-forward from the period of the Scientific Revolution to the 

heart of the 20th century. By this time, the synthesis of mental and manual labor in science 

has long since been completed. The question is no longer whether manual labor is an 

activity befitting natural scientists, but what is the best way of organizing the scientific 

labor process. The notion of “best” is itself at issue, since science is no longer a largely 

academic activity but one increasingly embedded in complex socioeconomic processes that 

exert their own “pushes” and “pulls” on science.  

The guiding question of this chapter is, what makes the application of scientific 

knowledge to scientific work possible? This is one of the guiding questions posed in the 

introduction: 

1. How is it possible for knowledge acquired in the past to be used in on-going

or future research?

There is a traditional answer to this question within the philosophy of science: the 

logical framework of experimental design. Hypothesis testing provides the paradigm. 

Observations, possibly anomalous, give rise to questions. Proposals are put forward in 

response to these questions, and tested via their observable logical consequences. The 

logical framework of hypothesis testing is as follows: 

Where P is a prediction whose truth can be established via observation, the C’s are 

conditions whose truth can be established via observation, and the A’s are background 

assumptions, generally from prior science, needed to deduce observable consequences 

from the hypothesis. Because background assumptions and experimental conditions are 

needed to deduce observable consequences, these assumptions and conditions provide 

“slots,” so to speak, in which prior science can (and usually must) be exploited.  

Given A1 & … & An, then if H, then, when C1 & … & Cm, then P. 
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The topic of this chapter is cases of scientific change in which the application of 

prior science to scientific work involved far more than simply the design of a new 

experiment, but rather the transformation of the nature of scientific work itself. The large-

scale application of science to scientific work—as opposed to individual tests of 

hypotheses—typically requires a transformation of labor within science. The photographs 

in Figure 4.1 illustrate what I have in mind.  

(a)                                                                      (b) 

 

Figure 4.1 (a) A Royal Dutch Shell chemistry lab in Amsterdam, late 1940s. (b) A Shell lab in the 

mid-1950s. (c) A Shell NMR lab, 1959. Source: Morris (2015), pp. 262-4. 

 

The photographs in the figure depict different labs belonging to Royal Dutch Shell 

in the mid-20th century. Figure 4.1a depicts a fairly traditional chemistry lab, where 

scientists are working at benches and manipulating items of glassware and vessels 

containing chemicals. Each bench is equipped with a sink at the end for cleaning the 

glassware. Figure 4.1b depicts a new kind of lab, without glassware or benches, where the 

scientists adjust knobs and switches on large pieces of equipment. Figure 4.1c depicts a lab 

dominated by a single suite of instruments, here an NMR spectrometer and an electron spin 

(c) 
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spectrometer. Clearly, a lot of knowledge has been incorporated into the work space and 

the work taking place in the new labs, over and above that already incorporated in the 

traditional lab. 

The fixed, formal schema of hypothetico-deductive testing depends on there being 

conditions of action by which the schema could be made concrete. In general, intellectualist 

treatments of science, of the sort discussed in chapter 2, have a hard time explaining such 

changes. Such treatments tend to reduce the content of science to ideas and logical relations 

between them, the history of science to the history of ideas, and the method of science to 

establishing logical connections between theory and evidence, as in the hypothesis testing 

framework above. This reductionist approach abstracts from the material context that 

makes it possible to apply prior science. But it is a mistake to suppose that the application 

of prior science to ongoing and future work happens automatically. The experimental 

conditions do not fall into place all at once, and which background assumptions it is 

possible and makes sense to marshal depends on the material context within which 

scientists work. This context consists in part of instrumentation and the built environment, 

as illustrated in Figure 4.1. But it also consists of work routines—labor processes—that are 

the product of a multitude of intertwined social and technological processes taking place 

over time. Indeed, instrumentation and the built environment tend to co-evolve with the 

labor processes in which they are employed. 

If, as was argued in chapter 2, one grants that science is in certain important ways 

like ordinary labor, then the question of what makes it possible to apply prior science to 

scientific work turns out to be a special case of a question that applies to labor in general 

in the modern era. The economic growth theorist Simon Kuznets claimed that “the epochal 

innovation that distinguishes the modern economic epoch is the extended application of 

science to problems of economic production.”242 As Kuznets went on to note, the Industrial 

Revolution in particular marked the beginning of an epoch in which science was applied 

consciously and systematically to material production.  

One question this experience raises is, what can be learned from it with respect to 

the incorporation of prior science into ongoing scientific work?  

                                                 

242 Kuznets (1966), p. 9. 
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This chapter is structured as follows. In the next section, the period known as the 

Instrumental Revolution in chemistry is introduced. This period is precisely that which 

witnessed the emergence of the new kind of chemistry labs shown in Figure 4.1b and 4.1c. 

The views, on whether and in what sense the episode was a “scientific revolution,” of the 

few historians who have studied the episode are also described. I argue that these analyses 

are flawed insofar as they ignore the crucial role of machines in this transformation. I 

describe structure determination before and after the Instrumental Revolution in section 

4.3. In section 4.4, I extract certain ideas about the development of technology from 

Marxist analyses of mechanization processes in modern societies. The Industrial 

Revolution is their prime example, though the scope of the analyses is intended to be more 

general. In section 4.5, I focus on analogous and disanalogous structural properties between 

the Industrial and Instrumental Revolution. In section 4.6, I argue that there were common 

underlying factors responsible for the analogous properties, factors common to 

mechanization processes in modern societies. In section 4.7, I address objections to my 

interpretation of this episode. In conclusion, I suggest an externalist hypothesis according 

to which the course of science is influenced by the diffusion of principles of organizing 

labor that originate from outside of science. I also suggest that the cognitive consequences 

of radical changes in the means of production, as exemplified in the Instrumental 

Revolution, warrant considering whether the latter is an instance of a kind of revolution in 

science rather than a singular episode. 

4.2 Models and machines of scientific revolutions 

Chemists call the activity by which they produce claims about the structures of 

molecules structure determination or elucidation. The “Instrumental Revolution,” as it was 

dubbed by the chemist-historians Dean S. Tarbell and Ann T. Tarbell,243 refers to a 

transitional period lasting roughly from the 1940s through the 1960s during which 

                                                 

243 Tarbell & Tarbell (1986), ch. 21. 
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powerful new sources of evidence for molecular structure were introduced in the form of 

modern spectroscopic instrumentation. The United States was the epicenter of these 

changes. Techniques such as nuclear magnetic resonance spectroscopy, mass spectrometry, 

infrared and ultraviolet spectroscopy, gradually displaced the chemical reaction as the 

principal source of evidence for structure. These techniques permitted a massive increase 

in the productivity of chemical analysis work and also provided access to new kinds of 

information on molecular structure and dynamics. Not only did the techniques change, but 

so did the skills needed to employ them. Cheap glassware was replaced by expensive 

machinery, and wet chemical skills were replaced by machine operation skills. 

Historians writing about the Instrumental Revolution have advanced different 

views on whether and in what sense it might have been a genuine scientific revolution. On 

the side of those who think it was, Tarbell and Tarbell (1986) characterize it as the 

introduction of more powerful methods of purification and structure proof.244 Morris and 

Travis (2002), for their part, characterize it in Kuhnian terms, as the overthrow of the ruling 

paradigm by a new one.245 Baird (2002), on the other hand, points out that the revolutionary 

phase of Kuhn’s Structure of Scientific Revolutions starts with a crisis, when normal 

science encounters a problem that its established methods cannot solve. Baird argues that 

at least as far as analytical chemistry was concerned, there was no such crisis. To the 

contrary, the new methods were developed in order to solve problems the established 

methods could already solve, but better—more efficiently, with smaller samples, greater 

sensitivity and lower limits of detection. Hence the Instrumental Revolution does not 

qualify as a revolution in Kuhn’s sense.246  

Baird goes on to examine other criteria for revolutionary status. First, he considers 

those advanced by I. B. Cohen (1985) in Revolution in Science. Baird finds that the episode 

does not fit Cohen’s model for the stages of a revolution in science, which always begins 

with a private mental event. Such a model misses the core feature of the revolution, the 

introduction of an “instrumental-outlook” into the methods of analytical chemistry. Baird 

                                                 

244 Tarbell & Tarbell (1986), p. 335. 

245 Morris & Travis (2002) p. 80. 

246 Baird (2002), pp. 47-48. 



160 

argues that a more promising model is to be found in Hacking’s (1987) notion of a “big 

revolution,” which privileges wide-ranging changes in cultural practices and institutions in 

the search for scientific revolutions. Baird argues that the Instrumental Revolution fits 

Hacking’s model, and therefore qualifies as a genuine scientific revolution. 

On the side of the skeptics, Laszlo (2002) claims that there was no sudden change 

in the mid-20th century: the origin of organic spectroscopy should be located in the 1880s 

rather than the 1950s. Reinhardt (2006) concurs with Baird that the lack of anomalies and 

crises accompanying the changes disqualify it for the status of a Kuhnian revolution. He 

argues that the notion of an “Instrumental Revolution” neglects the “hidden continuities 

and step-by-step transition processes” that made the use of the new methods in chemistry 

possible.247 According to Reinhardt, the key to assuring continuity was the emergence of a 

community of scientists, the “method makers,” that acted as mediators or “middlemen” for 

the importation of methods from physics to chemistry, by way of industrial instrument-

makers. The upshot of Reinhardt’s account is that the Instrumental Revolution failed to be 

a real revolution because the transfer of technology from physicists to ordinary chemists 

resulted neither in the reduction of chemical theory to physics nor in a loss of chemistry’s 

disciplinary autonomy.248 

The general models of scientific revolution that have dominated this discussion 

single out changes in theories, concepts, cultural practices and institutions, but are silent 

on how scientific practice is altered by the specific characteristics of machines, usually 

lumping scientific machines under generic categories like “instrument.”249 But machines 

are not simply complex instruments. At least since the Industrial Revolution, they have 

tended to replace and displace human labor, which can have significant effects on the 

organization, and potential for technical progress, of the labor processes in which they are 

incorporated. The debate on the revolutionary status of the Instrumental Revolution has so 

far not considered the possibility that the revolutionary character of this event may lie in 

                                                 

247 Reinhardt (2006) p. 9. 

248 More recently, Gerontas (2014) has favored a Hacking-style interpretation and Chamizo (2018) 

an interpretation in terms of an extended Kuhnian model. 

249 For instance, Cohen (1985) calls both Galileo’s telescope and the computer “instruments” in his 

discussion of their revolutionary effects on science (Cohen, 1985, pp. 9-10). 
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this specific characteristic of machines. Failure to do so may partially explain why neither 

Laszlo nor Reinhardt finds that the technology transfer brought about a revolution. Though 

the Tarbells note that “[t]he paucity of experimental methods and instrumentation available 

to organic chemists began to change with increasing speed in the 1930s,” they do not 

comment on the causes of the speed-up, other than to point to discoveries in physics 

underlying the use of the new instruments.250 Hacking’s model posits four characteristics 

of “big revolutions” that have little to do with machines as such: discipline formation, the 

establishment of new social institutions like national science academies, large-scale social 

changes like the rise of capitalism, and changes in the “texture” of the world, such as when 

a probabilistic world-view displaced deterministic conceptions of the world.251 

 In this paper, I argue that the Instrumental Revolution bears a striking resemblance 

to the industrial one.252 I begin by offering grounds for thinking that the resemblance is not 

fortuitous, but rather reflects a general pattern of development caused by the mechanization 

of the labor process, drawing largely on evidence from structural organic chemistry. 

Though my focus will be on the latter, I will also draw evidence from analytical chemistry, 

which in some ways was more profoundly affected because its professional identity was 

based on methods of analysis.253  

My analytical approach here is inspired by two sources. First, I draw on philosopher 

Maurice Mandelbaum’s notion of an ‘analogical approach’ to comparative historical 

studies.254 This approach consists of two complementary subtypes. The ‘phenomenological 

form’ “rests on analogies drawn between instances that resemble one another with respect 

to certain overall characteristics of structure, such as the sequence of stages in revolutions, 

                                                 

250 Tarbell & Tarbell (1986), p. 335. 

251 Hacking (1987), pp. 50-52. 

252 For a discussion of the conceptual and semantic difficulties associated with the term “Industrial 

Revolution,” see Cohen (1985), ch. 17. In this paper, I use the term to refer to the transition from 

the period of manufacture to the period of large-scale industry in the 18th and 19th centuries, as 

analyzed by Marx in Capital.  

253 Baird (2002) argues that analytical chemists experienced a crisis of identity during this period. 

254 Mandelbaum (1984), pp. 135-139. I thank Professor James Lennox for making me aware of 

Mandelbaum’s writings on the philosophy of history. 
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or some interrelated set of attributes that, taken together, are seen as constituting a specific 

ideal type.” The phenomenological form can be complemented by the ‘analytical form,’ 

which invokes underlying relationships in order to explain the similarities the 

phenomenological comparison merely describes. My ‘phenomenological’ claim in this 

paper is that the Instrumental Revolution resembles the industrial one with respect to eight 

structural properties that the two events have in common. 

A few remarks on the intended scope of the analogy are in order here. I intend the 

analogy to apply to routine structure determination in organic chemistry. Since defining 

precisely what is meant by “routine” can be difficult, I will instead characterize it in terms 

of “subjective” and “objective” aspects. The subjective aspect of routine structure 

determination post-Instrumental Revolution is that it does not require, of the organic 

chemist, research and expertise on the methods, instrumentation, and theory of the 

instrumentation used to determine structures. I have in mind the kind of chemist who would 

be intended by the following statement of aims from a textbook on spectrometric 

identification of organic compounds: 

We aim at a rather modest level of expertise in each area of spectrometry, recognizing that 

the organic chemist wants to get on with the task of identifying the compound without first mastering 

arcane areas of electronic engineering and quantum mechanics. But the alternative black-box 

approach is not acceptable either. We avoid these extremes with a pictorial, nonmathematical, 

vector-diagram approach to theory and instrumentation. Since NMR spectra can be interpreted in 

exquisite detail with some mastery of theory, we present theory in corresponding detail—but still 

descriptive.255 

The objective aspect is that the instruments have to be black-boxed, in the sense of 

Latour (1999) who defines black-boxing as 

                                                 

255 Silverstein & Webster (1998), p. 1. I note in passing that the vector-diagram approach referred 

to in the quotation is a classical model of the bulk magnetization and therefore does not provide the 

accepted quantum mechanical explanation of NMR phenomena in terms of superposition states and 

product operators. It is nevertheless useful for teaching the kind of qualitative understanding the 

authors are aiming at. 
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An expression from the sociology of science that refers to the way scientific and technical 

work is made invisible by its own success. When a machine runs efficiently, when a matter of fact 

is settled, one need focus only on its inputs and outputs and not on its internal complexity.256 

The invisibility of the machine’s internal complexity makes it capable of being 

operated by someone who is not an instrument expert. Indeed, it is precisely this capability 

of the instruments discussed in this paper that makes possible the black-box approach 

resisted by the textbook quoted above. For example, another textbook claims that “[i]t is 

possible to treat the NMR spectrometer as a ‘magic box’ and simply memorize a few rules 

that suffice for deducing the structure of a compound from its spectrum.”257 My focus on 

black-boxed instruments entails that I will be concerned with the use of standard tools like 

a tabletop infrared spectrometer rather than with that of a high-end research instrument like 

a 1 GHz NMR machine.258  

These constraints on the scope of the analogy exclude, for example, researchers 

who use NMR to study large biological macromolecules, which does indeed require 

mastery of and research on the methods, instrumentation and theory of the instrumentation. 

I will also not be concerned with the methods used to produce the final instrument 

commodities (e.g., mass production versus custom manufacture) nor with extending the 

analogy to the social groups involved in the research, development and production of the 

instruments. 

My second inspiration is Marx’s analysis of the Industrial Revolution, which I draw 

on to formulate my ‘analytical’ claim. Unlike traditional Marxist historiography of science, 

however, my concern here is not primarily with the social origins of a scientific 

development.259  Rather, I focus on changes in the labor process internal to the field. In 

Capital, Marx argues that the extensive, rapid and indefinite application of science and 

technology to productive processes under capitalism was made possible by the 

                                                 

256 Latour (1999), p. 304. 

257 Streitwieser, Heathcock & Kosower (1992), p. 325. 

258 I thank an anonymous reviewer for these examples. The reviewer further points out that the 

difference between these sorts of instruments is similar to that between the production and use of a 

Toyota Corolla and a formula racecar. 

259 For an overview of 20th century Marxist historiography of science, see Hadden (1994), ch.1.  
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emancipation of factory production from the limitations imposed by native human abilities. 

This emancipation was brought about by modification of the labor process, in particular 

the modification of what I will call “strategic functions” within the process. The 

modification of the function of tool-bearing in particular permitted a sequence of further 

transformations that exploited science and technology. My analytical claim is that 

something similar happened in chemistry, namely that the Instrumental Revolution also 

involved the emancipation of data production from the limitations imposed by humans’ 

native epistemic abilities. The strategic function in this case was that of detection. 

4.3 Structure determination before and after the instrumental revolution 

In general, the goal of structure determination is to determine the connections 

between atoms in a molecule, and often the geometric properties of the molecule as well. 

With the acceptance of chemical structure theory in the late 19th century, chemists could 

turn the observations furnished by chemical reactions into evidence for molecular 

structure.260 Structure determination became one of the major activities of the field.  

The classical era of structure determination stretched from the 1860s to the 1950s, 

during which time chemists determined the structures of many complex natural products, 

including dyes, pigments, alkaloids, vitamins and hormones. The determination of complex 

structures using chemical “wet” methods was extremely time-consuming, often taking 

decades and sometimes even leading to the award of Nobel prizes.261 A famous example is 

strychnine, which was isolated in 1815 but whose structure was not definitively established 

until 1948 despite intensive efforts to do so: at least 245 papers were contributed to solving 

it from the time of strychnine’s isolation to 1950, and one of the principals in the field, 

                                                 

260 Sidgwick (1936) offers a clear and concise description of the theory and its development up to 

1936. See Brock (1993), ch. 7 for a treatment of the rise of structure theory. 

261 A list is provided in Morris & Travis (2002), p. 60.  
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Robert Robinson, was even awarded a Nobel Prize for his “investigations in plant products 

of biological importance.”262  

Classical chemistry was heavily dependent on the performance of manual work by 

the chemist.263 It was also conservative in its methods, as this quote from the chemist-

turned-historian David Knight illustrates well: 

The chemistry that I learned in school and at university in the 1950s was essentially 

nineteenth-century … To someone with my training, the history of chemistry in its golden age … 

was accessible. It was no surprise that Jacob Berzelius [1779-1848] should have written a whole 

book about using the blowpipe, or Michael Faraday [1791-1867] a stout volume on Chemical 

Manipulation [1827] (still full of useful tips to my generation, on weighing, getting ground-glass 

stoppers out of bottles, and distilling); or that William Ramsay [1852-1916] prided himself on his 

glassblowing … Physicists might look upon them as upgraded cooks; but chemists knew that they 

had learned a craft the hard way. They did not work with black boxes but with the transparency of 

glassware. Buying in apparatus was time-saving but not essential, and the really good chemist could 

be his own technician … Chemists also perceived the danger that an expensive toy … will be played 

with in time that, with more thought and less gadgetry, might be used for real discovery.264 

In contrast with these 19th-century methods, the Instrumental Revolution ushered 

in new techniques based on physics, notably quantum mechanics. For example, nuclear 

magnetic resonance (NMR), one of the most powerful techniques of structure 

determination to emerge from this period, is the study of the properties of molecules 

containing magnetic nuclei. A magnetic field is applied and the frequencies at which the 

nuclei come into resonance with an oscillating electromagnetic field are observed. These 

frequencies depend on the chemical environment of the nuclei, and so the characteristic 

                                                 

262 "The Nobel Prize in Chemistry 1947". Nobelprize.org. Nobel Media AB 2014. Web. 

http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1947/. (Accessed 24 July, 2015). See 

Slater (2001) for an account of the strychnine research.  

263 Modern chemistry continues to be dependent on manual chemical manipulations, though the field 

of application has changed (e.g., to synthesis) and labware is largely purchased rather than made in-

house.  

264 Knight (2002), pp. 87-90; cf. Tarbell & Tarbell (1986), p. 335. Knight’s comment about 

apparatus agrees with Jackson’s (2015b) claim that “chemistry’s move into home blown hollow 

glassware around 1830 … made it possible for chemists to work independently of professional 

instrument makers” (p. 189). 

http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1947/
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frequencies absorbed by a molecule provide evidence for its structure. The technique is of 

great importance for the structural analysis of organic molecules, like proteins, which 

contain magnetic 1H and 13C nuclei. A schematic of an NMR spectrometer is shown in 

Figure 1. At the core of the instrument is a superconducting magnet, into which the probe 

containing the sample is inserted. Most of the apparatus is devoted to the generation, 

transmission and processing of a signal. The whole process is controlled by a device known 

as the pulse programmer ((4) in the diagram). The human operator types instructions at the 

computer, which are then loaded into the pulse programmer and executed from there. The 

operator also gives instructions for displaying, plotting and analyzing the data for structural 

information.  

 

Figure 4.2 The scene of the “crime”: a schematic overview of a pulsed-field NMR spectrometer. 

Source: Levitt (2008, p. 81). 
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As the schematic suggests, the spectrometer is a very complex combination of 

scientific principles and technology, drawing on a variety of fields including physics, 

electronics, computer science and mathematics.  
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(a) 
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(b) 

 

Figure 4.3 Instrument advertisements are interesting for what they reveal about how the 

makers conceived the relationship of the user to the machine. (a) A 1968 Varian Associates 

advertisement stressing ease of operation announces an NMR spectrometer for routine use 

by the average chemist. Source: Analytical Chemistry, 40, 125A. (b) With the help of a sexist 

double-entendre, Varian emphasizes that the chief locus of “activity” is in the machine 

rather than the human operator. Source: Analytical Chemistry, 1979, 50, 933A. It should be 

noted that, contrary to what the juxtaposition with Figure 4.3b might suggest, the Varian T-

60 had neither a superconducting magnet nor a pulse programmer. On the other hand, the 

XL-200, introduced in 1978, was equipped with both components.  

 

These instruments were based on science and technology with which chemists were 

largely unfamiliar. They were also very expensive. Nevertheless, there was a significant 

pay-off for using them. Structure determination became much more efficient, freeing up 

the chemists’ time for other work, such as synthesis (which was not mechanized and where 

chemical expertise remained absolutely essential) or chemical applications in biology. 

Moreover, more complex targets could be tackled, for example biological macromolecules. 

The pay-off is evident in the case of strychnine mentioned above. Whereas over 245 papers 
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were contributed over 60 years towards solving strychnine chemically,265 only 6 were 

required over 5 years for the independent solution of the X-ray structure (Figure 3).266 

 

 

Figure 4.4 (a) These diagrams are from one of the first reports on the crystal structure of strychnine. 

The top diagram is a two-dimensional representation of strychnine. The bottom structure has been 

superimposed. Source: Robertson & Beevers (1950), p. 690. (b) The network of chemical 

transformations observed in the classical determination of the structure of strychnine and the closely 

related brucine. Source: Holmes (1950), p. 419.m diagram is a contour map of the electron density on 

which a projection of the  

 

This pay-off was accompanied by a significant change in the way structure 

determination was conducted. Whereas skills of chemical manipulation lay at the center of 

the classical methods, the new methods were centered on the interaction of machines with 

chemical samples.   

In classical chemistry, the chemist would develop evidence for the structure of a 

substance by carrying out a set of manipulations on it. The means he employed were 

                                                 

265 Huisgen (1950). 

266 See the primary sources cited in Slater (2001), footnote 78.  



171 

chemical reagents, glassware and auxiliary tools like balances, heating sources, stirrers, 

stills, and pumps. By these means, the chemist would set chemical processes in train by 

means of various manual operations (weighing, adding, dissolving, heating, filtering, 

washing, drying, purifying, etc.). A chemist could identify the structure of an unknown by 

running it through a series of such processes designed to identify the various functional 

groups and their location in the carbon skeleton. The success of chemical research was 

heavily dependent on manipulative skills, as noted by Faraday in 1827.267 The chemist 

would then interpret the results in terms of hypothesized structures. For example, chemists 

might accept such a hypothesis on the grounds that it best explained the substance’s 

reactivity.268 The interpretation of the results was often quite involved, requiring 

considerable chemical knowledge together with acumen for piecing together the results of 

reactions in terms of a structure.269 

How do chemists use physical methods to obtain evidence for structure? Rothbart 

and Slayden (1994) provide an abstract description of spectrometers as “complex systems 

of detecting, transforming and processing information from an input event, typically an 

instrument/specimen interface, to some output event, typically a readout of 

information.”270 In spectroscopy the input event is the absorption or emission of 

electromagnetic radiation by molecules. Their response to the radiation generates a signal 

that carries information about the structure. The signal is transmitted by a “complex causal 

sequence of physical events from the specimen/instrument interaction to the readout.”271 

                                                 

267 Faraday (1827), iii. 

268 For an example of how evidence for a structural hypothesis was developed in classical chemistry, 

see Slater’s (2001). Sir Robert Robinson has many examples in his (1976) autobiography. The 

textbooks by Mulliken (1904) and Shriner, Fuson & Curtin (1956, 3rd ed.) provide a systematic 

overview of classical methods. 

269 As attested in comments by veterans like R. B. Woodward (1963), Max Tishler (1983), and A. 

J. Birch (1995) (Woodward, 1963, p. 248; Tishler, 1983, p. 12; Birch, 1995, p. 22 and pp. 56-57). 

Textbooks from the mid-20th century contrasted the intellectual complexity of classical structure 

determination, which they sometimes compared to solving a jig-saw puzzle, to the simplicity of the 

new methods. See, for example, Wheland (1949), p. 127 and Allinger & Allinger (1965), p. 36. 

270 Rothbart & Slayden (1994), p. 29.  

271 Rothbart & Slayden (1994), p. 37. 
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In modern chemistry, structures are determined by inserting an isolated sample into such 

systems. The chemist is generally not the designer of the instrument. In routine use, she or 

he must prepare the sample, choose the kinds of experiment to use, operate the instrument, 

and interpret the spectrum, though in routine cases these operations are fairly standard. Her 

chemical laboratory skills are limited to sample preparation, for example dissolving the 

sample in an appropriate solvent or crystallizing the substance.  

If the basis of classical structure determination was the chemist’s set of chemical 

laboratory skills together with his knowledge of chemical substances and their reactions, 

the basis of modern structure determination is the combination and adaptation of natural 

systems for the purpose of generating a signal that carries information about the specimen’s 

structure. Though chemical skills are involved in sample preparation, the production of 

information from the sample depends not on them but on whether this orchestration of 

systems is such as to produce a reliable signal. 

Thus the new instruments did not transfer the skills needed for classical structure 

determination to the machine. Rather, they substituted a new process for the old one. In the 

new process, the goal of structure determination was attained without the use of chemical 

reactions. This is an instance of what the sociologists of science Peter Keating, Camille 

Limoges and Alberto Cambrosio call ‘automation.’ According to them, 

Successful automation is not … an automated mimicking of human operations by a more 

efficient machine, but a substitution of one process (involving more than humans) by another. What 

we have is not a deskilling of humans by embedding human skills in an automaton, but the creation 

of an emerging new field of operations that redistributes actions between humans and machines and 

between the humans themselves. The emphasis here is on actions, not skills.272 

The notion of automation advanced by these authors differs significantly from the 

usual notion, as the use of a machine to substitute for human action by mimicking the latter 

through mechanical operations. For Keating, Limoges and Cambrosio, the automated 

process may involve operations that are quite different from—do not mimic—the human 

one. In addition, they do not simply replace humans but rather change the kinds of actions 

performed by humans. Automation through mimicry is merely a special case of this more 

general kind of automation. Nevertheless, I think the usual notion of automation as 

                                                 

272 Keating, Limoges & Cambrosio (1997), p. 132.  



173 

mechanical mimicry is still useful because it indicates an essential feature of automation, 

which is that some phases of the production process are delegated from humans to 

machines. Moreover, these phases must happen “automatically,” i.e. the machine must be 

able to carry out tasks without human intervention. But the manner in which the machines 

carry out those phases can be quite different. In the chemical case, the thing produced was 

a structural representation of a compound (as in Figure 1a), and this basically did not 

change. The Instrumental Revolution brought about a drastic change in how it was 

produced, however, involving a transition from a human-centered process to a machine-

centered process. 

4.4 Marx’s analysis of the labor process and the industrial revolution 

As suggested by my reference to the “labor process”, my view starts from the 

assumption that science can be accurately conceptualized as a material labor process, 

similar in important respects to ordinary labor processes.273 In this article, I draw on Marx’s 

analysis of the mechanization of industrial labor processes during the Industrial Revolution 

because the pattern of development of the Instrumental Revolution in certain respects fits 

rather well the pattern described in his analysis. I will restrict myself here to summarizing 

the key methodological points required for understanding my position. It should also be 

noted that what I take from Marx is conceptual rather than empirical. Hence I will be 

concerned with his way of conceptualizing what made the technical changes during the 

Industrial Revolution possible, and not with the truth of his empirical claims concerning 

the course of technical change in capitalist economies during the 18th and 19th centuries, 

except insofar as these affect the cogency of the conceptualization.274 

                                                 

273 For a recent defense of this assumption, see Lefèvre (2005). 

274 That said, those aspects of Marx’s account of the Industrial Revolution that I will use here appear 

to be in broad agreement with more recent scholarship. See Allen (2017), especially ch. 3 on “Why 

the Industrial Revolution was British” and the references cited therein. 
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The non-Marxist economic growth theorist Simon Kuznets claimed that “the 

epochal innovation that distinguishes the modern economic epoch is the extended 

application of science to problems of economic production.”275 One question this claim 

raises is what makes the extended application of science to production possible? An 

obvious answer is the growth of scientific knowledge. But as economist Nathan Rosenberg 

noted in his interesting (1981) study of Marx’s ideas on technology, the growth of science 

is not a sufficient condition for the application of scientific knowledge to the production 

process.276 To believe that is to ignore the mediating role of technology in the production 

process. Marx himself characterizes the labor process in general in terms of three simple 

elements:  

The simple elements of the labour process are (1) purposeful activity (zweckmässige 

Tätigkeit), that is work itself, (2) the object on which that work is performed, and (3) the instruments 

of that work.277 

Technology, in the form of the instruments of labor, mediates the process of 

transforming  the object of labor and hence of realizing the worker’s purposes. But  

not all technologies will permit, or will permit in equal degrees, the application of scientific 

knowledge to the productive sphere … It was one of Marx’s most important accomplishments to 

have posed precisely this question: What are the characteristics of technologies which make it 

possible to apply scientific knowledge to the productive sphere?278 

Science offers possibilities for enhancing the productivity of labor. The realization 

of these possibilities depends, however, on how the agents of production assign functions 

to people and things in the labor process. The distribution of those functions has a 

determining effect on the technological dynamism of production. In Capital, Marx 

analyzes two different ways of distributing those functions, what he calls “manufacture” 

(Manufaktur), the predominant mode of capitalist production from the mid-16th century to 

the last third of the 18th,279 and what he calls “large-scale industry” (die groβe Industrie), 

the mode of production that succeeded it. Manufacture was based on a division of labor 

                                                 

275 Kuznets (1966), p. 9. 

276 Rosenberg (1981), p. 15. 

277 Marx (1976 [1867]), p. 284; (1959), p. 193 for the original German.  

278 Rosenberg (1981), p. 15. 

279 Marx (1976), p. 455. 
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between specialized workers wielding manual implements, an arrangement Marx calls the 

“subjective principle” of the division of labor in manufacture.280 This “principle” 

encountered the limitation that: 

Whether complex or simple, each operation has to be done by hand, retains the character 

of a handicraft, and is therefore dependent on the strength, skill, quickness and sureness with which 

the individual worker manipulates his tools. Handicraft remains the basis, a technically narrow basis 

which excludes a really scientific division of the production process into its component parts, since 

every partial process undergone by the product must be capable of being done by hand, and of 

forming a separate handicraft.281 

 Rosenberg sums up the problem neatly: 

Although … the manufacturing system achieved a growth of productivity through the 

exploitation of a new and more extensive division of labor, a rigid ceiling to the growth of 

productivity continued to be imposed by limitations of human strength, speed and accuracy … 

Science … cannot be incorporated into technologies dominated by large-scale human 

interventions.282 

How was this problem solved? By the use of machines, of course, for “machinery 

may be relied upon to behave in accordance with scientifically established physical 

relationships.”283 The worker’s skills can now be replaced by non-human natural forces, 

thereby lifting the barrier to innovation posed by the limited abilities of human workers. 

Doing so permits the continual and free development of production by the “conscious 

application” of “the whole range of the natural sciences.”284 Innovation in production is all 

the more accelerated by the fact that science and technology develop synergistically, with 

advances in the former making possible breakthroughs in the latter, and vice-versa.285  

It may seem that the causality implied in the last paragraph is the wrong way 

around. Wasn’t it the application of science and technology that made possible the 

emancipation from native human abilities? But key to Marx’s analysis of industrialization 

is the idea that the labor process has a structure involving functional relationships between 

                                                 

280 Marx (1976), p. 501. 

281 Marx (1976), p. 457. 

282 Rosenberg (1981), p. 16. 

283 Rosenberg (1981), p. 16. 

284 Marx (1976), pp. 590, 616-617. 

285 Marx (1976), pp. 505, 508-509. 
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the worker, the instruments and the object of labor. For him, the key step in the Industrial 

Revolution was the transfer of the tool-bearing function from workers to “mechanisms”: 

The machine, which is the starting-point of the industrial revolution, replaces the worker, 

who handles a single tool, by a mechanism operating with a number of similar tools and set in 

motion by a single motive power, whatever the form of that power.
286 

Though this move obviously depended on prior knowledge, it permitted much 

greater application of science and technology by allowing modifications of the tool-bearing 

mechanism as well as connections with other kinds of machinery, like engines. In general, 

the first steps in a process of mechanization may be fairly crude, as the potential for 

applying science and technology to it is only realized gradually. 

My suggestion, based on this analysis, is that labor processes contain what I will 

call ‘strategic functions’. What makes a function “strategic” is that its modification makes 

possible a pathway of transformations that might not be accessible from other starting-

points. A relatively simple example is the development of the water frame. In Europe, up 

to about 1300 CE, fibers were spun into yarn by means of hand spindles. A single worker 

could manipulate one spindle at a time. In the late Middle Ages, the spinning wheel came 

into use. Here the spindle was mounted on a post and set in motion by using hand or foot 

to drive a large wheel attached to the spindle by a pulley. The drawing and twisting of the 

fiber was done by hand as the spindle rotated. Hargreaves’ invention of the spinning jenny 

in 1764 made it possible to operate dozens of spindles simultaneously, because both the 

spindles and the fiber were now manipulated by a mechanical apparatus that was not 

limited by the number of arms in a human body. The mechanism itself was still driven by 

human force, however. Arkwright’s water frame of 1769 was based on the same principle 

of mechanical spindle manipulation, but exploited the fact that human motive power had 

been made dispensable by the transfer of the spindle to a mechanism. The frame was driven 

by a shaft that allowed it to be connected to a water wheel, thus allowing water power to 

be harnessed. Not only did this improve the productivity of the individual machine, but it 

                                                 

286 Marx (1976), pp. 497. 
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allowed many machines to be connected by a transmission mechanism and so powered 

simultaneously by the same wheel, which further increased productivity.287 

In this example, manipulation of the spindle played the role of strategic function. It 

was strategic because control over the tool had to be changed before water power could be 

exploited. The sequence could not have started with the application of water power, since 

the human arm is not easily separable from its owner. This priority does not exclude that 

the two changes could occur simultaneously, in the same invention, say. The priority is 

logical, not temporal.  

There can be more than one strategic function in a given production process. Rather 

than modify the tool-bearing function, for example, employers in the manufacturing period 

preferred to modify the operations performed by the worker. According to Marx’s account, 

this modification began with the decomposition of a single process formerly performed by 

a single craftsman into simpler operations, each performed by a specialized worker. 

Though the initial effect is simplification, specialization eventually leads to perfecting the 

methods and skills of the worker. Specialization also increases productivity by eliminating 

transitions from one partial operation to another. The full exploitation of the specialization 

of labor requires changes in the instruments of labor, for these must be adapted to the new 

skills. Furthermore, splitting up the original process into partial operations allows the latter 

to be carried on simultaneously, leading to a further gain of total productivity. Since the 

partial operations are performed by different workers, the continuity of the overall process 

depends on each worker spending no more time than necessary to complete his or her 

designated function, leading to an increase in efficiency. Finally, specialization allows 

differences among individuals to be developed, insofar as some will specialize in 

operations requiring more strength, others more skill, attention, intellectual effort, etc. All 

of these changes in the nature of the work, however, were made possible by the initial 

simplifying decomposition.288  

                                                 

287 Hills (1990), pp. 808-830; Usher (1954), ch. XI, section VI; Fitton & Wadsworth (1958), pp. 211 

(photograph facing) and p. 217.  

288 Marx (1976), ch. 14. 
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Clearly, any significant process of technical change will involve more than is 

suggested by these sorts of linear descriptions. Moreover, not all changes in work may be 

amenable to an analysis in terms of strategic functions at all. I merely suggest that, in some 

cases, it may be a useful analytical concept.  

The transformation of a strategic function can make it more feasible to apply 

science and technology to the labor process. For example, the application of theories of 

heat and work to production, say in the form of the steam-engine, is made possible by the 

mechanization of tool manipulation. In section 5, I will argue that detection played the role 

of a strategic function in chemical analytical instrumentation. 

Finally, it should be noted that these changes at the level of the labor process have 

cognitive counterparts. The “subjective principle” of manufacture involved, at the 

cognitive level, the assumption that however the production process was to be organized, 

each partial process carried out within it was to be done manually. The successor principle, 

which Marx sometimes calls the “principle of machine production”, cognitively involved 

the discarding of this assumption: 

In manufacture, it is the workers who, either singly or in groups, must carry on each 

particular process with their manual implements. The worker has been appropriated by the process; 

but the process had previously to be adapted to the worker. This subjective principle of the division 

of labour no longer exists in production by machinery. Here the total process is examined 

objectively, viewed in and for itself, and analysed into its constitutive phases. The problem of how 

to execute each particular process, and to bind the different partial processes together into a whole, 

is solved by the aid of machines, chemistry, etc. But of course, in this case too, the theoretical 

conception must be perfected by accumulated experience on a large scale.289 

The principle of machine production, namely the division of the production process into 

its constituent phases, and the solution of the problems arising from this by the application of 

mechanics, chemistry and the whole range of the natural sciences, now plays the determining role 

everywhere.290 

It is worth noting that the “principle of machine production” does not refer narrowly 

to production by means of devices that mimic human action (e.g., by bearing tools), but 

involves a problem-solving approach that draws on the entire store of scientific and 

                                                 

289 Marx (1976), p. 501. 

290 Marx (1976), p. 590. 
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technological knowledge. This approach was not employed by the direct operators on the 

factory floor (often relatively unskilled workers, including women and children) but rather 

by the owners and designers of the instruments: capitalists, inventors, engineers, etc. Thus, 

the ultimate import of the transfer of the tool-bearing function is that it paved the way for 

a much broader change in how problems of production were conceived and solved. This 

new way of thinking about production led in turn to further changes in economic 

production, which went far beyond the mere transfer of tools from one kind of bearer to 

another. I will provide evidence that a similar way of thinking, which one might call a 

“principle of machine production of data”, was influential in the Instrumental Revolution.   

In short, what I take from Marx’s analysis of the Industrial Revolution are the 

following ideas. First, that the degree in which the technologies used in a particular 

production process are dependent on native human abilities affects the possibility of 

applying scientific and technological knowledge to it. Second, that this degree of 

dependence is reflected in the problem-solving approaches used to address problems of 

production. Third, that labor processes contain “strategic functions” the transformation of 

which makes possible a pathway of transformations that might not be accessible from other 

starting-points. In some cases, the pathway of transformations may involve the extensive 

application of scientific and technological knowledge.  

4.5 Parallels between the Industrial Revolution and the Instrumental Revolution  

In this section, I discuss two sets of evidence suggesting a relationship between the 

Instrumental Revolution and the Industrial one. First, the conceptions of progress of some 

of the participants in the Instrumental Revolution were formulated in terms of features 

characteristic of industrial production. Second, the two events share eight common features 

with respect to how their respective labor processes were altered.  
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4.5.1 Conceptions of progress 

In some cases, the Instrumental Revolution was actually characterized by the 

participants in terms alluding to large-scale industry and the use of machines outside of 

science. For example, John K. Taylor of the Center for Analytical Chemistry at the National 

Bureau of Standards commented in 1985: 

Chemical analysis is undergoing a change of operational mode similar to the 

industrial revolution of a century ago … The trend is from individual craftsmanship to mechanical 

outputs, using apparatus and equipment that is often poorly understood by the technical operator.291 

In the forward to a book on the DENDRAL project, an attempt to automate structure 

elucidation by mass spectrometry, the noted organic chemist Carl Djerassi wrote in 1980 

that “[i]t is [in synthesis] where the use of computers has not been widely accepted because 

of the fear that thinking man will simply be reduced to an appendage to a machine.”292 

Joshua Lederberg, one of the project leaders, dreamt of “mechanizing” scientific thinking 

in biology and organic chemistry and reducing the human role to one of management: 

 If we could give biology sufficient formal structure, it might be possible to mechanize 

some of the processes of scientific thinking itself … Could not the computer be of great 

assistance in the elaboration of novel and valid theories? We can dream of machines that would 

not only execute experiments in physical and chemical biology but also help design them, subject 

to the managerial control and ultimate wisdom of their human programmer.293 

Comparisons to instruments used outside of science were also made. For example, 

Djerassi compared X-ray diffraction to the flash camera, and the analytical chemist H. A. 

Liebhafsky drew an analogy between the introduction of the new instruments and the 

mechanization of artillery, judging such “revolutions” to be “necessary.”294  

Such quotations provide grounds for thinking that participants in the Instrumental 

Revolution were influenced by ideas derived from examples of mechanization in the 

291 Taylor (1985), p. 6. 

292 Djerassi (1980), ix.  

293 Lederberg (1969), p. 38.  

294 Djerassi (1992), p. 84; Liebhafsky (1962), p. 32A. 
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broader society. In the next subsection, I will show that their ideas corresponded to 

structural similarities between the two events. 

4.5.2 Common features 

I have identified eight features common to both events, considered as 

transformations of their respective labor processes:  

I. The labor process no longer uses means and methods borrowed from an 

antecedently existing activity. It acquires means and methods specifically adapted 

to its purpose. 

Classical structure determination found its means ready-made in the technology of 

substance manipulation. These means had several drawbacks for the productivity of 

structure determination, including drawbacks such as that: large amounts of substance were 

required; the processes employed were time-consuming; the variety of evidence for 

structural claims was poor; and the principal evidence used, that provided by chemical 

properties, tended to underdetermine the structures identified by means of it. Consequently, 

the development of the productivity of structure determination required that means better 

suited to this end be found. Spectroscopic methods were very effective for this purpose: 

they require only small amounts of substance; they are rapid; they come in many varieties; 

and they are better at uniquely identifying functional groups and connectivities. 

Analogously, during the Industrial Revolution, capitalists transformed the production 

processes they had inherited from the medieval handicrafts to fit the needs of a capitalist 

economy, in particular the need to increase profits without increasing the length of the 

working day. This was achieved by increasing productivity through technological 

innovation.295 

II. The labor process becomes centered around an instrument rather than the worker. 

As I discussed in section 2, classical structure determination was essentially based 

on the chemical laboratory skills of the chemist. These skills are marginalized in modern 

                                                 

295 Marx (1976), ch. 12. 
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structure determination. The labor process is now essentially based on machines. While 

methods developers focus on optimizing the functioning and extending the scope of the 

machines, the average user types in standardized instructions at the computer.296 

Experimental design, optimization and execution become based around the ability of a 

specific kind of machine to carry out a process that associates a specific kind of input with 

a specific kind of output. 

III. The work becomes more capital-intensive. 

A report published by the National Academy of Sciences in 1965 estimated the 

typical cost of a high resolution NMR spectrometer at $45,000, or $355,563 in 2017 

dollars.297 The total approximate investment in instrumentation by all university chemistry 

departments rose from $5 million before 1954, to $14 million in the period 1954-1959, to 

$36 million for the period 1960-64 alone, resulting in a total accumulated investment of 

$55 million. In comparison, the report estimates that a total of $31 million was spent on 

traditional equipment (glassware, vacuum pumps, variacs, supplies, chemicals etc.) during 

the same periods.298 Thus there is evidence that even when the new instrumentation was 

still novel,  expenditures on it outstripped traditional kinds of expenditures by a wide 

margin. The problem of rapid obsolescence of equipment and the attendant funding burden 

emerged in chemistry at this time.299  

IV. The worker is not a specialist of the instrument.  

One of the principal themes of Reinhardt’s (2006) study of the Instrumental 

Revolution is that specialists developed methods enabling non-specialists to use the 

instruments.300 This development resembles the use of workers in large-scale industry who 

had little knowledge of the scientific principles embodied in their machines. Methods 

                                                 

296 Reinhardt (2006) emphasizes the emergence of the methods developers as a distinct scientific 

community. 

297 National Academy of Sciences (1965), p. 216. 2017 price calculated using the U.S. Bureau of 

Labor Statistics inflation calculator, based on the Consumer Price Index. 

298 National Academy of Sciences (1965), pp. 97 and 216. Reinhardt (2006), pp. 382-386, contains 

a brief discussion of investment trends in research chemistry from the 1950’s through the 1970s.  

299 Liebhafsky (1962), 27A. 

300 Cf. also Gerontas (2014). 
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developers had to create cognitive methods, like the rules of interpretation mentioned in 

point V below, so chemists, as routine users, could interpret the data without detailed 

knowledge of the science on which their instrumentation was based. In addition, textbook 

writers incorporated simplified theoretical treatments, connecting the workings of the 

machines with chemical concepts, into chemistry textbooks.301 

V. Specialized labor is replaced by non-specialized labor.  

Before the Industrial Revolution, capitalist production was based on the specialized 

labor of the handicraftsman; afterwards, it was based on the non-specialized labor of the 

machine-operator. Similarly, before the Instrumental Revolution, structure determination 

was based on the chemical skills of the chemist, whereas afterwards it was based on her 

ability to operate the machines using procedures and rules of interpretation adapted for 

non-specialist use.302 The training times required to learn how to operate the machines are 

disproportionately short, compared either to the amount of knowledge embodied in them, 

or to the amount of time required to train a competent bench chemist (several years). For 

example, the website of the NMR facility of the University of Pittsburgh states that “a little 

more than an hour” is required to train a user in running basic 1-dimensional NMR 

experiments, 45 minutes for familiarization with basic 2-dimensional experiments, and 20 

minutes for variable-temperature training.303 And the Varian advertisement in Figure 2a 

promises a 15 minute training time …304 

                                                 

301 Slater (2002) discusses R. B. Woodward’s pioneering role in the development of rules of 

interpretation in the context of ultraviolet spectroscopy. See also Morris & Travis (2002) and 

Reinhardt (2006) for discussions of the textbooks produced during this period. The simplified theory 

together with the instruments resemble what Fujimura (1988) calls a “standardized package” of 

theory and technology whose widespread adoption results in a “scientific bandwagon.” 

302 On the process of adaptation, see in particular Rabkin (2002 [1987]), Bigg (2002) and Reinhardt 

(2006). 

303 Http://www.chem.pitt.edu/facilities/nmr-spectroscopy/training. (Accessed July 22, 2015). 

304 Though advertisements are not impartial sources, that the principle techniques discussed in this 

paper had either been routinized or were in the course of routinization by the early 1960s (the Varian 

advertisement is from 1968) is supported by textbooks of the period [Schwarz (1964), pp. 2-3; 

Silverstein & Bassler (1963), p. 2]. It is also supported by the manner in which the instruments were 

developed. In NMR, for example, a major impediment to non-specialist use was the instability of 

http://www.chem.pitt.edu/facilities/nmr-spectroscopy/training
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The interpretation of the signal itself often involves no more than the use of rules 

that can be applied to read off structural features from the spectrum. Figure 4, for example, 

shows the result of one of the first attempts to correlate spectroscopic properties (here, 

infrared absorption) with structure. Having obtained the IR spectrum of a substance, the 

chemist can correlate each peak in the spectrum with functional group constituents by 

scanning along the abscissa, locating the wavenumber of the peak, and then scanning along 

the ordinate to identify the functional groups that are correlated with that wavenumber. The 

interpretation of spectra in this fashion is an instance of what the physical chemist J. P. C. 

Schwarz called an ‘empirical approach’ to the use of the new instrumentation. This 

approach depended on “the empirical correlation of certain physical properties with 

structural features.” He contrasted this way of interpreting spectra with a ‘theoretical 

approach’, in which structure is deduced by interpreting the data in terms of the theories 

justifying the use of the instruments.305  

 

                                                 

the magnetic fields that could be generated in the 1950s, which required individual calibration and 

duplication of each spectrum. This problem was overcome by the introduction of the field/frequency 

lock technique. The first commercial use of this technique was in the Varian A-60 spectrometer, 

which included a number of other design features that were intended to facilitate routine use by 

structure elucidation chemists. According to Becker et al. (1995), pp. 35-37, the instrument was a 

success, bringing NMR “to almost every chemistry laboratory as a standard analytical method.” The 

role of the A-60 in routinizing and disseminating NMR is corroborated by Lenoir & Lécuyer (1995) 

and Steinhauser (2014), pp. 127-132 and p. 381. I thank two anonymous referees for pressing the 

point concerning advertising.  

305 Schwarz (1964), pp. 3-4. 
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Figure 4.5 An important step for the acceptance of spectroscopic methods by organic chemists was 

the development of simple rules of data interpretation.306 These rules were often presented in the 

form of charts allowing the chemist to correlate, at a glance, the observed frequencies with the 

presence of functional groups in the molecule. Shown above is a portion of the first such chart, 

published by Norman Colthup of American Cyanamid in 1950.307 

VI. Automation becomes a significant feature of the production process (of goods,

data)

Though the chemist must still prepare the sample, beyond this, routine use of the

machines requires only insertion of the sample and the feeding of standard instructions to 

the instrument. In 1999, Djerassi commented on the introduction of X-ray crystallography 

into structure elucidation work in blunt terms: “If anyone can prove a structure with an X-

ray analysis, we are nothing. The organic chemist is nothing but a little technician who 

crystallizes the compound and gives it to someone who sticks it in an X-ray machine, and 

306 Slater (2002), Reinhardt (2006). 

307 Colthup (1950), pp. 398-399. 
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even the rest is computerized. So what’s your function?”308 Though Djerassi no doubt 

exaggerates the degree of automation brought about by the new methods, especially with 

respect to X-ray crystallography, the context of the quotation is comparative: as discussed 

in section 4.3, human manual intervention in the production of the data is greatly reduced 

relative to classical chemical manipulations. Both this feature and IV above are succinctly 

expressed in the following NMR textbook: 

It is one of the great virtues of NMR spectroscopy that one can use it, and indeed use it to quite 

a high level, without having the least idea of how the technique works. For example, we can be taught 

how to interpret two-dimensional spectra … in a few minutes, and similarly it does not take long to get 

to grips with the interpretation of NOE … difference spectra. In addition, modern spectrometers can now 

run quite sophisticated NMR experiments with the minimum of intervention, further obviating the need 

for any particular understanding on the part of the operator.309 

VII. The cognitive and physical limitations of humans are circumvented by advances 

in instrumentation design. 

Methods developers could now attempt to circumvent the limited cognitive and 

physical abilities of humans by developing the machines’ computational power, 

automation and versatility as well as the quality and variety of the data. For example, James 

Shoolery of Varian Associates commented in 1995 that the introduction of programmable 

computers into NMR spectrometers in the late 1960s allowed a control of the instrument 

with:  

a speed and precision far beyond the capability of a human operator. Freed from those 

limitations, the development of NMR as a structural and analytical tool soon entered an exciting 

new period.310  

The options for circumventing human limitations were significantly fewer in 

classical chemistry, resulting in a relatively conservative pattern of methodological 

development. This conservatism was illustrated in section 2 by the testimony of David 

Knight.311 Likewise, once the tool-bearing function was transferred from man to machine, 

                                                 

308 Quoted in Reinhardt (2006), p. 170. 

309 Keeler (2010), p. 1. See also Streitwieser, Heathcock and Kosower (1992), p. 325. 

310 Shoolery (1995), p. 44. Grayson (2004) provides evidence that the computer came to play a 

similarly central role in mass spectrometry. 

311 Tarbell & Tarbell (1986), p. 335 and Taylor (1985) make similar observations. 
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industry could use more powerful motive powers than humans to drive the machine and its 

tools.312

VIII. The transformation is motivated in part in terms of productivity norms—the

speed, ease, simplicity, reliability and automaticity of the new techniques.

An interesting aspect of the Instrumental Revolution is that industry pioneered the

use of modern spectroscopic instrumentation in order to boost productivity before the 

instrumentation became widespread in academic chemistry.313 Efficiency considerations 

were also adduced by academic proponents of the new methods. The physicist Paul 

Klopsteg, to whom the analytical chemist Ralph Müller referred in his influential 1940s 

column on instrumentation,314 made efficiency the principal theme of his 1945 Science 

article on “Increasing the Productivity of Research”. Commenting on the rapid recent 

development of instrumental methods across the sciences, Klopsteg argued for the 

establishment of laboratories of “instrumentology” in universities in order to increase “the 

output of valuable results per dollar.” Instrumentology was to be a science whose goal was 

“the application of science to science itself.”315 The chemists Silverstein and Bassler, 

authors of the widely used textbook Spectrometric Identification of Organic Compounds, 

argued in 1962 that the cost of the instrumentation was outweighed by the speed, small 

sample size and large informational pay-off made possible by it.316  

Such productivist goals were also supported by university administrations. In the 

context of the Cold War, ambitious administrators could aim to maximize the output of 

research and graduate students by drawing on the large amounts of state and industrial 

312 Marx (1976), pp. 497-499. 

313 See Rabkin (2002), Bigg (2002) and Reinhardt (2006) for accounts of the “detours” taken by 

ideas originating in physics through industry before reaching chemistry.  

314 Müller (1947), p. 24A. See Baird (2002) for a discussion of Müller’s role in the Instrumental 

Revolution in analytical chemistry in the 1940s. 

315 Klopsteg (1945), p. 571-572. Italicized in the original. 

316 Silverstein & Bassler (1962), p. 547. See also Reinhardt (2006) for comments by John D. Roberts 

and William S. Johnson (both important proponents of the instrumental approach) as well as Djerassi 

on the labor-saving virtues of the new methods (Reinhardt, 2006, pp. 20 and 157). The scientific 

testimony and textbook comments in the references in footnote 270 above all compare the difficulty 

of classical structure determination to the relative ease, simplicity or rapidity of the modern. 
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funding that were then available. For example, Carl Djerassi did his pioneering work in 

mass spectrometry at Stanford, after moving there from Wayne State University at the 

invitation of ambitious provost of Stanford Frederick E. Terman. Terman was committed 

to developing the university in directions that would attract funding agencies and industrial 

companies, and had a new building built to house both Djerassi’s group as well as that of 

Djerassi co-hire William S. Johnson. Djerassi set up a research group organized around an 

assembly of physical instrumentation and structured by a strict division of labor. Wet 

chemists supplied compounds, technicians ran the instruments, “computers”—wives of 

graduate students at first, then artificial computers—processed the data, and senior post-

doctoral fellows interpreted the spectra.317 In his memoirs, Djerassi characterized the vision 

he had for his lab during the move as that of a “quasi-socialist enterprise” run by a 

“benevolent dictator”, possibly reflecting the influence of external methods of organizing 

labor on his thinking.318  

Those who resisted the mechanization of structural chemistry found ammunition in 

efficiency as well. For example, Sir Robert Robinson thought the time saved by the new 

methods was illusory, for they revealed no chemical properties.319 Likewise, some chemists 

who focused on the pedagogical consequences of the instrumental methods were concerned 

that the education of chemists would suffer if too much of the curriculum was devoted to 

the new methods, for the latter saved time at the expense of properly chemical training.320 

Such pedagogical reflections are especially interesting in light of what was said in section 

3, for they underscore the fact that some classical chemists did not view structure 

determination merely as a process for accumulating known structures, but also as a process 

of apprenticeship. 

                                                 

317 Reinhardt (2006), pp. 144-173. 

318 Djerassi (1992), p. 100. 

319 Robinson (1974), p. 57. 

320 E.g., Lingane (1948), p. 2; Shriner et al. (1956), pp. v-vi; and Silverstein & Bassler (1962), p. 

546. 
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4.5.3 Disanalogies 

As with any analogy, there are respects in which this one breaks down. The 

transformation of labor affected only one, albeit important, activity, though there are efforts 

currently afoot to mechanize synthesis as well.321 Chemistry never became Big Science, 

but largely continued to favor small-scale projects. The delegation of expertise to 

specialists was not total, since some knowledge of how the instruments work remained 

desirable for data interpretation. And as noted in section 2, there was no attempt to 

mechanize the tools of classical chemistry. 

Perhaps the most important disanalogy has to do with the social groups driving the 

change. As pointed out under (I) above, during the Industrial Revolution capitalists 

transformed production processes to increase profits through technological innovation. It 

is unclear who the equivalent actors to the capitalists might be in the chemical case, or what 

goal plays the role of profit. With respect to the actors, previous studies on the introduction 

of the instrumental methods in chemistry show that the actors were small instrument 

manufacturers, research technologists,322 scientists working as method makers or lead 

users, officers of funding agencies, and university administrators. This motley group of 

actors is very different from the owners of the means of production central to Marxist 

theory. Though profit certainly motivated the manufacturers, it is doubtful that it was as 

important a motivation to the other members of the group. Prestige would seem to be more 

important in these cases. 

It might also seem like a stretch to compare 20th century organic chemists to early 

industrial factory workers. I only claim, however, that in both cases, mechanization 

allowed the operators to treat the new instruments more or less like black-boxes. The 

import of the analogy with the Industrial Revolution is that the latter represents a repeating 

pattern in the development of technology in Western capitalist societies. Moreover, a 

possible, and sometimes actual, long-term effect of automation in industry is to “free up” 

workers for labor-intensive kinds of production. This is analogous to what happened in 

                                                 

321 E.g., Webb (2015). 

322 On the role of research technologists in 20th century chemistry, see Shinn (2002). 
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chemistry, in the sense, stated above, that chemists could now spend more time on other 

kinds of production like synthesis and applications. Of course, there is the disanalogy that 

in the industrial case, different groups of workers are employed in the labor-intensive 

versus the capital-intensive industries, whereas in the chemical case it is more complicated: 

in some research institutions the chemists operate the machines themselves for routine jobs, 

whereas in others, technicians take care of data production; in all cases there are instrument 

experts who maintain, improve and in some cases operate the instruments. 

Moreover, increasing productivity was not the only reason for adopting the new 

methods. Scientific norms of accuracy, informativity, and epistemic security were major 

motivations. That said, scientific justifications for adopting the new methods often seems 

to have been mixed in with, and even in tension with, productivity-related justifications. A 

1958 review of the new instrumentation by physical chemist S. Z. Lewin of NYU is at 

pains to point out the scientific benefit over and above the increased productivity: “the 

process of collecting analytical data has been made quicker, pleasanter, and more effortless 

[by the new instruments]. That is, however, only a part—and a minor part, at that—of the 

new capacities these instruments have provided to the analyst.” It is worth noting that his 

target audience was analytical chemists.323 

Furthermore, and as noted in the introduction, I have only been concerned with 

standard instruments and routine users. Scientists working at the cutting-edge of chemical 

analysis, say in protein structure determination, have very specific needs that require 

specialized instruments and the scientists to be experts in their instrumentation. 

Despite these disanalogies, I think the eight common structural properties described 

above are suggestive of common underlying factors responsible for the common properties, 

and in the next section I will proceed to sketch hypotheses as to what these factors could 

be. 

                                                 

323 Lewin (1958), p. 19A; see also 20A. The article is billed as a “report for analytical chemists.” 

See also Tishler (1983), p. 13 and footnote 59 above.  
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4.6 Explication of the analytical claim 

Why might there be common structural properties between the mechanization 

processes described by Marx and the Instrumental Revolution? After all, the contexts are 

very different—one instance of mechanization occurring in the production of commodities, 

with examples drawn from the 18th and 19th centuries, the other in the production of data 

for chemists in the middle of the 20th century. It may seem implausible that the two 

instances have anything to do with each other. 

Nevertheless, there is evidence that scientists involved in the Instrumental 

Revolution were animated by a new way of thinking about data production, one that 

consciously draws on scientific and technological knowledge as a whole rather than on the 

specific discipline in which the data is sought.  

For example, James Feeney, co-author of a textbook on NMR, has periodized the 

progress of NMR in terms of alternating phases of science-driven and technology-driven 

development. The scientific discoveries underlying the method opened horizons for its 

application to structural analysis, but the technical requirements of the spectrometer 

entailed that “the full development of the method also relied on borrowing technology 

already being used successfully in other forms of spectroscopy and measurement.”324 The 

potential for applying NMR to structural problems other than relatively small molecules 

was not realized until improvements in the electronics and the magnet, the introduction of 

Fourier transform algorithms, improvements in computation, and yet other developments 

had come about. 

Texts from the period of the Instrumental Revolution display the principle that 

analytical problems are to be solved by the replacement of human manipulations by the 

conscious application of science and technology. Analytical chemistry texts are 

particularly explicit on this point, perhaps because analytical chemistry became more 

directly concerned with the design of instrumentation than organic chemistry. For example, 

a report on the 1960 Pittsburgh Conference on Analytical Chemistry and Applied 

                                                 

324 Feeney (1999), pp. 206-207.  
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Spectroscopy states that the new instruments showcased that year all have in common that 

“[t]hey eliminate the human element, either partly or almost wholly.”325 Scientific texts 

also display the principle at work.326  In his call for the establishment of instrumentology 

laboratories, Klopsteg emphasized the comprehensive character of modern 

instrumentation. The disciplines he thought should be represented in these laboratories 

included physics, chemistry, mathematics, materials science, meteorology, geophysics, 

thermodynamics, acoustics, various kinds of spectroscopy, optics, and electronics. Lewin’s 

review also emphasizes the instrumentation’s eclectic character. Lewin examined trends in 

analytical instrumentation before and after World War II. He identified a “common 

feature” distinguishing post-war devices from pre-war, namely that: 

 [t]hese devices have been created by the conscious application of the principles of a 

relatively newly recognized discipline—the science of instrumentation—to the chemical need that 

was to be satisfied. The science of instrumentation is a hybrid field, drawing its content 

from optics, electronics, mechanics, circuit theory, computer theory, psychology, and all those 

aspects of physics and chemistry that treat the interactions of radiant energy and electric or 

magnetic fields with matter.327 

For Lewin, the “science of instrumentation” is not just a discipline dedicated to 

instrument-making, but an approach to “chemical needs” that is consciously eclectic.  

Lewin’s review is also noteworthy in that it suggests an explanation of the origin 

of  the new instrumentation. According to Lewin, every modern analytical instrument is 

composed of four fundamental components: a “transducer, or detector”, an amplifier, a 

computer and an output. He likens the detector to “the eyes, ears, and nose of the 

instrument” and credits modern electronic detectors of radiation with greatly increasing the 

range of spectrometers, going so far as to claim that “their utilization in place of the 

photographic plate has been directly responsible for the current vigorous flowering of the 

fields of microwave, infrared, near-infrared, Raman, visible, ultraviolet and x-ray 

spectrometry.”328 

325 Chemical and Engineering News (1960), p. 106.  

326 Though space does not permit discussing these texts, the views of Heyrovský & Shikata (1925), 

Müller (1941), Ewing (1976) could be adduced as further evidence. 

327 Lewin (1958), p. 21A.  

328 Lewin (1958), p. 20A. My emphasis. 
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Lewin’s assessment of the sources of progress suggests that the function of 

detection may have played a role analogous to that of the tool-bearing function in Marx’s 

analysis. The key change, according to Lewin, was the switch from the detection of a 

chemical or physical property by exposure of a photographic plate to it, to the use of 

electronic detectors. According to Lewin, the photographic plate was the characteristic 

detector of pre-World War II analytical instrumentation. Lewin emphasizes the 

laboriousness of photographic plate detection: 

Compare, for example, the ultraviolet absorption spectra obtainable by means of 

photographic instrumentation commonly used in the 1930’s with that provided by a modern 

recording spectrophotometer … With the older type of equipment several exposures of a 

photographic plate had to be made at different slit settings; the plate had to then to be developed, 

dried, and microdensitometered; the results had to be compared with more or less laboriously 

achieved calibration data for the photographic emulsion; finally an absorption spectrum could be 

computed and plotted. The entire process required one to two days.329 

In contrast, with the use of the recording spectrophotometer “a pen moving across 

a paper chart automatically plots a finished absorption spectrum in a matter of minutes.”330 

This gain in time is made possible by the use of an electronic detector, in this case a 

photocell, which converts the incoming light from the sample into an electrical signal that 

can then power the recording device (what Lewin calls the output). The switch from the 

photographic plate to the photocell allowed the detector to be electronically connected to 

the output, which then allowed the recording of the signal to be automated. The signal 

generated at the detector may not be strong enough to power the output by itself, but since 

the detector is electronic it can be connected to an amplifier, which increases the signal to 

a usable level. Moreover, the signal may not be in a form suitable for providing the desired 

information at the output, and so connection with a computer is needed to transform the 

primary signal into the appropriate form. Depending on the output needed, the computer 

will be used to convert a current into a voltage, a direct current into an alternating current 

                                                 

329 Lewin (1958), p. 19A. 

330 Lewin (1958), p. 19A. 
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or vice-versa, modify the wave form of the signal, change the frequency, digitize the signal, 

etc.331  

Lewin credits the combination of electronic detectors and amplifiers with bringing 

about significant scientific progress: 

The greater sensitivity, linearity, and reproducibility of electronic detectors and amplifiers, 

compared to such “classical” components of instruments as the human eye, photographic plate, and 

light-beam galvanometer, have now made it possible to sense, and to measure accurately, a vast 

array of substances for which no specific analytical method had previously been available, and at 

concentrations ranging from the pure substance down to 10-8 to 10-10 M and even less in favorable 

cases. 
332 

Throughout his two-part review, Lewin emphasizes the scientific pay-offs, in terms 

of accuracy, sensitivity, resolution and range of application, that were made possible by 

the use of electronic detectors and their combination with other kinds of equipment.333 

For some corroboration of Lewin’s claims, I will briefly discuss the strategic role 

of detection in mass spectrometry.334 In mass spectrometry, the components of a sample 

are ionized and then separated by various arrangements of electric and magnetic fields. The 

mass-to-charge ratio of each kind of ion is measured, and this information allows the 

components of the sample to be identified. Prior to the 1940s, the photographic plate was 

the most common method of detection. Starting in the 1940s, the photographic plate tended 

to be replaced by electronic detectors. This modification enabled automatic strip chart 

recording of the mass spectrum, which simplified and accelerated spectrum recording 

compared to the photographic method.  Strip chart recorders yielded an analog recording, 

however, which had to be converted into tabular form through a labor-intensive process. 

                                                 

331 Lewin (1958), p. 22A (digitization is my example).  

332 Lewin (1958), p. 20A. 

333 Lewin’s emphasis on the importance of the transition from photographic to electronic detection 

is corroborated by Hardy (1938), wherein the history of the first recording spectrophotometer 

(invented by the author) is described, and by the historians Morris & Eklund (1997), p. 559, and 

Thackray & Myers (2000), pp. 149-151. For a skeptical view of the photocell’s potential in the 

1930s, see Twyman (1931). Twyman was the technical director of Adam Hilger Ltd, producer of 

the Spekker photometer based on photographic detection by means of a quartz spectrograph. 

334 The following relies heavily on the account in Grayson (2004). 
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The earliest use of computers (1958) in mass spectrometry was that of a digitizer that could 

tabulate the data as the spectrum was being generated. The Mascot digitizer was itself fairly 

crude, in that it was unable to do anything else but digitize the output of the spectrometer 

to which it was hard-wired. But digitization, in turn, enabled new applications of the 

computer to mass spectrometry in the 1960s. The DENDRAL algorithm was developed to 

interpret the spectra of unknown compounds, albeit with limited success. High-resolution 

mass spectrometry, which allows deduction of elemental composition, relied heavily on 

computers to digitize the data from the detector and process them into exact mass and 

intensity information. Library search algorithms were developed to match the spectra of 

unknowns with those of reference compounds. In the 1970s, techniques and 

instrumentation were developed that allowed the spectrometer to be coupled with a gas 

chromatograph and a data system. The GC-MS-DS was capable of generating several 

hundred spectra per half hour, which could eventually (1990s) be compared via library 

search algorithms to libraries containing hundreds of thousands of reference spectra. In 

contrast, only a few spectra per hour could be prepared by an operator using a strip chart 

recording machine of the 1940s and 1950s.  

In this section, I have provided grounds for thinking that intervention on the 

strategic function of detection played an important role in the Instrumental Revolution. The 

intervention involved an evolution from  processes in which humans were heavily involved 

in data production (e.g., the production and processing of photographic plates) to ones in 

which data production was increasingly automated. This evolution made possible the 

black-boxing of the instruments and hence their use for purposes of routine structure 

determination by organic chemists. The progress made possible by the intervention 

required an eclectic approach to methods development in chemistry, one that drew on 

advances in diverse fields of science and technology.  

Once the new methods were adopted by organic chemists, they supplanted the 

previous approach of solving chemical analysis problems largely through chemical 

methods. We are now in a position to see why the common structural properties described 

in section 4.5 should obtain:  

I. In both cases, traditional assumptions about how problems of production should 

be solved were discarded in favor of a more eclectic approach that draws on 
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diverse fields of science and technology, and in so doing, facilitates the 

development of methods specially adapted to the given problems. 

II. In both cases, the eclectic approach was not simply interdisciplinary. The 

interdisciplinarity was achieved through the construction of machines that 

exploited advances in different disciplines and that were used to transform the 

relevant labor processes. 

III. In both cases, since the new methods were based on machines, the ability to 

engage in the work required significantly more capital than before. 

IV. In both cases, since the design of the instruments was based on an eclectic 

approach that itself required dedicated workers, a division of labor arose 

between specialist instrument-makers and non-specialist instrument users. 

Automation and black-boxing also facilitated use by non-specialists. 

V. In both cases, skills that were crucial for the execution of the production process 

became marginalized because the new methods made use of different processes 

than those relevant to the skills. 

VI. In both cases, machines made automation possible.  

VII. In both cases, the possibilities for modifying and combining the instruments 

allowed human cognitive and physical limitations to be circumvented. 

VIII. In both cases, the new methods tended to increase productivity, and given the 

importance of productivity norms in the societies concerned, this fact was used 

to motivate their adoption. 

4.7 Objections and replies 

One of the basic claims of this chapter is that a process of transformation of the 

labor process occurred in chemistry that was not only analogous to mechanization 

processes in the broader society, but was in part caused by similar factors. A confusing 

aspect of this episode, however, is that it combines mechanization, a change in the kinds 
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of data produced, and the introduction of the new quantum theory to structural chemistry. 

This combination gives rise to two related objections: 

1. Mechanization involves having a machine carry out a process formerly carried 

out by a human. This episode is not a case of mechanization, because the data 

produced by means of the new instruments are radically different from those 

produced by means of the old instruments. 

2. The reconceptualization of chemical structure in terms of quantum mechanics 

and spectroscopic properties is what drove change in this episode, not the 

opportunities that mechanization offered for the transformation of labor.  

In answer to (1), I reply that mechanization is not incompatible with significant 

change in the nature of the data. The Instrumental Revolution was a case of what Keating, 

Limoges and Cambrosio describe as a “creation of an emerging new field of actions 

between humans and machines and between the humans themselves” (see section 4.3). The 

episode resulted in a change in both the object of labor and how operations were performed 

on it. Before the revolution, the object of labor was the substance whose structure was to 

be determined. The chemist discovered its chemical properties by deploying his or her 

(usually his) mental and manual skills on it in a series of laboratory operations. After the 

revolution, the object of labor is light energy (or the molecule and its fragmentation ions, 

in the case of mass spectrometry). In order to obtain data, chemists operate machines that, 

with the aid of instrumentation specialists and (sometimes) technicians, perform a series of 

operations on the object. Thus the instrumental methods are more machine-centered than 

classical methods, and their development involved a reconceptualization of the process of 

compound identification. They also produce a different kind of output, though the final 

outcome of the compound identification process—the structural representation of the 

compound—is the same.  

The second objection ignores the historical development of the new methods. The 

realization of methods based on quantum mechanics required the transformation of labor. 

Each technique is based on a physical phenomenon. The initial phenomenon, however, was 

generally useless for other than the physicists interested in the phenomenon itself until the 

changes described in sections 4.3, 4.5 and 4.6 took place. Mechanization was required to 

develop methods that had the speed and control needed to produce data informative enough 
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to replace chemical data. Black-boxing, an empirical approach to data interpretation, and a 

new division of labor were other elements required to make the methods attractive to 

ordinary organic chemists.  

True, the old methods would never be able to provide certain kinds of structural 

information, for example on molecular conformation. But there was information loss with 

the new methods as well. Classical structural chemistry had two principal goals: (1) 

identify a substance in terms of a structural representation, and (2) learn about the chemical 

reactions in which the substance participates. Classical methods allowed both goals to be 

achieved simultaneously. Modern structural chemistry has kept (1) as a goal, but not (2), 

because the spectroscopic properties that are now employed to achieve (1) are of little 

chemical interest in themselves.335 Given the monetary and other costs of adopting 

instrumental methods, the replacement of chemical methods by instrumental methods 

would only make sense if goal (2) could be abandoned, downgraded, or replaced by some 

other goal. In the end, the other goal was synthesis.  

A third objection starts from the social class disanalogy mentioned in the last 

section. Class struggle is central to Marxist theory. But there are no clear analogues to 

capitalists and workers in the Instrumental Revolution. Therefore, Marx’s theory is 

irrelevant to its analysis. The objection fails, however, because it ignores the equally central 

role of the labor process in the theory developed in Capital. There, it is shown that the 

characteristics of the instruments of labor, and the structure of the labor process more 

generally, impose constraints on the application of science and technology to production. 

I have merely extended this line of analysis to the sphere of scientific production itself. 

                                                 

335 In a 1974 interview, the Nobel laureate Robert Robinson makes the point forcefully that the 

empirical knowledge of chemical reactions was an independent goal of classical structure 

determination [Robinson, (1974), p. 57]. Professor W. von E. Doering regretted the loss of a “nigh 

inexhaustible” source of unexpected discoveries in the classical approach [(2000), v].  
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4.8 Conclusion: The Instrumental Revolution or an instrumental revolution? 

The Instrumental Revolution has sometimes been compared, in passing, to the 

transition from craft-based production to industrial production during the Industrial 

Revolution, as in the comment by John Taylor quoted above.336 If this comparison is taken 

seriously, as I have taken it in this paper, it implies that the nature of chemical analysis 

changed from a more “craft-like” labor to a more “industrial” type of labor. Starting 

perhaps with Edgar Zilsel in the 1940s, various writers in science studies have viewed 

science as a kind of craft.337 Different authors focus on different respects in which science 

resembles or has resembled craft labor, but the main focus of this paper has been on the 

locus of expertise on the instruments employed. On some views of what is involved in craft 

labor, the craftsman is supposed to be an expert on the tools he employs. For example, the 

philosopher Etienne Balibar holds that “[b]efore the industrial revolution, a ‘technique’ 

was the indissociable ensemble of a means of labour or tool, and a worker, moulded to its 

use by apprenticeship and habit.”338 As a result, the performance of a technique is an 

essentially individual exercise even if labor is organized collectively, as in the 

‘manufacture’ mode of production discussed above. The complex division of labor needed 

to operate the machines characteristic of large-scale industry, in which expertise is 

unevenly distributed between engineers and technicians, or between the machine operators 

and the scientists who discover the laws that are applied in the machines, is therefore 

unnecessary in craft labor.  

In this chapter, I have provided evidence that chemistry went through a transition 

of this type. Similar transitions have been observed in other domains, for example 

                                                 

336 Cf. also Knight (2002), pp. 90-91; Reinhardt (2006) claims that “the mechanization of chemical 

practice was closely connected to its handicraft side: Without syntheses of labeled compounds, the 

mass spectrometer would have stood idle” (p. 169). The title of Peter J. T. Morris’s (2015) book on 

the history of the chemical laboratory is The Matter Factory.  

337 E.g., Zilsel (2000 [1942]); Polanyi (1958); Ravetz (1971); Latour & Woolgar (1986) ; Clarke & 

Fujimura (1991). 

338 Balibar (2009 [1965]), pp. 267-269 (emphasis in original). 
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physiology and astronomy in the 19th century and microphysics in the 20th.339 The existence 

of this pattern suggests an externalist hypothesis that the course of science is influenced by 

the diffusion of principles of organizing labor, what I will call ‘labor-principles’ for short, 

that originate from outside of science. A labor-principle is a principle, or perhaps better, 

strategy, for organizing and (and hence dividing) labor. It can be thought of in terms of 

maxims like: “use minimally skilled technicians for repetitive tasks” or “automate as much 

as possible”340 or “conception and execution should be carried out by the same [or 

different] people.”   

The notion of a labor-principle may be related to the growing philosophical 

literature on what Philip Kitcher (1990) called ‘the division of cognitive labor.’ This term 

reflects the fact that scientific research as a whole is organized according to a division of 

labor, and that this division seems to have something very important to do with scientific 

progress. Questions philosophers have been interested in is how this division is effected, 

how it contributes to scientific progress, and how the former ought to be effected to 

maximize the latter.341 The focus of this literature has been on mechanisms of coordination 

between scientists, which involve things like reward systems, and how these mechanisms 

affect the allocation of research projects, the selection of research strategies, etc. As noted, 

the scope of these studies is holistic, having to do with the division of labor across projects 

and fields. In contrast, the notion of a labor-principle is intended to be narrow, pertaining 

to how particular labor processes are organized. Though the transformations of chemistry 

described in this chapter affected the work of all chemists, the focus has been on how the 

work was done rather than on the choice of projects. That said, and as noted in 4.3, the 

transformation of individual labor processes may have an effect on the allocation of labor 

across projects, in the case at hand by routinizing a certain kind of work.  

                                                 

339 For physiology, see Dierig (2003); for astronomy, see Lankford (1997) and Bigg (2000); for 

microphysics, see Galison (1997), esp. chapter 5.  

340 According to Perovic (2011), p. 35, the attitude of Lew Kowarski, an influential physicist at 

CERN in the 1960s, was that “the evolution of data-handling in bubble chambers leads ‘towards 

the elimination of humans, function by function’” (emphasis in original). 

341 See Thicke (2016), ch. 3 for a recent critical review of these efforts.  
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To return to the externalist hypothesis mentioned above: if true, it has a normative 

edge, insofar as one can ask whether the external principles have a good or bad effect on 

the quantity and quality of scientific results. For example, the mechanization of work may 

be a positive development if it extends the reach of human knowledge or makes the results 

of science more reliable. On the other hand, excessive faith in mechanization may lead to 

errors of application or missed discoveries.342 In some cases, it is possible to say fairly 

precisely what difference the adoption of the principle made to the quantity and quality of 

the results, perhaps more precisely and with greater certainty than is possible in traditional 

controversies over scientific method, for example whether Newtonian deduction from 

phenomena or the method of hypotheses is to be preferred.343  

The hypothesis also implies that there is no unique model of scientific development. 

Different labor principles will promote different rhythms and kinds of change. Moreover, 

similar labor principles applied to different sciences may have different effects with respect 

to progress. Industrial methods may have been successful in, say, physiology but not in 

plant breeding.344 As noted above, various authors have alluded to the craft/industrial labor 

contrast to describe episodes of scientific change, and in at least one case have developed 

the contrast in depth, though with a limited aim.345 It might be worth taking a more 

systematic approach, and exploring how different labor principles affect scientific 

progress. 

                                                 

342 In chemistry, Nicolaou & Snyder (2005) claim that excessive faith in instrumental methods 

sometimes causes chemists to make erroneous structural assignments. Perovic (2011) argues that 

excessive automation of high-energy physics experiments risks missing experimental challenges to 

the Standard Model of particle physics; Galison (1997), ch. 5 recounts the historical debates over 

the wisdom of automating HEP. 

343 E.g., Laudan (1981), Smith (2002), Harper (2011). 

344 For an examination of the unsuccessful application of industrial techniques in plant breeding, see 

Curry (2017). 

345 Ravetz (1971) defends the thesis that science is a kind of craft labor. His purpose is primarily to 

articulate a critique of Big Science as imposing an industrial style of research on science and thereby 

distorting it from its optimal form. For the purpose of this paper, I prefer to stay neutral with respect 

to Ravetz’s critical aim and his view that the essence of science is craft. 
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In this study, the analogy with mechanization processes in the Industrial 

Revolution, as the latter were conceptualized by Marx, has directed our attention to the 

cognitive consequences of radical changes in the means of production. These include: 

 Changes in the kinds of knowledge and abilities necessary to conduct research 

 Changes in who possesses the different kinds of knowledge  

 Changes in how problems are solved, in the case of mechanization that a larger 

body of the available knowledge can be applied to problem-solving than would 

otherwise be possible 

 Changes in the adaptability of the means of problem-solving to specific 

problems  

 Changes in the relations of epistemic dependence (e.g., in the degree of 

dependence on external experts, or on semi-skilled technicians) 

 Changes in training and education 

 Risks due to lack of understanding of the instruments346 

 Path-dependence in research due to costs sunk in instrumentation347 

 Changes in goals due to biases inherent in the new means 

 Changes in the role of “specifically” human qualities, like creativity and 

flexibility, in research348 

 Questions about which norms are to prevail: scientific (accuracy, reliability, 

etc.), pragmatic, productivist, pedagogical, etc.  

 Changes in the rate of methodological innovation349 

                                                 

346 In chemistry, Nicolaou & Snyder (2005) claim that excessive faith in instrumental methods 

sometimes causes chemists to make erroneous structural assignments. 

347 On path-dependence in science, see Peacock (2009).  

348 Perovic (2011) argues that excessive automation of high-energy physics experiments risks 

missing experimental challenges to the Standard Model of particle physics; Galison (1997), ch. 5 

recounts the historical debates over the wisdom of automating HEP. 

349 The impact of the Instrumental Revolution in chemistry on the rate of methods development and 

on data-to-phenomena reasoning are discussed in chapter 5 below. On the impact of the revolution 

on the reasoning employed in structure determination, see also Seeman (2018). 
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 Changes in data-to-phenomena reasoning349 

Previous accounts of the Instrumental Revolution have focused on the question of 

whether and to what extent the episode fits general models of scientific revolution 

(especially Kuhn’s and Hacking’s). This focus is understandable, because the categories 

employed in these models are very valuable for bringing out important features of scientific 

change. Nevertheless, they are not designed to capture the causes and effects brought about 

by radical changes in the means of production.  Because the latter changes can have the 

consequences listed above, I think it worth considering whether the Instrumental 

Revolution was also an instrumental revolution, that is, an instance of a distinct kind of 

revolution involving radical changes in the means of production. Given the fundamental 

role of the means of production in the labor process, this kind of revolution is not limited 

to cases involving mechanization. Nor is it limited to changes in data-producing 

instruments, but could involve, for example, means of representation or theorizing. The 

notion of an ‘instrumental revolution’ raises questions for future research. Historically, are 

there other instances of this kind of revolution in science? Answering this question will 

involve comparisons across the sciences. 350 Conceptually, what is the nature of such a 

revolution, considered as a kind of revolution rather than a particular historical episode?  

As it confronts the Instrumental Revolution, the study of scientific change gains new 

research questions. 
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5.0 THE INSTRUMENTAL REVOLUTION AND THE HEURISTICS OF 

CHEMICAL RESEARCH  

Laudan (1981) characterizes ‘heuristics’ as the branch of scientific methodology 

that is concerned with identifying strategies and tactics that will accelerate the pace of 

scientific advance:  

 To ask how we can broaden the range of viable theories about a particular domain, or to 

ask what rules of thumb can assist in the discovery of new theories is to raise heuristic rather 

than validational questions. Where proponents of theories of validation tend to be preoccupied 

with truth, falsity and epistemic warrants, the vernacular of heuristic theorists tends to be laced 

with terms like ‘scientific progress’ and ‘the growth of knowledge’.351   

Whereas theories of validation are concerned “to ascertain under what 

circumstances we can legitimately regard a theory as true, false, probable, verisimilar or 

close to the truth,” theories of heuristics are concerned with how progress is made and what 

factors can accelerate it. Franklin (2005) views experimental methods as heuristics and 

characterizes them in terms of efficiency: An efficient experimental method is one that 

wastes neither time nor resources. I suggest that in contrast with the epistemological 

orientation of confirmation theory, the study of heuristics has an “economic” orientation in 

that it is concerned with how scientific resources are allocated and what allocations are 

efficient. The productivity of scientific work is therefore a prime concern of the study of 

heuristics. Though perhaps more philosophically mundane than truth, productivity has 

everything to do with scientific progress and the growth of knowledge. 

Franklin distinguishes between two kinds of instruments based on their efficiency 

characteristics. ‘Narrow’ instruments afford either a single data point, or “a small 

collection,” per experiment. Examples are thermometers, the Northern blot, and the 

magnetometer. ‘Wide’ instruments, on the other hand, “allow scientists to assess many 

features of an experimental system.”352 They are conceptually derivative of narrow 

351 Laudan (1981), pp. 3-4. 

352 Franklin (2005), p. 896. 
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instruments because they function either as parallelizations of narrow instruments, 

affording many measurements per experiment, or as serializations that cycle through many 

different measurements very quickly. Franklin’s examples are DNA microarrays, 

functional imaging instruments (e.g., fMRI), and combinatorial libraries of objects. As I 

will show in section 5.2, this classification is helpful for understanding how the new 

instruments afforded information for chemical analysis. 

Wimsatt (2007) views scientific heuristics as a kind of problem-solving procedure 

for simplifying the modelling of complex systems. He identifies several distinctive 

properties of heuristics that distinguish them from truth-preserving procedures, of which 

two are especially relevant for the discussion that follows. First, heuristics are more 

efficient than the procedures for which they may be substituted, which is why they are used 

in the first placed. Second, “[t]he application of a heuristic to a problem yields a 

transformation of the problem into a nonequivalent but intuitively related problem.” A 

consequence of this transformative property of heuristics is that  “answers to the 

transformed problem may not be answers to the original problem.”353 The transformative 

aspect of heuristics raises the possibility that a procedure may be adopted because it is more 

efficient than the procedures it is substituted for, while transforming the original problem 

such that the answers obtained are not those sought. Though this would be an extreme case, 

it makes the point that heuristics involve a trade-off between the pragmatic and the 

epistemic. Another such trade-off arises from the fact that heuristic procedures are 

systematically biased in virtue of the assumptions they introduce to simplify a problem. 

This bias can lead to error when the heuristic is applied to cases in which those assumptions 

are inappropriate. 

Though I will be discussing the heuristics of experimental methodology rather than 

of scientific theorizing, the idea that the quest for more efficient solutions can lead to 

transformations of the problems themselves, and not just the methods used to solve them, 

is relevant for understanding the Instrumental Revolution. The episode did not simply 

amount to replacing one set of instruments with another, but in fact changed certain 

epistemic aspects of structure determination work. Namely, they changed the structure of 

                                                 

353 Wimsatt (2007), pp. 76-77. 



213 

inferential reasoning from data to structure. They also changed the nature of the knowledge 

produced, from knowledge of chemical reactions to knowledge of molecular structure. 

The nature and pace of scientific advance in chemistry were altered in two ways by 

the Instrumental Revolution. First, chemistry experienced a change in the nature and rate 

of innovation of methods for chemical analysis. Second, the new instruments allowed for 

greater efficiency in the identification of unknown compounds. This chapter explores these 

developments as follows. Section 5.1 is about the dynamics of methodological innovation 

in chemistry. I argue that the dynamics of methods development in the 20th century does 

not conform to an evolutionary explanation of innovation advanced by the historian 

Carsten Reinhardt in his study of the Instrumental Revolution. The reason it does not is the 

holistic character of the labor process. The holistic character of the labor process poses an 

in principle objection to evolutionary theories of innovation. In the chemical case, the 

relation of the chemist to his or her instruments was a crucial determinant of the nature and 

pace of innovation.  

Section 5.2 assesses the overall impact of methodological innovation on the 

efficiency of problem-solving in chemistry. To this end I will compare the logic of structure 

determination before the Instrumental Revolution to the logic after. I argue that the latter 

was more efficient and less error-prone than the former, and that the improvement was due 

to the restructuring of the labor process. This conclusion inverts a traditional view of the 

scientific labor process. On this view, the latter is the expression of a set of cognitive 

considerations. Experimental work, for example, is interpreted as expressing the logic of 

hypothesis testing (see below). Scientists are envisioned as seeking to test hypotheses, and 

this end determines the means of its fulfillment. My view is that the reverse is also the case: 

the means available to scientists constrain their ends, for example the specific nature of the 

hypotheses that are tested, or their reasoning from data to hypothesis. Focusing especially 

on the method of inference, I show that the labor process can constrain cognitive 

considerations.  

In section 5.3 I argue for a historicist approach to heuristics. This approach is 

suggested by reflection on the role of the means available to scientists—instruments, 

techniques—in making possible, but also constraining, present and future research. The 

means available at the time a novel research situation emerges may not be optimal for the 
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new situation. Episodes like the Instrumental Revolution may be interpreted as responses 

to this sub-optimality.   

5.1 Methodological dynamism 

In this section, I will argue that there was a shift in the dynamics of methods 

development in structural chemistry associated with the Instrumental Revolution. Previous 

accounts of the revolution have largely focused on the institutional and individual pathways 

by which physical methods diffused over from physics and on the ways in which they were 

adapted to the final user, the ordinary chemist. These approaches view the problem of 

explaining the importation of knowledge and methods from one scientific field into 

another, very different one, largely as one of explaining how relations were established 

between the exporting and importing fields that enabled the technology transfer to proceed.  

The most sustained example of such an account is that offered by the historian 

Carsten Reinhardt in his (2006) study of the period, Shifting and Rearranging. Carsten 

Reinhardt poses a guiding question of his study in evolutionary terms:  

Taking up a metaphor from evolutionary biology: Which processes of adaptation made it 

possible that some techniques thrived in a new environment while others did not? The first part of 

the answer lies in the fact that the transfer of these methods was a gradual, step-wise process, taking 

advantage of disciplinary niches close to the original context.354 

For him, the development and dissemination of the new methods were partly a 

result of an interplay between competitive pressures and cooperative strategies. The key 

players were academic scientists and instrument-makers.  Following the innovation theorist 

Eric von Hippel, Reinhardt calls the academic scientists who initiated the development and 

use of the methods “lead users.” 

… lead users of scientific instruments can be seen to fulfill their functions best if they lead 

the actual uses of novel instrumentation … and, moreover, if they are already established scientists 

(their leadership being further enhanced by the successful use of instrumentation). In this position, 

                                                 

354 Reinhardt (2006), p. 16. 
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scientific lead users are enabled to create and to direct the market for scientific instruments. Thus, 

precisely because of their scientific authority, lead users influence the success of the instrument 

manufacturer; and their participation in academic administration and funding agencies allows them 

to lobby for the new techniques from the inside of the scientific establishment. Moreover, through 

specifications of novel custom-built instruments, and their eventual success in the scientific 

marketplace, lead users supply the instrument manufacturers with crucial ideas for improvements. 

On the other hand, the exclusive ownership of up-to-date instrumentation is a huge advantage in 

one’s own research, when done in a competitive environment … The course of this cooperative 

strategy could not be thoroughly planned, neither by the company nor by the scientist. But it was 

recognized and acknowledged as such on both sides.355 

The competitive pressures were thus twofold: there was the pressure on instrument 

manufacturers to survive on the market, and there was the pressure on the scientists to 

maintain and accumulate credit in academia. Both pressures were handled by means of 

cooperation between members of the two social groups, in addition to the usual cooperation 

within the respective firms and research groups. This cooperation led to the replication of 

the instruments produced by the manufacturers as well as the methods developed by the 

scientists. The evolutionary story could be taken even further than Reinhardt does, for once 

the methods and instruments became normative, each ordinary chemist had strong 

incentives to use them. A chemist who continued to do chemical analyses the old way 

would quickly lose credit in the face of competitors who could solve the same problems 

using the faster, more informative and (as I will argue in section 5.2) more secure 

techniques.  

One peculiar feature of this account is that the nature of the instruments, which after 

all were quite peculiar themselves, seems to have no explanatory role. But the mere ability 

to transfer technology to a field does not dictate the pattern of technical dynamism 

characteristic of it, however; it is as compatible with piecemeal introductions of technology 

as with a sustained and rapid development.  

The reason that the ability to transfer technology does not dictate the pattern of 

technical dynamism is that the transfer presupposes that humans and instruments carry out 

specific epistemic activities (see section 2.4.1) in the labor process. In a given labor 

process, it is the function of the scientist or instrument to carry out certain epistemic 

                                                 

355 Reinhardt (2006), p. 177. 



216 

activities, and the technology must be compatible with these functions in order for the 

transfer to proceed. In the second chapter, as well as in chapter 4, the labor process was 

conceived as a system of functional relations between an agent or agents, an object of labor, 

and instruments of labor. On this structuralist view of the labor process, it is impossible to 

make major changes to one element of the process—here the instruments—without 

changing the other elements. There follows from this impossibility a disanalogy with the 

evolutionary model. The disanalogy is similar to one pointed out by L. J. Cohen in his 1973 

critique of Stephen Toulmin’s version of the evolutionary theory of science: 

concepts of physics are not, as such, all closely similar to one another, like the members of 

a species or population. Rather, they are almost all importantly different from one another, like the 

concept of an electron and the concept of a proton. Each such concept may conceivably have a few 

variant forms that are in competition with one another. But the great bulk of the ‘concepts, methods 

and aims’ within a rational discipline at any one time manage to be quite different from one another 

and yet not to be in competition, but in systematic association, with one another.356 

Cohen is here pointing out that the evolution of scientific concepts cannot be 

explained in the same manner as the evolution of a species, on the grounds that in 

Darwinian-type explanations, “within any population … of environmentally threatened 

individuals, the similarities that are selectively perpetuated are those that are favourable to 

the continued existence of such individuals.”357 This is because the forces of natural 

selection operate on individuals, enhancing the reproductive fitness of individuals with 

adaptive traits, resulting in the spread of the trait among the members of the population 

over time. But on the holistic conception of scientific concepts that Cohen endorses, 

changes within a discipline involve a restructuring of an “evolving” concept’s relations to 

other concepts and not just a replacement of individual concepts. “Selection” here operates 

at the level of the system, for a change in one concept requires changes in the other concepts 

to which it is systematically and differentially related. 

The introduction of the new instruments presupposed a restructuring of the whole 

process. Once chemical reactions were replaced by physical interactions, the functions of 

the chemist (in chemical analysis) were transformed. Arguably, so was the object of labor, 

                                                 

356 Cohen (1973), p. 49. 

357 Cohen (1973), p. 48.  
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which I suggested in section 4.7 became either light energy or molecular species.358 The 

nature of the inferences used to identify compounds, as well as the theories brought to bear, 

also changed. Rather than a mere replacement of one kind of tool by another, say, one kind 

of glassware by another kind, an entirely new approach to analysis was adopted. Indeed, 

glassware presupposes different epistemic activities than spectrometers. The former 

presupposes activities pertaining to the manipulation of substances. The latter presupposes 

activities pertaining to machine operation and signal production and processing.  

We can think about this holistic aspect of the changes to the labor process in terms 

of the categories of knowledge proposed in chapter 2. Changes in tools constitute changes 

in instrumental knowledge (IK). If the change is significant enough, then it might make 

possible a significant change in the methods used to solve certain problems of the field. 

This is a change in MK. The rest of this section will argue that the changes in IK that 

occurred during the Instrumental Revolution enabled massive progress in MK to occur 

relatively quickly.  

The moral of the comparison of the conceptual case with the instrumental case is 

that the cogency of an evolutionary explanation depends on whether the entities that are 

claimed to replicate through a selection process are related by similarity or by systematic 

differences. If the latter, then change affects not just individuals, but the whole system.  

I claim that it is such a restructuring that paved the way for greater methodological 

dynamism in chemistry. What do I mean by this term? Chemistry became methodologically 

dynamic in the qualitative sense that old spectroscopic methods were continually being 

scrapped or modified in favor of new methods, or continually enriched by the addition of 

new ones. By “method” here I intend, as a first approximation, a four-fold combination of 

theoretical principles, instruments, experimental methods, and data analysis techniques.359 

Experimental methods involve the various ways in which the theoretical principles and 

instruments can be orchestrated to obtain the desired data. Data analysis techniques include 

                                                 

358 Schummer (2002) argues that the concept of chemical species identity used to identify 

compounds changed during this period, from a concept of pure substance to a concept of molecular 

species.  

359 I borrow this four-fold distinction from Sternhell (1995), pp. 658-660. 
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inter alia the interpretational rules that allow the data to be correlated with chemical 

concepts. These developments depended on the ability of methods developers to apply 

advances in diverse fields to the instrument of labor. I also suggest that there was a 

quantitative increase in the rate of methods development relative to classical chemistry, but 

due to the inherent difficulty of establishing and interpreting such a claim I will focus 

mostly on the qualitative aspect. 

One sign of dynamism is the proliferation of reviews in the late 20th century 

covering progress in the new methods.360 For example, the chemist Sever Sternhell noted 

in 1995 that, after the discovery of the basic NMR phenomenon in 1946, progress took 

place very rapidly along parallel lines in all four aspects of the method.361 This pattern of 

development may be characteristic of spectroscopic methods in general.362 My reading of 

scientists’ reflections on the nature of progress in these methods suggests that the latter 

have four general features that contribute to methodological dynamism: (i) complexity, (ii) 

hybridness, (iii) variety, and (iv) parallel development. 

i. Complexity. As noted above, a spectroscopic method is a complex combination 

of theory, instrumentation, experimental techniques and data analysis. Each of 

these aspects is itself complex. The diagram of Figure 4.2, for example, 

illustrates vividly the number of components involved in modern NMR 

instrumentation.  

ii. Hybridness. The methods are not only complex, but hybrid in the sense that 

they combine knowledge from distinct domains of inquiry. For example, 

quantum mechanics generally provides the physical basis, but must be 

combined with electronics and chemical structure theory in order to afford a 

chemically useful method.  

                                                 

360 The proliferation is noted in their own review by Jonas & Gutowsky (1980) for their field of 

NMR spectroscopy. (Jonas & Gutowsky, 1980, p. 9). 

361 Sternhell (1995), p. 658-659. 

362 For example, Nier et al. (2016) and Grayson (2004) describe the remarkable progress made in 

mass spectrometry in the second half of the 20th century. Due to space limitations, I focus on NMR 

here. 
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iii. Variety. The methods combine knowledge from a wide range of distinct 

domains, including electromagnetism, optics, quantum mechanics, atomic 

theory, bonding theory, geometry, chemistry, mathematics, and computer 

science. A significant portion of the physical sciences are brought to bear in 

spectroscopy. 

iv. Parallel development. A virtue of the complexity, hybridness and variety 

characteristic of the methods is that their developers can exploit parallel 

developments in several independent domains. The history of NMR, for 

example, shows that progress there depended on exploiting results in physics, 

electronics, materials science, computing, and mathematics.  

These four features of spectroscopic methods increase the rate at which methods 

are developed, the diversity of the kinds of information that can be obtained by means of 

them, and their range of application.  

In a 1980 review, NMR specialists J. Jonas and H. S. Gutowsky provided some data 

on the growth of NMR. They observed that publications in NMR had become increasingly 

ramified and specialized since the initial discovery in 1946. An average of 50 research 

articles involving NMR were published per year between 1946 and December 1953, 

whereas the rate had increased to about 550 per month by 1967. A study of publication 

rates gleaned from the Chemical Abstracts System revealed that 2700 articles, where NMR 

key words featured prominently, were published in 1967, 4500 in 1971, and 5000 in 1978. 

The number of NMR researchers grew correspondingly, from about 50 in 1957, to 270 in 

1967, and then to 370 in 1977. 363 

This is not to say that there was not active development of methods in classical 

structural chemistry. Many chemical methods were developed during the classical period, 

such as acid and base hydrolysis, oxidation conditions, and specialized tests to detect the 

presence of specific functional groups. Ozonolysis, for instance, was a powerful test for 

alkenes because it not only revealed their presence but could also reveal their location in 

                                                 

363 Jonas & Gutowsky (1980), pp. 9-13. 
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the molecule.364 The history of ozonolysis suggests that methods development in classical 

structural chemistry largely took the form of reaction development, including the study and 

optimization of important reaction parameters, exploration of work-up procedures, 

discovery of the range of application of the method (for example, the classes of compounds 

to which it could be usefully applied), the determination of its potential as a complement 

or cross-check on other methods, and the identification of useful strategies for combining 

it with other chemical methods.  

These forms of methods development, however, consisted essentially in 

incrementally deepening the ability of the chemist to manipulate and control the 

transformation of substances. Advances in other sciences, or in technology far removed 

from traditional chemical equipment, were brought to bear on structure determination 

problems in piecemeal fashion. The main way in which advances in other fields affected 

chemistry was through the improvement of adjuncts to the chemist’s work, for example by 

the development of faster balances, different stirring appliances, or more robust 

glassware.365 The transfer of technology from other fields for the construction of 

apparatuses was the work of exceptional chemists rather than a systematic endeavor.366 

As the comments by the historians David Knight and Dean and Tracey Tarbell, 

quoted in chapter 4, suggest, however, the overall rate of development of laboratory tools 

and techniques was quite slow. In contrast, the development of spectroscopic methods was 

characterized by a synergistic pattern of development in which advances in different fields 

could be played off each other. This pattern is well illustrated by the development of NMR. 

The basic principle leading to the application of the technique in chemistry, that nuclear 

magnetic resonances could be observed in bulk materials, was discovered in 1946. Though 

not of much use at first, by 1981 NMR had been developed to the point that the complete 

carbon skeleton of a molecule could be established in a single experiment, surely 

                                                 

364 The development of ozonolysis up to 1940 is reviewed in Long (1940). See also Morris (1995) 

and Rubin (2003) for treatments of the early history of the technique.   

365 Ihde (1964), pp. 559 and 616 and Taylor (1985), p. 2. See also Ewing (1976) for a discussion of 

the development of the double-pan and torsion balances. 

366 Rabkin (1993) discusses several examples of such transfers. See also Russell (2000). 
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approaching the holy grail of structure determination methods.367 At the same time it was 

also being applied to vastly more complex problems, like protein structure, than could be 

tackled at its inception.368 

James Feeney, co-author of a textbook on NMR, has periodized the progress of 

NMR in terms of alternating phases of science-driven and technology-driven development. 

The scientific discoveries underlying the method opened horizons for its application to 

structural analysis, but the technical requirements of the spectrometer entailed that “the full 

development of the method also relied on borrowing technology already being used 

successfully in other forms of spectroscopy and measurement.”369 The potential for 

applying NMR to structural problems other than relatively small molecules was not 

realized until improvements in the electronics and the magnet, the introduction of Fourier 

transform algorithms, improvements in computation, and yet other developments had come 

about. 

As discussed in detail in chapter 4, texts from the period of the Instrumental 

Revolution display the principle that analytical problems are to be solved by the 

replacement of human manipulations by the instrument-mediated application of science 

and technology. The shift from a conservative to a dynamic pattern of technical change in 

structural chemistry was made possible by the redistribution of epistemic activities within 

the importing labor process described in chapter 4. Previously, improvements in traditional 

chemical labware did little to alter the rate of technical change in chemical research, for 

they merely aided the execution of the chemist’s functions. The introduction of 

spectrometers, on the other hand, ushered in a new era of technical change, for the new 

instruments presupposed entirely different functions, ones more amenable to the 

application of science and technology to the labor process. First, as was argued in chapter 

4, chemical manipulation in analysis became largely limited to sample preparation. The 

main activities now were machine operation for signal production, and processing of the 

                                                 

367 Shoolery (1995), p. 48. In principle, “total structure elucidation” was already possible using X-

ray crystallography, but in practice that method was limited because it requires crystalline 

compounds. In contrast, NMR is much more general because it works for compounds in solution. 

368 The original discovery by Bloch and Purcell was made on samples of water and paraffin wax. 

369 Feeney (1999), pp. 206-207.  



222 

resulting signal. Second, as was also argued in chapter 4, there are reasons to think that the 

detection function played a key role in this process. The replacement of the photographic 

plates used in the early spectrographs, the utility of which depended on ocular scrutiny by 

humans, by electronic detectors, paved the way for the development of sophisticated 

instrumentation around these detectors.  

In short, there was marginalization of erstwhile central activities (chemical 

manipulation), and reorganization around new ones (signal detection). The functional 

positionality of the imported technology in the labor process of the importing field is an 

essential factor in the explanation of the rate of technical change in that field. In keeping 

with these considerations, I have here explored what might be called an “internalist” 

approach to technology transfer, in the sense of viewing the problem of importation as one 

of identifying the constraints imposed by the labor process in the importing field, and 

explaining how those constraints had to be dealt with in order for the knowledge produced 

by the exporting fields to be applied there in the way that it was.  

One moral of this episode is that in order to understand how change was possible 

at the epistemic level, we need to understand how change was possible at the level of 

material practices, i.e., the labor process. As noted above, the new tools represented new 

IK. These innovations were profound enough to make possible major changes in the 

methods used to solve analytical problems. In order to get to that point, however, 

substantial methodological progress was required. That so much progress was achievable 

in a relatively short period is due to the fact (among others) that  the new instruments 

presupposed different functions from the ones they replaced. A description solely in terms 

of epistemic categories would leave out a fundamental feature of this episode. 

Though the focus of this chapter so far has been on the nature and causes of changes 

in the dynamics of methods development, the Instrumental Revolution also, of course, 

involved changes in the quantity and quality of the data produced. The heuristic impact of 

these changes will now be discussed. 
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5.2 The efficiency of compound identification 

Philosophers often discuss scientific reasoning as if it were unconstrained by 

material conditions. Pierre Duhem provides an example in his famous discussion of holistic 

testing: 

A physicist disputes a certain law; he calls into doubt a certain theoretical point. How will 

he justify these doubts? How will he demonstrate the inaccuracy of the law? From the proposition 

under indictment he will derive the prediction of an experimental fact; he will bring into existence 

the conditions under which this fact should be produced; if the predicted fact is not produced, the 

proposition which served as the basis of the prediction will be irremediably condemned ... 

... in order to deduce from this proposition the prediction of a phenomenon and institute 

the experiment which is to show whether this phenomenon is or is not produced, in order to interpret 

the results of this experiment and establish that the predicted phenomenon is. not produced, he does 

not confine himself to making use of the proposition in question; he makes use also of a whole 

group of theories accepted by him as beyond dispute. 370 

But how is the physicist supposed to bring the conditions into existence? The observational 

conditions do not fall into place all at once, and which background assumptions it is 

possible and makes sense to marshal depend on the material context within which he works. 

As was indicated in the previous chapter, the availability of the experimental conditions 

does not depend solely on the individual scientist’s decision, but is usually made possible 

by a long prior development of experimental capabilities. A more recent account of 

hypothesis testing provides a further example:  

The term hypothesis can appropriately be applied to any statement that is intended for 

evaluation in terms of its consequences. The idea is to articulate some statement, particular or 

general, from which observational consequences can be drawn. An observational consequence is a 

statement—one that might be true or might be false—whose truth or falsity can be established by 

making observations. These observational consequences are then checked by observation to 

determine whether they are true or false. If the observational consequence turns out to be true, that 

is said to confirm the hypothesis to some degree. If it turns out to be false, then it is said to disconfirm 

the hypothesis.371  

                                                 

370 Duhem (1982 [1914]), p. 184. 

371 Earman & Salmon (1992), p. 44. 
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The labor process is here reduced to reasoning followed by “checking by 

observation.” Scientific work would simply be an application of the method of hypotheses. 

Another example that will be discussed in greater detail in chapter 6 is Laudan’s (1984) 

reticulated model of scientific change. According to this model, scientific change occurs 

through a process of gradual, piecemeal adjustment among three elements: theories, 

methodological principles and cognitive aims. Material practices are not discussed, leaving 

one to wonder how their evolution is related to the changes going on among these cognitive 

elements. Do changes in material practices merely express changes in the cognitive 

elements? Or can material practices alter the configuration of cognitive elements?  

In this section, I will argue that material conditions of scientific work can constrain 

the cognitive elements of scientific practice. I focus on the method of inference. The point 

is to develop a more balanced account of scientific change, as a process in which the 

cognitive and the material mutually condition each other. In doing so, we will see that some 

problems in the method of inference can only be solved by altering the material conditions 

that provide the content of the inference.  

This last point may seem obvious. Of course, one might say, the method of 

inference depends on the material conditions. The latter are just the experimental 

conditions that have to enter into the deduction from hypothesis to observable consequence 

(see section 4.1). Changing the experiment will obviously change the inference. What does 

talking about the labor process add over and above talking about different kinds of 

experiment?  

But it should be noted that by “material conditions,” I do not mean merely the 

“experimental conditions.” Material conditions encompass a range of possible 

experimental conditions that scientists can choose from. Change in the material conditions 

is slower and more difficult than merely switching experimental conditions. The material 

conditions are akin to what Ackermann (1985) calls an ‘instrumentarium,’ a collection of 

kinds of instruments producing data. As Hacking (1988) and Peacock (2009) have 

observed, instrumentaria tend to be stable unless there is strong reason to replace them. 

Though I will be focused on instruments and their accompanying techniques in this section, 

I note in passing that the material conditions include not just observational instruments but 

also non-observational instruments like computers, as well as labs, divisions of labor 
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between labs and disciplines, institutional arrangements, etc. My ‘material conditions’ are 

essentially what Pitt (2000) and Edwards (2010) call a ‘technological infrastructure,’ of 

which instruments are just one part.372 The stability of the material conditions are part of 

what gives any labor process its routine, repetitive character, and are in fact what makes 

the repetition of the labor process possible.373  

Thus, the point made above could also be stated in terms of instrumentaria or 

technological infrastructures: we will see that some problems in the method of inference 

can only be solved by altering the [instrumentarium or technological infrastructure or 

material conditions] that provide the content of the inference. As chapter 4 attests, such an 

alteration of material practices involves far more than simply switching experimental 

conditions.  

5.2.1 Classical methods of structure determination 

Before describing classical methods, it will be appropriate to describe what is meant 

by “compound identification” and “structure determination.” For this purpose I draw on 

work by Joachim Schummer, who in his (2002) provided a philosophical analysis of this 

topic. Classificatory problems are central for chemists, who have to distinguish and 

characterize millions of substances with no sensually obvious distinguishing features. How 

can we distinguish one white powder, or clear liquid, from millions of other like 

substances? Most of these substances are compounds of elements, not pure elemental 

substances, and hence are called “compounds.” This classificatory endeavor requires 

criteria for identifying material samples qualitatively, in terms of the chemical species they 

                                                 

372 Pitt (2000, p. 136) defines a ‘technological infrastructure’ as “the historically defined set of 

mutually supporting sets of artifacts and structures without which the development and refinement 

of scientific knowledge is not possible” (emphasis in original). Edwards (2010, p. 17) defines 

‘knowledge infrastructures,’ which are technological infrastructures used to produce knowledge, as 

“robust networks of people, artifacts, and institutions that generate, share, and maintain specific 

knowledge about the human and natural worlds” (emphasis in original).  

373 The reproduction of scientific labor processes will be the subject of chapter 7. 
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represent. The chemical species identity of a material sample can be defined in terms of 

properties that are regarded as essential for sameness of chemical species. Drawing on 

Leibniz’s law of identity, Schummer defines chemical species identity as follows: “Two 

material samples are chemically identical if and only if they possess all the same essential 

properties. If they differ in only a single essential property then they belong to different 

species.”374 

The crucial question is, of course, what properties are to count as essential. 

Schummer argues that chemists’ answer to this question has changed over time. Before the 

structural approach to chemistry became dominant, the essential properties were taken to 

consist of a set of canonical properties, for example the method of preparation, the results 

of elemental analysis (including the empirical formula), the melting point or boiling point, 

visual characteristics, solubility properties, and exemplary chemical reactivities. Once the 

structural approach became dominant in the late 19th century, however, each substance was 

associated with a structure and the latter was taken to be the essential property. This one-

to-one association of substance and structure was the basis for the structure determination 

approach to establishing identity. The chemical identity of a material sample was now to 

be established by determining its structure, using either classical methods or, later, 

instrumental methods. 

As noted in section 4.7, classical methods in fact accomplished two goals. First, 

they allowed substances to be identified. Second, they provided information about the 

chemical reactions in which substances participate. Simplifying somewhat, classical 

methods of structure determination typically involved a four-step process. First, functional 

groups were identified by means of specialized chemical tests. Second, the molecule was 

broken down chemically (hence the term ‘chemical degradation’ to designate these 

techniques) into simpler and (one hoped) known fragments. These two steps could be 

conducted in parallel. They were repeated until sufficient information about the 

constituents of the structure had been accumulated so that it was reasonable to advance to 

the third step, the proposal of hypotheses for the entire molecule. At this point further 

                                                 

374 Schummer (2002), p. 189. 
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degradative experiments would be conducted to narrow in on the correct hypothesis.375 

Chemists could obtain further confirmation of a structural hypothesis by synthesizing the 

target structure from known fragments and comparing the chemical and bulk physical 

properties of the synthetic product to the target.376 

Classical methods afforded information about specific points (functional groups, 

small portions of the carbon skeleton) in the molecule rather than information about the 

molecule as a whole. Indeed, reaction conditions that can fragment or otherwise alter a 

molecule at multiple points tend to be harsh and therefore less predictable and more likely 

to result in unexpected products, decomposition and rearrangement, all factors that lead to 

information loss or complicate the interpretation of the results.377  

As an example, consider the sequence of reactions shown in Figure 5.1. This 

sequence was used to determine the structure of strychnine in a particular region of that 

molecule, represented by the partial structure at the top of the scheme. Strychnine was first 

subjected to oxidation with potassium permanganate. This reaction revealed the presence 

of a double bond in the region. The product, strychninonic acid, was then reduced with 

sodium-mercury amalgam, which revealed the presence of a ketone. The new product, 

strychninolic acid, was then subjected to basic conditions. These conditions generated two 

products, a small fragment (not shown) known as glycolic acid that was already known, 

and strychninolone-a. Reduction of strychninolone-a by catalytic hydrogenation (not 

shown) revealed the presence of a double-bond formed under the basic conditions. From 

this series of results, it was inferred that the region of interest had the structure shown at 

the top. 

                                                 

375 Hoffmann (2018) reconstructs several other historical examples.  

376 For example, Woodward & Brehm (1948) used hypothetico-deductivist reasoning and 

degradation experiments to settle the structure of strychnine, which prior to their work was thought 

to be one of two possible structures. Corroboration by synthesis only came six years later. 

377 See Wheland (1949), pp. 96-99 for a discussion of some of these complications. 
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Figure 5.1 A series of transformations observed in the classical determination of the structure of 

strychnine and the closely related brucine. The scheme is taken from an early review of the 

completed strychnine effort. Source: Holmes (1950), p. 388. Strychnine is shown at right, with the 

region of interest in bold.  

 

Each reaction in this sequence provided a small amount of information about the 

functional groups and skeletal connectivity in a region of the strychnine molecule. With 

large projects, many such partial series had to be obtained. They could then be interrelated 

to provide a synoptic view of the evidence for the structure, as the chart in Figure 5.2 

illustrates: 
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Figure 5.2 The network of chemical transformations observed in the classical determination of the 

structure of strychnine and the closely related brucine. Note how the partial series in Figure 5.1 

reappears in the leftmost column of the chart. Source: Holmes (1950), p. 419. 

 

This chart only displays the key transformations, and therefore in fact greatly 

underestimates the true number of experiments that were conducted to establish the 

structure of strychnine. 

Though chemists are seldom explicit about the formal structure of their reasoning, 

sequences such as that shown in Figure 5.1 are easy to reconstruct as hypothetical 

inductions. For example, the first step in the figure could be reconstructed in hypothetico-

deductive fashion: If the molecule has a double bond, then the latter should be cleaved 

under oxidative conditions and the product contain new oxygen atoms. If the consequent 

is observed, then the double-bond hypothesis is warranted. For hypotheses concerning 

larger portions of the molecule, one can find chemists using hypothetico-deductivism 

augmented by what Norton (2005) calls an “embellishment,” intended to tame the 

indiscriminateness of hypothetico-deductive confirmation. An English group centered 

around Robert Robinson, for example, appears to have favored either inference to the best 
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explanation or inference to the simplest hypothesis,378 and a 1949 textbook also advocates 

a principle of simplicity for the interpretation of reaction data.379 

Chemical methods tend to be time-consuming, involving lengthy purifications and 

experimental processes. These technical limitations were compounded by the fact that 

individual chemical reactions do not yield much information about structure, even for 

simple cases, as the same textbook makes clear: 

… the study of the chemical reactions which substances undergo has in practice provided 

a convenient method for the determination of their structures. Although, as in the reaction between 

ethyl alcohol and hydrogen chloride, the possibility of a molecular rearrangement prevents the 

assignment of a definite structure to any substance on the basis of a single reaction, reliable 

conclusions can usually be reached, nevertheless, from a study of a number of related reactions. The 

aim of such a study is to obtain a self-consistent picture of the whole series of reactions …380 

Many reactions had to be performed before reliable conclusions could be drawn 

about the whole structure. The unreliability of intermediate conclusions is illustrated for 

strychnine in Figure 5.3. Six hypotheses for the overall structure were at one time or 

another taken to be correct between 1910 and 1946, with the 1946 proposal being the final 

version. Each revision was forced by the acquisition of new information. 

  

                                                 

378 Slater (2001) has noted the English group’s appeal to simplicity in arguing for their preferred 

strychnine hypotheses. In some cases, though, they explicitly invokes IBE [Menon et al. (1930, 

1932)]. 

379 Wheland (1949), 95. 

380 Wheland (1949), p. 96. 
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Figure 5.3 Strychnine hypotheses over the years. The numbering of 1 follows the scheme proposed in 

R. B. Woodward and W. J. Brehm (1948). The rings of the other structures are numbered by analogy 

with this scheme.  

 

Classical methods can be understood in terms of the distinction between narrow 

and wide instruments mentioned at the beginning of this chapter, at least if the distinction 

applies to methods as well as instruments.381 Because of their specificity, they seem like a 

good fit for the narrow category, and their narrowness was to be preferred given the 

difficulty of interpreting reactions that produce multiple products. A principal epistemic 

disadvantage was that the accumulation of evidence was slow. This fact meant that the 

scope of a hypothesis that could be supported by the evidence early in the investigation 

might be quite narrow relative to the target structure. Attempts to solve the whole structure 

ran the risk of overreaching the available data, in some cases leading to a lengthy process 

of hypothesis revision, as illustrated above for strychnine. 

                                                 

381 My reason for extending the concept is that a chemical experiment typically requires several 

different tools and pieces of glassware to enable the activities described in section 3.2. 
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5.2.2 Instrumental methods 

In contrast, the new instrumental methods seem like good candidates for the wide 

category. For example, at about the same time that the chemical investigation of 

strychnine’s structure came to an end, the structure was also determined by the single-

crystal X-ray diffraction technique. In this experiment, a crystal of a substance is inserted 

into a diffractometer, bombarded with a beam of X-rays, and the crystal is rotated until a 

reflection is detected. The complete set of data consists of the list of angles at which 

reflections are observed and their intensities. The latter are used to calculate an electron 

density map of the molecule. A model of the structure can then be constructed and fit to 

the map (Figure 5.4).  

(a)                                             (b)                                        

  

Figure 5.4 (a) These diagrams are from one of the first reports on the crystal structure of strychnine. 

The top diagram is a two-dimensional representation of strychnine. The bottom diagram is a contour 

map of the electron density on which a projection of the structure has been superimposed. Source: 

Robertson & Beevers (1950), p. 690. (b) Infrared spectra of synthetic (top) and natural (bottom) 

strychnine. Source: Woodward et al. (1963), p. 283. 
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The method counts as wide because each experiment yields many measurements. 

The electron density map provides a synoptic kind of evidence that allows structural 

hypotheses to be confirmed relatively quickly. The map itself is not produced by the 

experiment, of course, and many inferential steps are needed to make use of the data. But 

the gain in productivity is undeniable: Whereas over 245 papers were contributed over 60 

years towards solving strychnine chemically,382 only 6 were required over 5 years for the 

X-ray structure.383  

All of the new techniques were based on the same basic principle: A substance is 

to be subjected to some energy probe and its response recorded as a spectrum (or a 

diffraction pattern for X-ray crystallography). A single experiment yields all of a 

substance’s responses to the probe which, with the exception of X-ray crystallography, can 

then be analyzed using the rules of interpretation discussed in sections 4.5.2 and 5.1. Thus 

in addition to X-ray crystallography and infrared spectroscopy, of the other techniques that 

came into common use at the time ultraviolet spectroscopy records the response to 

ultraviolet light, NMR to radiofrequency radiation in the presence of a magnetic field, and 

mass spectrometry to bombardment by an electron beam of a definite energy. 

In order to organize the large quantities of data produced in spectrometric 

experiments, representational techniques like spectra and tables were used. For example, 

in 1962 Robert Silverstein and G. Clayton Bassler of the Stanford Research Institute 

published a short primer on the “Spectrometric Identification of Organic Compounds” in 

the Journal of Chemical Education. The article explicitly contrasts chemical and 

spectrometric methods, arguing that the latter are superior in terms of the informational 

pay-off, the amount of time required, and the quantity of compound needed for a structure 

determination. They present two examples of structure determination using the new 

methods. In each case, only four experiments were needed to produce a large number of 

data points, sufficient to conclusively determine the structures. The data are presented in 

four spectra or tables, as shown in Figure 5.5: 

                                                 

382 Huisgen (1950). 

383 See Slater (2001), footnote 78. 
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Figure 5.5 Data for benzyl acetate. Source: Silverstein & Bassler (1962), p. 548. 

 

Silverstein and Bassler make use of virtually no theory, chemical or physical, in 

their interpretations of the data. Rather, they employ simple rules, such as those embodied 

in the correlation chart shown in Figure 4.5, in order to infer from data to structure. Since 

mass spectrometry results in a fragmentation pattern, somewhat more theory is needed in 

order to understand the mechanisms of fragmentation, but even so the data can generally 

be interpreted by applying a few “general rules:” 

The procedure for obtaining an empirical formula will be demonstrated as we work through 

the sets of spectra presented below. We found it advisable to remind students of the “nitrogen rule”: 

an odd-numbered molecular weight permits only an odd number of nitrogen atoms, and an even-

numbered molecular weight permits only an even number of nitrogen atoms (including zero). 
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Now let us consider the fragmentation pattern. A number of general rules for predicting 

prominent peaks can be written and rationalized using concepts of statistics, resonance, 

hyperconjugation, polarizability, and inductive and steric effects. For example: 

1. Cleavage is favored at branched carbon atoms 

2. Aromatic compounds generally give a larger parent peak than do aliphatic compounds 

3. Double bonds favor allylic cleavage 

4. Saturated rings lose side chains at the α-carbon; special case of branching 

5. In alkyl substituted aromatic compounds, cleavage is most probable at the bond beta to the 

ring 

6. A heteroatom will induce cleavage at the bond beta to it. 

A feeling for these modes of cleavage, plus a reference library, form the basis for use of 

mass spectrometry for identification purposes.384 

So was the difference between the old and new methods, as far as the cognitive 

aspect of structure determination was concerned, simply that chemists could accumulate 

structural information faster? In 1983, the celebrated head of process research at Merck & 

Co., Max Tishler, made an intriguing reminiscence about the classical period: 

in those days, as you well know, structure determination was quite different—so different 

that young people today just haven't the slightest idea how this was done. Yet all the important 

chemical work that developed was done by methods which today are no longer useful. We have 

such better tools today. Spectroscopic methods: NMR, IR and mass spec just change the complexion 

of chemistry completely. It's amazing how we got information by deduction. By means of the logical 

application of thinking and deduction we were able to establish structure. Most of the time we were 

right.385   

This statement is astonishing: surely “thinking and deduction” are still applied 

“logically” in structure determination work? The new methods did not automate the 

interpretation of the data. Yet if we take Tishler’s reminiscence seriously, there was a 

significant change in the cognitive aspect of structural chemistry. What was it? He himself 

does not provide the answer in the interview from which this quotation is taken. 

I think the key is the sentence “it’s amazing how we got information by deduction.” 

G. W. Wheland’s thoughtful 1949 textbook, Advanced Organic Chemistry, may provide a 

clue. In the chapter on “Structural Isomerism,” Wheland discusses both chemical and 

                                                 

384 Silverstein & Bassler (1962), p. 550. 

385 Tishler (1983), p. 13. Emphasis added. 
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physical methods. By “physical methods,” he means primarily the instrumental methods 

discussed in this chapter, but also older techniques like boiling and melting point 

measurements. In 1949, the instrumental methods were still in their infancy, and had to be 

used in conjunction with chemical methods. Nevertheless, Wheland considers them 

superior to chemical methods for the following reason: 

they have the great advantage of dealing with single molecules and not with the much more 

complex interaction between two or more molecules. In fact, all the chemical methods discussed 

above require that deductions be drawn from chemical reactions, or, in other words, that the 

structure of a molecule be inferred from the way it is derived from, or transformed into, a different 

molecule. Thus, even the methods based upon isomer number require the assumption of the principle 

of minimum structural change. The physical methods, on the other hand, involve much less drastic 

changes in the molecule being examined, and they leave the molecule in the same state after the 

experiment that it was in before. As a very rough analogy, which greatly exaggerates the advantages 

of the physical methods, the chemical methods of establishing structure might be compared to the 

determination of the shape of an egg by examining either the hen that laid it or its fragments after it 

had been hit by a hammer, whereas the physical methods might be compared to the determination 

of the shape by looking at the egg itself.386 

According to Wheland, chemical methods require an inference from “a different 

molecule” to the target. The structure determination of ethyl alcohol provides an example 

of this process: 

One of the first “proofs of structure” to be given in courses in elementary organic chemistry 

is often that of ethyl alcohol. The argument frequently runs as follows. The molecular formula of 

ethyl alcohol is found, from its analysis and from a determination of molecular weight, to be C2H6O. 

By trial and error, one can easily convince himself that there are two and only two structures, 

namely, I [Figure 5.6] and II, which correspond to this molecular formula and which satisfy the 

requirement that the carbon atoms be quadrivalent, that the oxygen atom be bivalent, and that the 

hydrogen atoms be univalent … Consequently, the structure of ethyl alcohol must be either I or II, 

and the problem is to decide which one of these is right.387 

                                                 

386 Wheland (1949), p. 127. Emphasis added. 

387 Wheland (1949), p. 93. 



237 

 

Figure 5.6 (a) Candidate structures for ethyl alcohol. (b) Ethyl chloride. Adapted from Wheland 

(1949), p. 92. 

 

Wheland then illustrates how chemical reaction data can be used to choose between 

I and II: 

The decision between structures I and II for ethyl alcohol is now made on the basis of the 

chemical reactions of the substance. In the first place, although altogether six hydrogen atoms are 

present in the molecule, only one can be replaced by an active metal like sodium. The inference is 

then drawn that one hydrogen atom is essentially different from the other five. Since this condition 

is satisfied by structure I but not by structure II, ethyl alcohol can therefore be assigned structure I, 

so that methyl ether must be assigned structure II. Further evidence leading to the same conclusion 

is provided by the reaction which occurs between ethyl alcohol and hydrogen chloride, and which 

leads to ethyl chloride C2H5Cl. For this latter substance, if the chlorine atom is assumed to be 

univalent, only the one structure III can be drawn to satisfy the molecular formula. Consequently, 

since ethyl chloride must therefore have structure III, ethyl alcohol must have structure I, inasmuch 

as this structure is much more closely related to III than is II.388  

Wheland goes on to point out some weaknesses of these arguments. The argument 

from the reaction with sodium depends on the assumption that if ethyl alcohol had two 

equivalent hydrogen atoms, then if one of them can be replaced by sodium, then one of 

those remaining must react similarly. Since there are compounds with two equivalent 

hydrogen atoms, like H2O or oxalic acid, in which the corresponding assumption is false, 

it follows that the conclusion in the case of ethyl alcohol is at best tentative. On the other 

hand, the argument from the reaction with hydrogen chloride assumes a principle of 

minimum structural change by assuming that the precursor to III must be the most closely 

related to it of the candidate structures I and II. As mentioned above, however, this 

                                                 

388 Wheland (1949), p. 93. 
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assumption presupposes that no rearrangements intervene in the transformation of ethyl 

alcohol into ethyl chloride. As a general rule of structure inference, however, the no-

rearrangements requirement has many counter-examples. 

My suggestion is that the need for assumptions like the principle of minimum 

structural change fundamentally arises from the nature of chemical evidence. As 

Wheland’s egg analogy indicates, chemical evidence always involved at least two 

structures, that of the target and that of the precursor from which it was formed or the 

product into which it was transformed. Once the structure of the product or precursor was 

known, it could be combined with the experimental data to suggest a target structure. Thus, 

chemical evidence essentially involved a structure-to-structure inference. This kind of 

inference is vulnerable to the fact that multiple isomers can be drawn for most chemical 

formulae. It is also vulnerable to the fact that the known structure might enter into, or be 

produced by, more than one reaction pathway under the conditions used to produce the 

data. Moreover, an error in the “known” structure could propagate to the deduction of the 

target structure.389 In this regard, it is worth keeping in mind that in many cases, a known 

stucture could only be arrived at after several degradative steps, requiring a chain of 

inferences back to the target structure. Error could be introduced at each inference in the 

chain. In order to deal with these vulnerabilities, structure-to-structure inferences had to be 

constrained by the experimental data together with sometimes fragile assumptions about 

reaction mechanism, reactivity, etc.   

Modern methods dispense with the structure-to-structure inference. They are thus 

more “direct,” as noted in one textbook,390 because they involve an inference from the data 

to the target without bringing in other structures. The absence of a second structure is due 

to the non-destructive nature of the methods. Though data-to-structure inferences are 

vulnerable to the multiple isomer problem, they are, of course, not so to the multiple 

reactions problem or the possibility of propagating errors in the “known” structures.  

On the other hand, there is always a risk that a structure will violate the rules of 

                                                 

389 There are many examples, but see Smith (1965), p. 596 for a significant one in the strychnine 

effort.  

390 Streitwieser, Heathcock & Kosower (1992), p. 322.  
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interpretation, since these are based on statistical correlations. Moreover, each instrumental 

technique has its weaknesses. For example, X-ray crystallography does not reveal the 

positions of hydrogen atoms (those shown in any crystal structure have always been drawn 

in), a lacuna that can lead to errors in the interpretation of atomic and functional group 

identities. Technique-specific deficiencies can be overcome to a large extent by using 

multiple techniques to check for convergence. In any case, whatever the weaknesses of 

modern methods, they seem to pale in comparison to the uncertainty introduced when data 

are produced by destroying the target.391  

One exception to the non-destructive character of the modern methods is mass 

spectrometry. The exceptionality, however, is mitigated by two circumstances. First, mass 

spectra very often have a peak for the molecular ion, which is not a fragment. This peak is 

used to infer the molecular weight, and from this the empirical formula, of the target. 

Second, the complicating effects of fragmentation on structure determination is mitigated 

by the spectrometer’s wideness itself—many fragments are produced and detected in a 

single experiment. So if the molecular ion peak is missing, then with the aid of rules of 

interpretation the fragment data can be correlated with each other and other spectra to infer 

the molecular weight.392 

Since the theme of this chapter is heuristics, the distinction between structure-to-

structure inference and data-to-structure inference raises the question of how this 

distinction is related to heuristics. In logic, an inference is defined as a process of linking 

propositions by affirming one proposition on the basis of one or more other propositions.393 

In structure-to-structure inferences, possible target structures were affirmed on the basis of 

known structures, which were themselves affirmed on the basis of experimental data.394 In 

data-to-structure inferences, on the other hand, possible target structures were affirmed on 

the basis of experimental data directly. These processes concern the manner in which 

hypotheses are generated. I have provided grounds for thinking that data-to-structure 

                                                 

391 For a recent review of the pitfalls of modern structure determination, see Nicolaou (2005).  

392 Silverstein & Bassler (1962), p. 547. 

393 Copi & Cohen (2005), p. 7. 

394 I am here assuming, of course, that a structural representation is equivalent to a proposition. 
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inference was less error-prone than structure-to-structure inference. Since heuristics are 

concerned with efficiency, it follows that data-to-structure inference is more efficient than 

structure-to-structure inference. That is, the odds of generating the correct hypothesis 

through data-to-structure inference are greater than with structure-to-structure inference.  

The switch from a structure-to-structure mode of inference to a data-to-structure 

mode was accompanied by the change of goals noted earlier. Classical structural chemistry 

had two principal goals: (1) identify a substance in terms of a structural representation, and 

(2) learn about the chemical reactions in which the substance participates. The latter goal 

was important in its own right and not just as evidence for theoretical claims. It was 

important partly because acquiring this knowledge suggested biogenetic relationships 

between different naturally occurring substances, that is, relationships concerning how the 

substances are produced in nature. It was also important because knowing how a substance 

behaves chemically is useful for synthesizing new substances starting from known ones. 

Classical methods achieved both goals simultaneously. Modern structural chemistry has 

kept (1) as a goal, but not (2), because the spectroscopic properties that are now employed 

to achieve (1) are of little chemical interest in themselves. 

Summing up, it seems to me that the key cognitive differences between the classical 

and modern methods, with respect to structure determination, are (1) the rate of information 

accumulation and (2) the necessity or lack thereof of structure-to-structure inferences. 

Modern methods provide more information, and allow for more secure reasoning from data 

to structure. For these reasons, they are more efficient. Both of these differences with 

respect to classical methods stem from differences in material practices—the switch from 

narrow to wide methods, and from destructive to non-destructive ones. 

 At this point, one might be tempted to doubt a central feature of my argument thus 

far. If the superiority of the new methods lies to a large extent on their non-destructive 

nature, does this feature call into question the emphasis I have been placing on the 

transformation of labor? 

In reply, I will point out that the difference between structure-to-structure and data-

to-structure inference is rooted in how the data are produced. That is, the change in the data 

production process changed the nature of the inference from data to hypothesis. (I speak of 

a “production process” here because, as was point out at the beginning of section 5.2, my 
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argument concerns whole groups of instruments and their conditions of use (“material 

conditions” or “technological infrastructure” or whatever) the stability of which gives the 

scientific work its characteristic features in a given period.) It is also worth noting that the 

content of the inference in either case is not an abstract logical schema like hypothetico-

deductivism or demonstrative induction (though such schemata provide the form of the 

inference) but refers to what happens in data production. The content of the inference is 

determined by the content of the production process. In the classical period, the content of 

the process was the transformation of one substance into another. The content of the 

inference was therefore a logical relationship between structures. In the modern period, the 

content of the process is the absorption of energy by the molecule. The content of the 

inference is therefore a logical relationship between the frequency of absorption and 

structure (or mass-to-charge ratio and structure).  

The data production process is part of the labor process. Only the transformation of 

the latter made possible the transformation of the former, which in turn made possible a 

different mode of inference.  

There are other examples in the literature of the labor process determining the 

logical features of experimentation and discovery, though to my knowledge I am the first 

to make this point explicitly. For example, Franklin (2005) argues that narrow instruments 

are most efficient when their use is directed by a specific hypothesis about the system under 

investigation. Wide instruments allow scientists to take a more inductivist approach, 

because of the large number of data points they afford per experiment. Perovic (2010) 

examines the evolution of high-energy physics experiments in the second half of the 20th 

century and documents a tendency towards greater automation in data processing. He 

argues that fully automated data processing is most efficient for experiments intended to 

confirm specific hypotheses, for example the existence of the Higgs boson. But they are 

less useful for exploratory experiments—experiments intended to discover novel 

phenomena not predicted by theory; for such experiments, Perovic argues, a semi-

automated regime is preferable. Griesemer (1991) shows how the experimenter’s causal 

agency—via laboratory manipulations—structured inferences in evolutionary biology 

experiments. In one kind of experiment, an unobserved cause was inferred based on an 

appeal to the scientist’s agency. In another kind of experiment, an analogical inference was 
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made from the process studied in the lab to the process as it occurs in the wild, again based 

on an appeal to the experimenter’s agency. 

5.3 Conclusion 

In conclusion, I suggest a historicist approach to the question of heuristics. Thus, 

rather than identify a set of abstract procedures for simplifying modelling work, as does 

Wimsatt, or develop a general taxonomy of instruments based on their efficiency 

characteristics, as does Franklin, I propose to view heuristics as historically specific 

solutions to historically specific problems encountered in specific disciplines. This 

proposal reflects what we have observed for the history of chemistry covered in this 

dissertation. My analysis suggests that the progress of early 20th century chemistry was 

impeded by two historically specific obstacles. One was the insular nature of chemical 

methods and know-how, the reliance on chemical reactions to solve analytical problems. 

The other was the cognitive correlate of this reliance: the use of structure-to-structure 

reasoning to make analytical claims.  

In what sense were chemical reactions and structure-to-structure reasoning 

“obstacles”? Recall one of the principal goals of classical chemistry: to identify a substance 

in terms of a structural representation. This is not the only way to identify a substance. A 

fixed canon of properties can be used instead, for example description of the preparation 

method, empirical formula, melting or boing point, visual characteristics, solubility 

properties, etc. But after chemical structure theory was accepted in the 19th century, 

chemical species came to be identified in terms of their structures. The problem was how 

to develop evidence for the structures, given that the observational basis of the field 

(chemical reactions) involved their destruction. These methods were indirect—requiring 

an inference from a different molecule to the target—and subject to the difficulties, 

described above, arising from the specific features of this indirectness. The indirectness 

constituted the obstacle. True, the indirectness was desired, in a sense, since, as mentioned 

earlier, besides structure determination one of the goals of substance identification was to 
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learn about the substance’s characteristic chemical relations to other substances. The means 

for satisfying the latter goal were not optimal for satisfying the former (see below). 

Scientists’ goals do not always co-exist harmoniously.  

In suggesting a historicist approach to heuristics, I draw on two sources for 

inspiration. The cognitive psychologist Howard Margolis (1993) distinguishes two kinds 

of scientific revolutions, depending on which kinds of problems they solve. Some 

revolutions bridge gaps. Others overcome barriers. Margolis focuses on barriers. The kind 

of barrier he is interested in is deeply ingrained “habits of mind.” Such habits are necessary 

for efficient scientific work within any specialty discipline, and therefore have a positive 

function in science. On the other hand, they constitute barriers to alternative conceptions. 

More broadly, deeply ingrained cultural habits of mind can close off opportunities that 

seem obvious with the hindsight of later generations. The phlogiston case provides an 

example of a habit of mind. According to Margolis, the difficulty that many chemists found 

in accepting Lavoisier’s oxygen theory of combustion was due to a habit of mind derived 

from the familiar experience of seeing something burn, where one sees flames leap up and 

dissolve in the air until the burning substance is gone. Such familiar experiences become 

deeply entrenched in our intuitions and for that reason entangled in scientists’ theorizing. 

In another example, Margolis argues that the formal models of Ptolemy, Tycho and 

Copernicus had a tight family relationship despite great differences in cosmology. Kepler’s 

models are radically different, in particular the use of elliptical orbits and the equal-areas 

rule governing speed instead of the traditional apparatus of interacting epicycles. The 

barrier crossed by Kepler but not his predecessors was the assumption of uniform circular 

motion in the heavens, which was derived from familiar experiences of circular or cyclical 

motion (a wheel turning, the Sun rising) that appears to result from uniform circular 

motion. These familiar experiences produced a habit of mind that then became entangled 

in astronomical practice.  

The theme of cognitive barriers in science can also be found in the writings of the 

philosopher Gaston Bachelard, who initiated the French tradition of historical 

epistemology. A key term in Bachelard’s philosophy of science is that of ‘epistemological 

obstacle.’ Roughly, epistemological obstacles are pre-scientific ways of knowing that stand 

in the way of acquiring genuine scientific knowledge. These pre-scientific ways of 
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knowing are unconscious, but are weeded out through the recognition of errors in the 

succession of theories of a domain (e.g., the succession of theories of mechanics in 

physics). As with Margolis’ habits of mind, these pre-scientific ways of knowing are rooted 

in everyday experience.  Examples of such obstacles are direct observation (which can lead 

thought astray by directing excessive attention to the sensual qualities of a phenomenon), 

hasty generalizations, verbal obstacles (in which the image associated with a word 

substitutes for an explanation), pragmatic knowledge (in which phenomena are explained 

according to their utility), substantialism (the invocation of a material support to explain a 

phenomenon), animism (the attribution of properties of living organisms to inanimate 

objects) and quantitative knowledge (insofar as it is used to mask subjective whims and 

errors, e.g. those induced by direct observation).  

According to Bachelard, the overcoming of epistemological obstacles leads to 

“epistemological breaks” in the history of a science, which involve not just the rectification 

of errors but also significant reorganization of knowledge. Epistemological obstacles 

introduce discontinuities into science. In addition, each obstacle is “polymorphous,” 

having a structure specific to the state of a science at a given time. Unlike Kuhn’s thesis 

that scientific revolutions have an invariant structure, the structure of a Bachelardian 

epistemological break depends on the specific history of a science. One should not expect 

to find a general pattern underlying the histories of the different sciences.  

Both Margolis’ habits of mind and Bachelard’s epistemological obstacles are 

cognitive impediments to scientific progress; they concern ways of thinking that hinder 

progress. In this chapter and the preceding one, I have been concerned primarily with 

material impediments to progress, by which I intend the conditions of action in the field. 

The conditions of action include the instruments, methods, knowledge and social relations 

that are normative in the field. The pre-Instrumental Revolution chemists were unable to 

improve the observational basis of chemical analysis due to their dependence on chemical 

reactions. The impediment here was a way of doing rather than a way of thinking. This 

way of doing involved a historically specific relation of the chemist to his instruments, 

namely that the know-how required to use, understand, and to some extent make them fell 

within his realm of expertise. 
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In terms of the categories of knowledge introduced in chapter 2, one might say that 

the EK chemists used to support their claims to TK (claims about chemical structures) was 

produced by the exercise of MK and IK, the basic principle of which was the chemical 

reaction. This principle had to be discarded in order to acquire EK that could support the 

TK differently—more directly and efficiently.  

This way of characterizing the change should make clear that by ‘impediment’ or 

‘obstacle,’ I intend a feature of the circumstances in which scientists are working whose 

elimination or overcoming is a necessary precondition for specific further changes. The 

idea is that earlier developments produce the necessary preconditions for later ones, in this 

case by overcoming such features of the circumstances. Thus the notion of an impediment 

highlights a form of dependency of later developments on earlier ones. In the case at hand, 

the initial circumstances were the methods of classical structure determination. Their 

indirectness was a key feature that prevented more efficient structure determination. The 

development of instrumental methods made possible more efficient structure 

determination, which in turn enabled the turn to synthesis rather than analysis as the main 

task of organic chemistry.  

To call the relation of classical chemists to their instruments an “impediment” 

might seem counterintuitive, for normally expertise in the instruments one is using is 

considered epistemically beneficial. But, it turned out, this way of doing impeded progress 

in MK and IK. But removing the impediment required establishing a new historically 

specific relation to their instruments, which involved a relation of epistemic dependence 

on experts and knowledges external to the field.  

It is worth noting here that in order to see how progress was made in this particular 

episode it is necessary to invoke not just epistemic categories like know-how or methods, 

but also social ones pertaining to the labor process, such as the inter-disciplinary division 

of labor.  

If we adopt Laudan’s characterization of heuristics as the branch of scientific 

methodology that is concerned with identifying strategies and tactics that will accelerate 

the pace of scientific advance, then we see that in this case, at least, the strategies and 

tactics that accelerated scientific advance were solutions to a historically specific problem 

encountered in chemistry: once chemical structure theory was accepted in the 19th century, 
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the problem was how to develop evidence for chemical structures, given that the 

observational basis of the field (chemical reactions) involved their destruction? The 

solutions adopted were also historically specific. Until the development of a theory of 

bonding and a technology that permitted exploitation of the theory, chemists were forced 

to accept the observational basis they had developed internally. Once external 

circumstances changed, however, a new solution became feasible.395  

Such material impediments result from the simple but underappreciated fact that 

scientists do not always, and often cannot, develop techniques and instruments out of whole 

cloth to fit novel theoretical situations or research areas. Instead, they use the means 

available to them until better means are developed. The old means have a positive effect, 

insofar as they allow research to proceed in the novel situation. But they also have a 

negative effect, insofar as they keep the field on a sub-optimal developmental path. This is 

a question for the study of heuristics: do the means available at a given stage of a science 

keep the field on a sub-optimal path? This question leads to others. For one, it seems to 

imply a great deal of contingency, in that the results of the field seem to depend on the path 

imposed by the old means.396 And what constitutes “sub-optimality?” For the chemical 

case, I have suggested an answer: the nature of the evidence and method of inference used 

in classical chemistry was sub-optimal relative to that used in modern chemistry. But these 

features need not be the only criteria for judging optimality.  

This last point is related to a further question, why the means available have this 

effect. This requires not only study of the means, but also of the ends. If the field is pursuing 

multiple goals, improving the means to better attain one goal may not be optimal for 

attaining another goal. Moreover, which goal is chosen will affect the future modes of 

making progress. Once the instrumentation has been chosen, future progress will be 

constrained by that choice. Progress is thus path-dependent. In addition, the multiplicity of 

                                                 

395 That said, I am not denying the possibility of identifying general strategies for accelerating 

scientific advance. The value of the historical approach, however, is that it is sensitive to the specific 

impediments imposed by a scientific domain. Understanding these impediments is crucial for 

understanding the history of the science. 

396 See Soler et al. (2015) for a discussion of the issues involved in determining whether the results 

of science are contingent or inevitable. 
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goals poses a problem for assessing overall progress. If the goals are not comparable, then 

there can be no assessment. Whether or not the goals were comparable in the case at hand, 

I leave for future research.397 

Finally, we can also ask how and why the field was able to overcome its material 

impediments. This was the subject of chapters 4 and 5, for the chemical case. I will have 

more to say about such overcoming in the dissertation conclusion, where I identify a 

process I call ‘rationalization’ that scientists engage in to overcome such obstacles. 
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6.0 LABOR AND MODELS OF SCIENTIFIC PROGRESS 

In this chapter, I will revisit the question of theories of scientific progress and how 

well they fit episodes like the Instrumental Revolution. From a philosophy of science 

perspective, this episode has the peculiarity of having (i) a massive effect on the way 

chemistry was done but (ii) not involving the overthrow of one theory by another. This 

peculiarity poses a prima facie challenge for philosophical theories of scientific change 

and progress, which have been focused on disruptive theory changes. Nevertheless, the 

episode did involve some theoretical adjustments, namely the introduction of quantum 

chemical and physical organic concepts into chemical structure theory. Moreover, it was 

disruptive in some ways, requiring chemists to adopt a new instrumentarium, change their 

research priorities, and accept a new dependence on the availability of capital and the work 

of other actors, like instrument-makers and methods developers. So in this chapter, I 

propose to take a closer look at a few prominent philosophical theories of scientific change 

and progress and assess how well they fit this episode. I have selected four theories that (i) 

have been influential, (ii) are well-worked out, and (iii) look promising, prima facie, for 

explaining the Instrumental Revolution: Kuhn’s theory of scientific revolutions, Laudan’s 

reticulated model of scientific change, Lakatos’ methodology of scientific research 

programs, and Hull’s evolutionary theory. 

I argue that none of these models of scientific change are adequate for the case of 

the Instrumental Revolution because none of them incorporates changes in instrumentation 

and systems of labor. In section 6.4 it is argued that the accumulation of knowledge is 

intimately connected with the nature of human labor, in contrast to theories of science that 

take scientific progress to be analogous to biological evolution. In the conclusion I make 

use of the connection between labor and knowledge accumulation to advance an 

augmented reticulational model that is based on, but significantly modifies, Laudan’s 

original model. The augmented model presents elements of a theory of scientific progress. 

First, the model interprets progress as an accumulation of knowledge, in the broad sense 

of knowledge discussed in chapter 2. Second, the model presents a more complete 
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mechanism responsible for this progress than the models discussed in the earlier sections. 

In this mechanism, the accumulation of knowledge figures not only as a goal of science, 

but as a starting-point for scientific research. The mechanism suggests ways in which the 

accumulation of knowledge and the labor process mutually condition each other. I also 

argue that the mechanism is not without frictions, and that these frictions are themselves 

explanatory of certain kinds of scientific change.   

6.1 Was the Instrumental Revolution a Kuhnian revolution? 

As is well-known, Kuhn suggested that scientific revolutions involve a distinctive 

sequence of stages. The pattern begins with a period of “normal science,” during which 

scientists apply and extend a dominant “paradigm.” Though the latter term is notoriously 

polysemous in Kuhn’s writings, the dominant meanings are either that of “exemplar” or 

“disciplinary matrix.” The former is a narrow sense of “paradigm,” standing for an 

influential example of scientific work. Examples are Newton’s discovery of the law of 

universal gravitation, Lavoisier’s discovery of the oxygen theory of combustion, or 

Darwin’s discovery of the theory of evolution by natural selection. A “disciplinary matrix,” 

on the other hand, signifies something broader and includes shared beliefs, values, 

instrumentation and techniques. The paradigm in the narrow sense shows how to combine 

some of the components of the paradigm in the broader sense so as to conduct successful 

research. For example, Lavoisier showed how the balance, combustion apparatus, 

commitments to precise measurement and a “building-block” view of matter, together with 

the laws of conservation of mass and the constancy of chemical composition could all be 

effectively combined to do chemical research. 

In the course of doing normal science, “anomalies” or phenomena that resist 

explanation by the prevailing paradigm might accumulate. Under certain highly context-

specific circumstances, these anomalies might provoke a ‘crisis,’ that is, a period in which 

the paradigm is thrown into doubt. This is the second stage of a Kuhnian revolution. If 

there is a rival paradigm available, the crisis might lead to a period of conflict during which 
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supporters of the second paradigm seek to overthrow the dominant one. If they are 

successful, then the discipline enters a third stage, namely a new period of normal science 

under the victorious second paradigm.  

As noted above, there is disagreement among historians as to whether the 

Instrumental Revolution fits this model. Morris and Travis (2002) think it does, drawing 

on Kuhn’s claim that paradigms in the narrow sense “provide direction to a scientific 

activity by ‘implicitly [defining its] legitimate problems and methods.”398 Since the 

methods of chemical analysis underwent radical change in the period we have been 

concerned with, Morris and Travers suggest that it amounts to the overthrow of the ruling 

paradigm by another. 

In contrast, Baird (2002) argues that the episode involved no crisis of the sort 

described by Kuhn, when normal science encounters a problem that its established methods 

cannot solve. Baird concludes that the Instrumental Revolution does not qualify as a 

revolution in Kuhn’s sense. And the evidence does seem to support the view that chemistry 

did not experience a Kuhnian crisis. 

On the other hand, it does not follow that there was no crisis at all. Baird himself 

documents a profound crisis of identity within analytical chemistry. The new instrumental 

methods were very different from the traditional chemical methods of analysis, 

necessitating a different training, entailing different research priorities, and involving a 

different relationship of the chemists to their work (for example, Liebhafsky (1962), p. 29A 

observes that analytical chemists are increasingly required to act as personnel managers 

directing the technicians running the instruments). As I noted above, some organic 

chemists also resisted the new methods on the grounds that they completely neglected the 

chemistry of substances. Though the resistance fell short of a “crisis,” there was at least 

potentially a conflict over values, over what kinds of chemical knowledge were worth 

pursuing and what kinds of training were important.  

If one wanted to maintain a Kuhn-like interpretation of the Instrumental 

Revolution, despite the absence of anomalies, it might be useful to adopt a pragmatic 

interpretation of ‘paradigm’ articulated in Rouse (2003. Rouse holds that “paradigms 

                                                 

398 Morris & Travis (2002), p. 80; Kuhn (1996), p. 10. 
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should not be understood as beliefs (even tacit beliefs) agreed upon by community 

members, but instead as exemplary ways of conceptualizing and intervening in particular 

situations.” To accept a paradigm, on Rouse’s view, is “more like acquiring and using a set 

of skills than it is like understanding and believing a statement.” 399 In the context of this 

discussion, a virtue of this approach, for a Kuhnian, is that it takes the pressure off 

discrepancy between theory and observation as the driver of scientific change. Since 

agreement about what to believe about nature is not essential for a paradigm, challenges to 

theory need not be the only driver of change: 

Scientists use paradigms rather than believing them. The use of a paradigm in research 

typically addresses related problems by employing shared concepts, symbolic expressions, 

experimental and mathematical tools and procedures, and even some of the same theoretical 

statements. Scientists need only understand how to use these various elements in ways that other 

would accept. These elements of shared practice thus need not presuppose any comparable unity in 

scientists’ beliefs about what they are doing when they use them. Indeed, one role of a paradigm is 

to enable scientists to work successfully without having to provide a detailed account of what they 

are doing or what they believe about it.400 

One might even put Rouse’s point in terms of labor. A paradigm is an example of 

how to combine the elements or conditions of scientific labor and carry out the work itself. 

In Marxian terms, it represents a “mode” or “way” of producing; one might also relate the 

idea to Miguel Garcìa-Sancho’s (2012) conception of molecular sequencing, based on 

sequencing instruments, as a “form of work,” a conception itself inspired by John 

Pickstone’s (2000) idea that a scientific discipline at a given time is characterized by a 

“way of working.”401 Though Rouse does not offer a different account of crisis formation 

from Kuhn’s, he does describe the crisis itself in a way that can easily be connected with 

my emphasis in this chapter on the organization of work: 

                                                 

399 Rouse (2003), p. 107. 

400 Rouse (2003), p. 108. 

401 One could also relate Rouse’s point to the notion of a labor-principle introduced in section 4.8. 

This is a principle or strategy for organizing labor. A paradigm, as described by Rouse, might 

involve a labor-principle, but it is broader, entailing not just an organization of labor but also theory, 

problem-solving techniques, and standards of solution. 
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The more basic issue [than agreement on theory] between proponents of alternative 

paradigms concerns how to proceed with research: what experimental systems or theoretical models 

are worth using, what they should be used for, what other achievements must be taken into account, 

and what would count as a significant and reliable result. The conflict is not so much between 

competing beliefs as between competing forms of (scientific) life … Such conflicts can be difficult 

to resolve precisely because the protagonists now work in different worlds.402  

If what is at issue are competing forms of scientific life, then surely this could also 

include the nature of the labor process. The recognition of scientific activity as a form of 

labor requires that the question of “how to proceed with research” include as a sub-question 

what ways of organizing research—which include both relations between humans and 

human-instrument relations—are conducive to successful research, given the experimental 

systems, theoretical models, goals, etc. that must also be taken into account.  

The last sentence of the last quotation from Rouse echoes, of course, Kuhn’s claim 

that “the proponents of competing paradigms practice their trades in different worlds.”403 

Given his pragmatic interpretation, Rouse understands the “different worlds” trope not in 

terms of perception, as Kuhn did,404 but rather in terms of the possibilities for action offered 

by the paradigms: 

[Paradigms] reorganize the world as a field of possibilities, offering differently configured 

challenges and opportunities. If proponents of different paradigms do not fully communicate, it is not so 

much that they cannot correctly construe one another’s sentences or follow one another’s arguments. 

The problem is more that they cannot grasp the point of what the others are doing or recognize the force 

of their arguments.405 

Rouse does not seem to think that Kuhn’s theory of scientific change would be 

disconfirmed by the failure to observe the periodization the theory is usually associated 

with. Normal science and crisis are “ways of doing science” rather than consecutive stages  

mediated by the emergence of anomalies.406  

                                                 

402 Rouse (2003), p. 112. Emphasis in original. 

403 Kuhn (1996), p. 150.  

404 “Practicing in different worlds, the two groups of scientists see different things when they look 

from the same point in the same direction” [Kuhn (1996), p. 150]. 

405 Rouse (2003), p. 113. 

406 Rouse (2003), p. 113. Emphasis in original. 
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This pragmatic interpretation of the paradigm concept suggests the possibility of a 

sort of “practical” incommensurability between paradigms, where the incommensurability 

consists of a clash between incoherent “fields of possibilities” for action. Applied to the 

Instrumental Revolution, it might go something like this: Though practitioners after the 

revolution could have continued to do chemical analysis the old way, the field of 

possibilities offered by the pre-revolutionary paradigm was very different from the post-

revolutionary one. Here are some examples: 

 Focus on analysis rather than synthesis  

 microstructure was de-emphasized  

 division of the field by substance class (sugar chemistry, terpene chemistry, 

alkaloid chemistry, etc.) rather than by the type of pursuit (methods oriented 

versus target oriented; synthesis of natural products versus designed molecules; 

synthesis of biologically interesting molecules versus theoretically interesting 

molecules, etc.)407 

 training in pure chemistry rather than in physical methods and theory 

 an insular approach to doing science rather than an interdisciplinary one 

 a focus on pure chemistry rather than applications (e.g., chemical biology, 

nanoscience, materials, energy, etc.) 

 traditional lab skills rather than machine operation skills 

 a reduced role for instrument-makers and “service disciplines” (e.g., methods 

developers) 

 weaker ties with capitalist and state actors 

 much smaller capital requirements 

In light of these differences, a Kuhnian might argue that the pre- and post-

revolutionary ways of doing chemistry were incoherent in a practical sense, for to do it one 

way would make it difficult to do it the other way. For example, to make classical structure 

determination a major part of the research program would leave little time for synthesis, 

while conversely the use of physical methods to determine structure renders chemical 

                                                 

407 On the division according to type of pursuit, see Nicolaou & Sorensen (1996). On the division 

by substance class, see Woodward (1956), p. 157. 
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degradation largely superfluous and even wasteful. Structures solved using the new 

methods could not be directly compared to those solved using the old because the data used 

for the former would be almost completely different from the data used for the latter. In 

addition, some kinds of inquiry, such as conformational studies, were simply impossible 

with the older methods. Ultimately, as was hinted above, the choice between the two 

paradigms might come down to values: though for the practitioners of one paradigm what 

the practitioners of the competitor are doing is intellectually comprehensible, it does not 

make much sense from the point of view of the former paradigm’s cognitive aims, 

efficiency norms, or professional self-conception. 

In short, there are grounds for thinking this episode could be made to fit into Kuhn’s 

theory modulo some adjustments to the standard interpretation of the latter. On the other 

hand, it is not clear that doing so would explain much. Novelty is the driving force of 

paradigm change for Kuhn. But given that the successful application of a paradigm does 

not generate novelty, the latter must occur “inadvertently,” through failures in the 

application. Though Kuhn focused on the discovery of anomalies during the elaboration of 

the paradigm,408 the more general point is that the mechanism of change is internal to 

normal science. But even if, as I have been suggesting in this section, a paradigm can be 

conceived as an example of a successful way of organizing and conducting scientific labor, 

there are no resources within the theory for explaining how a new way of organizing 

scientific labor could come to replace it unless there is some breakdown in the application 

of the paradigm. Granted that challenges to theory need not be the only drivers of change, 

the paradigm still has to be challenged internally in some way. 

The root of the problem is in Kuhn’s insistence on the “unparalleled” insulation of 

a particular scientific community from external influences.409 It follows that a revolution 

within a particular science will be relatively insulated in its origins and in its effects from 

events and processes occurring outside it, unfolding according to the internal mechanism 

of normal science and crisis. As far as labor is concerned, Kuhn’s scattered remarks on 

instrumentation point to what Peacock (2009) calls a “path-dependence thesis in the 

                                                 

408 Kuhn (1996), p. 52ff. 

409 Kuhn (1996), pp. 164-165. 
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production of scientific knowledge.”410 The costs of retooling, which have been described 

above for the case of chemistry, reinforce the conservative nature of normal science: 

So long as the tools a paradigm supplies continue to prove capable of solving the problems 

it defines, science moves fastest and penetrates most deeply through confident employment of those 

tools. The reason is clear. As in manufacturing so in science—retooling is an extravagance to be 

reserved for the occasion that demands it. The significance of crises is the indication they provide 

that an occasion for retooling has arrived.411 

But, I have been urging, the Instrumental Revolution cannot be adequately 

understood from a purely internal perspective. 

 

6.2  Laudan’s reticulational model of scientific change 

The philosopher Maurice Mandelbaum remarked that a basic difficulty with Kuhn’s 

account is that he is primarily interested in a contrast between the “before” and “after” of 

a scientific revolution, not in the details of the actual processes of change. According to 

Mandelbaum, this focus led Kuhn to overemphasize the internal sources of change at the 

expense of possible external causes.412 Moreover, it might account for Kuhn’s holism, in 

which theories, methods and cognitive aims are replaced all at once—hence the 

“conversion” metaphor Kuhn employs to describe how an individual scientist switches 

paradigm.413 

Laudan’s reticulational model was motivated by a desire to combat the irrational 

view of science that seems to be implied by Kuhn’s holism. Since theories, methods and 

aims change all at once, there appears to be no common standard between competing 

paradigms by which the overthrow of one paradigm by another could be assessed. If it is 

                                                 

410 Peacock (2009), p. 109. 

411 Kuhn (1996), p. 76. 

412 Mandelbaum (1984), chapter 9.  

413 Kuhn (1996), chapter X. 
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necessary to have such a standard in order to determine which paradigm is superior, then 

in its absence the decision to choose one paradigm over another is unjustified and therefore 

irrational.  

Laudan’s model proposes that scientific change occurs through a process of 

gradual, piecemeal adjustment. The process consists of a dynamic equilibrium between 

three elements: theories, methods and cognitive aims. As tensions arise between the 

elements, adjustments can be made to any of them in order to resolve the tensions; no one 

element is taken as foundational. Theories can be modified to accommodate cognitive aims 

and vice-versa, as can theories and methods or cognitive aims and methods.  

Laudan represented his model diagrammatically as in Figure 6.1: 

 

 

Figure 6.1  Laudan’s reticulational model. Adapted from Laudan (1984), p. 63. 

 

The arrows in the diagram indicate the justificatory structure of scientific practice. 

The use of a particular method is justified by the practitioners’ aims. Conversely, the 

methods employed exhibit the realizability of the aims. The latter point is important, for it 

shows that the aims are not “utopian,” i.e. that they are not such that “we do not have the 

foggiest notion of how to take any actions or adopt any strategies which would be apt to 

bring about the realization of the goal state in question.”414 To adopt such an aim would be 

irrational, according to Laudan, and so methods play an important role in justifying the 

reasonableness of scientific aims.  

Similarly, the theories scientists accept put rational constraints on their methods. If 

an accepted theory invokes unobservables, then the methods used to support the theory 

                                                 

414 Laudan (1984), p. 51. 
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should be capable of providing evidence for unobservable entities. Conversely, in 

providing the appropriate kind of evidence, the methods justify the theories.  

The reason cognitive aims and theories must harmonize is that the aims Laudan has 

in mind are ones that specify attributes that the theories should possess. So, for example, 

the 17th century mechanist ideal that all explanation should be based on contact action 

would be a cognitive aim on Laudan’s view. Harmony between aims and theories is not 

automatic, however, for conflicts sometimes arise between the explicit values of the 

community and the values implied by the theories the community accepts. According to 

Laudan, for example, 18th century scientists explicitly proscribed explanations involving 

unobservable entities. But this aim came into conflict with some of the most successful 

theories of the time, which did invoke unobservables. Scientists in the 19th century 

eventually adopted the method of hypothesis and abandoned Newtonian inductivism, 

which excluded the possibility of using observation to establish scientific knowledge of 

unobservables.415 Though the inductivist principle was widely held to be responsible for 

the successes of Newtonianism, the only successful theories of well-known electrical, 

chemical, gravitational and other sorts of observed phenomena in the 18th and 19th centuries 

posited the existence of an unobservable aether and thus violated the principle. In the face 

of the success of theories that violated inductivism, scientists eased the tension by adopting 

a different methodological principle. 

Laudan’s gradualist approach addresses the rationality problem posed by Kuhn’s 

holism. Since at any given moment, changes in one of the elements will be accompanied 

by continuity in the others, the elements of continuity provide a standard against which 

changes in the others can be appraised and justified. 

Of particular relevance to progress is the adjustment of cognitive aims to new 

methods or theories. Since progress is a goal-relative notion, the fact that Laudan’s model 

allows goals to shift complicates the assessment of progress. His solution is to drop the 

assumption, underlying many discussions of progress, that judgements of progress must be 

relative to the goals of the agents who performed an action. Instead, judgments of progress 

can be made relative to the observer’s view about the goals of science since, in any case, 

                                                 

415 Laudan (1984), pp. 56-59; (1981), pp. 111-141. 
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historians and philosophers of science are typically interested in scientific progress 

precisely because they value certain cognitive aims that science might further. 416  

I will add that from a labor-process perspective, the fact that the model allows goals 

to shift is a strength, for descriptive purposes, because it shows how means and ends 

reciprocally determine each other. It is usually assumed that ends determine the means of 

their fulfillment, but in reality the opposite is just as common, that ends are determined by 

the means available. This point was discussed above in section 2.3.2.3, in the context of 

Freudenthal and McLaughlin’s rehabilitation of the Hessen-Grossman thesis. Scientists are 

not free to impose ends arbitrarily on the given means; the latter affect the formulation and 

pursuit of ends as well. As I will show below, this point is illustrated by the case of the 

Instrumental Revolution. 

One caveat to keep in mind when applying Laudan’s model to a concrete case is 

that the model’s components are very abstract. The cognitive aims are not aims specific to 

the content of the field, but concern logical features scientific theorizing should aim at, 

such as whether theorizing should be realist or instrumentalist, reductionist or non-

reductionist, aim at simplicity, allow teleological explanation or restrict itself to efficient 

causation, permit or proscribe action at a distance, aim at certainty or only probability, and 

so forth.417 The “methods” of the model are also intended in an abstract sense. Besides 

inductivism (in the sense of a proscription on inferring nonobservables from observation) 

and the method of hypotheses, one could also mention various forms of inductive 

generalization (enumerative, eliminative, demonstrative), inference to the best explanation, 

falsificationism, analogical inference, etc. Laudan’s “methods” are perhaps more 

perspicuously called “methodological rules,” and that is the term he uses in the text. These 

are rules of theory acceptance, which state in very general terms what the relationship 

between theory and evidence has to be for acceptance of the theory to be warranted.418 

The abstraction of his model can make historical analysis difficult because these 

logical considerations are not always what is (apparently) at issue in specific scientific 

                                                 

416 Laudan (1984), pp. 64-66. 

417 Laudan (1984), p. 42. 

418 Laudan (1984), pp. 33-34. 
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debates and decision-making, which are often primarily concerned with questions of 

content. 

In the case of the Instrumental Revolution, there was undoubtedly adjustment at the 

level of theory. Chemical structure theory was modified to incorporate the quantum 

chemical theory of bonding and physical organic concepts like electronegativity and 

mechanisms. As Reinhardt (2006) shows, the physical theories underlying the new 

instrumentation also had to be modified to include chemical concepts so that the data could 

be interpreted in a chemically useful way. Nevertheless, there were elements of continuity.  

First, despite being a pre-quantum theory, the chemical structure theory developed 

by Kekulé, Cannizzaro, van ’t Hoff and others in the second half of the 19th century was 

retained. Both pre- and post-revolutionary theorizing about specific molecular structures 

had as aim the production of a structural representation of a compound, using the same 

basic set of rules for formulating structures.419 Given this element of continuity, a 

Laudanian question to ask here is whether the theoretical changes that did take place were 

sufficient to create tension with either cognitive aims or methodological rules. 

It can be argued that the function of structural representations in classical chemistry 

was to reproduce the chemical relations of a substance at a theoretical level—the structural 

representation was used to represent the various transformations that were observed. This 

was a non-reductionist approach to theorizing in that the representation was not taken to 

represent a more fundamental entity than the substance itself, nor did it presuppose a more 

fundamental theory than chemical structure theory.420 The new quantum chemical concepts 

                                                 

419 See Sidgwick (1936) for an eloquent and clear account of the structure theory and its durability 

by a practicing chemist, as well as Steinhauser (2014) for a more recent description by a historian. 

420 Schummer (2002), p. 196. Not everyone agrees that the reductionist approach was new; Needham 

(2004) locates its beginnings at the turn of the 20th century, when atomism began to be used in 

chemical explanations. Hendry (2010) is also reluctant to accept a non-reductionist reading of pre-

quantum chemical theorizing. For my part, I would distinguish between the function of identification 

and the function of representing chemical reactions. Schummer’s own criterion of identity for 

chemical species, which I adopted at the beginning of section 5.2.1, does not logically require any 

reference to other chemical species besides the one being identified. All that is required is a one-to-

one relationship between the set of properties used to identify the species and the species itself, for 

example between the structure and the compound. The fact that structure was established by 
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were in tension with this  approach, since their use seemed to imply two forms of reduction: 

(i) of substances to molecular species and (ii) of chemical theory to quantum mechanics. 

Chemists responded to the tension by dropping the aim of non-reductionism. Henceforth, 

the representation would be construed as that of a molecular species, even though after as 

before chemists were still largely concerned with classifying and manipulating chemical 

substances. On this reading of what happened, the function of structural representation in 

modern chemistry is to represent the microstructure of the compound, which 

microstructure is understood in terms of a quantum theory of bonding. 

In Laudan’s terms, we can say that the introduction of quantum chemical concepts 

created tension with the cognitive aim of non-reductionism. The tension was eased by 

abandoning the aim.  

  It is worth noting how, in order to fit the episode into Laudan’s categories, we 

have had to ignore the role of instruments in bringing about the change. The triad of theory, 

cognitive aim, and methodological rule does not make it obvious how instrumentation fits 

into the picture.  By way of contrast, the philosopher Joachim Schummer (2002) and the 

historian Leonard Slater (2002) argue that the new instruments played a crucial role in the 

switch to a reductionist approach to structural representation.  

For example, I do not think the question of reductionism was what animated the 

majority of organic and analytical chemists whose work was transformed during the 

Instrumental Revolution. Their decisions were more pragmatically inspired than 

philosophical. An alternative Laudanian interpretation that takes this pragmatic spirit into 

account is to view the episode as driven by methodological norms rather than by cognitive 

aims. These norms had to do with the nature of their methods, understood in the sense of 

                                                 

examining the chemical reactions of the compound does not entail that it amounted only to a 

representation of those reactions. The structure was an (essential) property of the compound, not a 

representation of the latter’s reactivity. It is also difficult to see how chemists could have coherently 

applied spectroscopic methods to structure determination, given that those methods presuppose that 

structure is an intrinsic property of a substance. Coherence was important, since at the beginning of 

the Instrumental Revolution, the new methods could only be used in combination with the classical 

ones to determine structure. All that said, I am here entertaining an instrumentalist interpretation of 

structure in order to make a point about Laudan’s reticulational model. 
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techniques. A plausible interpretation of the episode is that the following norms for the 

assessment of methods informed the direction of methods development during this period: 

a. X is a better method than Y if X requires less compound than Y 

b. X is a better method than Y if X requires less time than Y 

c. X is a better method than Y if X is more reliable than Y. 

d. X is a better method than Y if X is more informative than Y. 

e. {X, Y, Z etc.} is a better set of methods than {A, B, C etc.} if  {X, Y, Z etc.} 

provides a greater variety of evidence than {A, B, C etc.} 

Together, these norms encouraged the development of methods in the direction of 

decreasing compound and time requirements, greater reliability, informativity and variety 

of evidence. It was claimed in chapter 4, section 4.4.2 under Roman numeral I that classical 

methods were deficient with regard to these norms. On this view, the norms and the 

techniques employed were in tension with each other. The tension was relaxed by adopting 

the new techniques. Though Laudan does not include “techniques” in his model, this 

interpretation is at least Laudanian in spirit.  

That said, it is worth noting that my “methodological norms” are quite different 

from Laudan’s methodological rules. The methodological norms affected judgments of the 

efficiency of compound identification, not choice of theory. Unlike Laudan’s 

methodological rules, they concern the heuristics of inquiry rather than the validation of its 

results. Scientific debates over technique, as opposed to theory choice, often concern 

heuristics rather than validation. What is at issue in such debates is not necessarily the goals 

to be pursued, or whether the rules of theory acceptance are consistent with them, but what 

is the best way of achieving the goals. Abstract cognitive aims and rules of theory 

acceptance can usually be implemented, in practice, in more than one way; they do not 

uniquely determine their concrete implementation. As a result, debates will occur as 

scientists sort out how to implement them.  

Moreover, the tension between methodological norms and the techniques employed 

is a driver of scientific change that is absent in Laudan’s model. As noted above, in the 

latter cognitive aims plays a key role in driving scientific change, due to tensions that arise 

between the explicit aims of the community and the aims implicit in the theories or 

methodological rules accepted by it. One question this absence raises is how to locate 
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methodological norms and techniques with respect to Laudan’s triad. I will answer this 

question at the end of this section.  

The new methods, besides satisfying these norms better, allowed for faster self-

improvement and more secure inferences, as discussed in chapter 5. From this perspective, 

the episode looks progressive. On the negative side, however, the new methods did not 

satisfy the goal of acquiring knowledge of the chemical relations of substances. This kind 

of knowledge was important in its own right and not just as evidence for theoretical claims. 

In terms of the four-pronged classification of knowledge discussed in chapter 2, it was a 

kind of empirical knowledge (EK) that had practical applications (PK), for example in 

synthesis. The change of methods was not progressive relative to that goal. But it wasn’t 

regressive either, since the old results were not fundamentally affected by the change of 

methods. On the other hand, this last claim might have to be qualified if one were to take 

into account the “opportunity cost” of the knowledge not acquired because the old methods 

were abandoned.  

Grounds for an additional negative assessment may be found in Slack (1972), where 

it is argued that the focus on synthesis in contemporary organic chemistry reflects the 

industrial need for fast, high-yielding reactions. This focus amounted to an abandonment 

of the consecrated goal of creating a “science of carbon compounds” that would classify 

and make intelligible the immense variety of carbon compounds in the world. Slack finds 

evidence for the abandonment of this goal in textbook presentations of the subject: whereas 

earlier textbooks structured chemical facts according to the known classes of chemical 

substances or to basic reaction types, he claims that recent textbooks focus on fast, high-

yielding reactions, thus emphasizing what is profitable for industry at the cost of 

comprehensiveness and understanding. If true, Slack’s claims suggest the possibility that 

there might have been other, scientifically fruitful ways of structuring chemical knowledge 

that were not pursued for economic reasons, and in fact that the transformation of chemistry 

might have been regressive relative to the pursuit of more “intellectual” goals like a science 

of carbon compounds. 

In short, there are grounds for thinking that some goals were retained, new ones 

adopted and old ones abandoned. Was the overall result progress? The answer will depend 

on how the goals should be weighted and how opportunity costs should be factored in. 
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Perhaps a compelling weighting scheme can be supplied, though I suspect it is difficult. In 

any case, it is beyond the scope of this chapter to supply one.  

The point about more secure inferences is also related to Laudan’s methodological 

rules. In section 5.5.2, I distinguished between the structure-to-structure mode of inference 

characteristic of the classical methods and the data-to-structure mode of inference 

characteristic of the modern methods. The distinction is based on a difference in the content 

of the techniques, namely whether hypothesized structures give rise directly to the data or 

via the structures they are produced from or transformed into. The content of the data 

production process is essential here. But the nature of that process depends on the means 

available for manipulating compounds.  

Are these modes of inference methodological rules, in Laudan’s sense? If these 

modes of inference were rules of theory acceptance, they would have been used to accept 

theories. But they were not. As shown in chapters 4 and 5, they were instead used to 

generate hypotheses, by providing a pattern of reasoning for data interpretation. 

Hypotheses generated by means of these patterns were then assessed using recognizably 

canonical rules of hypothesis acceptance, for example IBE or inference to the simplest 

hypothesis. Thus, I think it is more accurate to call these modes of inference “generative 

patterns” rather than rules of theory acceptance, because they were used to generate 

structural hypotheses from the data, not to assess the hypotheses thus generated.  

The nature of these generative patterns is highly dependent on the nature of the 

techniques employed because data interpretation has to take into account the process of 

data production. As argued in chapter 5, the new generative patterns that accompanied the 

new techniques of the Instrumental Revolution were a crucial part of the impact of that 

revolution on chemistry. Since these patterns are “methodological” but do not fall under 

Laudan’s category of a methodological rule, it follows that in order to understand what was 

at stake in the Instrumental Revolution we must broaden our understanding of methodology 

to include more concrete forms of scientific reasoning based on changes of technique and 

instrumentation.  

This brings up two further points. First, the structure-to-structure mode seems 

counterproductive to the aim of structural representation, since the material process on 

which it is based involves the destruction of the very structure to be represented. So the 
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switch to the data-to-structure mode looks like progress. But note that there is only progress 

here for the reductionist—the non-reductionist would see the “destruction” as an essential 

part of what is to be represented. Again, the goal-relativity of progress leads to conflicting 

normative assessments of the same phenomenon. 

More importantly, the role of the available means in determining the data 

production process suggests a way in which Laudan’s model might be augmented: 

 

 

Figure 6.2 An augmented reticulational model. 

  

I have added an extra node to the original model, the “means available,” which 

includes instrumentation and techniques. Methodological rules justify the employment of 

certain means, and the latter make possible, realize and constrain the application of the 

methodological rules. I have also augmented the ‘methodological rules’ node in two ways. 

First, I have added ‘generative patterns’ because they play a different, but complementary 

role to the rules. They are used to generate theories and to interpret the data produced by 

means of instrumentation and techniques. Second, I have included the ‘methodological 

norms’ discussed above, which are necessary for the comparative assessment of the 

heuristic properties of techniques. I will have more to say about this augmentation in the 

conclusion of this chapter. 

It is worth noting that the addition of methodological norms implies an 

augmentation of the cognitive aims. For Laudan, cognitive aims specified attributes that 

theories should possess. But methodological norms imply goals for the development of 

techniques (vide supra). The application of such norms can impart a direction to technical 
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development, and exhibit the realizability of the corresponding aims.421 Thus the category 

of a ‘cognitive aim’ has to be broadened to include aims that affect technical, and not just 

theoretical, development.   

Here is how this model might play out in the chemical case. Classical chemistry 

had the cognitive aim of constructing structural representations of substances’ chemical 

relations to other substances. This aim justified the generative pattern of proposing 

structures based on chemical reaction data. It also justified the application of rules of theory 

acceptance (hypothetico-deductivism, IBE, etc.)412 to the proposed structures. Known 

structures were produced by means of wet-chemical instrumentation and techniques. 

During the Instrumental Revolution, the material practices of chemistry were changed in 

the manner described in chapter 4. These changes dictated different generative patterns, 

which involved inferring structures directly from spectroscopic data. But the justification 

of these patterns required a different cognitive aim, that of representing microstructures. 

The adoption of the new aim made a difference to the representations themselves, which 

came to incorporate features that could only be inferred from microstructural properties, 

for example conformational isomers or secondary and tertiary structure in biological 

macromolecules. 

If we look at Figure 6.2, we see that, on this reconstruction, changes in the “means 

available” node—in instrumentation and technique—forced revision in the “cognitive 

aims” node of Laudan’s original model  

Alternatively, one might reconstruct the episode in terms of the methodological 

norms discussed above. Chemists select techniques in accordance with certain 

methodological norms and the aims corresponding to them. The Instrumental Revolution 

made a new set of techniques available that satisfied the norms better than the old. In order 

to adopt the new techniques, however, chemists had to make certain adjustments in their 

                                                 

421 A recent review of advances in geochemistry claims that “many of the discoveries made in 

geochemistry over the last 50 yr [sic] have been driven by technological advances that have allowed 

analysis of smaller samples, attainment of better instrumental precision and accuracy or 

computational capability, and automation that has provided many more data” (italics in original). 

See Johnson et al. (2013), p. 1. 
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theories and cognitive aims. As a result, quantum concepts were accepted and a reductionist 

interpretation of structural representations became standard.  

With either way of reconstructing the episode, we see that what scientists do in the 

cognitive realm of aims, theories and methodological principles depends on the material 

realm of instrumentation and techniques. This is contrary to what Laudan’s model might 

suggest. Indeed, his tripartite model relegates much of what makes this episode interesting, 

and important in the history of chemistry, to the background—the changes in techniques, 

instrumentation and material practices in general. In order to fit the episode to Laudan’s 

categories, we have to conceive of scientific method in abstraction from the heart of the 

change, the new kinds of instruments. Moreover, the categories leave out drivers of 

scientific change besides cognitive aims.  

In contrast, the attempt to fit the Instrumental Revolution to Laudan’s model in this 

section has required the addition of several new elements to the picture. These are: 

methodological norms used in the evaluative comparison of techniques; generative patterns 

of reasoning used to interpret data in terms of structural hypotheses; and the fundamental 

role of the available means in such revolutions. If we compare Figures 6.2 and 6.1, we see 

that, contra the original model, more elements are involved in exhibiting the realizability 

of cognitive aims than just rules of theory acceptance. Moreover, since methodological 

norms are goal-directed, the aims in question include more than attributes of theories but 

also heuristic aims involving attributes of techniques.  

 

 

6.3 Lakatos’ scientific research programs 

The fact discussed in the last section, that there were theoretical adjustments in 

chemistry without theoretical overthrow, suggests that a different unit of analysis than the 

individual theory may be appropriate for cases like the Instrumental Revolution. Such a 

unit of analysis was proposed by Imre Lakatos. According to Lakatos, a ‘scientific research 
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program’ consists of a central core of axioms and principles and an evolving collection of 

auxiliary hypotheses adopted in the course of applying the core. The central core is taken 

to be inviolable by those working within the research program, whereas the auxiliaries form 

a ‘protective belt’ that can be modified in the light of negative evidence. The development 

of the auxiliaries is guided by a ‘positive heuristic,’ a methodological recommendation that 

directs investigators to formulate auxiliaries that expand the range of application of the 

core principles. 

A theory, on this view, is a combination of core principles and protective belt. Thus 

each significant modification of the latter produces a new theory related to the previous 

one via the central core. As the positive heuristic is applied, theories will succeed each 

other. The series of theories constitutes the research program. 

Lakatos cites post-Newtonian planetary astronomy as an historically important 

scientific research program. The core consisted of the three laws of motion and the law of 

universal gravitation. Discrepancies between calculations and observations were removed 

by making changes in the protective belt. A famous example of this is the discovery of 

Neptune. When the motion of Uranus was observed to deviate from the orbit required by 

theory, another hypothesis was added to the protective belt. This hypothesis posited the 

existence of a trans-Uranic planet, and the hypothesis was subsequently confirmed.  

Lakatos maintained that the replacement of theory Tn by theory Tn+1 within a 

research program is justified provided that (i) Tn+1 accounts for the previous successes of 

Tn; (ii)  Tn+1 has greater empirical content than Tn; and (iii) some of the excess content of 

Tn+1 has been corroborated. If these conditions are met, then the replacement of Tn by Tn+1 

counts as progress. 

Theory replacement is not the only kind of transition recognized by Lakatos’s 

theory. There is also the phenomenon of transition between research programs. As with 

theory replacement, the successor program has corroborated excess content. On the other 

hand, the successor theory accounts for most, but not all, of its predecessor’s successes. An 

example of incomplete explanatory overlap is the transition from Descartes’ vortex 

program to Newton’s gravitational attraction program. The latter achieved corroborated 

excess content over the former, because it accounted (approximately) for Kepler’s laws of 

planetary motion whereas the vortex theory was inconsistent with these laws. On the other 
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hand, the vortex theory could explain why all the planets travel in the same direction around 

the sun. An invisible whirlpool of aether drove the planets in the same direction. There was 

no corresponding explanation of the unidirectional motion in Newton’s original program.  

Lakatos maintained that competing research programs should be appraised with 

respect to their relative rates of progress. If one program is stagnant, having failed to 

generate new confirmed consequences over a period of time during which a second 

program has been fertile, then the second program is superior to the first. In cases where 

both programs have been progressive, the relative importance of the achievements should 

be assessed.  

For our purposes, one question the theory of scientific research programs raises is 

whether the Instrumental Revolution represents a transition between theories in a research 

program or a transition between research programs. From the point of view of theory, the 

episode involved the addition of important new theoretical elements, in the form of 

quantum chemical and physical organic concepts, with retention of chemical structure 

theory. Without a doubt, the latter belongs to the core, and so, I think, do the additions. But 

does this transformation of the core amount to a transition between research programs? 

 I do not think so. The fact is that classical chemical structure theory had no theory 

of bonding; it was essentially a set of rules, underpinned by the barest assumptions about 

how molecules are structured, for associating a structure with every compound that could 

be isolated.422 There was thus an empty “slot,” so to speak, that was readily filled by the 

20th century concepts. From the theoretical perspective, then, the case looks more like an 

enrichment of the research program rather than its overthrow. Moreover, the enrichment 

was clearly progressive in Lakatos’ sense, for it allowed many new predictions to be made 

and confirmed. 

Stating the question of transition solely in terms of theory, however, is not 

appropriate, since the transition also, of course, involved new instruments and methods. I 

will therefore take the liberty of replacing ‘theory’ with ‘method’, where the latter is 

understood in the broad sense of chapter 5, section 5.1 that includes theory, 

                                                 

422 Sidgwick (1936), p. 533. 
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instrumentation, experimental methods, and data analysis techniques. The Instrumental 

Revolution consisted in the replacement of one set of methods (so understood) by another.  

From this perspective, the case looks somewhat different than from a purely theory-

focused perspective. The new analytical methods did not yield information about the 

chemistry of substances. There was thus little overlap between the two sets of methods in 

terms of the empirical knowledge (see chapter 2) that they yielded.423 From this 

perspective, the transition looks more like one between research programs than an 

enrichment. If so, was the transition progressive? Based on the criterion of relative rates of 

progress, and on what was said in chapter 5 about the new dynamism and efficiency of 

analytical work, the answer seems to be “yes.” Even if the correct answer is more 

ambiguous, as the considerations in the last section suggest, there does not seem to be a 

problem with assessing the transition using Lakatos’ metholodogy. 

Prima facie, then, the Instrumental Revolution seems to fit with a normative 

assessment based on Lakatos’ methodology. On the other hand, we have had to modify the 

usual content of a ‘research program’ in order to account for the case. If we grant that the 

episode was primarily about the adoption of a new set of methods, what might be a 

plausible positive heuristic for the reconstructed new research program? One of Lakatos’s 

examples of a positive heuristic is Newtonian: Lakatos formulates the positive heuristic 

guiding Newton’s program as “the planets are essentially gravitating spinning-tops of 

roughly spherical shape.” Lakatos argues that this heuristic guided Newton’s responses to 

various anomalies he encountered in developing his program in celestial mechanics.424 

Another example is Bohr’s development of the theory of the hydrogen atom. Here, the 

positive heuristic was that atoms are analogous to planetary systems and that the theory 

should be developed accordingly.425  

These heuristics are theoretical in the sense that they are ontological assumptions 

about the system under study. Such a heuristic is inadequate for episodes like the 

                                                 

423 I write “little” because mass spectrometry did yield information about chemical reactions, albeit 

of a very different sort than traditional solution-phase reactions, and other techniques, like NMR, 

make use of chemical knowledge for data interpretation.  

424 Lakatos (1970), pp. 136-137. 

425 Lakatos (1970), pp. 146-147. 
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Instrumental Revolution, where the transformation of material practices is a key feature. 

On the other hand, we can find a positive heuristic readily in the analogy with the Industrial 

Revolution (chapter 4): the principle of machine production of data, which recommends 

the emancipation of data production from humans’ natural epistemic abilities. As 

documented earlier, chemists and instrument-makers put this positive heuristic to 

considerable use in the mid-20th century. Such a heuristic directs the development of 

methods, and so is not a method itself. It also entails a certain kind of organization of labor, 

one centered around machine production. To distinguish it from Lakatos’ ‘positive 

heuristic,’ I will call it a ‘labor-principle,’ in keeping with section 4.8.  

We can illustrate this new kind of heuristic by augmenting the augmented 

reticulational model of Figure 6.2: 

 

 

Figure 6.3 An augmented reticulational model. 

 

In addition to adding the labor-principle at right, I have also included the 

organization of labor along with the means available. I have also indicated the influence of 

the broader society on the selection of labor-principles, as discussed in section 4.6. 

In conclusion, this reading of the Instrumental Revolution in terms of Lakatos’ 

categories shows that there is fit with respect to form, but not content. The episode can be 

construed as a transition between research programs, but the content involves a transition 

between methods rather than a theoretical core. A positive heuristic can be imputed to 

explain the change, but it concerns material practices rather than ontology. As with Laudan, 

so with Lakatos: the problem is not so much that cases like the Instrumental Revolution 

cannot be made fit their models, but that we have to look beyond the theory-centric 

categories they employ to make the fit descriptively adequate, in the sense of capturing the 

distinctive content of such episodes. 
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6.4 The Instrumental Revolution as the outcome of a selection process 

Laudan’s and Lakatos’ theories are both instances of gradualist theories of scientific 

change and progress. Selectionist theories are another kind of gradualist theory. Moreover, 

selectionist theories try to come to grips with two remarkable features of science: its 

progress and its stochasticity. An influential version of such a theory is David Hull’s 

attempt to show that natural selection and conceptual change are special cases of a general 

theory of selection processes.426 The general theory specifies a mechanism by which 

entities pass on structure over time. The mechanism involves an interrelation among 

‘interactors’ and ‘replicators.’ Interactors compete with one another in response to 

environmental pressures. The resultant competitive differential adaption of interactors 

causes differential success rates among replicators.  

Replicators are entities that give rise to copies of themselves. In the natural world, 

the entities consist of genetic material. Interactors are entities subject to competition within 

some specific environment. In the natural world, the interactors include living organisms, 

cells and kinship groups. Within the history of science, the replicators are concepts and 

beliefs, where the latter include not just theoretical propositions but also commitments to 

methodological principles and standards of appraisal. The interactors are individual 

scientists and individual research groups. 

Hull claimed that the history of science is the result of selective pressure operating 

on a set of variants, namely variants among the replicators. As scientific concepts and 

beliefs change over time, so do the theories constituted by them. In a given discipline, the 

succession of theories constitutes a lineage. The relation between theories is determined by 

whether or not they are phylogenetically related, not by whether they share a common 

structure or properties. 

Hull noted that the phylogenetic understanding of the history of theories has for 

consequence that “unappreciated precursors do not count.”427 On this view, Patrick 

Matthew’s unnoticed formulation of the principle of natural selection in 1831 is not part of 

                                                 

426 Hull (1988).  

427 Hull (1989), p. 233. 
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the lineage of natural-selection theory. According to Hull, a phylogenetic reconstruction of 

the history of Darwinian evolutionary theory reveals a tree of descent whose branches 

include “Darwin’s Darwinism, late nineteenth-century Darwinism, neo-Darwinian 

Darwinism, the new synthesis Darwinism, and so on.”428 

On Hull’s view, the dominant interactions between scientists consist of cooperation 

and competition for credit. Selection in the form of citations is therefore an important part 

of the mechanism by which scientific ideas are replicated. Conceptual replication is a 

matter of information being transmitted by means of different vehicles, for example books 

or journals. Scientists are also vehicles, but because they can test and change the 

transmitted ideas they cause replication to be differential, which makes scientific change 

possible.  

What causes some lineages of ideas to cease and others to continue? First, scientists 

tend to behave in ways that increase their conceptual fitness. The competition for credit is 

important here, for scientists want their work to be accepted, which requires that they gain 

support from other scientists. Scientists whose support is worth having are likely to be cited 

more frequently. Second, the competition for credit also engenders cooperation. Scientists 

tend to organize into tightly knit research groups in order to develop and disseminate a 

particular set of views. Due to the individual scientist’s inherently limited abilities and 

knowledge, scientists tend to form research groups in order to solve the problems they 

confront. Cooperating scientists often share ideas that are identical in descent, and 

transmission of their contributions can be viewed as similar to kin selection. Individual 

research groups may compose a community. Scientists tend to use the ideas of scientists 

within their community much more frequently than those of scientists outside the 

community. 

The first criticisms and evaluation of an idea come from within the research group, 

notably in the form of testing. Once published, the idea may be subject to further criticism 

by scientists outside the group, because some outsiders will have different perspectives on 

the problem and different career interests. Science acquires its self-correcting character 

through this external criticism.   

                                                 

428 Hull (1989), pp. 234-7. 
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I have already discussed Carsten Reinhardt  evolutionary interpretation of the 

Instrumental Revolution in section 5.1. As mentioned there, the competitive pressures were 

twofold: there was the pressure on instrument manufacturers to survive on the market, and 

there was the pressure on the scientists to maintain and accumulate credit in academia. In 

Hull’s terms, both pressures were handled by means of cooperation between the two 

interactors, in addition to the usual cooperation within the respective firms and research 

groups. The “replicators” in this case also appear to be twofold, consisting of the 

instruments produced by the manufacturers and the methods (in the broad sense I have 

been using) developed by the scientists. The evolutionary story could be taken even further 

than Reinhardt does, for once the methods and instruments became normative, each 

ordinary chemist had strong incentives to use them. A chemist who continued to do 

chemical analyses the old way would quickly lose credit in the face of competitors who 

could solve the same problems using the faster, more informative and (I have argued) more 

secure techniques.  

A point of difference that emerges here between Reinhardt’s account and Hull’s 

theory is that the sets of interactors and replicators have to be expanded to explain such 

changes in material practices. Hull’s sets are theory-centric: the replicators are concepts, 

beliefs, and cognitive commitments, and the interactors are individual scientists and 

research groups. These sets cannot completely account for the transformation Reinhardt 

describes; one has to take into account not just the crucial involvement of the 

manufacturers, but also background social conditions like capitalism, the earlier 

development of the methods in industry, the funding available for instrument 

manufacturers and consumers in the context of the Cold War, the level of technological 

development, etc. Moreover, the mechanisms of competition and cooperation for academic 

credit are insufficient; one must take into account competitive pressures and cooperative 

strategies specific to a capitalist economy.  

 Another point of difference with evolutionary accounts of science like Hull’s is 

that the replicators are no longer just ideas, but also material instruments and the practices 

based on them. This makes it difficult to ignore the labor process. In the first chapter of 

this dissertation, as well as in the historical part of this chapter, the labor process has been 

conceived as a system of functional relations between an agent or agents, an object of labor, 
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and instruments of labor. On this structuralist view of the labor process, it is impossible to 

make certain kinds of changes to one element of the process—here the instruments—

without changing the other elements. There follows from this impossibility a disanalogy 

with the evolutionary model. The disanalogy is similar to one, discussed in section 5.1 

above, that was pointed out by L. J. Cohen in his 1973 critique of Stephen Toulmin’s 

version of the evolutionary theory of science: the evolution of scientific concepts cannot 

be explained in the same manner as the evolution of a species, on the grounds that in 

Darwinian-type explanations “within any population … of environmentally threatened 

individuals, the similarities that are selectively perpetuated are those that are favourable to 

the continued existence of such individuals.”429 But on the holistic conception of scientific 

concepts that Cohen endorses, changes within a discipline involve a restructuring of an 

“evolving” concept’s relations to other concepts and not just a replacement of individual 

concepts.  

A similar argument may be made for the labor process. The introduction of the new 

instruments could not occur without restructuring the whole process. Once chemical 

reactions were replaced by physical interactions, the functions and activities of the chemist 

(in chemical analysis) were transformed. Arguably, so was the object of labor, which I 

suggested in section 4.4 became either light energy or molecular species.430 The nature of 

the inferences used to identify compounds, as well as the theories brought to bear, also 

changed. Rather than a mere replacement of one kind of tool by another, say, glassware by 

spectrometers, an entirely new approach to analysis was adopted. 

Cohen pointed out a further disanalogy between conceptual evolution and 

biological evolution that I think is also relevant here. The former, unlike the latter, is 

“coupled” in the sense that there is a connection between the factors responsible for the 

generation of variants and the factors responsible for the selection of variants. Conceptual 

evolution lacks the random character of biological mutations: “Conceptual variants are for 

                                                 

429 Cohen (1973), p. 48.  

430 Schummer (2002) argues that the concept of chemical species identity used to identify 

compounds changed during this period, from a concept of pure substance to a concept of molecular 

species.  
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the most part purposively thought up in order to solve the intellectual problems that beset 

a discipline.”431 By contrast, in biological evolution, mutation and selection are 

“uncoupled” in the sense that the selection of variants is due to different factors than the 

generation of variants: “The gamete has no clairvoyant capacity to mutate preferentially in 

directions pre-adapted to the novel ecological demands which the resulting adult organisms 

are going to encounter at some later time.” I have provided evidence that the Instrumental 

Revolution was purposive. First, there were acknowledged weaknesses of the classical 

methods. Second, as noted the champions of the instrumental approach had a will to use 

science and technology not only to solve chemical problems, but also to eliminate the 

human element where it was seen as problematic or constraining.  

 Most importantly, from the standpoint of science as labor, is that the analogy with 

natural selection amounts to a misrecognition of the peculiar character of the evolution 

engendered by the labor process. This peculiar character has been analyzed by Peter 

Damerow with a view to developing a materialist historical epistemology. Since this will 

be one of the main themes of chapter 7, I will not say much about it here. For the time-

being suffice it to say that the labor process can result in a surplus, and this fact introduces 

a new mechanism of change, over and above the random variation and natural selection 

of biological evolution: reproduction by means of the expanded means of production. Each 

iteration of the labor process differs from the preceding one insofar as it incorporates the 

surplus generated previously. So the biological analogy at the heart of the evolutionary 

theory of scientific change fails to the extent that it evacuates the specific characteristics of 

labor that are responsible for the different trajectories of human and animal history. 

How might this mechanism manifest itself in science? My suggestion is that an 

important way in which instruments contribute to scientific progress is by making possible 

a dialectic of discovery and embodiment. Scientists start from a store of knowledge (in the 

broad sense described in chapter 2). Using this knowledge, they produce instruments that 

they then use to discover new things about the world. If successful, new items will be added 

to the store of knowledge. The augmented store can then be used to build improved 

instruments, thus renewing the cycle. 

                                                 

431 Cohen (1973), p. 47.  
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Schematically, the process may be presented thus: 

 

 

Figure 6.4 The dialectic of discovery and embodiment. 

 

Here, each kj is some instance of knowledge. The initial store of knowledge is 

represented by k1, k2, … ki, the “surpluses of knowledge” by ki+1, … kn and kn+1, … km. An 

essential feature of this process is that it concerns collections of instruments and 

discoveries, not individual instruments, since the discoveries made by means of an 

individual instrument cannot necessarily be used to improve that very instrument (the 

knowledge of the moon’s surface afforded by Galileo’s telescope could not be used to 

improve the telescope itself). The complementary features of extension and improvability 

are both involved in this scheme. The extension of our observational and computational 

powers yields new knowledge, which can then be embodied in new instruments by way of 

their improvability.  

Something similar can happen with humans. For example, Hacking (1983) argued 

that observation is a skill. Knowledge of how to observe is acquired through scientific 

practice. These skills can be transmitted from master scientist to apprentice, and when this 

happens the sense perception of the apprentice is augmented by the new skills. Similarly, 

human computational powers can be improved by the discovery of algorithms like the rules 

of arithmetic (this would be a case where a discovery made by means of an “instrument”—

the mind—could be used to improve the power of the instrument itself). So the native 

human abilities can engage in this dialectic as well, though not to the same extent as 

artifacts due to the constraints imposed by humans’ natural endowment. 
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How does the dialectic of discovery and embodiment help us understand the 

Instrumental Revolution? This was an episode in which knowledge produced in diverse 

disciplines was combined, following the principle of machine production of data, in the 

form of new instruments for chemical analysis. Various scientific and social 

developments—the discovery of quantum phenomena, the emergence of computer science 

and physical organic chemistry, the needs of the petrochemical and rubber industries during 

the Second World War, the output-oriented administration of university departments, 

etc.—converged to make the embodiment of scientific and technological knowledge 

possible and sought after as a means for solving chemical problems. To be sure, the 

variation of scientific ideas played an important role—I by no means intend to downplay 

the stochastic effects of human creativity and of empirical results in this process—but so 

did the surpluses of different kinds of knowledge and their application to the analytical 

labor process. Variation of ideas and natural selection are insufficient to explain this 

episode; the mechanism of change through expanded reproduction must also be taken into 

account. 

By analogy with the schemes of Figure 6.4, the epistemic component of the 

convergence process might be illustrated, in a highly simplifying way, as follows: 

 

 

Figure 6.5  The Instrumental Revolution as expanded reproduction through combined development. 

 

The series on the left represent instances of a kind of knowledge: the ci’s chemical 

knowledge, the pi’s physical knowledge, and the ei’s “engineering knowledge,” a broad 

notion intended to cover computer science, electrical engineering, various forms of know-

how, etc. There is expansion, as chemistry acquires more instruments than it had at the 

beginning. There is also reproduction, as the new instruments allow chemists to continue 
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doing chemical analysis. In addition, most of the old knowledge was retained, since the 

new methods were compatible with the old. There is thus accumulation not just of the stock 

of instruments, but of chemical knowledge.  

The diagram also illustrates a mechanism of expansion: the combination of 

different kinds of knowledge in the production of the new instruments, which would not 

be possible with a more insular mode of development. This mechanism anticipates two 

features of mid-20th century chemistry that have been noted in the literature. First, it asserts 

that chemical knowledge entered into the production of the instruments. This theme is 

emphasized by Reinhardt, who argues that the “chemicalization” of the instruments 

protected the disciplinary autonomy of chemistry from physics. Second, it anticipates the 

phenomenon of “concept amalgamation” identified by Andrea Woody. In Woody (2012), 

she describes the emergence of conceptual tools from the “amalgamation” of physical and 

chemical concepts. Her main examples are molecular orbitals and molecular orbital 

diagrams, both of which are based on quantum mechanics but neither of which can be 

derived from it, since they incorporate assumptions from chemical structure theory as well. 

The diagram suggests the possibility of some such amalgamation in the conception of the 

instruments. 

In conclusion, I think the evolutionary approach yields valuable insights into 

processes of innovation in science. But it runs the risk of reductionism, insofar as it 

evacuates features of science that are specific to human evolution. In particular, an 

evolutionary approach must take into account how humans’ relationship to nature is 

mediated. Implicit throughout this chapter is the idea that labor mediates that relationship. 

Labor makes possible the dialectic of discovery and embodiment. From this perspective, 

knowledge appears not just as the aim of science, but as a resource for future science. The 

integration of prior knowledge into future practices has a transformative effect on science, 

as the Instrumental Revolution illustrates. In the concluding section of this chapter, then, I 

will propose a further augmented reticulational model that acknowledges this role of prior 

knowledge in the dynamics of scientific change.  
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6.5 Conclusion 

In an attempt to synthesize the morals of this chapter with respect to scientific 

change, I offer the following diagram, a further augmented version of the reticulated model 

provided in Figure 6.3: 

 

 

Figure 6.6  A further augmented reticulational model. 

 

The diagram is intended to capture the main positive insights of sections 6.1-6.4. 

The difference with Figure 6.3 is that the stock of knowledge has been added. The 

externalist hypothesis of section 4.6 is represented on the right. Laudan’s original 

reticulational model is retained on the left, modulo the modifications made in section 6.2 

due to the inclusion of methodological norms and generative patterns with the original 

methodological rules. The process of expanded reproduction is represented by the double 

arrows connecting the stock of knowledge with theories and the labor process. Here the 

stock-of-knowledge node serves as both the product of and starting-point for scientific 

work. More nodes and arrows could be added. For example, the organization of labor and 

the means of labor are structurally related, in that certain means require certain 

organizations and vice-versa. The relation to nature is left implicit. I don’t want to so 

complicate the picture that it becomes confusing. 

According to the diagram, the labor process makes possible, and constrains, the 

application of methodological rules. Theories appear twice, first as apex of Laudan’s 

original triangle and second as part of the means of labor. The constraining effect of 

theories in the original triangle resides in the fact that the content of theories can sometimes 

lead scientists to abandon methodological rules if the content is in tension with the rules. 
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In the example sketched earlier, the success of theories positing unobservables like the 

æther led scientists to abandon Newtonian inductivism. This kind of constraint, however, 

does not tell us how the theories are produced in the first place. But theories put constraints 

on how new theoretical claims are produced. For this reason, I include them in the labor 

process (there is the additional reason, noted in section 5.1, that techniques often have a 

theoretical component). A simple example is the charge of an electron. The charge, -1.6 x 

10-19 C, is not specified by fundamental theory. If it were, it could be treated as a hypothesis, 

observable consequences deduced, and experiments performed to see if they are observed. 

Since it is not specified by a theory, however, it has to be inferred from measurements of 

observable quantities. Moreover, it must be assumed that the charge inferred from any set 

of measurements holds for all electrons, not just the ones measured. In other words, we 

have to use enumerative induction, and we use it simply because a deductivist approach is 

barred by the available theory. This example also shows how the means available, in this 

case the theory of fundamental particles, constrain the application of methodological rules.  

The labor-principle directs the application of the stock of knowledge. It does so by 

recommending certain applications of the stock in the development and use of techniques 

and instrumentation. Conversely, only certain labor-principles will make sense given a 

certain stock of knowledge. In the absence of knowledge of how to automate machinery, 

for example, it is impossible to automate data production. Likewise, certain organizations 

of labor make sense in light of prior knowledge. For example, the Standard Model of 

particle physics predicts that certain fundamental particles will be detectable when certain 

very high energy collisions take place. Since these collisions produce a massive amount of 

data, it makes sense to automate the data analysis process, and indeed automation may be 

the only way to process the data efficiently. But this organization of work around 

automated processes is justified by the aim of confirming the predictions of theory. This 

sort of aim is not a cognitive aim in Laudan’s sense, but rather a methodological rule along 

the lines of “experiments should aim to confirm theory.” A different rule might call for a 

different organization, a point to which I return below. Thus, though the stock of 

knowledge constrains the labor-principle and organization of labor, it does not dictate these 

features of the process; the methodological rules and norms must also be specified.  
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The diagram also incorporates the four-pronged conception of knowledge 

discussed in chapter 2. Theory contributes to the stock of knowledge, but so do techniques 

and instruments. The latter are the source of empirical, practical and methodological 

knowledge, the former of theoretical knowledge.432 According to the broad conception of 

progress discussed in the first chapter, progress is made when either of the two sources 

contributes to the stock of knowledge.433  

It is worth noting that if the labor process weren’t included as a node, it would be 

harder to see how the non-theoretical kinds of knowledge make their way into the stock 

because the only kind of knowledge of which Laudan’s model admits is theoretical. This 

nexus between the labor process and the stock of knowledge is a surprising result of the 

analyses of the preceding sections of this chapter. It is a commonplace that science builds 

on what it learns, but the dependence of this building on the transformation of the means 

of labor in light of what science has learned is less often appreciated, perhaps due to the 

belief that science has a static “Method” that remains external to the expansion of 

knowledge.  The nexus has important implications for the growth of scientific abilities and 

the nature of scientific progress. Some of these implications will be explored in chapter 7. 

This model suggests a kind of progress, the accumulation of knowledge. This 

observation raises the possibility that, even if specific cognitive aims change, progress can 

be made so long as there is an overall accumulation of knowledge. This view of progress 

seems to be descriptively accurate, if we accept Mizrahi (2013)’s description of how 

scientists judge their own progress. He discerns the following pattern in the way scientists 

make such judgments: 

1. Survey the body of knowledge B in field F at time t prior to discovery D. 

2. Estimate what was known (B) in F at t. 

3. Identify a lacuna, imprecision or error in B at t. 

                                                 

432 Though there is some overlap, since theories contribute to methodological knowledge as well. 

Recall that in section 5.1, I described chemistry’s new instrumental methods as four-fold 

combinations of theoretical principles, instruments, experimental methods, and data analysis 

techniques.  

433 I assume here that new contributions are not made at the cost of old contributions, i.e. that worries 

about phenomena like Kuhn-loss can be dealt with.  
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4. Spell out how D improved on B by adding new knowledge, correcting imprecision or exposing 

errors and correcting them.434 

According to this pattern, scientists assess progress relative to features of the stock 

of knowledge—the lacunae, imprecisions or errors in (3). In many cases they also direct 

their ongoing research in response to these features as well. Presumably, these features 

need not all satisfy the same cognitive aim. In my discussion of Laudan’s reticulational 

model, for example, I suggested that chemists’ cognitive aims have changed, from a non-

reductionist approach to representing chemical substances to a reductionist one. But even 

if this is correct, this change did not invalidate the earlier chemists’ contributions. 

The stock of knowledge is the starting-point, and ultimate product, of the process 

depicted in Figure 6.6. Though this process may look like a hodge-podge of moving parts, 

this fundamental role of the stock gives it a certain directionality. As starting-point, it 

imparts a certain path-dependence to science, to the extent that the direction of ongoing 

research is determined with respect to the state of prior knowledge. This makes the 

direction of current science dependent on the historical contingencies that occurred during 

the production and propagation of the prior knowledge.435 As product, it gives science an 

overarching goal, the accumulation of knowledge.  

Figure 6.6 suggests a synoptic approach to explaining the history of science. It does 

so by suggesting connections between sets of facts usually considered to be the purview of 

different disciplines. Facts of interest to philosophers of science, about the relations 

between cognitive aims, theories and methodological rules, are shown to be connected to 

facts usually considered to be of interest mainly to historians and sociologists of science.  

The particle physics case may again serve as an example of how this works. In the 

second half of the 20th century, particle physicists chose to confirm predictions of the 

Standard Model about the detectability of certain fundamental particles. To this end, data 

analysis was heavily automated, especially at CERN. In the terms of Figure 6.6, that part 

of the stock of knowledge, consisting of the Standard Model and its predictions, provided 

a starting-point. Combined with the rule that experiments should confirm theory, it now 

                                                 

434 Mizrahi (2013), p. 379. 

435 Peacock (2009). 
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made sense to automate data analysis. Automation was accompanied by a considerable 

fragmentation of tasks between theorists, experimentalists and engineers, and between 

physicists and technicians. The principles of automation and a strict division of labor did 

not pop ex nihilo into the physicists’ heads, but were informed by the example of 

automation and division of labor in industrial production as well as the experience of large-

scale applied scientific research during the Second World War.436 The drive to automate 

led to the development of fully computerized data analysis techniques and encouraged the 

development of experimental techniques and instrumentation for the attainment of ever 

higher energies. The confirmation of the existence of the Higgs boson is probably the best 

known result to come out of the automated approach. 

It turns out that there was in fact significant disagreement among physicists over 

the degree to which data analysis should be automated. Though CERN was run by the pro- 

automation camp, LBL, Fermilab and SLAC were run by proponents of a semi-automated 

regime, which required more direct involvement of the physicist in data analysis. The semi-

automated organization of labor involved different relations to the other nodes. Though 

confirmation was important to these physicists as well, they also thought experiment should 

aim to discover novel phenomena. As a result, their experiments were less dependent on 

background theory and more exploratory in nature. The methods of data analysis developed 

by this camp involved hybrid systems based on human-computer interaction. The 

experiments themselves tended to be aimed at exploring broad energy domains rather than 

ever higher energies. The organizational ideal motivating the leaders was that of the 

physicist as an independent explorer who would handle both the conception and the 

execution of the experiments. Unexpected phenomena, like the J/psi particle, were 

discovered as a result.437 Both Galison (1997) and Perovic (2011) think that the semi-

automated approach was more fruitful overall. 

                                                 

436 Galison (1997), ch. 5 provides an account of the deliberate “industrialization” of bubble-chamber 

physics. 

437 For a history of this rivalry, see Galison (1997), ch. 5. Perovic (2011) argues that the organization 

of labor made a big difference to the results achieved by the competing labs.  
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However that may be, the upshot of this example for our purposes is that the 

confrontation of standard theories of scientific change in the previous sections of this 

chapter with the labor process perspective of chapter 2, over the case of the Instrumental 

Revolution, suggests an analytical framework for integrating certain kinds of facts 

pertaining to social structure—both that of science and of the broader society—with facts 

about the relations between cognitive objects (cognitive aims, theories, methodological 

rules, etc.) that philosophers have focused on. As the sketch of particle physics history 

suggests, the integration allows us to broaden the explanation of scientific progress beyond 

standard epistemic categories. What results is a more complete explanation of how progress 

is made. Perhaps more importantly, the contrast between the fully automated and semi-

automated approaches in the high-energy physics case suggests that this framework allows 

us to explain why some ways of doing science are more successful than others in cases 

where descriptions merely in terms of relations between cognitive objects would be 

explanatorily inadequate.  

Another feature of the model represented in Figure 6.6 is that the content of an 

individual node depends on the content of the other nodes. This is revealed in the case of 

the two physics camps. They disagreed over whether the primary goal of experiment should 

be confirmation of background theory or discovery of novelty. As a result, they disagreed 

over the types of experiment to run, and therefore over the appropriate degree of direct 

human involvement in data analysis. Conversely, this debate over the goals of experiment 

presupposed that the means to realize them were available, in the form of high-energy 

experiments and the technology and organizational know-how necessary to run them. So 

the analytical framework is not purely formal, but suggests that the content of each node is 

related to that of the others.  

The relational dependence of node content is holistic, but the nodes must not be 

seen as being in lock-step with each other. I accept Laudan’s idea that the different 

components of science can change in a relatively autonomous fashion. This relative 

autonomy can introduce frictions into the system because as individual components 

change, its relations with the others will not necessarily remain harmonious. What the 

augmented model does is suggest more points of potential friction arising from the 

important role of the labor process. Here I will point out four such points. 
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1. The juncture between the labor process and methodological rules. This juncture 

can become a point of friction, depending on what rules are supported by the 

labor process. This was illustrated in the particle physics case. Data processing 

was automated in order to boost productivity, a change that, viewed in isolation, 

seems positive. But if the arguments of some physicists and of Perovic (2011) 

are correct, the automated regime does not support all uses of experiment to the 

same extent. There is friction between the dominance of the automated regime 

and the goal of discovery, especially since the experiments to which the 

automated regime is applied tend to drain resources from discovery-oriented 

experimentation.  

2. The juncture between the labor process and the stock of knowledge. This point 

of friction was illustrated in the analysis of the Instrumental Revolution. In 

general, the labor process tends to be biased towards the acquisition of some 

kinds of knowledge at the expense of others. In the chemical case, the use of 

the new instrumentation as the main method of chemical analysis was 

incompatible with the goal of acquiring knowledge of the chemical relations of 

a substance. For proponents of the old methods like Robert Robinson, the 

abandonment of analysis by chemical reactions represented the loss of an 

important contribution to the stock of knowledge. 

3. The relationship between theory and practice. In Figure 6.6, this relationship is 

implied by tracing the arrows from the “Theories” node to the “Labor process” 

node. Theory and practice don’t always mesh. A practical consequence of the 

relative autonomy of nodal development is that scientists will sometimes seek 

to combine theories and practices developed in very different contexts from 

each other. For example, Woody (2012) argues that chemists in the second 

quarter of the 20th century were confronted by a “chasm” between the empirical 

realm of chemistry and the new quantum theory that could, in principle at least, 

be used to explain the phenomena in that realm. This explanatory task required 

techniques for organizing and understanding the complexity of chemical 

phenomena in a way that supported aims like the synthesis and analysis of 

substances. Classical chemical structure theory was useful for classifying 
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substances, but could not explain features of the periodic table or chemical 

bonding. Quantum mechanics seemed promising in that regard. The chasm 

consisted in the fact that, whereas chemical practice was centered on 

macroscopic substances, quantum theory based on first principles could not 

explain anything larger than the hydrogen atom. In order to realize the 

explanatory potential of quantum theory for chemistry, “amalgamated” 

concepts that combined classical and quantum ideas as well as qualitative 

representational practices (molecular orbital diagrams) had to be cobbled 

together. Only a simplified and semi-classical version of quantum theory was 

applicable to chemical phenomena. This hybrid was essentially an outcome of 

the difficulties of meshing the original quantum theory with chemical practice. 

4. The juncture between the labor process and labor-principles. This juncture is 

perhaps especially prone to tension, because scientists tend to see their work as 

the embodiment of certain values and attitudes. New ways of doing scientific 

work may seem threatening to these values and attitudes. I will quickly mention 

a few examples. Baird (2002) shows that analytical chemists went through a 

professional identity crisis because the automation of analytical work seemed 

incompatible with the widespread view that analytical chemistry should be 

about studying chemical reactions, not developing instrumentation or learning 

physical theory. Bigg (2000) describes the transformation of astronomy at the 

end of the 19th century with the advent of photographic telescopes. The large 

amounts of new data encouraged astronomers to adopt a factory-like division 

of labor, employing semi-skilled workers (largely women) to process it. Some 

astronomers, like the eminent Karl Schwarzschild, resisted such practices on 

the grounds that astronomical work could only be done successfully by 

specialists. Garcìa-Sancho (2012) documents divergences within the molecular 

biology community on whether and how sequencing work should be automated. 

According to Garcìa-Sancho, these divergences arose from different values and 

attitudes towards scientific work. Proponents of a more thorough-going 

automation tended to view manual work as a waste of time and put special value 

on productivity and the scientific and commercial opportunities associated with 
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development of instrumentation that was relatively autonomous from human 

involvement. Proponents of greater human involvement tended to have a more 

positive view of manual work and stressed values of accuracy, human control, 

cooperation rather than competition, independence from business, the public 

nature of scientific work and universal access to its results. Finally, Dick (2015) 

recounts an early attempt by Herbert Simon and Allen Newell to model human 

reasoning by having a computer prove theorems. In the implementation of the 

model, Simon and Newell found that they had to deviate from the model in 

response to material constraints intrinsic to the nature of the machine but 

foreign to the human experience of logic. Here, human reasoning provided the 

“labor” principle—the machine was to carry out a cognitive task like a human 

reasoner—which principle encountered frictions arising from the material 

characteristics of the machine. Alternately, this example could be viewed as a 

conflict between theory—the model of human reasoning—and material 

practice, the implementation of the model in a machine. 

These kinds of frictions are both effects and causes of change. They can therefore 

be sources of innovation. The resistance from the machine encountered by Simon and 

Newell led them to create a new programming language in order to implement their model, 

which changed their model as well. In Woody’s case, chemists developed new concepts 

and diagrammatic practices in order to apply quantum mechanics to their field.  

I end with a proposal for future research. Though the discussion of the augmented 

model has been largely focused on descriptive accuracy, it might also have normative 

implications with respect to Laudan’s original model. Though the latter seems descriptively 

accurate as an account of how certain kinds of scientific change occur, a major criticism is 

that it is normatively inadequate because it leaves the choice of how to establish 

equilibrium between the three components underdetermined.438 The reticulational model 

requires that a change in one component that disturbs the equilibrium with the other two 

be accommodated by a compensating change in at least one of the others. But the model 

does not say how to do this. Laudan required the components to be both consistent and 

                                                 

438 Doppelt (1986); Losee (2004). 
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realizable, a requirement that was supposed to provide a fixed standard for evaluating 

possible adjustments of the components. But in many evaluative contexts there is more 

than one possible adjustment that can be made that is consistent and realizable. 

Furthermore, the realizability constraint can be challenged. For example, exact 

measurement may be impossible to realize experimentally, given the imprecision inherent 

in the use of measuring instruments. But it is not irrational to pursue exact measurement in 

spite of the unrealizability of the aim, because one can at least make progress towards it, 

say by making the instruments more precise.439 But if the realizability constraint is 

discarded, then the only constraint left is consistency. But there may be numerous 

consistent alternative modifications of theories, methodological rules and cognitive aims. 

The reason this underdetermination is a problem is that it seems to pave the way 

for relativism about scientific change, insofar as it implies that new theories are no more 

rational than their predecessors to the extent that the latter can be accommodated to meet 

the consistency and (perhaps) realizability requirements just as well as the former. 

Assuming this criticism is correct for Laudan’s model, a question for my model is whether 

it also implies relativism. Though it is beyond the scope of this chapter to answer that 

question, I will point out certain features of my model that might be relevant for answering 

it. The elements I have added are very different sorts of things than Laudan’s original three, 

so it is reasonable to suppose that the differences may be relevant to the question.  

Hasok Chang has suggested that “[c]apabilities have much to do with scientific 

rationality in general, because rational decisions should be based on an accurate sense of 

the agent’s own capacities and skills.”440 Abilities underlie Laudan realizability 

requirement, for example in his claim that certain goals are utopian: 

When I say that a goal state or value is utopian, I mean that we have no grounds for 

believing that it can be actualized or “operationalized”; that is, we do not have the foggiest notion 

how to take any actions or adopt any strategies which would be apt to bring about the realization of 

                                                 

439 Though Laudan’s requirement that a rational scientific goal must be realizable may be too strong, 

one could fall back to a weaker requirement that it be regulative, in that it guides scientists’ actions 

so that they are able to make progress towards it even though they can never reach it. This weaker 

requirement may be able to handle cases like the ideal of exact measurement. See Niiniluoto (2015). 

440 Chang (2011), p. 211. 
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the goal state in question ... I deny that it is reasonable to hold those goals. Implicit in this assessment 

is the belief that the rational adoption of a goal or an aim requires the prior specification of grounds 

for belief that the goal state can possibly be achieved.441  

Aims are rational, for Laudan, only insofar as one has the ability to make progress towards 

them. Yet Laudan’s model does not explain how scientists have the ability to accomplish 

their aims, except for the contributions of the methodological rules and theories. And even 

the latter have to be viewed as part of the means of scientific work, as I have done in Figure 

6.6, in order for their contribution to scientific ability to be clear. But this is not how they 

are viewed in Laudan’s model, where they are treated as products to be evaluated for 

consistency with aims and rules. As Figure 6.6 shows, however, much more is involved in 

the constitution of a scientific ability than methodological rules and theories.  

For example, the stock of knowledge includes knowledge from outside the field of 

the model (section 6.4). Practitioners within the field are not in a position to modify 

knowledge borrowed from other fields, except when the knowledge is close to their own 

(as in Woody’s case of concept amalgamation).442 The borrowed knowledge seems to be 

off-limits to modification, which suggests an additional constraint on the choices the 

scientists can make to establish equilibrium. This constraint might reduce the 

underdetermination.  

According to Figure 6.6, the labor process makes possible and constrains the 

application of the methodological principles. Moreover, the labor process includes things 

like instrumentation, techniques, object domains (e.g., the pure substances of classical 

chemistry) and social organizations that are material and also partly subject to extra-

scientific evaluative norms (like productiveness or convenience), and so cannot be changed 

merely by cognitive scientific fiat. The material environment, a laboratory for instance, 

needs to be produced, requires material support of various kinds (capital, utilities, etc.), 

and presupposes a certain level of technological development. So change in the labor 

process depends on factors beyond the purely cognitive ones in the original model. How 

do these factors constrain scientists’ attempts to establish equilibrium? Is the 

                                                 

441 Laudan (1984), p. 51. 

442 Trout (1992) provides a discussion of this kind of reliance on external fields, which he calls 

“mercenary reliance.” 
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underdetermination increased, decreased or the same? One can conceive of situations 

where scientists decide to adopt one kind of methodological rule rather than another 

because the instruments available to them make it easier to realize one than the other. To 

return to the electron example, the inference of the charge itself (prior to the generalization 

to all electrons) is a form of demonstrative induction, a form of inference in which 

theoretical quantities are deduced from observations rather than observations from 

theoretical quantities.443 As this example illustrates, in certain kinds of research scientists 

are forced by the theories available to them to adopt this form of inference over the 

hypothetico-deductive method, in this case because theory does not allow the charge to be 

deduced ab initio.444  

In short, there are reasons to think that once the material context of scientific work 

is fleshed out in the manner suggested by my augmented reticulational model, the 

relativism objection to the original model may have to be reconsidered. On the other hand, 

the augmented model introduces many more degrees of freedom, so it may actually 

increase the underdetermination. I leave the resolution of this problem as a question for 

future research.  
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7.0 DISCOVERY AND INSTRUMENTATION: HOW SURPLUS KNOWLEDGE 

CONTRIBUTES TO PROGRESS IN SCIENCE 

7.1 Introduction 

The philosopher of science Thomas Kuhn, in his 1962 The Structure of Scientific 

Revolutions, asked: 

Why should the enterprise sketched above [modern science] move steadily ahead in ways 

that, say, art, political theory, or philosophy does not? Why is progress a perquisite reserved almost 

exclusively for the activities we call science? (Kuhn [1962] 1996, p. 160). 

Kuhn was putting his finger on the peculiar nature of scientific progress, namely 

that it appears to be continuous and cumulative in some sense. In this paper, I will provide 

an explanation of this progress by relating science to the more general practice of laboring. 

An important fact about human labor is that it can result not just in reproduction of what it 

started with, but in something new, a surplus product. When the latter is a means of 

production, it makes possible a mechanism of change consisting of reproduction by means 

of the expanded means of production. “Means of production” must here be understood in 

a broad sense, to include not just tools in a narrow sense, but also material means of 

representation and communication (Lefèvre 2005). Each iteration of the labor process can 

differ from the preceding one insofar as it incorporates the surplus generated previously. 

Over the long-term, this cyclical process can lead to the self-transformation of labor and, 

through it, of human societies and cultures.   

In this paper, I will provide a largely theoretical argument that this mechanism of 

change is also at work in the history of science. More specifically, the thesis I will defend 

in this paper is that surplus knowledge contributes to progress in science. The basic 

argument is this. Labor makes progress by producing surplus use-values (objects of utility). 

Science makes progress as does the labor process, except that the specific use-value that it 

produces is knowledge. Therefore, science makes progress by producing surplus 

knowledge.  
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The paper is structured as follows. In section 2, I argue that the form taken in 

science by the mechanism of reproduction by means of the expanded means of production 

is that of a feedback loop between discovery and instrument construction. This process 

requires the integration, and transformation into material form, of different kinds of 

knowledge. In section 3, I argue that this process suggests a concept of scientific progress 

complementary to those that have so far been advanced in the philosophical literature on 

scientific progress, and defend the concept of progress as transcendence of native human 

epistemic ability. In section 4, I criticize narrowly biologistic approaches to the history of 

science for ignoring the role of surplus generation in transforming the labor process, and 

discuss some problems associated with viewing science as labor. I offer concluding 

remarks in section 5.  

7.2 The dialectic of discovery and embodiment 

My view is that the specific product of scientific labor, scientific knowledge, 

contributes to scientific progress. There is a sense, already recognized by philosophers of 

science, in which scientific knowledge may be said to contribute to scientific progress: that 

is when knowledge accumulated in a scientific episode is said to constitute progress.445 

That is not the sense I intend. Rather, I mean that the knowledge accumulated provides a 

starting-point for future work. Again, there is an obvious sense in which this is true, for the 

acquisition of new knowledge inevitably suggests lacunae to be filled and new questions 

to be answered. What I would like to draw attention to, however, is that the knowledge 

accumulated provides a starting-point for future work in the sense of contributing to a stock 

of knowledge from which future scientists can draw.446 

                                                 

445 See Mizrahi (2010) and Niiniluoto (2015) for reviews of philosophical accounts of scientific 

progress. 

446 This function of scientific knowledge was described by the noted chemist Carl Djerassi in 

Sturchio & Thackray (1985):  
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As will be explained in more detail in the following sections, instruments represent 

an important way in which the stock of knowledge can be incorporated into the scientific 

labor process (or ordinary material labor processes, for that matter). I claim that an 

important way in which instruments contribute to scientific progress is by making possible 

a dialectic of discovery and embodiment. Scientists start from the stock of past results or 

knowledge. Using this knowledge, they produce instruments that they then use to discover 

new things about the world.447 If successful, new items will be added to the stock of 

knowledge. The augmented stock can then be used to build new or improved instruments, 

thus renewing the cycle.   

On this conception of scientific progress, the stock of knowledge is viewed as a 

means of production for on-going research. It is a means for the production of the material 

means of discovery, the instruments. The latter are used to acquire new knowledge. The 

overall product of the process is a transformed stock of knowledge. Transformed how?  

According to Mizrahi (2013), scientists make judgments about progress according 

to the following pattern: 

1. Survey the body of knowledge B in field F at time t prior to discovery D. 

2. Estimate what was known (B) in F at t. 

3. Identify a lacuna, imprecision or error in B at t. 

4. Spell out how D improved on B by adding new knowledge, correcting imprecision or exposing 

errors and correcting them.448 

                                                 

I have a very different opinion of what a publication is. It is really to pay back to the 

scientific pool of knowledge from which we borrowed so much, because that’s all that science is 

really—stepping on someone else’s shoulders. Put it back in there, and let other people select what 

they need or what they do not need. Some of the things that you yourself think are trivial may 

sometimes be exactly the trivial things that someone else needs to jump on very quickly.  

Though Djerassi seems to have in mind the use of past results to solve immediate research problems, 

my focus is on another use, connected with tool use, that contributes to progress in the long-term. 

447 I do not claim that the production of new instruments is the only way to make new discoveries. 

New theoretical ideas, as well as new sorts of experiments using old instruments, can also contribute 

to discoveries. For reasons provided below, however, I think instruments have distinctive properties 

that contribute to discovery differently than ideas or new experiments.   

448 Mizrahi (2013), p. 379. 
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Here, the “body of knowledge B in field F” is similar to my ‘stock of knowledge,’ 

except that for reasons I will provide below, my ‘stock of knowledge’ is not field-specific 

but involves the totality of scientific and technological knowledge. Admittedly, the 

contours of this totality are vaguely defined. But I think the history of scientific innovation 

bears out that the latter often involves the creative integration of ideas and practices from 

multiple fields (Harman & Dietrich 2018, pp. 9-10). What combination of fields contributes 

to innovation in a particular episode depends on the specifics of the episode, one obvious 

constraint being what fields the scientists are familiar with. These specifics cannot be 

determined a priori—in chemist Carl Djerassi’s words, it is up to the players to “select 

what they need or do not need.” Vagueness is a virtue in this case.  

Paraphrasing Mizrahi, we are interested in cases where a discovery D improves on 

the stock of knowledge S by adding new knowledge, correcting imprecision or exposing 

errors and correcting them. This improvement yields a transformed stock of knowledge S’, 

which is distinguished from S in virtue of containing more knowledge, being more precise 

or having fewer errors. 

I have used the term ‘surplus knowledge’ to designate certain features of the 

relation of new knowledge to the stock of knowledge. Surplus knowledge is not simply 

new or recently acquired, but stands in a definite relation to pre-existing knowledge. It is 

knowledge that is acquired by means of pre-existing knowledge, and which transforms the 

latter in the sense specified above. Tentatively, for the sake of clarity I suggest the 

following analysis of surplus knowledge: 

(SK) Discovery D is an item of surplus knowledge if and only if (i) D was 

acquired by means of stock of knowledge S and (ii) its addition to the stock yields 

an improved stock S’, where the improvement consists in adding new knowledge, 

correcting imprecision or exposing errors and correcting them. 

According to (SK), a discovery that does not yield an improved stock of knowledge 

does not count as surplus knowledge. A situation where this sort of non-progressive 

discovery occurs is one where a discovery D merely cancels out a prior claimed discovery 

C. For example, the invention of the telescope represented a form of knowledge,
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knowledge of how to observe distant objects. By means of this knowledge, Galileo 

discovered that Venus has phases, just like the moon. This situation was inconsistent with 

Ptolemaic theory, so it was eliminated. If matters had stood there, the phases of Venus 

could hardly have counted as “surplus,” given the loss of what European astronomers had 

thought for centuries they knew about the solar system. Luckily, there was another theory 

competing with the Ptolemaic, the Copernican system, and since it was consistent with 

Venus’s phases (among other reasons) it replaced the Ptolemaic. 

It also follows from this analysis that if a discovery is not achieved by means of the 

stock of knowledge but nevertheless yields an improved stock S’, it would also not count 

as surplus knowledge. For example, were a UFO to visit my home and an alien species to 

come out, then perhaps I could plausibly claim to have discovered those aliens for 

humanity. Even in this case, one might question whether this discovery was made without 

relying on prior scientific knowledge, since the identification of a new species presupposes 

scientific concepts, like that of a ‘species,’ as well as empirical knowledge of already 

known species. Setting aside such considerations, however, cases like this one are best 

described as windfalls, acquisitions that cost no labor to the acquirer. Unfortunately for 

scientists, their importance is minimal.  

A more realistic scenario is one where a discovery has consequences that go beyond 

the discovery itself. For example, the discovery of the double-helical structure of DNA was 

not in itself a momentous discovery; as far as molecular structures go, this one was fairly 

boring. But, in addition, the structure solved the puzzle of genetic inheritance, and led to 

important applications like gene editing. Are these additional discoveries windfalls or SK? 

It would seem the latter, since such consequences depend on the stock of knowledge as 

well, though different parts of it than the initial discovery. The double helix was discovered 

by means of X-ray crystallography, chemical information about the base composition of 

the molecule, and mechanical model building. Establishing that the structure was the 

genetic material, however, required evidence of its duplication mechanism as well as of its 

role in protein synthesis. Indeed, it was only when the outlines appeared of a mechanism 

for DNA’s involvement in protein synthesis that the biochemical community began to take 

a serious interest in the structure (Olby 2003).  This example illustrates a point I will make 
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later for instruments, that some degree of integration with other knowledge is usually 

necessary to exploit new discoveries.449  

In this chapter, I will focus on additive improvements to the stock of knowledge, 

which is much more common than the spectacular cases of theory overthrow that 

philosophers have tended to focus on. Nevertheless, in the more interesting cases, the 

relation between surplus knowledge and the stock of knowledge will not merely be 

additive. As will be discussed in greater detail in the following subsections, the expanding 

stock of knowledge does not remain external to scientific work, but releases possibilities 

for the development of that work. This release occurs because the new knowledge reveals 

new, useful employments of the old knowledge.  

Schematically, the dialectic of discovery and embodiment may be presented as in 

Figure 7.1: 

 

 

Figure 7.1  The dialectic of discovery and embodiment. Scientists start from the stock of past results 

or knowledge. Using this knowledge, they produce instruments that they then use to discover new 

things about the world.  If successful, new items will be added to the stock of knowledge. The 

augmented stock can then be used to build new or improved instruments, thus renewing the cycle. 

                                                 

449 In the context of a critique of empiricism, Karl Popper ([1960] 1985) made the following remark 

on the role of prior knowledge in scientific progress: 

Knowledge cannot start from nothing—from a tabula rasa—nor yet from observation. The advance of 

knowledge consists, mainly, in the modification of earlier knowledge. Although we may sometimes, for 

example in archaeology, advance through a chance observation, the significance of the discovery will usually 

depend upon its power to modify our earlier theories. (55) 

  



304 

Here, each kj is some instance of knowledge. The initial store of knowledge is 

represented by k1, k2, … ki, the “surpluses of knowledge” by ki+1, … kn and kn+1, … km. 

Some qualifications are in order. The “knowledge” at issue in this iterative process 

has to be understood broadly, in a twofold sense to be described shortly. The first sense has 

to do with the form of knowledge, and the second with its source. Corresponding to the 

first sense is a process of integrating knowledge I call ‘form-integration.’ Corresponding 

to the second sense is another process of integrating knowledge I call ‘source-integration.’ 

7.2.1 Form-integration 

 First, the knowledge at issue in the dialectic of discovery and embodiment involves 

not just theoretical knowledge, but also empirical knowledge and various kinds of know-

how. The conception of knowledge I employ follows Mizrahi (2013). Basing his argument 

on evidence from scientists’ reflections on progress, Mizrahi argues that scientists employ 

a broad conception of progress that includes different kinds of knowledge. The four kinds 

he identifies are: 

(EK) 

(TK) 

(PK) 

(MK) 

Empirical Knowledge: Empirical knowledge usually comes in the form of experimental 

and observational results.  

Theoretical Knowledge: Theoretical knowledge usually comes in the form of well-

confirmed hypotheses. 

Practical Knowledge: Practical knowledge usually comes in the form of both immediate 

and long-term practical applications. 

Methodological Knowledge: Methodological knowledge usually comes in the form of 

methods and techniques of learning about nature. (Mizrahi 2013, p. 380) 

The reason a broad conception of knowledge is necessary is that scientific 

instrument production and use require more than just theoretical knowledge but also 

empirical knowledge and know-how. Theoretical knowledge may provide basic principles 
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of design, as for example spectrometers are designed based on principles of quantum 

mechanics and electromagnetism. But empirical knowledge may be required for calibration 

or data interpretation. The rationale for using the instruments is usually based on 

methodological knowledge, and in fact their use is often called a “technique” or “method.” 

Moreover, instrument construction involves a great deal of practical knowledge, for 

example knowledge of how to grind lenses in the case of the telescope (van Helden 1983) 

or of how to produce a vacuum in that of the cyclotron (Baird & Faust 1990). 

 I call the process of combining these four kinds of knowledge ‘form-integration,’ 

because it involves integrating different kinds of knowledge distinguished according to 

their form: theoretical, empirical, practical, or methodological.  

In terms of the Figure 7.1 schema, form-integration may be represented as in Figure 

7.2:  

 

Figure 7.2 Integration of different forms of knowledge (theoretical, empirical, methodological, or 

practical) in the dialectic of discovery and embodiment.  

 

The production of instruments typically requires the integration of different forms 

of knowledge. Their use can lead to the discovery of TK, EK, MK, or PK. The example of 

the clock will be discussed in section 2.4.1.  

7.2.2 Source-integration 

The second sense in which the knowledge involved in the process has to be 

understood broadly is that the process can only fully realize its potential for progress if it 

concerns collections of instruments and discoveries, not just individual instruments. The 

reason is that discoveries made by means of an individual instrument cannot necessarily be 

used to improve that very instrument. For example, the knowledge of the moon’s surface 

afforded by Galileo’s telescope could not be used to improve the telescope itself.  
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True, strictly recursive improvements of instruments may be conceivable for 

certain kinds of improvement, such as for increasing precision. In his well-known account 

of the development of temperature standards, for example, Hasok Chang describes a 

succession of increasingly precise instruments, starting with the hands and ending with the 

high-precision Beckmann thermometer, for estimating warmth.450 Each instrument in the 

sequence provided a standard for assessing the reliability of its successor. In the terms of 

the broad conception of knowledge above, the methodological knowledge (MK) 

represented by each instrument in the sequence provided the starting-point for the design 

and validation of a more precise successor.  

But this kind of strictly recursive progress only captures part of what is involved in 

instrument construction and use. In the early development of the telescope and microscope, 

for example, it was recognized that both theoretical and practical knowledge might be 

useful, the former in the form of optical theory and the latter in the form of lens-crafting 

knowledge.451 Instrument development tends to be holistic, drawing on many sources and 

kinds of knowledge. Indeed, one of the things instruments allow us to do is to make use of 

knowledge on a far greater scale than it is possible for the individual human user to know 

him- or herself. This ability arises from the fact that we can use an instrument without 

knowing all the things necessary to make it.  

I will call the process of combining knowledges from different sources ‘source-

integration,’ because it involves integrating different kinds of knowledge distinguished 

according to their source, which in this paper will be a practice or field. The telescope 

example involved integrating knowledge from the science of optics with knowledge from 

the practice of lens-crafting. As this example also illustrates, the two kinds of integration 

can overlap. But they need not, as when theoretical knowledge from different sciences is 

combined.  

                                                 

450 Chang (2004), pp. 47-48 summarizes the process of developing numerical thermometers starting 

from the senses; Chang (2007), pp. 9-11 extends the analysis to Beckmann thermometers.  

451  Spelda (2017) documents this recognition by 17th century natural philosophers. According to 

Smith (2015), pp. 381-391, both theoretical and practical knowledge contributed to the development 

of the microscope and telescope, but practical knowledge led the way.  
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In terms of the schema of Figure 7.1, source-integration may be represented as in 

Figure 7.3 for the case of the telescope: 

 

 

Figure 7.3 Integration of knowledge from different sources in the 17th century dialectic of discovery 

and embodiment involving the telescope. 

 

In general, both surplus knowledge and integration are required for instrument 

development. True, sometimes integration by itself, combining long-established items of 

knowledge, can result in a new instrument. Conversely, surplus knowledge may also be 

sufficient, as in the recursive example just discussed. But in general, some degree of 

integration is necessary to exploit new discoveries, and a new discovery is necessary to 

make some combination of knowledges useful. Examples will be given below.  

7.2.3 “Embodiment” 

A final qualification is that “embodiment” is difficult to define precisely. Perhaps 

one way of putting what is meant by this term, for my purposes, is that it involves finding 

some functional substitute in material form for whatever items of TK, EK, MK and PK are 

needed to build the instrument. Though he does not categorize knowledge in exactly the 

same way, Davis Baird (2004) provides an example of this process in his account of the 

development of direct-reading spectrometers: 

we can see in it how various kinds of knowledge were integrated into a material medium 

to produce a measuring instrument. Model knowledge is built into the instrument in several ways, 

including the material representation of wavelengths of light emitted by important elements in the 

“exit slits” of the instrument ... Working knowledge is built into the instrument, again in several 
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ways, including the use of a diffraction grating to disperse light into the constituent wavelengths ... 

Theoretical knowledge is also built into the instruments, of which the theory of condenser discharge 

is a particularly clear example ... Functional substitutes for human discriminatory skills are built 

into the instrument too. With a spectrograph, where photographic film is employed instead of 

photomultiplier tubes, humans have to determine how dark—or “dense”—a “spectral line” is; 

instruments called densitometers helped to refine this skill. With a direct-reading spectrometer, 

photomultiplier tubes and electronics are crafted to provide a functional substitute for this skill. The 

material medium of the instrument encapsulates and integrates all these different kinds of 

knowledge. All are necessary for the instrument to render information about a specimen. (Baird 

2004, p. 70) 

As the instrument is built, so the knowledge required to build and use it is “built 

into” the instrument as well. 

Instruments are powerful vehicles for the dialectic of discovery and embodiment. 

Why? After all, the accumulation of theoretical knowledge may be sufficient to enable 

further discovery. For example, according to Hempel (1966, pp. 76-77), a good theory will 

allow us to discover phenomena that were not known at the time the theory was formulated. 

Nevertheless, the possibility of embodying knowledge in instruments paves the way for 

greater progress in knowledge than would be possible without it.  

Why? The usual answer is that instrumentation provides access to objects of inquiry 

that are inaccessible by means of our native human abilities. However, four further features 

of instruments also contribute to the growth of knowledge. First, and as noted in chapter 2, 

a complementary, but less obvious, answer that more directly affects the temporal 

characteristics of scientific research is that the instrument’s contribution is not necessarily 

fixed once and for all but can be enhanced over time, more so than human abilities. The 

basic reason is that technology is improvable in a much deeper way than are our native 

abilities. The degree to which the latter are improvable is constrained fundamentally by 

human biology. In contrast, the improvement of instruments is, in principle, only 

constrained by the laws of nature, though in practice it must be adapted to human users.  

Second, there is the feature, alluded to earlier, that we can use an instrument without 

knowing all the things necessary to make it. What might be called the “black-box-ability” 

of the instrument allows a much greater amount of knowledge to be brought to bear in 

research than would otherwise be possible.  
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Through these properties, instruments extend our observational and computational 

powers. Some of the new knowledge yielded can then be embodied in new instruments by 

way of their improvability. Something similar can happen with humans. Human 

computational powers can be improved by the discovery of algorithms like the rules of 

arithmetic. This would be another recursive case, where a discovery made by means of 

“instruments”—the mind and means of mathematical representation—could be used to 

improve the powers of the instruments themselves. So the native human abilities can 

engage in this dialectic as well, but not to the same extent as artifacts due to the constraints 

imposed by humans’ natural endowment.  

A third property, related to black-box-ability, is durability. Because they are things 

rather than activities, instruments can subsist beyond the subjective activities that 

engendered them and serve in new activities. Durability allows future users to take 

advantage of the producers’ work and knowledge. It also allows the instruments to be 

perfected. 

Moreover, because they are durable, instruments can provide scaffolding for the 

integration of new knowledge into the labor process. By ‘scaffold,’ I intend a structure that 

allows a new structure to be constructed from it. The old structure may be physical or 

conceptual, a design for example. Many instruments are not developed de novo, but rather 

from the modification of precursors or precursor designs. The precursor or precursor design 

provides a scaffold for the development of new instruments. The old knowledge embodied 

in the precursor or precursor design provides a structure within which new knowledge can 

be exploited.  

7.2.4 Some examples 

I will now provide a few historical examples of how source-integration, form-

integration, and embodiment work together to produce change in science.  
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7.2.4.1 Clocks 

The clock provides an example of an instrument with extremely important 

applications both inside and outside science. According to Landes (1987, 2000), the 

invention of the mechanical clock was a seminal event in the history of methods of 

measuring time, though its importance was only made possible by later developments.  The 

European Middle Ages inherited two types of time-keepers from antiquity, the sun-dial and 

the water-clock. Both were based on the same principle: the continuous measurement of a 

continuous phenomenon. They both had major context-dependent defects. Sun-dials don’t 

work at night nor when the sky is cloudy, the latter being a serious impediment in cloudy 

regions. Water-clocks are very sensitive to changes in temperature, which makes their 

proper functioning vulnerable to daily and seasonal temperature variations. The mechanical 

clock, invented around 1300 CE, was relatively free of these defects, yet that was not what 

made it a revolutionary time-keeper. What made it revolutionary was its principle: instead 

of tracking the passage of time by imitating its continuous flow, it made beats according to 

an (ideally) regular rhythm and counted them.  

According to Landes, this “digital principle” made possible all subsequent 

improvements in time-keeping techniques. All clocks based on this principle, starting with 

the first mechanical clocks, comprised the same five basic design features (Landes 2000, 

pp. 6-10 and 413): 

1. A source of energy (e.g., falling weights, spring or battery) 

2. An oscillating controller (e.g., balance, quartz crystal) 

3. A counting device (e.g., escapement, solid-state circuit) 

4. Transmission (e.g., wheelwork, electric current) 

5. Display (e.g., hands, liquid-crystal display) 

Though the earliest mechanical clocks used a foliot crossbar to control the rhythm, 

subsequent controllers, such as the pendulum (invented by Huygens in 1657), the tuning 

fork, quartz, and atoms, were all based on the same principle. Though the inventor(s) of 

the original mechanical clock could not have anticipated these later versions, the recourse 

to an oscillator and the other design features provided a scaffold within which subsequent 

discoveries and inventions could be exploited. For example, in the early 20th century, quartz 

crystals were being used to emit radio signals, based on the piezoelectric effect discovered 
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by Pierre and Jacques Curie at the end of the 19th century. Though the signals emitted by 

the first such crystals were unstable, improvements in the preparation of crystals and in 

their integration within resonating circuits resulted in stable high-frequency resonators. 

The physics of high-frequency resonators could then be exploited in the invention of quartz 

clocks. High-frequency resonators are both less prone to dampening, and keep a more 

stable rhythm, than low-frequency. Further modifications were required, however, to take 

advantage of these properties. Thermal effects on crystals are small relative to mechanical 

clocks, but for scientific measurements they are non-negligible. Laboratory quartz clocks 

were eventually equipped with a thermostatic enclosure with a variance of 1/10,000 oC. To 

counter variations of frequency caused by accident or by changes in power supply, the 

quartz was inserted into a closed resonance system in which fluctuations were detected and 

corrected by a servomechanism.  

These improvements produced quartz clocks that kept time with a precision of a 

hundredth of a millisecond per day. Ultimately, the development of high-frequency clocks 

permitted measurements of phenomena occurring on tiny timescales, in some cases on the 

order of femtoseconds. According to Landes, the result of the high-frequency revolution in 

clocks was that the measurement of time and frequencies became much more widespread 

across scientific domains, especially in astronomy, telemetry, interferometry, physics, and, 

I might add, chemistry in the form of new areas of research like femtochemistry. 

Furthermore, the merits of high frequencies made possible a number of applications based 

on the use and control of short time intervals and of very transient phenomena, including 

multiplying the number of communications simultaneously transmittable through the same 

wire and improving computer processing speeds.  

Viewing this episode as an example of form-integration, we might say that an 

instance of practical knowledge (PK), the clock based on the digital principle, provided a 

scaffold on which theoretical and empirical knowledge (TK and EK) could be exploited. 

The integration of these knowledges into the scaffold then allowed new methodological 

knowledge (MK), empirical knowledge, practical knowledge and theoretical knowledge to 
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be acquired.452 This example also illustrates the use of instruments to extend our 

observational reach as well as their capacity for improvement.  

7.2.4.2 The mass spectrometer 

The mass spectrometer provides an example of an instrument built expressly for 

scientific purposes.453 In mass spectrometry, the components of a sample are ionized and 

then separated by various arrangements of electric and magnetic fields. TK is employed 

here in the form of the laws governing the motions of charged particles. The mass-to-charge 

ratio of each kind of ion is measured, and this information allows the components of the 

sample to be identified. Prior to the 1940s, the photographic plate was the most common 

method of detection, which required the skill of measuring spectral line density that Baird 

alludes to in the passage quote above. Starting in the 1940s, the photographic plate tended 

to be replaced by electronic detectors, which produce an amplifiable signal. This 

modification enabled automatic strip chart recording of the mass spectrum, which 

simplified and accelerated spectrum recording compared to the photographic method.  Strip 

chart recorders yielded an analog recording, however, which had to be converted into 

tabular form through a labor-intensive process. The earliest use of computers (1958) in 

mass spectrometry was that of a digitizer that could tabulate the data as the spectrum was 

being generated. The Mascot digitizer was itself fairly crude, in that it was unable to do 

anything else but digitize the output of the spectrometer to which it was hard-wired. But 

digitization eventually enabled new applications of the computer to mass spectrometry in 

the 1960s. The DENDRAL algorithm was developed to interpret the spectra of unknown 

compounds, albeit with limited success. High-resolution mass spectrometry, which allows 

deduction of elemental composition, relied heavily on computers to digitize the data from 

the detector and process them into exact mass and intensity information. Library search 

algorithms were developed to match the spectra of unknowns with those of reference 

                                                 

452 For example, Ahmed H. Zewail’s (1999) Nobel lecture on femtochemistry reviews the various 

observations, methods, theoretical concepts and models, and applications that emerged through the 

study of chemical bond dynamics on the femtosecond scale.  

453 The following relies on Grayson (2004) and Nier et al. (2016). 
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compounds. In the 1970s, techniques and instrumentation were developed that allowed the 

spectrometer to be coupled with a gas chromatograph and a data system. The GC-MS-DS 

was capable of generating several hundred spectra per half hour, which could eventually 

(1990s) be compared via library search algorithms to libraries containing hundreds of 

thousands of reference spectra. In contrast, only a few spectra per hour could be prepared 

by an operator using a strip chart recording machine of the 1940s and 1950s. 

In this example, the spectrograph of the 1930s provided a scaffold for the 

exploitation of new technologies—electronic detectors, digitizers, computers, software, 

and instrument-instrument interfacing technologies. The process of integrating these 

technologies into the mass spectrometer resulted in instrumentation with capabilities that 

far exceeded what was possible with the old spectrograph.  

The mass spectrometer was not an isolated case, but rather part of a far-reaching 

transformation in how chemistry was done known as the “Instrumental Revolution.”454 For 

our purposes, what is interesting about the latter is that it illustrates the dialectic of 

discovery and embodiment on a social scale.  

7.2.4.3 The Instrumental Revolution in chemistry 

This was an episode in which knowledge produced in diverse disciplines was 

combined in the form of new instruments for chemical analysis. Various scientific and 

social developments—the discovery of quantum phenomena, the emergence of computer 

science and physical organic chemistry, the needs of the petrochemical and rubber 

industries during the Second World War, the prioritizing of output by university 

administrations—converged to make the embodiment of scientific and technological 

knowledge possible and sought after as a means for solving chemical problems. This 

process resulted in the emergence of many high-tech methods of chemical analysis, of 

which some of the better known are nuclear magnetic resonance (NMR), mass 

spectrometry (MS), ultraviolet spectroscopy, infrared spectroscopy, Raman spectroscopy, 

and X-ray crystallography.  

                                                 

454 Overviews of this episode may be found in Borg (2019), Steinhauser (2014), Reinhardt (2006), 

and Morris (2002).  
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By analogy with Figure 1, the epistemic component of the convergence process 

might be illustrated, in a highly simplifying way, as shown in Figure 7.4: 

 

 

Figure 7.4 The Instrumental Revolution expanded the set of instruments available to chemists for 

analytical purposes by combining knowledge from different sources (chemistry, physics, engineering 

sciences, etc.) in the production of new instruments. 

 

The series on the left represent instances of kinds of knowledge: the ci’s chemical 

knowledge, the pi’s physical knowledge, and the ei’s “engineering knowledge,” a broad 

notion intended to cover computer science, electrical engineering, and various forms of 

know-how.455 There is expansion, as chemistry acquires more instruments than it had at 

the beginning. There is also reproduction, as the new instruments allow chemists to 

continue doing chemical analysis. In addition, most of the old knowledge was retained, 

since the new methods were compatible with the old. There was thus accumulation not just 

of the stock of instruments, but of chemical knowledge. Indeed, the surplus knowledge 

afforded by the new methods was vast, for the transformation not only accelerated 

traditional chemical analysis but made possible many new lines of inquiry. Moreover, some 

of the knowledge obtained was used to develop new generations of instruments.456 

                                                 

455 Baird & Faust (1990) argue that such know-how is essential for the construction of scientific 

instruments. Kletzl (2014), pp. 122-123 argues that there exists “engineering theory,” consisting of 

systematic propositional language of how to manufacture an artifact, in contrast to the “explanatory 

theories” of natural science.  

456 See Becker et al. (1996) for a survey of the new lines of inquiry and instruments made possible 

by the development of NMR spectroscopy.  
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The diagram also illustrates a mechanism of expansion: the combination of 

knowledge from different sources in the production of the new instruments, which would 

not have been possible with a more insular mode of development. This is a case of what I 

called ‘source-integration’ above. In this respect, the episode illustrates, on a social scale, 

a pattern of innovation observed by Harman & Dietrich (2018) at the level of individual 

scientists: the creative integration of ideas and practices from multiple fields. In the case 

of the Instrumental Revolution, however, the integration was driven not just by the nature 

of human creativity, but also by the technical requirements of applying knowledge of 

physical phenomena to chemistry. Each of the new techniques was based on a physical 

phenomenon. For example, NMR is based on the detection of transitions between energy 

levels of nuclear spins in bulk materials in the presence of an external magnetic field. The 

initial phenomenon, however, was generally useless for other than physicists interested in 

measuring nuclear magnetic moments, and instrument specialists like Herbert Gutowsky 

or Richard Ernst,457 until a host of supporting knowledges and technologies were brought 

to bear. Mechanization was required to develop instruments that had the speed and control 

needed to produce data informative enough to compete with traditional chemical data. For 

example, carbon is the key structural element in organic chemistry. The 13C NMR effect 

was discovered in 1957 by means of early NMR spectrometers. But the combination of 

only a 1.1% natural abundance of 13C, the only carbon isotope with a nuclear spin, and its 

relatively low intrinsic sensitivity initially prevented the routine exploitation of this effect. 

The latter was achieved in large part through technical improvements including the 

introduction of computers (which allowed the signal-to-noise ratio to be improved), the 

incorporation of techniques for stabilizing the magnetic field, and the employment of more 

powerful magnets. In 1972, the first routine 13C NMR spectrometer for organic chemists 

was brought to market.458 Further improvements, notably the development of Fourier 

                                                 

457 See Reinhardt (2006) for detailed accounts of the contributions of these and other instrument 

specialists to the development of the new techniques. 

458 The instrument was the Varian CFT-20. I rely here on Becker et al. (1996), sections 3, 6 and 10 

for the history of 13C NMR. This history illustrates both steps shown in Figure 1, with the discovery 

of the effect being the outcome of step 1, the development and application of which led to a host of 

structural, mechanistic and methodological discoveries in organic chemistry and biology.   
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transform technology, allowed the 13C NMR effect to be applied to the study of 

biochemical systems. In general, black-boxing, an empirical approach to data 

interpretation, a new division of labor and various technical improvements were other 

elements required to make the methods attractive to chemists outside of chemical 

physics.459  

This pattern of integration is typical of the dialectic of discovery and embodiment. 

As noted above, the process illustrated in Figure 1 can only fully realize its potential for 

progress if it involves collections of instruments and discoveries, not just individual 

instruments. These collections can stretch across fields. The process therefore requires the 

convergence of a totality of labor processes. As in ordinary material production, so in 

science: innovation in one process needs the support of many other processes. 

7.3 Progress as transcendence of the limitations of native human epistemic abilities 

Historical materialists hold that the transformation of the labor process over the 

long-term moves humans farther and farther away from the constraints of their biological 

origins.460 In this section, I will argue that the surplus-knowledge theory described in the 

previous section explains one of the more striking features of 20th century and 

contemporary science, the increasingly important role of automated or semi-automated 

instrumentation in scientific research. The philosopher of science Paul Humphreys has 

suggested that “one of the principal achievements of science has been to transcend the 

limitations of humans’ natural epistemic abilities” (Humphreys 2004, p. 6). The reasons he 

gives are that the evidence of the human senses, as well as human computational abilities, 

                                                 

459 Reinhardt (2006) describes the efforts of instrument developers to adapt the methods to chemical 

needs. Feeney (1999) describes the role of technical improvements in making NMR applicable to 

chemistry. 

460 Marx & Engels (1978 [1845-6]), p. 150; Engels (1987 [1895-6]); Novack (1980), ch. 1; Damerow 

(1996), ch. 11; Sève (2014), pp. 285-291. I will say more about this claim in section 4.  



317 

are more error prone, and severely limited in scope, compared to what can be achieved 

with instruments.  

I submit that these limitations suggest a backward-looking goal relative to which 

progress can be made. According to Niiniluoto (2015), a goal may be backward-looking or 

forward-looking, depending on whether it refers to the starting-point or destination point 

of an activity. Humphreys’ suggestion suggests a kind of progress away from our natural 

endowment: we might say that an episode of science constitutes scientific progress if it 

shows the transcendence of limitations of native human epistemic abilities. For 

comparison, consider three other accounts of the concept of scientific progress: 

(E) An episode constitutes scientific progress precisely when it shows the 

accumulation of scientific knowledge. (Bird 2008, p. 279) 

(S) An episode constitutes scientific progress precisely when it either (a) shows the 

accumulation of true scientific belief, or (b) shows increasing approximation to true 

scientific belief. (Bird 2008, p. 279) 

(I) An episode constitutes scientific progress when it shows the adoption of a 

practice in which an instrument (technique) with more capabilities replaces one 

with fewer.461 

(S), (E) and (I) are called the semantic, epistemic, and instrumental accounts of 

progress.462 For notational congruence, I will use (H) to denote the concept of progress as 

transcendence of limitations of native human epistemic abilities. 

(H) An episode of science constitutes scientific progress if it shows the 

transcendence of limitations of native human epistemic abilities. 

By ‘transcendence’ I merely mean (following Humphreys) that the instrument is 

less error-prone, or of broader scope, than a human ability that it enhances. I use the latter 

verb in the three-pronged sense of Humphreys (2004, ch. 1). Humphreys uses ‘enhance’ to 

                                                 

461 Adapted from Kitcher (1993), p. 117. The original reads: “Instruments and experimental 

techniques are valued because they enable us to answer significant questions. One instrument (or 

technique) may do everything another does and more besides. If so, then we make instrumental (or 

experimental) progress by adopting a practice in which the former instrument (technique) replaces 

the latter.” 

462 See Mizrahi (2010) for a discussion of these and other accounts of progress.  
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denote three ways in which limitations of native human abilities may be overcome: by 

extrapolation, by conversion, and by augmentation. Extrapolation takes place by extending 

an existing modality of human ability, like vision, along a given dimension. Paradigmatic 

examples are the optical telescope and microscope, which bring very distant and very small 

objects within the range of visual detection. Conversion occurs when phenomena that are 

accessible to one sense are converted into a form accessible to another. Sonar devices that 

have visual displays are one example. Augmentation gives us access to features of the world 

that humans are not naturally equipped to detect in their original form, such as alpha 

particles, positrons and spin.  

In addition to enhancement, transcendence can also be brought about through 

replacement, which occurs when an instrumental ability replaces a human ability.463 

Replacement may involve the other operations. For example, the replacement of ocular 

detection telescopes with photographic plate detection in the late 19th century involved 

extrapolation, since it greatly increased the quantity of data obtainable in the visible portion 

of the electromagnetic spectrum (Bigg 2000). On the other hand, the replacement of 

photographic detection with electronic detectors somewhat later involved augmentation 

because it gave astronomers access to celestial phenomena outside the visible portion of 

the spectrum, such as the Cosmic Microwave Background dating from the very early 

universe.  

So a more precise formulation of (H) is: 

(H’) An episode constitutes scientific progress if it shows the adoption of a 

scientific practice in which an instrumental ability that is either (a) less error-prone 

or (b) of broader scope enhances or replaces a native human epistemic ability. 

For brevity, however, I will use ‘transcend’ in what follows, it being understood to 

have the meaning just given.  

463 I thank an anonymous referee for pointing out that transcendence can involve enhancement as 

well as replacement. 
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I have worded (H) as a sufficient condition, not a necessary condition, since we 

want to allow for other kinds of scientific progress. My purpose here is neither to endorse 

nor refute these other accounts, but merely to propose a complementary account that fits 

certain trends in modern science.  

Of the three other accounts listed, (H) is most similar to (I). (H) may even seem to 

be a special case of (I), in which the instrumental ability that is replaced is a native human 

ability. But viewing (H) thus presupposes that native human abilities are instrumental 

abilities. This presupposition itself, however, requires that we have already conceptually 

transcended native human abilities, in the sense of viewing them as merely one kind of 

instrumental ability among other possible ones by which it could be replaced (I will say 

more about the nature of this conceptual transcendence shortly). So native human abilities 

can only be subjected to the process described in (I) if they have already been subjected to 

a conceptual analogue of the process referred to in (H). I conclude that (H) is independent 

of (I). 

 On the other hand, (H) may be subsumable under the epistemic account of 

scientific progress. Since (H) concerns abilities, then the kind of knowledge involved 

would have to be know-how, presumably the methodological knowledge (MK) discussed 

in section 2.1. As noted by Mizrahi (2013), however, this is not usually the kind of 

knowledge proponents of the epistemic account have in mind, for they tend to be focused 

on TK and EK in particular. 

The term ‘natural’ or ‘native’ ‘human epistemic ability’ is somewhat of a 

misnomer, since very few of our epistemic abilities are completely natural, in the sense of 

resulting solely from our biological endowment. Most human abilities require socialization 

and education, as well as material means. So in order to clarify its meaning, I will venture 

the following tentative definition:  
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X is a native human epistemic ability if and only if humans464 Y can use ability 

X to acquire knowledge, and biological facts about humans are required for the 

success of the exercise of X.  

This definition is intended to retain the biological foundation of human abilities, 

while not supposing that the former is sufficient for the success of the latter, since facts 

about socialization, education, material means etc. may also be required for success.  

7.3.1 Examples: mathematical and observational abilities 

I will now provide two examples of “native” human epistemic abilities. Recall the 

computation example of section 2.3. We are not born with mathematical ability. It has to 

be acquired through socialization and education. For most people, any but the simplest 

calculations require material means of mathematical representation, like pencil, paper and 

a symbol system. Nevertheless, mathematical ability is a native human epistemic ability, 

because a human can use it to acquire knowledge, and biological facts about humans—that 

they have brains with certain features, motor skills that permit symbol manipulations—are 

required for the success of the human’s exercise of the ability.  

In contrast, consider the situation where a human Y, rather than carrying out a 

pencil-and-paper calculation, types instructions into a computer which tell the computer to 

carry out the calculation. Clearly, Y uses mathematical ability to acquire the same 

knowledge as in the previous case. But biological facts about humans are no longer 

required for the success of the exercise of the ability, for it is not Y’s ability but the 

computer’s. The success of the calculation is determined by facts about the computer 

software and hardware. So the mathematical ability Y uses is no longer a native human 

ability. Where biological facts about humans are, of course, still central is the operation of 

464 I use the plural “humans” to allow for the possibility of collective abilities, e.g., the ability of 

groups of workers to carry out a task that would be impossible for each worker individually, for 

example lifting very heavy objects or evaluating extremely complicated mathematical proofs.  
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the computer, which has to be adapted to human operators, and the use of its output, which 

has to be useable by humans (e.g., the answer should not be in binary code). 

Observation provides another example. Hacking (1983) argued that observation is 

a skill. Knowledge of how to observe is acquired through scientific practice. These skills 

can be transmitted from master scientist to apprentice, and when this happens the untrained 

sense perception of the apprentice is augmented by the new skills. The apprentice can use 

her ability to observe in order to acquire knowledge, and biological facts about human 

senses and cognition are required for the success of the exercise of her ability. An example 

alluded to in section 2.3 is the determination of the density of spectral lines on a 

photographic plate, mentioned in Baird’s discussion of direct-reading spectrometers.  

In contrast, consider the situation where the apprentice, now a mature scientist 

herself, replaces her old spectrograph with a spectrometer equipped with an electronic 

detector. Clearly, he can use the observational ability of the instrument to acquire the same 

knowledge as with the spectrograph (and more). But biological facts about humans are no 

longer required for the success of the observation. The latter is determined by facts about 

how the machine detects the ions generated from the sample and how the detected signals 

are amplified and processed into mass-to-charge and intensity information. Where 

biological facts about humans are still central is, as in the calculation example, the 

operation of the machine and the use of its output.  

In both the calculation and the observation cases, we started with a situation in 

which a native human ability was used to acquire knowledge, and ended with one in which 

an analogous machine-based ability was used to acquire the same knowledge. On the 

assumption that in the given case the machine is either less error-prone, or has broader 

scope, than the human ability, then the latter has been transcended. This makes it an episode 

of (H).  
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7.3.2 The mechanism responsible for progress (H) 

Assuming that I have provided grounds for thinking that (H) is a reasonable concept 

of a variety of progress [to borrow a phrase from Kitcher (1993)],465 further questions are 

how well it fits the history of science and what mechanisms are responsible for it. I will 

start with the latter question. I submit that the surplus-knowledge theory described in 

section 2 explains this kind of progress. The extension of knowledge shows that native 

human abilities involved in scientific work are subsumable under more general abilities 

associated with general types of instruments. Ocular observation may again provide an 

example. In his classic 1982 discussion of the concept of observation in science and 

philosophy, Dudley Shapere argued for an extension of the philosophical concept of 

observation beyond its previous associations with perception, such that there can be 

observation by or with scientific instruments. Though he does not use the term, his 

argument was based on the impact of what I am calling surplus knowledge on scientists’ 

understanding of their own practice of observation. Physical science claims to discover the 

existence of entities and processes that are not accessible to the human senses. It further 

claims to discover that those senses are receptive to only a limited range of types of events 

that form part of an ordered series of types of events, the electromagnetic spectrum in the 

case of the eye. This spectrum encompasses a range of wavelengths on the order of 1022, 

of which only about 10-19 is accessible to human vision. As a result of the extension of 

knowledge about vision, then, it is realized that the eye is just a particular sort of 

electromagnetic receptor, capable of detecting electromagnetic radiation in a certain range, 

there being other sorts of receptors capable of detecting other ranges of the spectrum. The 

extension of knowledge thereby leads to the generalization of the notion of a receptor or 

detector, which subsumes the eye as one type.  

A further generalization occurs when it is recognized that there are other 

fundamental interactions besides electromagnetic ones: strong, weak and gravitational 

interactions. As a result, ocular detection abilities become subsumable under the even more 

                                                 

465 I thank an anonymous referee for suggesting this phrasing from Kitcher.  
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general ability to detect one of the fundamental physical interactions. This general ability 

is associated with a type of instrument, the ‘receptor’ or ‘detector,’ which is capable of 

detecting one of these interactions and the entities engaging in it.  

For Shapere, this process of generalization was a theoretical matter, resulting from 

the accumulation of theoretical knowledge. For it to have practical significance, however, 

that knowledge needs to be embodied in instruments. From what was said in section 2, it 

follows that two conditions are necessary. First, the auxiliary knowledge must be available 

for form- and source-integration to be possible. Second, the appropriate scaffolding must 

be available for embodiment. If these and other conditions (fit with scientists’ goals being 

an obvious one) are met then the surplus knowledge can be applied in research.  

Shapere’s account of observation in science illustrates the reflexive character of 

scientific knowledge: as the latter accumulates, it sheds light on scientific practice itself, in 

particular by showing how native human epistemic abilities are subsumable under more 

general abilities that can also be exercised by instruments.  

7.3.3 Fit with the historical record 

How well does (H) fit the historical record? Space does not permit a survey, so I 

will take mass spectrometry as a fairly typical example of technologically driven 

transformations in bench-top science in the 20th century.466 The reader will recall the brief 

account of the development of mass spectrometry in section 2.4. Table 7.1 shows which 

native human epistemic abilities were transcended in that episode: 

 

 

 

 

 

                                                 

466 Humphreys (2004) has more examples, though his focus is not historical.  
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Table 7.1 The transcendence of native human epistemic abilities in mass spectrometry. 

Abilities How Exercised How Transcended 

Ocular detection Reading of photographic 

plates 

Electronic detectors, 

amplifiers 

Data processing  Tabulation of analog 

recording data 

Digitizers, minicomputers 

Problem-solving Interpretation of spectra Interpretation algorithms 

Memorial  Data storage, instrument 

control, multi-tasking 

Hard disks, RAM, CPUs 

Pattern recognition Comparison of spectra of 

unknowns to references 

Pattern recognition 

algorithms 

Searching abilities Searching of spectral 

libraries 

Search algorithms 

Manipulative Instrument control; 

sample handling and 

transferring between 

instruments; 

densitometering 

Computer control; 

automated sample 

handling and direct 

instrument coupling; 

automatic recording 

 

The left-hand column lists various abilities that were involved in the production 

and use of mass spectra by means of the spectrograph and early spectrometers. The center 

column lists the ways in which those abilities were exercised in this field. The right-hand 

column lists the means by which those abilities were transcended. Computerization 

obviously played a large role, but advances in electronics, separation techniques and 

instrument interfacing technology were also important. As noted in section 2.4, the 

replacement of photographic plates by electronic detectors made computerization possible, 

and electronic detectors are themselves based on the photoelectric effect. Besides 

massively increasing the scope of mass spectrometry, the replacement of “manual” 

methods appears to have reduced the likelihood of errors (Serum 2016). The development 

of mass spectrometry therefore seems like a good candidate for (H).  
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7.4 How to be scientific about scientific change without being reductionist 

A famous proponent of another backward-looking notion of scientific progress was 

Thomas Kuhn. As is well-known, he suggested that we may have to abandon the notion of 

progress as approaching closer and closer to the truth. To replace it, he proposed a 

Darwinian move, in which the idea of an evolutionary process with a distinct goal was to 

be replaced by the idea of an evolutionary process that has moved steadily away from 

primitive beginnings. Though he acknowledged that “the analogy that relates the evolution 

of organisms to the evolution of scientific ideas can easily be pushed too far,” he 

immediately added that “it is very nearly perfect” with respect to the question of whether 

there is progress through scientific revolutions: 

The process described in Section XII as the resolution of revolutions is the selection by 

conflict within the scientific community of the fittest way to practice future science. The net result 

of a sequence of such revolutionary selections, separated by periods of normal research, is the 

wonderfully adapted set of instruments we call modern scientific knowledge. (Kuhn ([1962] 1996, 

pp. 171-2) 

I note in passing that he does not say much about what scientific knowledge is 

adapted to, except that the process leads to “an increase in articulation and specialization.” 

van Fraassen (1980) makes an even stronger claim than analogy, holding that “science is a 

biological phenomenon, an activity by one kind of organism which facilitates its interaction 

with the environment.” He uses this claim to appropriate the no-miracles argument for 

scientific realism on behalf of constructive empiricism:  

I claim that the success of current scientific theories is no miracle. It is not even surprising 

to the scientific (Darwinist) mind. For any scientific theory is born into a life of fierce competition, 

a jungle red in tooth and claw. Only the successful theories survive—the ones which in fact latched 

on to actual regularities in nature. (van Fraassen 1980, pp. 39-40). 

David Hull’s (1988) theory, that the history of science is the result of selective 

pressures operating on scientific theories, works this idea out in detail.467  

                                                 

467 See Renzi & Napolitano (2011) for a longer analysis of the various evolutionary analogies that 

have been used to describe or explain scientific change.  
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By emphasizing the commonalities between science and ordinary labor I have 

implicitly taken a naturalist approach to the study of scientific progress. Darwinian theories 

of scientific progress are a major alternative naturalist approach in philosophy of science. 

From the perspective adopted in this paper, however, the analogy or identification of 

science with natural selection amounts to a misrecognition of the peculiar character of the 

evolution engendered by the labor process, insofar as it attributes a feature of a particular 

kind of human labor—scientific progress—to a mechanism that has nothing specifically to 

do with human labor.468  

The reproduction of animals is characterized by the development of the individual 

from birth to death, by its physical reproduction in interaction with nature, and by the 

reproduction of the characteristics of the species by means of procreation and genetic 

inheritance. The only mechanism of change is random variation of individuals followed by 

natural selection of mutants with a selective advantage in a given environment.  

The labor process is special because it can bring about a material result over and 

above the means of subsistence required for individual survival, and it can do so as a 

systematic and planned outcome. This result consists in the produced means of production, 

paradigmatically represented by tools of material production but also including cognitive 

tools like material representations and symbol systems (Damerow (1996), ch. 11; Sève 

(2014), pp. 285-291). Under appropriate social conditions, such as the existence of a social 

division of labor, these material means can be accumulated, creating an environment of 

implements that forms the starting-point for renewed cycles of reproduction with 

expansion. The expanding environment of implements does not remain external to the labor 

process to which it owes its existence, but in turn releases the inherent possibilities of the 

process. The feedback between the accumulated means of production and the labor process 

                                                 

468 The following is indebted to the discussion of cultural evolution in Damerow (1996), ch. 11. In 

a somewhat similar vein, Gerson (2014) discusses problems with understanding cultural evolution 

by analogy with biological evolution, though without Damerow’s emphasis on the development of 

material culture as a cause of divergence between them.  

In the context of a reconsideration of Kuhn’s image of science, both Marcum (2018) and Renzi 

& Napolitano (2018) discuss problems with understanding scientific change by analogy with 

Darwinian natural selection. I thank an anonymous reviewer for sharing these references with me.  
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means that the process of accumulation is not linear but rather expands and accelerates 

exponentially. This acceleration is not merely quantitative, but includes essential 

qualitative changes based on the reflexive character of the tools: because the environment 

of implements is constantly changing, the techniques and organization of the labor process 

are also constantly changing. As a result, the development of the individual human takes 

place under constantly changing initial conditions. The reproduction of the characteristics 

of the species in the individual can no longer be satisfied by reproduction through 

procreation and genetic inheritance, but requires socialization and education. It follows that 

to the extent that reproduction of the individual involves the transmission of the 

characteristics of the species—in particular the ability to use and produce tools—to the 

individual, this reproduction is from the outset an essential cause of the development of 

society and simultaneously an effect of it.  

The fact that the labor process can result in a surplus is a very important one for 

understanding human history. This fact makes possible a new mechanism of change, over 

and above random variation and selection: reproduction by means of the expanded means 

of production. Each iteration of the labor process differs from the preceding one insofar as 

it incorporates the surplus generated previously.  

So far we have only been considering one aspect of the labor process, that it is 

capable of generating a surplus product. As pointed out by the philosopher and historian 

Wolfgang Lefèvre, in addition to a surplus product, surplus knowledge can also be obtained 

(Lefèvre 2005, section 3.1). Lefèvre claims that, in the utilization of definite means for 

tackling specific problems, more knowledge can be acquired than was necessary to invent 

the means, because “by applying a material means in the labor process, its material nature 

can reveal new ways of application and employment, which were not given along with the 

original ends” (Lefèvre 2005, p. 215). This fact explains the growth of knowledge in 

general. It also, Lefèvre argues, explains the growth of scientific knowledge. Like ordinary 

material labor, science also makes use of material means. The material means of science 

include not only things that resemble, or in fact are, production apparatuses, like certain 

observational instruments or, say, distillation apparatuses. They also include “material 

means of scientific thinking” like diagrammatic representations or numerical notations. 

The material means of thinking “delineate a horizon of what results scientists can achieve 
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and even what results are conceivable or probable.” The application of the material means 

of science generates a surplus of scientific knowledge, as more knowledge is gained in 

applying them than was needed to invent them.  

Lefèvre’s account raises two questions. First, given that all forms of labor use 

material means, then an explanation may be needed of how progress in science differs from 

progress in any other kind of labor. Such an explanation is especially welcome in light of 

the widespread belief (among philosophers of science, at least) that science is exceptionally 

progressive relative to other kinds of intellectual work.  

Lefèvre provides a partial answer. It is that science transforms the realization of 

potential knowledge inherent in tools into a systematically performed social enterprise. The 

free exploration of the possibilities tools present is ruled out in ordinary labor, due to the 

utilitarian aims and economic considerations that impose narrow limits on how the means 

are employed. In contrast, “free exploration constitutes the core of science.” Thus, the 

fundamental difference between science and other forms of labor would be that free 

exploration of the uses of tools is systematically performed in the former but not in the 

latter (Lefèvre 2005, p. 218). 

A second question is what role the specific products, resulting from the application 

of scientific means, play in the acquisition of new knowledge. Lefèvre focuses on how the 

discovery of new uses or ways of using the material means leads to new knowledge. He 

provides the example of Greek geometry: 

It is not the nature of the means themselves but their use for purposes of cognition that 

renders them scientific means. To give an example: The inventors of Greek geometry did not invent 

the compass and ruler on which this geometry essentially rests. Living in a society that used these 

instruments in several practical domains, they rendered them scientific instruments by making a 

specific use of them. They employed them not to design the ground plan of a temple or for another 

practical goal, but to gain insight in the regularities of constructions that can be accomplished by 

compass and ruler. (Lefèvre 2005, p. 218) 

The geometer, like the architect, may use a compass to draw a circle, but instead of 

using the circle to design a temple, the former thinks abstractly about the properties of 

circles. On this view, the product of tool use is a secondary matter; what counts is the use 

that is made of it. In the end, it seems that what differentiates scientists from other workers 
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is that the former think abstractly about the results of tool use, whereas the latter think with 

regard to practical purposes.  

This difference helps explain how science began. In modern science, however, 

instruments of science are constructed and employed specifically because of the particular 

form and content of the knowledge they yield about the world, not only to explore what 

happens when they are used in new ways. My discussion of discovery and integration 

aimed to address this additional function by shifting the focus onto the products of 

scientific tool use and how scientists use these to transform their own practice. 

To conclude this section, I think the evolutionary views of the history of science 

discussed at the beginning of the section can yield valuable insights into processes of 

innovation and the transmission of ideas in science. But they run the risk of reductionism, 

insofar as they evacuate features of science that are specific to human evolution. In 

particular, an evolutionary approach must take into account how humans’ relationship to 

nature is mediated. Historical materialists have aimed to correct reductionist distortion by 

studying the ways in which labor, as a specifically human activity, mediates that 

relationship. Labor gives human evolution the character of expanded reproduction. The 

latter puts humans on a different developmental trajectory than other species, for the 

changing environment of use-values alters the nature of the labor process, and hence the 

skills and abilities that can be marshalled therein. My suggestion in this paper has been that 

this process is also at work in the history of science.    

7.5 Conclusion 

According to Chang (2007), “[s]cientific progress remains one of the most 

significant issues in the philosophy of science today. This is not only because of the 

intrinsic importance of the topic, but also because of its immense difficulty. In what sense 

exactly does science make progress, and how is it that scientists are apparently able to 

achieve it better than people in other realms of human intellectual endeavour? Neither 

philosophers nor scientists themselves have been able to answer these questions to general 
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satisfaction.” The approach taken in this paper has been to compare science to ordinary 

labor rather than to other intellectual endeavors like art, religion, philosophy, morality or 

politics, as is usually done.469 Though I by no means purport to have provided a general 

answer to the questions Chang raises, I claim to have offered grounds for thinking that one 

of the mechanisms by which science makes progress is similar to how ordinary labor makes 

progress. In addition to the question of fit with the history of science, future development 

of the view outlined here should answer the question of why and by means of what social 

mechanisms scientists engage in the processes described in sections 2 and 3. The approach 

taken here also suggests a difference with the other realms of intellectual endeavor to which 

science is usually compared. None of these has a comparable cycle of discovery and 

embodiment to power its growth. None of these has a similar ability to transcend the limits 

of native human abilities.  
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8.0 CONCLUSION 

8.1 Know-how, progress and rationalization 

Appreciating the role of abilities in science sheds light on the dynamics of 

knowledge accumulation. The conditions of action determine the abilities an agent can 

exercise. Thus my physical make-up enables me to jump two feet vertically, but not four. 

Galileo’s telescope enabled him to observe the moon and other objects in the solar system, 

but not objects outside it. As these examples illustrate, abilities depend crucially on the 

means available for carrying out actions. The means available allow agents to expand their 

abilities, and hence their horizon of possible actions. By the same token, the available 

means also limit the abilities an agent can have, by constraining the range of actions that 

are possible for the agent in a given context. It follows that dependence on the means 

available can impede the acquisition of abilities, if the means don’t permit the performance 

of certain actions.  

But abilities do not depend solely on the means available. They also depend on the 

specific features of the activity in which they are exercised. For this reason, this dissertation 

has focused not just on scientific instruments, but on the nature of the scientific labor 

process. The labor process involves not just means of labor and the worker’s individual 

abilities, but other features like division of labor and workers’ attitudes and beliefs about 

their work. Ultimately, what the workers are able to do depends on all of these aspects of 

work. 

It follows from these considerations that the acquisition of epistemic abilities can 

be impeded by these features of scientific work, if they block the performance of certain 

actions. In other words, and as suggested in the conclusion to chapter 5, there can be 

ideological and material impediments to the acquisition of abilities in science. If we want 

to be able to answer the question posed in chapter 1, why is it possible for scientists at a 

given time to have more epistemic abilities than scientists at an earlier time?, then 
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identifying these impediments, and the ways in which they were or were not overcome, is 

a necessary step.470 

 In chapter 3, it was argued that the emergence of the modern scientific method 

involved certain breaks with previous ways of conceiving the relation between science, 

labor and instruments. In the discussion of the Scholastics, it was shown that the 

incorporation of instrumentation and experimentation as fundamental components of the 

scientific method was not trivial because it was discouraged by dominant attitudes towards 

manual labor, the distinction between theoretical and productive sciences, and by beliefs 

about the proper object of scientific inquiry. These attitudes prevented the emergence of a 

full-blown experimental science. In the study of Kepler’s optics, it was argued that the pre-

Keplerian conceptualization of sense experience tended to see a big difference between 

how the senses (or at least vision) work and how mechanical instruments work. This 

conceptualization entailed criteria of certainty and error that are inappropriate for an 

instrumental, measurement-based science. In chapters 4 and 5, it was argued that the 

progress of early 20th century chemistry was impeded by two historically specific obstacles. 

One was the insular nature of chemical methods and know-how, the dependence on 

chemical reactions to solve analytical problems. The other was the cognitive correlate of 

this dependence, the use of structure-to-structure reasoning to make analytical claims.  

The overcoming of these obstacles led to progress in the form of methodological 

knowledge. The progress discussed in chapter 3 was of two kinds. First was the emergence 

of a full-blown experimental approach, unfettered by previous strictures on what 

constitutes the proper methods and objects of science. Second were improvements in 

methods of measurement and, in the long run, the improvement of scientists’ ability to 

study nature through technological change. In chapters 4 and 5, the progress resulted from 

an increase in the rate of methodological innovation in chemistry. The progress consisted 

                                                 

470 Recall that by ‘impediment’ or ‘obstacle,’ I intend a feature of the circumstances in which 

scientists are working whose elimination or overcoming is a necessary precondition for specific 

further changes. The idea is that earlier developments produce the necessary preconditions for later 

ones, in this case by overcoming such features of the circumstances. Thus the notion of an 

impediment highlights a form of dependency of later developments on earlier ones. 
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in part in improvements in the efficiency of compound identification. Moreover, the power 

of analytical methods soared, thereby creating opportunities for new kinds of research.  

Each of the cases has been concerned with the ability, or inability, of a scientific 

field to acquire certain kinds of knowledge. In each case, it was found that there were 

certain obstacles that impeded the acquisition of this ability. Thus, it was found that the 

Scholastics were unable to engage in full-blown experimental work, and hence to acquire 

experimental EK, due to their allegiance to the social prejudice against manual labor and 

the distinction between theoretical and productive science. The Perspectivists granted an 

epistemic privilege to ocular observation that discouraged the exploitation of artificial 

means of observation, and hence to acquire instrumental EK. The classical chemists were 

unable to overcome the indirect character of chemical analysis, the fact that structure was 

destroyed in order to determine structure, due to their dependence on  chemical reactions. 

Though they were able to acquire some knowledge of structures and their chemical 

relations, and hence chemical TK and EK, the methods for doing so were inefficient and 

precluded certain other kinds of structural knowledge. 

I submit that focusing on the negative role of the means of scientific work reveals 

a mechanism of progress at work in modern science by which such impediments can be 

overcome. I will call this mechanism ‘rationalization.’ Rationalization, as I use the term 

here, is the criticism and transformation of the means of scientific work in light of the 

available scientific and technological knowledge. As noted in the conclusion to chapter 5, 

scientists do not always, and often cannot, develop techniques and instruments out of whole 

cloth to fit novel research situations. Instead, they use the means available to them until 

better means are developed. The old means have a positive effect, insofar as they allow 

research to proceed in the novel situation, but they can also have a negative effect, insofar 

as they are not optimal for the changed circumstances. But they can be rationalized by 

criticizing, reconstructing and transforming them into more suitable means in light of the 

available scientific and technological knowledge. Descartes’ response to the telescope 

provides a simple and well-known example of rationalization: 

The telescope originated outside the theoretical framework of optics as a more or less 

chance discovery in the framework of artisan production of mirabilia. Therefore, right at the 

beginning of La dioptrique Descartes too writes that, to the shame of our sciences (à la honte de nos 

sciences), this invention was made on the basis of experience and good luck. According to Philippe 
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Hamou, the fact that the telescope was discovered by accident was scandalous for Descartes; he 

therefore considered it necessary to incorporate the telescope into the order of reason, that is, to 

deduce it from mathematical optics. Coincidence had to be denied and it was therefore necessary to 

discover the telescope again – this time according to reason with the help of the proper method and 

on the basis of understanding the laws of optics. Descartes even believed that based on the 

methodical application of the experience of craftsmen it would be possible to perfect telescopes and 

microscopes. In connection with this, in La Dioptrique he introduced a new method of grinding 

lenses.471 

The telescope was initially borrowed by scientists from the artisans, who produced 

it for non-scientific purposes using non-scientific methods. Descartes took a step towards 

rationalizing its use and production by showing how its properties could be deduced from 

optical theory. He then took a second by showing how better telescopes could be produced 

by the joint application of theory and lens-making technology.472  

Thus, to rationalize a science is to criticize and reconstruct its material practices as 

suitable means to its ends in light of the available scientific and technological knowledge. 

                                                 

471 Spelda (2017), p. 11. The passage in the Dioptrique to which Spelda alludes reads as follows: 

Mais, a la honte de nos ſciences, cete inuention, ſi vtile & ſi admirable, n’a premierement eſté trouuée que par 

l’experience & la fortune ... Et c’eſt ſeulement sur ce patron [the model provided by the original telescope] que 

toutes les autres qu’on a veües depuis on eſté faites, ſans que perſonne encore, que ie ſçache, ait ſuffisanment 

determiné les figures que ces verres doiuent auoir. Car, bien qu’il y ait eu depuis quantité de bons eſprits, qui 

ont fort cultiué cete matiere, & ont trouué a ſon occaſion plusieurs choses en l’Optique, qui valent mieux que 

ce que nous en auoient laiſſé les anciens, toutefois, a cauſe que les inuentions vn peu malayſées n’arriuent pas 

a leur dernier degré de perfection du premier coup, il est encore demeuré aſſés de difficultés en celle cy, pour 

me donner suiet d’en eſcrire. Et d’autant que l’execution des choſes que ie diray, doit dependre de l’induſtrie 

des artiſans, qui pour l’ordinaire n’ont point eſtudié, ie taſcheray de me rendre intelligible a tout le monde, & 

de ne rien omettre, ny ſuppoſer, qu’on doiue auoir appris des autres ſciences. C’est pourquoy ie commenceray 

par l’explication de la lumiere & de ſes rayons ; puis, ayant fait vne brieue description des parties de l’œil, ie 

diray particulierement en quelle ſorte ſe fait la viſion ; & en ſuite, ayant remarqué toutes les choſes qui ſont 

capables de la rendre plus parfaite , i’enſeigneray comment elles y peuuent eſtre adiouſtées par les inuentions 

que ie deſcriray. (Descartes 1996 [1637], pp. 81-83.) 

472 Kepler was actually the first scientist to offer an explicit theoretical analysis of lenses and, on 

that foundation, of the telescope in his Dioptrice of 1611. According to A. Mark Smith, both 

theoretical and practical knowledge contributed to the development of the microscope and telescope, 

but practical knowledge led the way (Smith 2015, pp. 381-391). 
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In general, rationalizing involves two components. There is a theoretical component, which 

is the explanation of a practice or instrument in scientific terms. But there is also a practical 

component, which involves activities like constructing, modifying, producing, optimizing 

and transforming. This practical component was the focus of chapter 7, where I called it 

‘embodiment.’  

The telescope case is misleading to the extent that it suggests rationalizing merely 

involves explaining a practice scientifically.473 The more interesting, and common, case 

involves a transformation of the old practice. A fairly radical example of this was given in 

chapter 4. There, the emphasis was on the role of machines in rationalizing chemical 

analysis. The basic idea was that machines allow for greater rationalization than human-

centered methods because the latter’s reliance on human intervention present an obstacle 

to the application of science and technology to the improvement of those methods. Human-

centered methods present an obstacle to the application of science and technology in three 

ways already discussed in chapters 2 and 7.  First, although individual expertise is 

necessarily limited, we can use an instrument without knowing all the things necessary to 

make it. The “black-box-ability” of the instrument allows a much greater amount of 

knowledge to be brought to bear in research than would otherwise be possible. Second, the 

extent to which science and technology can be applied is limited by the plasticity of the 

object to which they are to be applied. Human plasticity is constrained fundamentally by 

human biology. In contrast, the plasticity of instruments is, in principle, only constrained 

by the laws of nature, though in practice it must be adapted to human users. Third, the 

durability of instruments allows the knowledge they represent to be used well beyond the 

activities of any particular knowing subjects. 

 We identified a kind of episode of scientific change in which the introduction of 

machines removes this obstacle. The machine case differs from the telescope case, 

however, in that the former made possible an entirely different way of producing the 

knowledge sought. One might also interpret Kepler’s optical theory as a way of 

rationalizing the role of the eye in scientific observation. Scientific ocular observation 

                                                 

473 Van Helden (1983) discusses the efforts Galileo went to in order to construct a research grade 

telescope. 
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requires skill and training. But ocular observation itself is not a specifically scientific 

activity, no more than the eye is a specifically scientific instrument. The eye’s use for 

scientific observation arose simply because it was the default means of observing. But there 

is no essential reason why it must continue to be so used, once scientific and technological 

progress show that other means can either do the same job (perhaps better) or permit 

observation of things beyond the eye’s reach. I argued in chapter 3 that by showing the eye 

to be no different from a mechanical instrument in its operation, Kepler contributed to the 

criticism, reconstruction and transformation of scientific observation.   

In terms of the categories introduced in chapter 2, rationalization leads to 

methodological and instrumental progress, where progress is constituted by the 

accumulation of either methodological or instrumental knowledge. The reader may recall 

how these forms of knowledge were characterized: 

(MK) Methodological Knowledge: Methodological knowledge usually comes 

in the form of methods and techniques of learning about nature. 

(IK) Instrumental Knowledge. Instrumental knowledge usually comes in the 

form of instruments or techniques for carrying out operations or actions. 

Thus, knowing how to produce an instrument for carrying out some action 

constitutes a form of know-how. If a new kind of instrument has more capabilities than one 

that it replaces, then there is instrumental progress. If the action the instrument helps to 

carry out is part of a method for learning about nature, then the instrumental knowledge 

also contributes to methodological knowledge. If the MK to which the instrument 

contributes is an advance over prior knowledge of how to study nature, than there is 

methodological progress as well.  

For example, the production of the first telescopes constituted an item of 

instrumental knowledge, knowledge of how to observe distant objects or even of how to 

correct defective vision.474 Since the eye-telescope system had more capabilities than the 

474 In what historian Albert van Helden (1977) identified as the earliest “undeniable mention of a 

telescope,” the Dutch spectacle-maker Hans Lipperhey, in a letter to Count Maurice of Nassau, 

stated that he wanted to present the Count with “a certain device by means of which all things at a 

very great distance can be seen as if they were nearby.” On the use of the spyglass to correct 

defective vision, see Van Helden (1977), p. 24. 
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naked eye, the use of this system rather than the naked eye for long-distance observation 

also constituted instrumental progress. When Galileo adopted and adapted the telescope 

for studying the heavens, the instrument also became a component of MK. When Galileo, 

Descartes, Kepler and others explained and modified the workings of the telescope in order 

to improve its capabilities, there was further instrumental progress. But there was also 

methodological progress, as this effort increased our knowledge of how to study nature. 475  

As explained in more detail in chapter 7, rationalization both leads to more 

knowledge but also draws on prior knowledge, of all five forms introduced in chapter 2: 

TK, EK, MK, PK, and IK. Rationalization also ties together the two guiding questions 

posed in chapter 1. Question (2) asked, how is it possible for knowledge acquired in the 

past to be used in on-going or future research? The answer suggested here is that this is 

possible because scientists rationalize their practices by incorporating prior knowledge into 

them. Question (1) asked, why is it possible for scientists at a given time to have more 

epistemic abilities than scientists at an earlier time? Answer: Because they have thus 

rationalized their practices, and in doing so they have enhanced their ability to engage in a 

mental or physical action (or set of actions) that is intended to contribute to the production 

or improvement of knowledge.  

Why does any of this matter for philosophy of science? Traditionally, philosophers 

have focused on the nature or acquisition of TK, and to a lesser extent EK. I contend that 

if we want to understand how and why science changes, the traditional focus on TK and 

EK is insufficient. On the picture of science that has emerged in this dissertation, the motor 

of scientific change—over the long-term—is not the accumulation of TK or EK but rather 

the use of the five forms of knowledge to make progress in know-how, MK and IK. Major 

theoretical advances often come in the wake of much change in know-how. In addition to 

the arguments already advanced in this dissertation, I provide empirical support for this 

observation in the appendix to this section. 

                                                 

475 Van Helden considers this improvement of the spyglass into a telescope, for the purposes of 

studying nature, to be what transformed it into a scientific  instrument (van Helden 1977, p. 26). 
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The process of rationalization is a cause of certain phenomena of scientific change 

that have attracted the interest of philosophers. Here I will briefly discuss observability, 

demarcation and scientific revolutions. 

8.1.1 Observability 

Debates over what we can observe tend to revolve around the question whether or 

not the human senses play an essential role in observation. This question acquires its 

relevance largely as a result of the modification of the means of observation used by 

scientists. Starting from the human senses, over time scientists have developed an immense 

array of means for observing, thickly mediated by the knowledge acquired over the 

centuries. This process has in turn allowed the occurrence of highly mediated relationships 

between humans and the objects of observation, raising the question whether ‘observation’ 

is still an appropriate term for this relationship, and if so, how it should be understood.476  

This mediation raises further issues, such as realism, the theory-ladenness of 

observation, and the validity of empiricism as a theory of knowledge. The theory-ladenness 

of observation is, of course, related to issues of theory choice and scientific revolutions. 

Though these issues all pose problems for the status of the TK afforded by science, it is 

worth noting that they are all based on considerable achievements in observational know-

how, namely observational MK and IK. This suggests a two-track picture of science, 

briefly discussed in section 2.2.2., according to which the dynamics of theoretical progress 

differ from those of know-how progress, with revolutions in one dimension not necessarily 

entailing revolutions in the other. 

8.1.2 Scientific revolutions 

Put in the terms of this chapter, the overall conclusion of chapter 4 was that 

rationalization is a direct cause of scientific revolutions. This conclusion is to be contrasted 

                                                 

476 For classic discussions of this issue, see van Fraassen (1980) and Shapere (1982).  



343 

with the usual scenario of revolutions resulting from the competition of rival theories. 

Rationalization changes the elements constituting the material practices of a science. I will 

call this effect ‘reconstitution,’ meaning that the change can affect fundamentally the basic 

methods, problems, goals, values, theories and even the ontology of the field (though not 

necessarily all of these at once). Three cases of reconstitution were discussed in the 

dissertation. 

First, in the case of the Scholastics, the natural philosophers’ relationship to labor 

determined whether the science was experimental or not. When they abandoned certain 

ideas about manual labor and the proper object of science, they were able to adopt the 

experimental method into the core of their activities.477 

Second, Kepler contributed to the rationalizing of scientific observation by showing 

the eye to be no different from a mechanical instrument in its operation. In doing so, he 

changed the problem the theory of the eye was a solution to, from the problem of what 

guarantees veridical perception to the problem of how to achieve accurate measurements 

by means of vision. Kepler showed that these conceptual changes had ramifications for 

how astronomical measurements should be performed. 

 Third, during the Instrumental Revolution, analytical chemists had to decide 

whether “analysis [is] primarily a chemical process of separation and identification, or a 

                                                 

477 One might question whether this episode was really an example of rationalization in my sense of 

“the criticism and transformation of the means of scientific work in light of the available scientific 

and technological knowledge,” since ideas about labor and the proper object of science are not 

means, and moreover are the province of ideology and philosophy rather than scientific and 

technological knowledge. On the other hand, one might interpret the critique of the methods of 

natural philosophy in the works of Bacon, Descartes, Paracelsus and other scientific revolutionaries, 

together with their admiration for the technological successes of the crafts, as rationalization in a 

broader sense of the term, since it was in part a critique of a way of acquiring knowledge of nature. 

Moreover, some of the knowledge produced by the crafts entered directly into the processes leading 

to a rupture with Aristotelian natural science. This knowledge included not only the experimental 

know-how discussed in section 3.2.5, but also empirical knowledge. For example, the identification 

of projectile trajectories in gunnery provided explananda that challenged Aristotelian physics and 

thereby contributed to the advent of classical mechanics (Schemmel 2008). 
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physical process of direct identification.”478 Organic chemists had to decide whether the 

goal of structure determination was to determine the network of chemical relations of a 

substance, or the structure of a molecular species. Was the object of analysis a substance, 

or a molecule? Were chemical problems to be solved by chemical methods, or by a “science 

of instrumentation,” and hence in part by the methods of other fields? What skills and 

knowledge should chemists possess? How should they be trained? 

Other, more general, constitutional questions were also raised. Is science a craft, 

and therefore fit only for specialists to do? What organization of labor is best for scientific 

progress? What should be the relative importance of exploratory versus confirmatory 

experimentation in the field? What is the value of automation versus direct human 

involvement in scientific work? What is the value of mechanical objectivity relative to the 

contributions of the subject?479 What values are supported by changes in scientific agency? 

For example, is automation merely more convenient than manual methods, or does it 

promote scientific values of accuracy, sensitivity, objectivity, etc.? 

The examples in this dissertation show that the rationalization of material practices 

can create discontinuity in the history of a science. This recognition suggests a research 

agenda for historical epistemology: 1) look for significant change in the material practices 

of a science, 2) determine whether and how there were fundamental changes in the basic 

methods, problems, goals, values, theories or ontology of the field, and 3) determine to 

what extent the changes in (1) and (2) were brought about by prior developments in science 

and technology. 

If the overcoming of these ideological and material impediments leads to the 

reconstitution of the field, this raises the question of whether the change can be progressive 

after all, since in some cases what counts as progress will surely change too. For example, 

if Kepler changed the problem the theory of the eye was a solution to, then that is reason 

to think that progress towards solving the new problem might not be progress towards 

                                                 

478 Baird (2002), p. 40.  

479 On mechanical objectivity see Daston & Galison (2007). Young (2016) argues that understanding 

observational instruments in terms of mechanical objectivity has obscured the contribution of the 

skilled practice of the subject to scientific observation. 
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solving the old problem. We saw a similar situation in the chemical case: progress in 

structure determination after the Instrumental Revolution might not count as progress in 

classical chemistry, since the goals differ. On another interpretation, however, the chemical 

example suggests that there may also be progress through discontinuity. First, because 

there were multiple goals at issue, and one was retained. Second, because there was 

progress in the sense of an improved understanding of the meaning of structural 

representations, from representing mere links between atoms to representing chemical 

bonds and spatial properties.480 

As with scientific revolutions involving theory choice, the rationality of science is 

also at stake in episodes of rationalization. Indeed, the very term suggests that science 

becomes more rational in such episodes. Roughly, ‘rational’ here means that the elements 

constituting scientific practice are not simply taken for granted, but are constructed as 

suitable means to its ends in light of the available scientific and technological knowledge. 

Rationality in this sense is not a necessary condition for the acquisition of scientific 

knowledge. Suitable means may arise by chance, or be borrowed from prior uses for 

reasons of convenience, say. But they would not be rational in the sense intended here 

                                                 

480 In his 1936 Presidential Address to the Chemical Society of London, Nevil V. Sidgwick claimed 

that  

our knowledge of the meaning of these structures has developed, especially in the last 20 years, to 

an enormous extent. We have applied to their investigation a whole series of physical methods, 

based on the examination of the absorption spectra in the infra-red, the visible, and the ultra-violet, 

and of the Raman spectra : on the measurement of specific heats and heats of combustion, of the 

dielectric properties, and of the scattering of X-rays and electron waves, as well as on the study of 

chemical dynamics : to mention only the most important. To Kekulé the links had no properties 

beyond that of linking; but now we know their lengths, their heats of formation, their resistance to 

deformation, and the electrostatic disturbance which they involve. Throughout all this work the 

starting point has always been the structural formula in the ordinary organic sense. There is no better 

example of the effect of new discoveries in giving new meaning to a theory while they leave the 

truth of the theory unaffected, and of the way in which modern research, instead of being content 

with evidence of one kind, as were the older organic chemists with that of chemical reaction, draws 

its material from every side, and from every branch of chemistry and physics. (Sidgwick 1936, pp. 

533-534).  
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unless their suitability were explained and optimized in light of the available scientific and 

technological knowledge. 

Why is rationalization rational? Because prior knowledge provides good reasons 

for the criticism and reconstruction of scientific practice, given the ends of the scientists. 

It might seem as if the rationality of the rationalization depends on the rationality of the 

ends. Since this is not the place to get into the nature of instrumental rationality, I will here 

limit myself to making two points. First, the good reasons for the criticism and 

reconstruction do not stem solely from the ends, but also from the prior knowledge; for 

example, the laws of optics provided good reasons for beliefs about the telescope’s 

functioning and for modifications of the instrument, quite apart from whether astronomical 

research (say) was a good reason to invest in it. Second, the end does not determine whether 

the process is rationally coherent. The rational coherence of the process is determined, 

rather, by whether it is believed to be a means to the end. Again, the rationalization of the 

telescope cohered with the end of astronomical research, quite apart from whether the latter 

was a rational end.481  

8.1.3 Demarcation 

There are different problems associated with demarcating science from other 

intellectual endeavors. The classic problem of demarcating science from pseudoscience 

has to do with finding criteria that would distinguish legitimate science from nonscientific 

fields with scientific pretensions.482 The demarcation problem I have in mind, however, 

involves demarcating science from other legitimate intellectual endeavors. Scientists (or at 

least natural scientists, who are the focus of this dissertation) seem to be able to make 

progress better than people in other realms of human intellectual endeavor. How does 

science differ from these other endeavors in such a way as to make better progress? There 

                                                 

481 On the nature of instrumental rationality, see Kolodny & Brunero (2016). 

482 Mahner (2007). 
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is therefore a problem of demarcating science from other intellectual fields in a way that is 

explanatory of the superior progress of the former. 

For example, George Sarton, one of the founders of the academic discipline of 

history of science, wrote in his 1927 work Introduction to the History of Science that the 

purpose of the book was to explain the development of science, which he characterizes as 

“systematized positive knowledge.” He included the qualification that “I am not prepared 

to say that this development is more important than any other aspect of intellectual 

progress, for example, than the development of religion, of art, or of social justice. But it 

is equally important.” He goes on to contrast the progress of science to the lack of progress 

in religion and art, before concluding that “[t]he acquisition and systematization of positive 

knowledge is the only human activity which is truly cumulative and progressive.”483 

Thomas Kuhn, in his 1962 The Structure of Scientific Revolutions, asked 

Why should the enterprise sketched above move steadily ahead in ways that, say, art, 

political theory, or philosophy does not? Why is progress a perquisite reserved almost exclusively 

for the activities we call science? The most usual answers to that question have been denied in the 

body of this essay.484 

Samir Okasha, in his 2002 introductory text Philosophy of Science, asks “what is 

science?” and then contrasts it with art, music, theology, history, astrology, and fortune-

telling.485 Smith (2010) contrasts science with “other areas of inquiry.”486 Once these 

contrasts have been made, the game is then to identify the specific differences that 

distinguish science from these other endeavors and that explain its distinctive progress. 

As is evident from these examples, some historians and philosophers of science not 

only believe that scientific progress is superior to fields that, many would agree, are 

pseudo-scientific (astrology, fortune-telling), but also that it is superior to that of legitimate 

intellectual fields like art, philosophy or political theory. This belief raises some questions. 

                                                 

483 Sarton (1927), pp. 3-4. 

484 Kuhn (1996 [1962]), p. 160. 

485 Okasha (2002), p. 1.  

486 Smith (2010), p. 574. In addition, Niiniluoto (2015) contrasts science with art, religion, 

philosophy, morality, and politics, and Resnik (2000) with literature, philosophy, law, religion, and 

music. 
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First, is it true? Just as we know much more about the natural world than we did at the 

beginning of the modern era, so we know much more about human history than we did 

then too. Our repertoire of artistic techniques has grown also. Some of these other fields 

seem to make good progress, so in what sense is their progress inferior to that of the natural 

sciences? Second, does the belief even make sense? It is not obvious that, say, physics and 

art have enough in common to make the progress of one comparable to the progress of the 

other.  

For my purposes, it is sufficient that scientific progress be distinctive in some 

way(s) from that of these other fields, not that it be superior. That said, I will now note that 

the assumption shared by these authors is that the appropriate genus for the selection of a 

contrast class is that of intellectual and creative activities: science is explained qua 

intellectual and creative activity. Setting the genus this way, however, abstracts from a 

striking feature of natural science: unlike these other endeavors, it is based on a specific 

relation to nature—it is epistemically driven by instrumentally mediated causal interaction 

with nature. In this dissertation, I have been trying to relate science to a different kind of 

endeavor, one that is also based on instrumentally mediated causal interaction with nature: 

ordinary material labor. 

Thus, my answer to the question of how science differs from other intellectual fields 

is that it is a special form of material labor. As such, it makes progress differently because 

of its instrumentally-mediated relationship to nature. This relationship allows the 

incorporation of what science learns into its methods and tools, since these are a part of 

nature as well. How does this fact about how science makes progress differentiate science 

from other intellectual activities, like art, history, philosophy, law, etc.? Certainly, all these 

fields have a cumulative aspect, in that current workers build—in some sense—on prior 

work. Philosophical theorizing is largely driven by criticism of earlier theories. Case-law 

builds on the precedents of prior cases. Historians base their research on the facts and 

interpretations provided by earlier historians. Based on what has been said above, an 

obvious answer is that none of these other activities is based on causal interaction with 
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nature.487 Scientific instruments and techniques embody causal knowledge in order to 

interact causally with nature, which interaction yields more causal knowledge.488 This 

surplus of causal knowledge can then be used to develop new instruments and techniques, 

which may again yield new causal knowledge (see chapter 7). 

Importantly, causal knowledge includes both knowledge-that and know-how. This 

is important because in practice, mere knowledge-that is insufficient to make instruments 

and apply techniques. The combination of the two is needed, a requirement illustrated in 

the account of Descartes’ response to the telescope quoted above. Though the author at 

first claims that Descartes sought to deduce the whole instrument from mathematical 

optics, he finishes on a very Zilselian note, “the methodical application of the experience 

of craftsmen:” Descartes believed that the joint application of theory, systematic research 

and craft know-how were necessary to improve the telescope and microscope. 

This way of demarcating science from other intellectual fields, as a synthesis of 

manual and intellectual labor may be contrasted with more obvious ways of trying to 

demarcate it. For example, science may be viewed as the attempt to understand, explain 

and predict the world we live in; or as making use of distinctive methods of inquiry; or of 

constructing theories with special properties (e.g., falsifiability). My view bears some 

resemblance to the distinctive-methods criterion. The former, however, is focused not so 

much on the precise methods as on the kind of knowledge used and produced in the 

application of the methods and how the knowledge produced gets cycled back into 

research.  

                                                 

487 Art may be a counter-example, since it centrally involves causal interaction with natural 

materials, e.g. a sculptor shaping a quantity of marble. On the other hand, given that Aristotle 

categorized the arts under the productive sciences (see section 3.2), perhaps the apparent counter-

example just means that art, like science, should also be related to ordinary material labor. 

488 Zilsel emphasizes causal “research,” “spirit” or “thinking” as one of the contributions of the 

superior craftsmen to scientific method, though he does not mention causal knowledge or know-

how explicitly. His emphasis on causal research might be a point on which he does not do justice to 

the scholars’ contributions; as discussed in section 3.2 of the dissertation, some of the late 16th and 

early 17th century Scholastics were quite interested in causal analysis.  
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Moreover, the view of natural science as a synthesis of manual and intellectual 

labor suggests a historical approach to the demarcation problem. The usual approach is 

what might be called a “criterial” approach, which aims to identify common features that 

all sciences possess and that distinguish them from non-sciences. This criterial approach is 

very difficult, given the heterogeneous nature of the activities that go by the name of 

science. The approach suggested by the view of natural science as a synthesis of manual 

and intellectual labor is that the natural sciences are self-demarcating. Precisely because 

natural science can materially incorporate what it learns into its work, it creates a context 

of tools and techniques that are themselves “scientific” in the sense of embodying scientific 

knowledge (both knowledge-that and know-how). Descartes’ response to the telescope is 

paradigmatic: he aimed to transform a non-scientific instrument into a scientific one, by 

explaining its functioning in terms of scientific laws and modifying its construction in light 

of those laws and by applying a systematic approach. The approach suggested here is 

historical because it views the distinction between science and other intellectual endeavors 

as the outcome of a process in which science gradually distinguishes itself through its 

reflexive character (the incorporation of scientific knowledge into its tools and techniques). 

It should be noted that this process is driven by advances in MK and IK, and hence know-

how. 

The historical approach transforms the demarcation problem. Rather than ask, how 

are the natural sciences different from other intellectual endeavors? the historical approach 

asks, how did the natural sciences become different from other intellectual approaches? 

Such a process might start with the practice of a pre-scientific activity aimed at 

systematized knowledge of nature, e.g. Scholastic and Renaissance natural philosophy. 

With the discovery of the potential of instruments both for dramatically extending the range 

of experience and also for continual improvement in light of prior knowledge, and with the 

erosion of social barriers described by Zilsel, the practitioners of the pre-scientific activity 

start systematically using and developing instruments and techniques to acquire knowledge 

of nature. They also start systematically using the knowledge acquired to develop 

instruments and techniques.  In doing so, the practice has acquired a mechanism of progress 

that distinguishes it, and increasingly differentiates it, from the old practice and from those 

practitioners who continue to do the old natural philosophy.  
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This mechanism also differentiates natural science from other scholarly pursuits 

like philosophy, literature, or theology that do not make progress in the same way. It also 

differentiates natural science from manual labor, for the latter, once combined with 

scholarly capacities à la Zilsel, received a new goal: knowledge rather than the production 

of useful objects.  

8.1.4  Concluding remarks 

Focusing on the evolution of scientific abilities forced us to broaden our 

conceptions of knowledge and progress. It also forced us to think about the conditions of 

scientific action, and hence about science as a form of labor. Thinking about science as 

labor suggests that the, or at least, a motor of long-term scientific change is the use of prior 

knowledge to make progress in scientific know-how. This process is at the root of 

phenomena that give rise to philosophical issues concerning what can be observed, the 

nature and causes of scientific revolutions, and the specific difference of science from other 

forms of intellectual work. On traditional proposition-based analyses of science, each of 

these issues is construed in terms of a problematic relation involving theory and something 

else: for observability, whether instrumental data allow us to observe the entities referred 

to by theoretical terms; for scientific revolutions, whether the choice between rival theories 

can be rational; and for demarcation, whether adequate criteria can be found for 

distinguishing between scientific theories and pseudo-scientific ones. These questions 

essentially derive from the fundamental question of how to determine which beliefs are 

warranted. This question has much to do with scientific progress, but it is progress 

restricted to propositional knowledge, TK to be exact. 

 If we take seriously the idea that know-how is a genuine form of scientific 

knowledge, however, then these issues need to be deconstructed and reconstructed to see 

what they look like when we describe them in terms of know-how, abilities, action and 

labor. As noted in the previous section, the demarcation problem looks different, when we 

focus on how MK and IK are accumulated, from when we focus on static demarcation 

criteria. Though I am not in a position to do this here, in the future it might be interesting 
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to investigate whether so-called pseudo-sciences can claim a similar track-record of 

accumulation.  

For another example, of the cases studied in this dissertation, Kepler’s is the closest 

to the standard cases discussed in philosophical debates over scientific revolutions. From 

one point of view, it was indeed a situation of theory choice between rival theories of 

vision, where one can ask the usual questions about rationality, incommensurability, 

relativism etc. concerning scientific revolutions. For example, one way to get 

incommensurability into the picture is to focus on the standards of theory acceptance. For 

the Perspectivists, it was important that a theory of vision account for how the picture 

formed in the eye is perceived and judged by the cognitive faculties. Kepler, famously, 

provides no such account. In chapter 3, I argued that this is not a problem on Kepler’s own 

terms because he viewed the eye as a component in a measurement process and was thus 

not trying to provide a theory of ordinary observation at all. So perhaps this was a case of 

methodological incommensurability, since the rival theorists were assuming different 

standards of theory acceptance.489 This is a problem for assessing theoretical progress.  

On the other hand, once vision was viewed as a component in a measurement 

process, then this recognition suggested new ways of eliminating experimental error and 

otherwise rationalizing the measurement process. Kepler was thereby able to rectify many 

errors that had bedeviled astronomical observation in the past. This constituted progress in 

astronomical MK, despite the potential incommensurability in the TK dimension.  

The sketches in this and the preceding three subsections are intended to show that 

science looks quite different from the proposition-based view when described from the 

point of view adopted in this dissertation, though clearly much more work would need to 

be done to determine what difference this makes to traditional philosophical debates.  

                                                 

489 ‘Methodological incommensurability’ is a form of incommensurability Howard Sankey has 

identified in Kuhn’s writings on the topic. According to Sankey (2013), p. 34, methodological 

incommensurability “rests on the assumption that there are no fixed or independent standards to 

which appeal may be made in the comparison of alternative theories. Instead, standards of theory 

appraisal depend upon and vary with theory or paradigm. Competing theories may therefore be 

incommensurable in the methodological sense because there are no shared or neutral standards on 

the basis of which choice between such theories may be made.” 
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8.2 Directions for future research 

This dissertation has been concerned with relating traditional philosophical 

concerns about the nature of scientific change and progress with detailed studies of changes 

at the level of scientific agency and the scientific labor process. The emphasis on agency 

and labor suggests avenues of future research.  

8.2.1 The demarcation problem and scientific progress 

One of the main claims of the dissertation is that knowledge in the form of abilities 

is both a major cause, and constituent, of scientific progress. A major future project that I 

would like to undertake is to examine how this picture of scientific progress affects 

traditional issues in the philosophy of science. A promising target in this regard is the 

problem of demarcating science from pseudo- or non-science. Traditionally, the problem 

has been posed as one of finding a criterion that would demarcate science from pseudo-

science. Another interesting version of the problem, however, is what makes scientific 

progress different from progress in other non-scientific but genuine intellectual endeavors 

(like philosophy, law, music, political theory, etc.). The usual approach is what might be 

called a “criterial” approach, which aims to identify common features that all sciences 

possess and that distinguish them from non-sciences. This criterial approach is very 

difficult, given the heterogeneous nature of the activities that go by the name of science. 

Since the model of scientific progress I have proposed is quite different from traditional 

philosophical models of science insofar as it emphasizes common features of scientific 

work and ordinary material labor, it will be interesting to determine what answers it can 

provide for demarcating science from pseudo- and non-science. Other intellectual 

endeavors do not appear to have a comparable cycle of discovery and instrument 
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construction to power their growth, nor do they have a similar ability to transcend native 

human abilities.  

My ultimate purpose in focusing on this problem is to develop our understanding 

of the nature of scientific method. Because neither abilities, nor technology, have the same 

roles in other intellectual endeavors as they do in science, there is good reason to think that 

the perspective of my dissertation will refresh this classic issue. 

8.2.2 Is empiricism anthropocentric? 

The traditional answer is “obviously yes,” insofar as empiricism amounts to the 

view that “all knowledge rests on experience,” where “experience” is understood as human 

sense-experience. Nevertheless, this view has come under attack in recent decades, as 

philosophers of science grapple with the spectacular success of science in studying 

phenomena inaccessible to the human senses. One focus of the debate has been on what 

aspects of empiricism are still valid, given the fact that our access to such phenomena is 

heavily mediated by instruments. Naturalistically inclined philosophers have tried to 

reinterpret the relevance of sense-experience by reducing it to what it has in common with 

instruments: causal interaction with nature.490 Humphreys (2004) went so far as to claim 

that “scientific epistemology is no longer human epistemology.”491 

In assessing such claims, a question one can ask is, how do humans participate in 

science? Humans and instruments have ‘epistemic roles,’ by which I intend the activities 

carried out by the agent insofar as they contribute to the acquisition of knowledge. Thus, 

explaining, detecting, manipulating, causing, understanding, and interpreting are scientific 

activities (among many others, of course), and it is the role of the agents and instruments 

in scientific work to carry them out. Naturalist views argue that one after the other of these 

roles is being taken over by scientific technology, and that humans are not essential to 

production of scientific knowledge. The perspective of this dissertation, however, suggests 

                                                 

490 For example, see Brown (1987), Delehanty (2005), and Shapere (1982). 

491 Humphreys (2004), p. 9. 
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that these roles are in constant evolution. This raises the question of whether the apparent 

elimination of the human element should not rather be interpreted as a transformation of 

humans’ epistemic roles, and what difference the transformation makes to the nature of the 

knowledge produced. I have made preliminary arguments towards answering these latter 

questions in a manuscript, “Scientific agency and the conceptual dynamics of science.”  

An opposing tendency is to claim that humans continue to play an essential role in 

science, and that scientific technology merely provides the causal background conditions 

for human actions. For example, van Fraassen (1980) famously construes observation as 

an essentially human act, as does Goldberg (2012) with testimony (including testimony 

relying on instruments).492 From the perspective of my dissertation research, one avenue 

for research is whether the more dynamic view of scientific agency adopted there might 

provide a more accurate understanding, than these essentializing views, of how knowledge 

is produced, and of the nature of that knowledge, in contemporary science. I have written 

preliminary arguments concerning the role of humans in science in two manuscripts, 

“Measurement, representation and the scientific concept of observation” and “Belief-

forming processes and instrument-based testimony.” 

 

8.2.3 Social epistemology 

In recent decades, there has been increasing interest among philosophers of science 

in the social practices of scientists and the epistemic effects of these practices. One 

manifestation of this is a growing literature on what Philip Kitcher (1990) called ‘the 

division of cognitive labor.’493 This term reflects the fact that scientific research as a whole 

is organized according to a division of labor, and that this division seems to have something 

very important to do with scientific progress. Questions philosophers have been interested 

in is how this division is effected, how it contributes to scientific progress, and how the 

                                                 

492 van Fraassen (1980); Goldberg (2012), pp. 181-197. 

493 Kitcher (1990), pp. 5-22.  
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former ought to be effected to maximize the latter.494 The focus of this literature has been 

on mechanisms of coordination between scientists, which involve things like reward 

systems, and how these mechanisms affect the allocation of research projects and the 

selection of research strategies. This dissertation, in contrast, has been focused on human-

instrument relations, especially what epistemic roles are played by humans and instruments 

in scientific work and what effect these roles have on scientific change and progress. 

Another focus has been on changes in the organization of the work, and the locus of 

expertise, resulting from changes in human-instrument relations. Though the dissertation 

has focused on specific case studies, it might be worth exploring more general questions 

concerning these issues. For example, how does the distribution of instrumentation, and 

the capital needed to acquire it, across projects affect scientific progress, both its pace and 

its nature? Some philosophers have claimed that an entirely mechanized science is possible 

and desirable (e.g., Humphreys 2004). What exactly are the benefits of direct human 

involvement in scientific work?    

The changing forms of epistemic agency, and the phenomenon of mechanization in 

science, together raise questions about the grounds for assurance in scientific technology. 

As the latter has become more sophisticated and complex, the form of agency needed to 

use, construct and understand it has also changed from an individual agent to a collective 

agent. This was one of the morals of the analysis of the Instrumental Revolution, and is 

besides widely recognized in history and philosophy of science. This trend has 

consequences for assurance in science, especially for whether laypeople can be justifiedly 

assured in the claims of scientists. First, the individual scientist may be ill-suited to be the 

guarantor of the reliability her instruments. A better guarantor may be the scientific 

community whose combined expertise has enabled the production, testing and 

understanding of the instrument. Second, the assurance that the community can offer at any 

given time is the result of a spatially and temporally extended process in which the 

instrument has been studied and checked by members of the community. So one question 

for further investigation is whether collective scrutiny is indeed necessary to provide 

                                                 

494 See Thicke (2016), ch. 3 for a recent critical review of these efforts.  
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assurance, or whether other methods may be capable of doing so.495 This question is 

interesting at least in part because if the first disjunct were true, this would amount to the 

demand that the technology be made as transparent as possible. Transparency, however, 

may conflict with other social practices, like trade secrecy and intellectual property rights. 

So one avenue for further research would be to investigate to what extent the collective 

character of the assurance required for contemporary technology, if it is indeed required, 

can be reconciled with social practices that are resistant to “collectivization.” Moreover, if 

assurance indeed requires a temporally extended and indefinite process of checking, at 

what point can assurance be given by the experts that the technology is reliable? I have 

written preliminary arguments concerning the role of assurance in contemporary science 

in a manuscript, “Belief-forming processes and instrument-based testimony.” 
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APPENDIX A EMPIRICAL EXAMPLES OF CHANGES IN SCIENTIFIC 

KNOW-HOW 

Earlier, I claimed that, on the picture of science that has emerged in this 

dissertation, the motor of scientific change—over the long-term—is not the accumulation 

of TK or EK but rather the use of the five forms of knowledge to make progress in know-

how, MK and IK. This picture may seem controversial, and indeed it is is. Why, one may 

ask, isn’t the motor epochal theoretical advances, e.g., the advent of general 

relativity, quantum mechanics, the theory of evolution by natural selection, the law of 

universal gravitation, and so on and so forth? I observed that major theoretical advances 

often come in the wake of much change in know-how. Below, I provide empirical 

support for this observation, focusing especially on the history of developments in MK 

and IK.  

Scientists tend to be more conscious than many laypeople of the role of 

instruments in furthering scientific progress. For example, the physicist Anthony Zeleny 

devoted his retiring address as vice-president of the American Association for the 

Advancement of Science and chairman of Section B in 1916 to the thesis that scientific 

progress depends on the availability of instrumentation for observation, measurement 

and control. In his address, titled “The Dependence of Progress in Science on 

the Development of Instruments,” Zeleny offers many examples of technology-

dependent progress, among which: 

 The first thermometer was devised by Galileo and consisted of a glass bulb with

an attached tube, the end of which dipped into water. This instrument was

affected by changes of atmospheric pressure and had an arbitrary scale. Over

several generations, these defects were overcome in a developmental process

issuing in the mercury thermometer, a general and reliable means for measuring

temperature. Despite this advance, the range of temperatures that could be

accessed by means of the mercury thermometer remained quite limited. This

limitation was overcome by developing yet other means, such as resistance

thermometers, thermocouples, bolometers, radiation pyrometers, the nitrogen

thermometer, the liquid air machine and the electric arc. The overall result has
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been to extend the range of temperatures accessible for the study of natural 

phenomena from about two degrees Centigrade above absolute zero to 4,000 

degrees. Access to the lower limit of temperature has made possible the 

discovery of superconductivity, and this together with research on conductivity 

at high temperatures has contributed “most significant data toward the 

development of the theory of electric conduction.”496 

 During the period of Aristotelianism’s dominance, various instruments and

phenomena involving vacuums—like the bellows, the siphon, the water pump,

and the fact that water is supported in a filled inverted bottle when its mouth is

in water—were explained by the principle that “nature abhors a vacuum.” The

invention of the barometer by Torricelli in 1643 enabled Pascal to prove the

falsity of this principle in 1647 and to establish the correct foundation for the

theory of hydrostatics.

 Improvements in the diffraction grating and photography made possible the

study of astronomical phenomena, like the Doppler shift of astronomical

objects, as well as that of atomic structure.

Rescher (1978), Chapter VIII cites several reports and reflections by scientists on 

the importance of technological advances for the discovery of new phenomena and the 

study of hitherto inaccessible domains. Many of the documents cited concern physics and 

chemistry in the era of Big Science, where it might be expected that instrumentation plays 

an important role, but not all of them do. For example, he notes Planck’s emphasis on the 

dependence of theoretical advance on the “goading” of experimental results: 

… it was the facts learned from experiments that shook and finally overthrew the classical 

theory. Each new idea and each new step were suggested to investigators, where it was not actually 

thrust upon them, as the result of measurements. 

Rescher leaves out that Planck goes on to list a number of classic physics 

experiments from the turn of the 20th century: 

The Theory of Relativity was led up to by Michelson’s experiments on optical interference, 

and the Quantum Theory by Lummer’s, Pringsheim’s, Ruben’s and Kurlbaum’s measurements of 

496 Zeleny (1916), p. 188. 
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the spectral distribution of energy, by Lenard’s experiments on the photoelectric effect, and by 

Franck and Hertz’s experiments on the impact of electrons.497 

These experiments are worth examining in somewhat more detail here, since they 

were performed before Big Science, presumably during the heyday of low-tech benchtop 

experimentation. Nevertheless, instrumentation was an important facet of most of these 

experiments. For example, Michelson’s famous experiments to detect the ether in the 1880s 

were not designed de novo by him, but rather drew on a French tradition of using 

refractometers to measure refractive index. Moreover, the importance of the instrument 

Michelson eventually used in the experiment was not limited to preparing the way for the 

special theory of relativity, but had many important applications beyond the original 

experiment.498 That is, the instrument was significant in itself as a contribution to scientific 

technology, and not just for its role in a particular experiment.  

Lenard’s experiments demonstrating the photoelectric effect at the turn of the 20th 

century were carried out by means of Crookes tubes—partially evacuated electrical 

discharges tubes— invented by the English physicist William Crookes and others around 

1869-1878.499 Crookes tubes were developed from the earlier Geissler tubes, invented in 

the 1850s, with part of Crookes’ contribution consisting of improvements to the pump used 

to establish the vacuum. The development of applications of Geissler tubes in the second 

half of the 19th century depended on increasingly specialized glassblowing skills and 

ancillary technologies, especially electricity supply and vacuum techniques. The success 

of Lenard’s experiments depended on the higher vacuums that could be achieved starting 

in the 1880s, for only at those vacuums do the discharges turn into the cathode rays studied 

by Lenard, which follow a linear path.500 The Franck-Hertz experiments of 1914 

demonstrating the quantum nature of the atom used apparatus based on that of Lenard, 

though with improved pumping techniques. This improvement allowed Franck and Hertz 

to correct the results of previous experiments on the ionization of gases.501 

                                                 

497 Planck (1937), p. 56. 

498 Warwick (1998), pp. 339-340; Staley (2008), ch. 2-3.   

499 Crookes (1878); Gilman, Peck & Colby (1902), p. 470.  

500 Hessenbruch (1998), pp. 279-281; Wheaton (1978). 

501 Franck (1965 [1925]), p. 99 and 102. 
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 Lummer, Pringsheim, Ruben and Kurlbaum were a group of experimentalists at the 

Physikalisch-Technische Reichsanstalt in Berlin at the end of the 19th century whose work 

provided crucial data for Planck’s derivation of his eponymous radiation law, which 

assumed that energy is quantized. According to Mehra (2001), these researchers had to 

devote a considerable amount of effort to improving the techniques and instruments at their 

disposal in order to acquire these data: 

In the first paper on cavity radiation, Wien and Lummer had already suggested the testing 

of Stefan-Boltzmann’s law and Wien’s displacement law by the new method [of using cavities to 

represent blackbodies] (Wien and Lummer, 1895) … After Wien’s departure for Aachen, Lummer 

looked for collaborators, and he received the help of Ferdinand Kurlbaum and Ernst Pringsheim for 

his work on blackbody radiation. In less than three years these three experimentalists improved the 

techniques of observation to such an extent that the problem of the measurement of Kirchhoff’s 

function [the energy distribution of blackbody radiation] could be attacked in earnest. In performing 

their investigation, however, Lummer and Pringsheim made use of another experimental 

development which concerned the analysis of very long wavelengths. The principal contribution in 

that field had been made by Heinrich Rubens … in 1889 he had already begun to measure the 

wavelengths of invisible infrared radiation with the help of a Rowland grating and the bolometer 

method. During the 1890s he penetrated further into the infrared spectral region by using various 

techniques. Finally, in 1896 he published … a new method for measuring long wavelengths … This 

new method, which was later called the method of ‘residual rays’ … made use of the fact that that 

all substances reflect radiation especially strongly in the region of strong absorption, hence it was 

possible to isolate certain wavelengths by multiple reflection; thus, by 1898, wavelengths of 61.1 μ 

were reached by using a sylvine crystal as the reflecting substance. The tools were thus made ready 

for a fresh attack on the empirical determination of the radiation law.502 

A further experimental contribution that “goaded” the development of quantum 

theory was the set of measurements by Walther Nernst and collaborators of the specific 

heats of materials at low temperature. These measurements showed that the specific heats 

of all metals deviate from the classical Dulong-Petit law at low temperatures. Einstein was 

able to account for the deviation theoretically by assuming that the metal atoms had 

quantized energies. These experiments required the construction of several new 

                                                 

502 Mehra (2001), pp. 34-35. 
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instruments, notably the vacuum calorimeter, an invention which has been credited with 

starting the field of low-temperature physics.503 

 Astronomy and astrophysics provide further examples of new instrumentation 

bringing in new data that force changes in theory. Hubble discovered that the universe was 

expanding, rather than static as had previously been thought, by measuring redshifts, which 

he was able to measure using spectroscopic techniques developed earlier by Huggins and 

Slipher, among others.504 Adaptive optics, an imaging technique that removes the effects 

of atmospheric distortion, has greatly facilitated the search for exoplanets. The 

development of the ruby maser, which has to operate at very low temperatures, allowed 

Arno Penzias and Robert Wilson in 1965 to discover the cosmic microwave background 

radiation (CMB), which supported the big bang cosmology against the rival theory of 

steady-state creation, championed by Fred Hoyle.505 Space-based observatories have also 

informed theory development. For example, the Cosmic Background Explorer satellite or 

COBE, launched in 1989, carried out measurements of the CMB. Since the latter has a 

temperature of 2.7 K, the instruments themselves had to be at least that cold, since 

otherwise their own radiation would swamp out the CMB. To keep the instrumentation 

cold, the COBE satellite carried a 650 liter superfluid helium cryostat. The measurements 

revealed that the CMB was isotropic, a result that disconfirmed non-inflationary big-bang 

cosmological theory. Later very precise measurements by the satellites WMAP (Wilkinson 

Microwave Anistropy Probe, 2001-2010) and Planck (2009-2013) revealed very slight 

deviations from isotropy. These deviations support inflationary theories. At the same time, 

the data from Planck rule out the simpler models of inflationary theory.506 

 I will now mention a few examples from outside of physics. Chaos theory is an 

approach to studying complex systems that makes use of nonlinear mathematical 

equations. It first emerged from the increasing use of computers in meteorology in the post-

World War II era, when computer scientists viewed the complex, nonlinear problems of 

                                                 

503 Ruhemann & Ruhemann (1937), pp. 136-7. See Barkan (1999), ch. 9 for an account of Nernst’s 

low-temperature experiments.  

504 Hetherington (2003a), p. 62 and (2003b), p. 381; Brand (1995), pp. 135-139. 

505 Bertolotti (1998), p. 346; Hetherington (2003c), p. 184. 

506 Planck Collaboration (2015). 
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meteorology as a testing ground and meteorologists used computers as a way to handle 

large quantities of data and to model weather systems. In 1961, the meteorologist Edward 

Lorenz noticed that the outcome of computations on simple nonlinear models was 

extremely sensitive to differences in the initial conditions. This observation was noticed by 

mathematicians, physicists and economists, leading to the emergence of chaos theory, 

which has applications in various fields dealing with apparent disorder, like biology, 

ecology, economics, metereology, astronomy, and physics.507 Electronic computers were 

important in part because the mathematics of chaos theory involves extremely numerous 

iterations of the same mathematical formulae, which makes it impractical for humans to do 

the computations themselves, and in part because computers aid in the visualization of 

fractals.508 

 I will not say much about chemistry here, since a chapter of this dissertation is 

devoted to changes in chemical instrumentation in the 20th century. It is worth mentioning, 

however, the importance of the balance in the 18th century Chemical Revolution. Multhauf 

(1962) points out that “[a]ll forms of quantitative chemistry depend ultimately on 

gravimetric analysis, that is, the weight measurement of the components of a chemical 

reaction in the light of the laws of the conservation of matter and of the constancy of 

chemical composition.” Accordingly, one might try to explain the importance of the 

balance in the Chemical Revolution as following from a decision to apply these laws. 

Multhauf claims, however, that the laws of the conservation of matter and of the constancy 

of chemical composition had been the prevailing assumptions of chemists and natural 

philosophers since antiquity, yet the balance did not become a mainstay of theoretical 

chemistry until the late 18th century.509 He argues that “it was the use of the balance in that 

century which brought a clearer recognition of the significance of the concepts of the 

conservation of matter and of the constancy of chemical composition, rather than the 

                                                 

507 Westwick (2003), pp. 138-139. 

508 Gleick (2008), “A Geometry of Nature” and “Images of Chaos.” 

509 In a similar vein, Poirier (2005), p. 69 claims that the idea that mass is conserved during a reaction 
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performing chemical experiments depends.” 
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reverse.”510  

Here it is worth noting a contrast between Multhauf’s claims and the views of 

Alexandre Koyré (mentioned in the introduction) on the priority of theory over experiment. 

Koyré held that theory had priority over experiment because the latter “presupposes and 

implies a language in which to formulate the questions [asked of nature], and a dictionary 

which enables us to read and to interpret the answers.” Theory provides that language, and 

“obviously the choice of the language, the decision to employ it, could not be determined 

by the experience which its use was to make possible.”511 On a Koyréan view, then, the 

decision to employ these laws could not be determined by experience, since they are what 

allow the formulation of questions that it makes sense to answer by means of the balance, 

as well as providing the vocabulary for interpreting the answers. If true, however, 

Multhauf’s claims inverts the Koyréan schema: rather than that the decision to employ the 

laws determined the nature of experience, it was experience that determined the nature of 

the decision, to employ the laws consciously and systematically. 

 Finally, I will mention a few examples from biology. Dierig (2003) has argued that 

the development of experimental physiology in the late 19th century was intertwined with 

growth of mechanized industry. His key example is an engineering innovation from that 

period, the gas motor, whose initial market consisted of urban craft workers seeking a 

means to compete with large-scale industry. This motor was eventually integrated into the 

material practices of physiology, along with industrial methods of organizing work, like 

large-scale divisions of labor and managerial hierarchies. These innovations changed the 

nature of the experiments that could be performed, allowing experimentation to take place 

over longer periods of time than before, producing massive quantities of data, and 

permitting greater precision, control and standardization than was possible when 

physiology was performed by solitary researchers (or small groups) using manual methods.  

 A more recent example is the use of computers and automation in molecular 

biology.  Hagen (2000) traces the role of computers as important tools in molecular biology 

to the early 1960s. Several factors conspired to encourage molecular biologists to employ 
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computers in their research during this period. High-speed digital computers were 

becoming widely available to academic biologists. The idea that macromolecules carry 

information provided a conceptual link with computer science. An expanding collection of 

amino-acid sequences, partly a result of the automation of protein sequencing, provided a 

source of large quantities of data for which computers were well-suited. These factors 

encouraged molecular biologists to employ computers to solve problems that were 

otherwise infeasible to solve without their computational power, such as the determination 

of the amino-acid sequences of proteins, phylogenetic analysis, and the construction of 

three-dimensional models of macromolecules. According to Hagen, this early use of 

computers paved  the way for the emergence of bioinformatics which, when combined with 

the automation of DNA sequencing, made contemporary genomics possible. The 

combination of sequencing technology and bioinformatics is vividly described in Garcìa-

Sancho (2012): 

These two institutions, the Sanger Institute and the EBI [European Bioinformatics 

Institute], then [early 1990s] embarked on an audacious enterprise: to contribute to the Human 

Genome Project (HGP), an ongoing international effort aimed at the determination and computer 

interpretation of the 3,000 million chemical units which constitute our genetic material. The 

chemical units are called nucleotides …  

The HGP was virtually concluded by 2001, with the publication of a draft covering more 

than 90 percent of the human genome—the complete set of nucleotides forming our genetic material. 

The nucleotides are linearly aligned within the DNA molecule, the double-helical structure which 

had been elucidate some 50 years earlier in nearby Cambridge [on the basis of data from X-ray 

crystallography, itself a recently developed instrumental technique at the time], thereby providing 

evidence that DNA is the material of which genes are made. The Sanger Institute and the EBI are 

currently studying the genome of other species … This work is partly conducted at the Institute’s 

Sequencing Centre, where dozens of aligned apparatuses determine one-by-one the sequence of 

adenines, cytosines, guanines or thymines in the genome of the corresponding species. Techniciancs 

walk around the machines—called sequencers—ensuring the cycle never stops. At the EBI, 

computer suites contain dozens of IT ‘geeks’ visualizing the sequential information on screens and 

building interconnected databases.512 
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