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In this work, two-dimensional infrared (2D-IR) spectroscopy investigates the timescale of

solvent fluctuations for proton and hydride transfers. To elucidate hydride transfer dynam-

ics, the BH stretch of BH –
4 is probed in various solvents from H2O to ionic liquids (ILs).

For proton transfer dynamics, a vibrational probe (SCN– ) explores the three-dimensional

hydrogen bonding environment of a protic ionic liquid (PIL).

BH –
4 is first investigated in increasing NaOH concentrations to develop a molecular un-

derstanding of suppressing the hydrogen evolution reaction. As the concentration increases,

the timescale of frequency fluctuations decrease. Born Oppenheimer molecular dynamics

(BOMD) simulations suggest that a crowding effect of ions around BH –
4 inhibits the re-

arrangement of dihydrogen bonds between BH –
4 and H2O. To completely suppress the

hydrogen evolution reaction, ILs with BH –
4 as the anion are investigated. The linear and

2D-IR spectra of the antisymmetric BH stretch of BH –
4 are complicated due to Fermi res-

onances. The narrow linear and 2D-IR linewidths of BH –
4 in an IL allow a comprehensive

assignment of all diagonal peaks and crosspeaks. Confirmed with a model Hamiltonian, two

anharmonicities for the antisymmetric BH stretch of BH –
4 are characterized.

Polarization- and temperature-dependent 2D-IR is employed to investigate the hydrogen

bonding network of the PIL ethyl-ammonium nitrate (EAN). SCN– experiences two hydro-

gen bonding subensembles in EAN as two separate vibrational relaxation times are resolved.

Furthermore, the polarization-weighted frequency fluctuation correlation function can be sep-

iv



arated into two components: structural spectral diffusion (SSD) and reorientation-induced

spectral diffusion (RISD). For SCN– in EAN, the timescales of frequency fluctuations are

in the rotational limit as the SSD is unresolved. Temperature-dependent 2D-IR extracts

the enthalpy and entropy of activation for frequency fluctuations. For SCN– in EAN, the

enthalpy of activation for rotational motions are similar as to SCN– in H2O, and this sug-

gests that the breaking and forming of hydrogen bonds around SCN– undergoes a similar

mechanism in EAN as in H2O.
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PREFACE

“This is the worst thing that I’ve read in twenty plus years!” These words are not meant to

give you pause in reading my thesis for it’s not a warning, and I do not consider myself to

be a poor, novice writer. The comment and manuscript, however, are related. There may

not be one without the other. As much as we build up our self-confidence as we develop

into an independent scientist, a brutal negative comment will have a lasting impression. We

do have a choice though. The comment can be allowed to be a crutch, an excuse. ‘I’m

not cut out for graduate school and this proves it.’ Is there a way out, i.e. a chance to

ignore significant damage to one’s self-confidence? Another option includes perseverance

and a refusal to run away from inadequate and inappropriate advising comments. While

the comment is an ineffective mentoring technique, somehow it resulted in a much larger

revelation.

I joined a lab in the Spring of 2014. By the Summer of 2014, I have passed my two

semesters of classes and was now ready to throw on my lab coat and goggles to begin the jour-

ney of my doctoral degree. In my undergraduate career at Frostburg State University, I ex-

celled in every aspect and received only two course grades lower than an A. Now, here I am, a

graduate student ready for research and a PhD, please sign here .

I was ready to go there and back again with multiple passes through the so-believed treach-

erous woods of Mirkwood. I would not deviate from the path. In retrospect, no one is ever

ready at the beginning, but like Bilbo Baggins, everyone has a ‘Tookish’ side.

The research I was performing in the lab was not a strength of mine, yet I felt like I

needed to produce rapidly. I came to graduate school with the expectation of performing

ultrafast spectroscopy. My research, however, focused solely around synthesis. In all honesty,

I lacked the skills to be successful, and did not have the support needed to make progress.
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I was encouraged by other group members to write a report to sum up the pitfalls I was

encountering. The ‘finished’ manuscript was met with little enthusiasm.

I didn’t realize that scientific writing is a from of storytelling. As in fiction, an effective

journal article needs to be able to convey a complete and interesting story. King writes in

his book On Writing, “It’s best to have your tools with you. If you don’t, you’re apt to find

something you didn’t expect and get discouraged.”1 I was unaware that my tools were not

developed or at least packed in an efficient, logical manner. I became discouraged to the

point of feeling inadequate. My saboteur took over.

In the Fall of 2014, I joined a new lab led by Prof.Sean Garrett-Roe. The new research

project reinvigorated my drive and gave me a sense of purpose. Also, I spent a tremendous

amount of time invested in developing technical scientific writing skills. What story structure

is the most effective based on your audience? How do I funnel from a broad opening into

my claims? How can I decrease the amount of ‘lard’ in my sentence to improve clarity? I

organized and filled up my writing toolbox.

While teaching physical chemistry labs at Pitt, I realized that students were facing similar

inadequacies in their writing. Without sounding self-righteous, I didn’t want others to

experience the emotional rollercoaster of being unprepared in graduate school. With the

help of Dr. Eugene Wagner, I developed a guided-inquiry based approach to help students

develop their own understanding of how to write an effective scientific story. While my career

goal was to be a professor after I received my PhD, it wasn’t until this experience until I

had a grasp of the important role I can make in someone’s career. I began to realize that I

had a profound interest in chemical education.

I would first like to thank my advisor Prof. Sean Garrett-Roe for setting me up to

succeed at Pitt and my future endeavor into academia. Not only did he provide me with

encouragement and support with my research, but he introduced me to the ideology of

process-oriented guided inquiry learning (POGIL) and connected me to its large community

of educators. I would also like to thank Dr. Paul Donaldson who acted as an unofficial

second advisor. Thanks to Paul, my three visits to the Central Laser Facility (CLF) at the

Rutherford Appleton Laboratory were rich with experience and produced an insurmountable

amount of data. I am looking forward to continuing these collaborations while allowing
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undergraduates to gain an exposure to a state-of-the art research facility. Also, I want to

thank Prof. Tony Parker who supported our initial CLF experiments. More importantly,

he always made sure we had a tea break at 3 pm, just as long as we supplied the cream.

Another unofficial advisor would be Dr. Eugene Wagner who, with an outstanding amount

of enthusiasm, encouraged me to help change the physical chemistry lab curriculum at Pitt.

We are no one without our family and friends. From a young age, my parents instilled

the importance of education and that belief assisted my path into academia. My sister,

Dr. Katie Gares, has had a huge influence on my life and my career in chemistry. She has

always been there to support me every step of the way, and I’m grateful to have her to lean

on. Unfortunately, she performs the ‘wrong’ kind of vibrational spectroscopy that doesn’t

even show up on a FTIR spectrum. Shane Steckman, my best friend for the last decade or

so, has been there to help me decompress with really bad horror movies and buffalo chicken

pizza. May my thesis be dedicated to your white Nike shorts that were lost due to grease

leaking from the box of an XL buffalo chicken pizza. May their sacrifice not be in vain. Also,

I would like to thank Katelin Omecinski and Emily Sample for teaching me the importance

of being yourself.

Finally, I wouldn’t be here, or at least be partially sane, without my partner in crime

Casey Hansen. We met at Pitt and were able to bond over the annoyances of being a

graduate student in STEM. Without her, I’m not sure I would have grown as a person and

developed a level of acceptance of who I am. I’m glad to have her, especially since she puts

up with my excessive buying of books and Funko Pops. Here’s to our future together and

our new adventures.

Of course I would never forget to mention my two cats, Turtle and Tiger. Their unwa-

vering love not only lowered my blood pressure but gave me the emotional support needed

to manage graduate school life. Tiger is a ham if there ever was a ham who was good at

hamming it up. Turtle is the true Queen of the Seven Kingdoms, and I pledge my loyalty

to her forever and always.
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Figure 1: Turtle (left), who is not actually a turtle, and Tiger (right), whose personality

resembles that of Garfield.
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1.0 INTRODUCTION AND BACKGROUND

In this research investigation, the solvent dynamics of hydrides in aqueous solutions, hydride

molten salts, and protonated molten salts are investigated to shed light on how they transfer

hydrides and protons. Two-dimensional infrared (2D-IR) spectroscopy provides information

that can elucidate solvent rearrangement of various hydrogen bonded environments. 2D-IR

has been used broadly in investigations into amides,2–5 H2O,6–10 and ionic liquids (ILs).11–14

There is also a need to explore solvents that are candidates for hydride reduction reactions

and proton conducting electrolytes.

The world energy economy is based mostly on burning fossil fuels. The emitted CO2

threatens the climate at a global scale. This urgent problem can be addressed by efficiently

converting the emitted CO2 to liquid fuel or finding an alternative to current conventional

energy production. One solution is carbon capture and utilization, in which emitted CO2 will

be captured and converted back to fuels using solar energy. This process would be carbon

neutral. Another solution is to develop a hydrogen economy, where solar energy is used to

make H2 (water splitting), and the H2 is utilized in fuel cells. Understanding the facilitation

of hydrides and protons is crucial in optimizing the mediums and ultimately the efficiency

of the process for both solutions.

On one hand, driving hydride transfers remains a key hurdle in reducing CO2 to pro-

duce liquid fuels. There is currently a lack of efficiency in reducing CO2 past formate into

methanol. The poor CO2 reduction efforts are plagued by high over-potentials, poor selec-

tivities, and no strategic method on how to tune solvent compositions. On the other hand,

hydrogen fuel cells are limited by the electrolyte that facilitates proton transfer to O2, thus

making chemical energy. The electrolyte is commonly an aqueous-based polymer with a low

operation temperature, and the conductivity is proportional to the water content.
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a) b) c) d)

Figure 2: The autoionization of H2O (oxygen→ red) by solvent fluctuations activates proton

transfer by surrounding H2O molecules as the hydronium (oxygen → yellow) and hydroxide

(oxygen → blue) ions move away each other. Hydrogen bonds are represented by dotted

lines and the movement of protons are shown by arrows. The figure is taken and adapted

from the work by Geissler et al. using Car-Parrinello ab initio molecular dynamics.15

The lack of a clear mechanistic picture that incorporates solvation dynamics for hy-

dride and proton transport hinders the further development of chemical synthesis, industrial

processing, CO2 reduction, and proton conducting electrolytes.

Hydrogen bond fluctuations are critical to the autoionization of H2O determined from

Car-Parrinello ab initio molecular dynamics (Figure 2).15 During the autoionization of H2O,

a proton is transferred to a nearby H2O molecule forming a pair of hydronium (H3O+) and

hydroxide (OH– ) ions. A series of proton transfers occurs as the H3O+ and OH– move away

from each other. The series of proton transfers along neighboring H2O molecules is like a

proton wire where proton transport occurs via a Grotthus mechanism.

Solvent fluctuations also play a crucial role in hydride transfer. Groenenboom et al.16

show that the solvent plays a critical role in stabilizing an unstable intermediate in the

reduction of CO2 by BH –
4 in an aqueous solution (Figure 3). An unstable BH3 intermediate is

formed as a hydride is transferred to CO2, forming formate. The intermediate is immediately

stabilized by the addition of a single H2O molecule. Upon forming BH3(H2O)– , a proton

from the bound H2O transfers through a rearrangement of neighboring H2O molecules, a

proton wire.
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a) b) c)

Figure 3: A H2O molecule stabilizes the hydride donor as CO2 is reduced to formate. a)

The reduction reaction begins with BH –
4 forming a complex with CO2. b) A hydride is

then transferred to CO2 and a neighboring H2O forms a complex with an unstable BH3

intermediate. c) A proton from the bound H2O is transferred to neighboring water molecules

through a proton wire. Using Car-Parrinello ab initio molecular dynamics, the snapshots

are courtesy of Prof. Keith from a personal communication.16

Reorganization of the hydrogen bonding network is part of the transition state for both

hydride and proton transfers. If the rearrangement does not occur, the reactant does not

cross the reaction barrier. The proton or hydride retreats back to its initial position, i.e. the

reactant well. The reorganization of hydrogen bonds is a necessary component for proton

and hydride transfer.

Furthermore, a jump model is an influential picture for hydrogen bond rearrangement.

From classical molecular dynamics simulations, H2O undergoes large angle jumps (Figure

4).17 During the switching process, there is a lengthening of the hydrogen bond followed by a

rotation. During the rotation, the initial hydrogen bond breaks and a new hydrogen bond is

formed with a neighboring/approaching H2O molecule. While this model is useful, it should

be noted that this picture captures only ∼ 60 % of the trajectories, and there are other

trajectories and motions that contribute to the breaking and forming of hydrogen bonds.

Hydride and proton transfers are coupled to the local reorganization of surrounding H2O

molecules. Therefore, hydrogen bond breaking and forming dynamics are crucial to under-

stand.6–8,12,18,19 In this work, polarization and temperature-dependent 2D-IR are utilized for
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a comprehensive picture of the solvent dynamics of hydrogen bonded environments through

the coupling of vibrational modes, solvation dynamics, and separating structural and ro-

tational motions. For hydrides, the antisymmetric stretch of BH –
4 will directly probe the

rearrangement of dihydrogen bonds. First, the spectrum of BH –
4 needs to be assigned due to

vibrational coupling of modes with vibrational energy states of mixed character. Following

the peak assignments, the timescale of rearrangement of dihydrogen bonds between BH –
4

and H2O will shed light on the decrease of the hydrolysis rate at high NaOH solutions. The

solvation of BH –
4 will be further investigated in a non-aqueous environment where the hy-

drolysis is completely suppressed. For protonated molten salts, SCN– will indirectly probe

the hydrogen bonding network of protic ionic liquids. The rotational component of the sol-

vation dynamics that SCN– experiences in a protic ionic liquid (PIL) will be explored and

compared with SCN– in H2O.

Figure 4: The hydrogen bond switching event occurs by a jump reorientation of one H2O

molecule to an incoming neighbor H2O. a) First, there is a concerted lengthening of the

hydrogen bond as a neighboring H2O approaches. b) The H2O undergoes a large angle

jump breaking one hydrogen bond and c) forming another hydrogen bond as the previous

hydrogen bonding partner moves away. Hydrogen bonds are represented by green lines and

the blue lines are used to represent 3D-space, i.e.the x, y, and z coordinates. The black

arrows indicate motions of the H2O molecules. The figure is taken and adapted from the

work by Laage and Hynes using classical molecular dynamic simulations.17
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1.1 INTRODUCTION TO 2D-IR

1.1.1 2D-IR Spectra

2D-IR spectroscopy reveals frequency fluctuations that relate to fluctuations of the solvent

around a vibrational probe. A 2D-IR spectrum consists of an initial vibrational frequency

correlated to a final vibrational frequency after some time delay (Figure 5). The initial (ω1)

and final (ω3) vibrational frequencies are plotted as the x and y components of a 2D-IR

plot, respectively. A typical 2D-IR spectrum consists of 2 peaks. The ground state bleach,

GSB, and stimulated emission, SE, peak stretches along the diagonal; and the excited state

absorbance, ESA, peak shifts anharmonically from the diagonal peak.
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Figure 5: A typical 2D-IR spectrum consists of a negative, diagonal peak (blue) and a

positive, off-diagonal peak (red). The diagonal peak corresponds to the ground state bleach

(GSB) and stimulated emission (SE), and the off-diagonal peak corresponds to the excited

state absorbance (ESA).

2D-IR is a 3rd order nonlinear spectroscopic technique that uses a 3 pulse sequence with

an emitted photon echo response (Figure 6). The first pump pulse generates a coherence

state, i.e. a linear superposition between the ground state and the first excited state. The

second pump pulse generates a population state, either in the ground or first excited state.

The third pulse, the probe, generates another coherence state in the first or second excited

state. There is then a detected emitted field, known as the vibrational photon echo, that
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heterodyne mixes with a local oscillator. In a pump-probe geometry, the probe is the local

oscillator. The measured signal can be described as

S(tLO; t1; t2) ∝
∫ ∞

0

|ELO(t3 − tLO) + E
(3)
sig (t3; t2; t1)|2dt3 (1.1)

where Esig(t3; t2; t1) is the emitted field signal, i.e. the vibrational photon echo, and ELO(t3−

tLO) is the local oscillator, i.e. the probe. Since Esig(t3; t2; t1) is small, we are only interested

in the cross term, 2(ELO(t3 − tLO)× E(3)
sig (t3; t2; t1)).

Population

Time

Photon

    Echo

t
1

t
2

t
3

Figure 6: 2D-IR consists of a three pulse sequence that emits a photon echo response. The

first coherence time, t1 occurs between the two pump pulses, a population time, t2, occurs

between the second pump and the probe, and a second coherence time, t3, occurs between

the probe and emitted response.

1.1.2 Solvent Dynamics

By varying t2, timescales of frequency fluctuations can be determined for a 2D-IR experi-

ment. Molecules have different vibrational frequencies in different local environments, and

a vibrational band is made up of many Lorentzians, where each Lorentzian has a ‘natural

linewidth.’ (Figure 7 a). As t2 increases, the solvent reorganizes around the molecule. At

early t2 times, the initial vibrational frequency of the molecule will be highly correlated to

its final frequency, and the diagonal peak will be stretched along the diagonal (Figure 7 b).

The initial solvent conditions will change very little around the molecule. As t2 increases,

the molecule will experience different solvent environments and lose the correlation between

the initial and final frequencies (Figure 7 c). The loss in correlation causes the diagonal
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peak to be more round as it loses its memory of its initial conditions (Figure 7 d). The ran-

dom motions of molecules cause a random walk in frequency space, called spectral diffusion.

From the change in shape of the spectra, a frequency fluctuation correlation function (FFCF)

can be extracted by various methods, such as center line slope (CLS),20–22 ellipticities,23,24

nodal-slope,25 and phase-slope,24 to name a few.
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Figure 7: a) A linear vibrational band is composed of several Lorentzian bands. Each

Lorentzian corresponds to the vibrational probe experiencing a different solvent environment.

b) In a 2D-IR spectrum at an early t2, the peak is stretched along the diagonal as the initial

solvent conditions are highly correlated to the final conditions. c) As t2 increases, the solvent

around a vibrational probe will reorganize and the probe will experience different frequencies

in the linear vibrational band. d) In a 2D-IR spectrum at a long t2, the initial frequency is

no longer correlated to the final frequency and the system is spectrally diffused.

Typically, spectral diffusion is treated as though spectral fluctuations in the vibrational

frequency are independent of orientational motions. Therefore, the third order nonlinear

response (R(3)(t3, t2, t1) can be separated into two components

R(3)(t3, t2, t1) = Rv(t3, t2, t1)Rηγβα(t3, t2, t1) (1.2)
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correlating to orientational motions, Rηγβα(t3, t2, t1) and structural fluctuations, Rv(t3, t2, t1).

The Rv(t3, t2, t1) component captures spectral diffusion and is isotropic, i.e. all orientations

of the transition dipole moment (µ) of the vibrational probe are weighted equally. The

Rηγβα(t3, t2, t1) component affects the amplitude of the signal where η, γ, β, and α are the

relative µ directions at each respective pulse, and the vibrational frequency is sensitive to the

orientation of the transition dipole moment of the molecule, µ. In some cases, orientational

motions may contribute to the overall spectral diffusion.

Based on the work by Kramer et al.,26,27 the FFCF correlates to a product of structural

and rotational motions. Therefore, there are two contributions to spectra diffusion: local

structural changes of the solvent (structural spectral diffusion, SSD) and rotational motions

of the molecule (reorientation-induced spectral diffusion, RISD). This theoretical framework

was first developed to explain vibrational sum-frequency-generation spectroscopy.28 In Chap-

ter 6 and 7, the effect of RISD on the FFCF will be explored by probing SCN– in a PIL.

1.2 2D-IR OF H2O

Solvent reorganization timescales in H2O relate to fluctuations of the hydrogen bonding net-

works, such as the breaking and forming of hydrogen bonds. Through a combined effort, the

2D-IR experiments give a physical timescale for the solvent fluctuations, and the molecular

dynamics simulations are able to describe these timescales as specific motions in the solvent,

i.e. the breaking and forming of hydrogen bonds. In Chapter 4-5, the breaking and forming

of dihydrogen bonds between BH –
4 and H2O are investigated.

2D-IR experiments on HOD in H2O directly measures the hydrogen bond fluctuations.

Isotope substitution is used to make a local mode to probe the local structural changes.

Without isotope substitution (neat H2O), the vibrations will be delocalized, and one would

be probing vibrational energy transport, not local structural changes of the solvent. Overall,

three timescales are extracted from the FFCF of HOD in H2O: a fast librational motion,

an intermediate time, and a slow timescale related to the breaking and forming of hydrogen

bonds.6 Similar results are determined for HOD in D2O where the intermediate time (180 fs
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in this experiment) relates to the vibration between the oxygen atoms of two hydrogen

bonded partners.7 In neat H2O, vibrations are delocalized and energy redistribution occurs

on a fast timescale.29 Other isotope substitutions of H2O have been investigated where the

linear absorption lineshape of the OT stretch of HOT in H2O is characterized in comparison

to OH and OD stretches.30

Temperature dependent 2D-IR studies further investigate the activation energy of the

breaking and forming of hydrogen bonds. Nicodemus et al. perform 2D-IR in the all par-

allel polarization on the OH stretch of HOD in D2O, and using an Arrhenius model, an

activation energy (Ea) for the hydrogen bond breaking and forming process is determined

( 3.6 kcal/mol).9 At the magic angle, the Ea (6.1 kcal/mol) is ∼ 4 kT higher compared to

the all parallel value, and they attribute the higher value due to different contributions of

rotational motions.10 These activation energies, however, are much higher than that deter-

mined from classical molecular dynamics simulations,31 and both 2D-IR studies reveal an

unrealistically fast barrier attempt rate (∼ 2 fs). In Chapter 8, the unrealistically fast barrier

attempt rates will be explored in terms of the entropy of activation. It should be noted that

the experimental observable may not be exactly measuring the energy to break and form hy-

drogen bonds, and molecular dynamics are required to elucidate insight into what the 2D-IR

experiments are observing in H2O. Another issue is that the simulations, referenced above,

appear to look like two states (switching between populations). The simulations are relying

on observables from the temperature dependence of an absorption band with an isosbestic

point which leaves out detailed dynamical information of the local structural environment.32

1.3 HYDRIDE DONORS

BH –
4 is a model system for insight in terms of a molecular understanding of the solvation of

hydride donors in the condensed phase. Due to the small size and low computational cost,

ab − intio molecular dynamics are utilized to map the reaction pathway for the hydrogen

evolution reaction (HER) of BH –
4 in H2O33 and explore the free energies associated with the

reaction pathway of CO2 reduction in an aqueous solution with NaBH4.16 BH –
4 is a viable IR
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chromophore with two IR active modes: antisymmetric BH stretch (ν3) and bend (ν4). The

solvent dynamics of BH –
4 in various solvents can be determined with 2D-IR. By probing the

antisymmetric BH stretch as a local mode, the dihydrogen bond rearrangement timescale can

be determined and previously has been on par with the hydrogen bond breaking and forming

timescales in H2O.19 A combination of molecular dynamics (a molecular snapshot of the

solvation environment) and solvaton dynamics (experimental timescales for the breaking and

forming of dihydrogen bonds) crafts a comprehensive picture of the solvation of BH –
4 that

can ultimately be transferred to other metal hydride derivatives. Though the fundamental

science for each of these hydride derivatives is diverse, their overall mechanisms involve net

hydride transfers. Therefore, insights on the solvent dynamics of hydride transfers for BH –
4

could be extrapolated to assist in engineering other metal hydride derivatives.

Over the past 70 years, BH –
4 has been exhaustively studied for its high hydrogen storage

capacity and strong reduction potential. In the 1950’s, the HER of BH –
4 in H2O was

of interest for producing H2(g). In H2O, every mole of NaBH4 contains the potential to

generate 4 moles of H2(g)

NaBH4(aq) + (2 + x)H2O(l)→ NaBO2 · xH2O + 4 H2(g) (1.3)

where the half-reactions are

BH −
4 (aq) + 4OH−(aq)→BO −

2 (aq) + 2H2O(l) + 4H + 4e− (1.4)

4 H2O(l) + 4H + 4e− → 4H2(g) + 4OH−(aq). (1.5)

Different studies vary the metal counterion, Al,34 Li,35 and Na36,37, to see an effect on the

production and rate of H2(g) generation.

Further studies, in the late 1950’s and early 1960’s, investigated the effect of pH and

found that the decrease of the pH leads to a faster rate for the HER. Varying the pH leads

to three rate constants that contribute to the overall rate for the BH –
4 HER: one based on

[H3O+], one for [H2O], and one for the concentration of a general acid, [HA].38,39

d[BH −
4 ]

dt
= −kH3O+ [H3O+][BH −

4 ]− kH2O[H2O][BH −
4 ]−

∑
i

kHAi
[HAi][BH −

4 ] (1.6)
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Overall, the first step of the BH –
4 HER under acidic conditions is proposed as first-order

with respect to the reactant. In terms of the pH, kH3O+ [BH –
4 ] (∼ 5 × 106 s−1M−1) is 1018

faster than kH2O[BH –
4 ] (∼ 5× 10−9 s−1M−1).37–42 Therefore, in the absence of HA, the rate

is dependent on the slow kH2O. In all studies, the respective rate constants fall into good

agreement.

Despite broad agreement on the overall rate of reaction, there is disagreement over the

elementary reaction steps. Based on isotope kinetic studies from the 1960’s, the initial step

is proposed as a loss of a H– 40,42

BH −
4 → BH3 + H− (1.7)

or an addition of a H+ to BH –
4 .43

BH −
4 + H+ → BH5 (1.8)

Other hydroxyborohydride intermediates are proposed, such as BH3(OH)– , BH2(OH) –
2 ,

and BH(OH) –
3 .38,39,44–50 The most probable intermediate is BH3(OH)– determined through

11B-NMR; all subsequent reaction steps are very rapid with no evidence of other interme-

diates.43 A comprehensive molecular dynamic study reports that the overall HER in H2O

is exothermic involving an initial BH5 intermediate and a metastable hydroxyborohydride

intermediate, BH3OH– .33 Thus, the initial addition of a H+ to BH –
4 is indicative of the

strong dependence on pH in the classic rate studies. The other rates for the other hydrox-

yborohydride intermediates are exothermic steps that perhaps appear on an ultrafast time

scale. Perhaps, the addition of acid lowers the activation for the initial rate determining

step. Thus, manipulating the pH has a drastic effect on the HER.

Another interesting research path for BH –
4 is to be a model for the facilitation of CO2

reduction. A quintessential challenge in CO2 reduction chemistry is understanding how to

selectively reduce CO2 instead of protons. BH –
4 facilitates CO2 reduction to formate in

various aqueous solvents, but CO2 reduction is in direct competition with the HER.51

BH−4 (aq) + CO2(g) + nH2O(l) + −−→ B(4−n)(OH)(n+1)(aq) + HCO2(aq) + H+(aq) (1.9)

11



To improve the efficiency of CO2 reduction, the competing HER of a hydride donor needs to

be suppressed.51 A possible solution to minimize the HER is using a water-miscible aprotic

solvent, like an IL, with the addition of BH –
4 . ILs are good candidates for CO2 reduction

due to low vapor pressures allowing high operating temperatures,52–54 high selectivity where

ILs can be designed for to capture and reduce CO2 through myriad combinations of anions

and cations,55–57 and high CO2 solubility with efficient facilitation of CO2 reduction.58–60

Understanding solvent dynamics becomes crucial as the solvent molecules play a critical role

in the stabilization of the [BH3−H−CO2]− intermediate, a molecular species that is found

to be unstable in quantum chemistry calculations with just a dielectric continuum.16

P

BH
4

-

N N

BH
4

-

a) b)

( )
7

Figure 8: BH –
4 based ionic liquids are molten salts that consist of a contact pair of a

BH –
4 anion and an aprotic cation, such as a) 1-butyl-3-methylimidazolium (BMIM) or b)

tetradecyl(trihexyl)phosphonium (P14,6,6,6).

A more direct approach of minimizing the HER involves using the novel BH –
4 based ionic

liquids as a candidate for CO2 reduction, where BH –
4 is the anion.61 Currently, BH –

4 based

ionic liquids are being studied for hydrogen storage applications, i.e jet fuel alternatives.62,63

Two interesting subjects for CO2 reduction involve the common 1-butyl-3-methylimidazolium

(BMIM) cation and a bulky tetradecyl(trihexyl)phosphonium (P14,6,6,6) cation (Figure 8).

[BMIM][BH4] is a selective reducing agent,64 while sterically hindered phosphonium ILs

have been shown to be a good absorbent for CO2.65 Unfortunately, there is a current lack of

molecular understanding for how the hydride behaves in these IL environments that inhibits

their development as candidates for CO2 reduction.
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1.4 2D-IR OF ILS

Most ILs can be classified into two groups: aprotic and protic. Most of the current 2D-IR

studies of ILs focus on aprotic ILs. The addition of a viable vibrational chromophore is a

common approach at elucidating structural dynamics from aprotic ILs where the vibrational

chromophore has a reasonable extinction coefficient (> 100 M−1cm−1) and its IR mode

appears in a region with no strong solvent bands. 2D-IR experiments using SCN– as a

vibrational probe in imidazolium based ILs reveal that the nitrile stretch of SCN– is a good

reporter of the ion cage breaking and forming timescales.11 and a good reporter on water-

induced dynamical heterogeneity in ILs.12 A further temperature dependent 2D-IR study

extracts activation energies for motions experienced by SCN– in a homogoulous series of

imidazolium based ILs of varying alkyl chain length.14 Other vibrational probes have also

been used to probe solvation dynamics in ILs, such as methanol and CO2. Kramer et al.

showed that the reorientation motions of methanol in an imidazolium IL contribute to the

spectral diffusion.27 Also, the solvation dynamics of CO2 absorbed in ILs are determined13

and the development of a spectroscopic map to connect molecular dynamic simulations to

2D-IR experiments.66–68 Current focus is on deep eutectic solvents that involve ILs and a

hydrogen acceptor component, and the hydrogen bond breaking and forming timescales are

affected by the heterogeneity of the mixture.69,70

1.5 PROTONATED MOLTEN SALTS

The other class of ILs, protic ionic liquids (PILs), are molten salts at room temperature com-

posed of a Brønsted acid-base pair. The solvation dynamics of aprotic ionic liquids are well

established and trend linearly with viscosity.13,14,71 PILs have mainly been characterized by

just bulk characteristics (viscosity, ion mobilities, molar volume, vapour pressure, etc.),72–76

yet a more intriguing question is how a PIL facilitates proton transfer.

A PIL is formed through an acid-base neutralization reaction of a Brønsted acid (HA)
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and Brønsted base (B) pair.

HA + B −−→ HB+ + A− (1.10)

The first ionic liquid synthesized was a PIL in 1914 by titrating nitric acid into a solution

of ethyl-amine.77 Typically, PILs are characterized by their ∆pKa, which is the difference

between the pKa of the base and the pKa of the acid.78

∆pKa = pKa(base) − pKa(acid) (1.11)

A high ∆ pKa (>10) indicates complete proton transfer, but a low ∆pKa (<10) indicates

that the acid does not fully dissociate and there is incomplete proton transfer. At lower

∆pKas, neutral Brønsted acid (HA) and Brønsted base (B) molecules remain in solution

along with their respective cation (HB+) and anion (A– ) products.

Ethyl-ammonium nitrate (EAN) is a ‘good’ PIL, ∆pKa = 10.93, and an intriguing

candidate to replace water as an electrolyte in hydrogen fuel cells.79 Since EAN has a ∆pKa >

10, it behaves as a free diffusion of ions.72,74,75,78 There is also evidence that suggests EAN

is a good CO2 absorbent80 (Henry’s law constant for CO2 in EAN is 20 MPa)81 and EAN

has a low vapor pressure, an advantageous characteristic of ILs.82 In comparing EAN to

H2O, far-IR spectroscopy indicates that the hydrogen bond strength is similar to that of

H2O,83 and IR-pump IR-probe spectroscopy reveals a possible large jump angle indicative

of a proton jump mechanism.84 Hayes et al. discuss that EAN forms bifurcated hydrogen

bonds, a three-centered hydrogen bond, due to how the nanostructure can accommodate

them.85

The 3-D hydrogen bonding network of EAN includes charge dense (ammonium cation

and nitrate anion) and charge depleted (alkyl chain) regions that lead to structural and dy-

namical heterogeneity.86 In the last 10-15 years, the structural heterogeneity of ionic liquids

has been shown experimentally using X-ray diffraction and neutron scattering.87–89 Molecu-

lar dynamics with atomistic modeling show evidence of the heterogeneity of ILs that consist

of short (polar regions) and long (alkyl chain) length scales.89–92 The structural heterogeneity

in ILs leads to dynamical heterogeneity. Rotational motions of methanol in an IL correlate

to motions suggestive of interactions in stiff and soft environments where these regions are
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classified by diffusive timescales, i.e. timescales are slower in the frictionally stiff region.93,94

With 2D-IR, inorganic and organic azides report different timescales of structural reorga-

nization in imidazolium salts, so this suggests that an azide is interacting with different

structures of the ILs based on its relative size and properties.95

In Chapters 6 and 7, SCN– is used to probe the structural and dynamical heterogeneity in

EAN through a combination of polarization- and temperature-dependent 2D-IR experiments.

This analytical method can then be used as a tool to help develop other PILs as candidates

for proton conducting electrolytes.

1.6 SUMMARY

The research investigations in Chapters 4-7 are inter-related through the exploration of hy-

drogen bonding networks. There are two sub-categories: hydride transfer in H2O (Chapters

4 and 5) and proton transfer in a molten salt (Chapters 6 and 7). The solvent dynamics

of these hydrogen bonded environments are important to understand to have a full picture

of the chemistry and physics in the condensed phase. The investigations follow three main

themes: vibrational mode coupling, solvent dynamics, and separating rotational and struc-

tural motions from solvent fluctuations. Using polarization- and temperature-dependent

2D-IR, three different hydrogen bonding environments are investigated: hydrides in aqueous

solutions, hydride molten salts, and protonated molten salts.

First, the investigation begins with the solvation dynamics of a common hydride donor,

BH –
4 . The 2D-IR spectra of BH –

4 in various media (aqueous and non-aqueous) illustrate

what can be understood with 2D-IR spectroscopy through interpretation of cross-peaks that

correlate to inter- and intra-molecular coupling. Furthermore, the loss of correlation in

frequency space is captured by the FFCF thus resulting in a timescale of the rearrangement

of dihydrogen bonds around the hydride donor. By increasing the base concentration, a

change in the timescale of solvent reorganization provides insight as to how the rate of the

HER is suppressed. In Chapter 5, an investigation on the novel BH –
4 based ILs reveal the

reorganizational timescale of the cations around the anion where the HER is completely
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suppressed, i.e. in the absence of H2O.

Next, we will investigate the PIL EAN through the use of a vibrational probe, SCN– .

Polarization- and temperature-dependent 2D-IR is used to investigate two motions that

contribute to spectral diffusion: rotational (RISD) and structural (SSD). On one hand,

polarization-dependent 2D-IR isolates the rotational and structural components that con-

tribute to the loss of correlation in frequency space. On the other hand, temperature-

dependent 2D-IR accesses an activation energy correlated to the rearrangement of hydrogen

bonds around SCN– . Thus, the activation energy can be further separated into rotational

and structural components as well. As rotations are a key component to hydrogen bond

switching in a jump model,17 rotational component of SCN– in EAN and in H2O will assist

in comparing the 3-D hydrogen bonding networks of the two solvents.
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2.0 THEORY

In this chapter, we will build off of the overview of 2D-IR spectroscopy presented in Chapter 1.

The theory in this section was initially laid out in detail by Hamm and Zanni.96

2.1 RESPONSE PATHWAYS

In 2D-IR, the macroscopic polarization (P (3)(t)) is detected, and it can be described as a

trace of the interaction between the transition dipole moment operator (µ̂) and the density

matrix (ρ̂(3)(t)).

P (3)(t) = Tr(µ̂ρ̂(3)(t)) (2.1)

As a function of time, the macroscopic polarization changes based on the response of the

molecule. P (3)(t), however, does not directly equal the third order non-linear response

(R(3)(t3, t2, t1) but is convoluted with the electric field of the laser pulses: pump 1 and 2

(E1(t− t3 − t2 − t1) and E2(t− t3 − t2), respectively) and the probe (E3(t− t3)).

P (3)(t) ∝
∫ ∞

0

dt3

∫ ∞
0

dt2

∫ ∞
0

dt1E3(t− t3)E2(t− t3 − t2)

× E1(t− t3 − t2 − t1)R(3)(t3, t2, t1)

(2.2)

where t1 is the first coherence time, t2 is the population time, and t3 is the second coherence

time.

Using time-dependent perturbation theory and the Liouville-von Neumann equation,

R(3)(t3, t2, t1) can be written as nested commutators, where ρ (density matrix) can be written

17



as |ψ〉 〈ψ|.

R(3)(t3, t2, t1) ∝
∫ ∞

0

dt3

∫ ∞
0

dt2

∫ ∞
0

dt1 i〈µ3(t3 + t2 + t1)[µ2(t2 + t1),

[µ1(t1), [µ0(0), ρ(−∞)]]]〉
(2.3)

The E(t) can act on either side of the ρ, since each E(t) also has a complex conjugate

(E∗(t)). The interactions of laser pulses on the density matrix leads to different response

pathways that contribute to the 2D-IR signal. Conventionally, interactions on the left side of

the density matrix will be by E(t) and interactions on the right hand side will be by E∗(t).

For a single local mode, there are 6 unique possible pathways along with their complex

conjugates. Looking at one of the response pathways, R
(3)
1 (t3, t2, t1), the macroscopic polar-

ization shows that there is one interaction (E1(t− t3 − t2 − t1)) on the left side of the ρ and

two interactions (E∗2(t− t3 − t2) and E∗3(t− t3)) on the right side of the ρ.

P
(3)
1 (t) ∝

∫ ∞
0

dt3

∫ ∞
0

dt2

∫ ∞
0

dt1E
∗
3(t− t3)E∗2(t− t3 − t2)

× E1(t− t3 − t2 − t1)R
(3)
1 (t3, t2, t1)

(2.4)

Thus, R
(3)∗
1 (t3, t2, t1), the complex conjugate of R

(3)
1 (t3, t2, t1), has one interaction on the

right hand side of the ρ and two interactions on the left side of the ρ. R
(3)
1 (t3, t2, t1) and

its complex conjugate can be expanded in terms of the transition dipole moment at each

interaction with the laser field.

R
(3)
1 (t3, t2, t1) ∝ i〈µ3µ1ρ(−∞)µ0µ2〉 (2.5)

R
(3)∗
1 (t3, t2, t1) ∝ i〈µ2µ0ρ(−∞)µ1µ3〉 (2.6)

Double-sided Feynman diagrams are a useful tool to represent the response pathways

(Figure 9). A solid arrow represents an interaction between the density matrix and each

pulse. The interactions walk up and down the vibrational energy ladder experiencing the

first and second excited state manifolds. An arrow towards the ρ represents an interaction

with the E(t) that excites ρ, and an arrow away from the ρ represents an interaction with
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the E(t) that de-excites ρ. The emitted vibrational photon echo is represented as a dashed

arrow away from the ρ.
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Figure 9: A total of 3 rephasing (R
(3)
1 (t3, t2, t1), R

(3)
2 (t3, t2, t1), and R

(3)
3 (t3, t2, t1)) and non-

rephasing (R
(3)
4 (t3, t2, t1), R

(3)
5 (t3, t2, t1), and R

(3)
6 (t3, t2, t1)) pathways contribute to the 2D-IR

spectra for a single oscillator. The Feynman diagrams help visualize the pathways showing

interactions (arrow) up or down the vibrational energy ladder on both sides of the density

matrix. The emitted photon echo response is represented by a dashed arrow. Each pathway

has a complex conjugate.

R
(3)
1 (t3, t2, t1) shows a response pathway for the stimulated emission (SE). The first pulse

interacts to the right of the density matrix generating a coherence state in the first excited

state (ρ = |0〉 〈1|) at t1. Another interaction with the density matrix (on the left side)

causes a population state in the first excited state (ρ = |1〉 〈1|). At t3, the probe interacts

to the right hand side of the density matrix generating a different coherence state as that

during t1 followed by the emitted vibrational photon echo. Overall, expanding the nested

commutators in R(3)(t3, t2, t1) reveals 4 pathways accessing the first vibrational excited state

(R
(3)
1 (t3, t2, t1), R

(3)
2 (t3, t2, t1), R

(3)
4 (t3, t2, t1), and R

(3)
5 (t3, t2, t1)) while two other pathways

access the second vibrational excited state (R
(3)
3 (t3, t2, t1), and R

(3)
6 (t3, t2, t1)). A similar

analysis can be performed on the other 5 pathways for a single oscillator system.

Both R
(3)
1 (t3, t2, t1) and R

(3)
4 (t3, t2, t1) correlate to the SE, but these pathways can be

further separated as rephasing and non-rephasing, respectively (Figure 9). A rephasing
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pathway (R
(3)
1 (t3, t2, t1), R

(3)
2 (t3, t2, t1), and R

(3)
3 (t3, t2, t1)) has a different coherence during

t1 than t3, and a non-rephasing pathway (R
(3)
4 (t3, t2, t1),R

(3)
5 (t3, t2, t1), and R

(3)
6 (t3, t2, t1))

has the same coherence state during t1 and t3. Similar to the SE, the ground state bleach

(R
(3)
2 (t3, t2, t1), R

(3)
5 (t3, t2, t1)) and the excited state absorption (R

(3)
3 (t3, t2, t1), R

(3)
6 (t3, t2, t1))

consists of rephasing and non-rephasing pathways. The double-sided Feynman diagrams can

help visualize a more complicated system where two or more vibrations are coupled.

2.2 ASSIGNING CROSSPEAKS
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Figure 10: A simulated 2D-IR spectrum is constructed of two coupled vibrations (ωCO, 1 and

ωCO, 2) through response function formalism. The coupling is reflective of two C=O modes

in a Rh complex.96 a) The linear spectrum shows two independent vibrational modes (ωCO, 1

and ωCO, 2), and the 2D-IR spectrum shows 4 crosspeaks indicating coupling between the two

vibrational modes. b) Each crosspeak consists of a unique response pathway. The density

matrix is written to include both vibrations (|ωCO, 1ωCO, 2〉 〈ωCO, 1ωCO, 2|) and shown here

are the rephasing pathways where there are also non-rephasing pathways that contribute to

the signal.
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Where 2D-NMR shows the coupling between spins, coupled vibrations show up as crosspeaks

in a 2D-IR spectrum. Crosspeaks can correlate to chemical reactions,97 conformational

changes,98 and vibrational energy transfer.99 For example, in the case for two C=O modes

in a Rh complex, the normal modes are coupled due to π backbonding into the d-orbitals of

Rh.

A new term needs to be added to the Hamiltonian to account for the coupling of two local

modes (ωa and ωb). The Hamiltonian is expressed in terms of raising (b†) and lowering (b)

operators. The first two terms are the time-independent Hamiltonian for each local mode.

The second term includes the coupling term needed to model crosspeaks for ωa and ωb where

β is the coupling constant. The last two terms are to account for the ESA where ∆ is the

local mode’s anharmonic shift.

H =~ωa(b†aba +
1

2
) + ~ωb(b†bbb +

1

2
) + βab(b

†
abb + b†bba)

− ∆a

2
b†ab
†
ababa −

∆b

2
b†bb
†
bbbbb

(2.7)

Four crosspeaks appear when simulating the 2D-IR spectrum of two coupled vibrations

with response function formalism (Figure 10a). A crosspeak has a different ω1 than ω3. For

crosspeak 1, the local mode is initially excited at ωCO, 1 during t1 and excited at ωCO, 2 during

t3.

The response pathways show how the vibrational energy is transferred between coupled

vibrations (Figure 10b). The response pathway of crosspeak 1 consists of a first coherence

state of |1 0〉 〈0 0| (ω1 → ωCO, 1) and a second coherence state of |0 1〉 〈0 0| (ω3 → ωCO, 2).

Crosspeak 1 is negative with a population state in the ground state of both ωCO, 1 and ωCO, 2.

The corresponding positive peak (crosspeak 2) consists of the second probe interacting on

the right side of the ρ that generates a population state in the first excited manifold for

ωCO, 1 (|1 0〉 〈1 0|). This analysis can be adapted to more complicated systems to assist in

assigning multiple crosspeaks in a 2D-IR spectrum, like in Chapter 4 and 5 where three

coupled vibrational modes of BH –
4 are investigated.
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2.3 FREQUENCY FLUCTUATION CORRELATION FUNCTION

Initially used to describe the dephasing in NMR, Kubo’s stochastic theory of lineshapes

describes a semiclassical theory of dephasing.100 In this limit, the solvent is treated clas-

sically and the vibrational probe is treated quantum mechanically. Solvent fluctuations

compress and stretch the potential of the vibrational probe modulating the vibrational fre-

quency. Thus, the time-dependent frequency of the vibrational probe can be expressed with

two terms: a time independent average frequency (ω01) and a time dependent fluctuating

component (δω(t)).

ω01(t) = ω01 + δω01(t) (2.8)

As time progresses, the vibrational frequency changes as the solvent environment around

the molecule evolves. Over a time trajectory, the instantaneous frequency for a single

molecule fluctuates around its mean value following Gaussian statistics, i.e. the distribu-

tion of frequencies is Gaussian. Thus, the oscillation period for a single molecule changes in

time due to the instantaneous frequency changing. For an experiment, we will be looking

at an ensemble average of the time trajectory of many molecules. At an early time, the

molecules will be in phase with each other and slowly become out of phase (dephase) at

longer times.

Based on this idea of dephasing, an analytical solution can describe the frequency fluctu-

ation correlation function, FFCF. First, the time evolution of the density matrix of a single

molecule can be written at the first coherence state as

d

dt
ρ01(t) = −iω01(t)ρ01(t). (2.9)

For simplicity, we will initially ignore the interactions with the electric field and with the

dephasing term. Therefore, we can rewrite the element of the density matrix for the coherence

state as

ρ01(t) ∝ e−iω01t. (2.10)

In our experiment, however, we have a laser focused on a large amount of molecules all in

slightly different solvent environments. Therefore, we need to include Equation 2.8, where
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there is a component to account for the random fluctuations in the vibrational frequency,

but with a time average, this term vanishes (〈δω01〉 = 0). The density matrix can now be

expressed as

ρ01(t) ∝ e−iω01t〈e−i
∫∞
0 δω01(τ)dτ 〉 (2.11)

where the second term of this equation (〈e−i
∫∞
0 δω01(τ)dτ 〉 ) is the phenomenological treatment

of dephasing (e−t/T2). The dephasing time (T2) is expressed in terms of the pure dephasing

time (T ∗2 ), the population relaxation time (T1), and the orientational relaxation time (Tor).

1

T2

=
1

2T1

+
1

T ∗2
+

1

3Tor
(2.12)

Unfortunately, Equation 2.11 can be complicated to work with. If the fluctuations follow

Gaussian statistics, then we can reorder the ensemble average into a more ‘user-friendly’ term

using a cumulant expansion. First, using a more familiar mathematical series, an average of

an exponential can be expressed in terms of x using a power series.

〈e−ikx〉 =
∞∑
n=0

(−ik)n

n!
〈xn〉 (2.13)

The same exponential average can be expanded in terms of central moments of the distribu-

tion that are identified as the cumulants.

〈e−ikx〉 =
∞∑
n=0

(−ik)n

n!
〈(x− x0)n〉 (2.14)

Expanding the cumulant out to the first three terms, we see that the first cumulant is the

mean,

c1(x) = 〈x〉 (2.15)

the second cumulant is the variance,

c1(x) = 〈x2〉 − 〈x〉2 (2.16)

and the third cumulant is the skewness.

c1(x) = 〈x3〉 − 〈3x〉〈x2〉+ 2〈x〉3 (2.17)

23



The second term in Equation 2.11 can be expanded out in terms of δω01. Gaussian statistics

implies that higher order cumulants are zero. Thus, for a Gaussian distribution, we can

truncate the cumulant expansion at the second order.

〈e−i
∫ t
0 ω01(τ)dτ 〉 = 1− i

∫ t

0

dτδω01 −
1

2

∫ t

0

∫ τ ′

0

dτ ′dτ ′′〈δω01(τ ′′)δω01(0)〉 (2.18)

Defining 〈e−i
∫ t
0 ω01(τ)dτ 〉 as eg(t), the equation can also be rewritten in an ‘easier to digest’

form.

〈e−i
∫ t
0 ω01(τ)dτ 〉 = 1− g1(t)− 1

2
g2(t). (2.19)

The second term, g1(t), vanishes due to taking the ensemble average of the random frequency

fluctuations (〈δω01〉 = 0). Therefore, the leading term is g2(t), and it is the lineshape function

for the FFCF.

Kubo introduced an exponential ansatz to represent the FFCF

〈δω01(τ)δω01(0)〉 = ∆ω2e−t/τc (2.20)

where ∆ω2 is the frequency fluctuation amplitude and τc is the correlation time of frequency

fluctuations. The Kubo lineshape function is revealed by integrating Equation 2.20 twice.

g(t) = ∆ω2τ 2
c [e−t/τc +

t

τc
− 1] (2.21)

The linshape function can be discussed with respect to three limits: 1) slow modulation, 2)

fast modulation, and 3) a convolution of 1 and 2.

In the fast modulation limit (∆ω ·τc << 1), frequency fluctuations are small and/or very

rapid. The lineshape function can be expressed as a delta function

g(t) = ∆ω2τct→ t/T ∗2 (2.22)

where T ∗2 is the pure dephasing time (∆ωτc). The absorption lineshape in this limit is a

Lorentzian

A(ω) ∝ <
∫ ∞

0

e−(ω−ω01)e−g(t) ∝ 1/T ∗2
(ω − ω01)2 + 1/T ∗22

(2.23)

where g(t) is defined in Equation 2.22. Since T ∗2 is defined as (∆ωτc)
−1, the fast modula-

tion limit has a fast time resulting in a linewidth that is narrower than the distribution of

24



frequencies. Therefore, this limit is the homogenous limit. Thus, the timescale of frequency

fluctuations is in the motionally narrowing limit.

In the slow modulation limit (∆ω · τc >> 1), frequency fluctuations occur on a slower

timescale than the the time needed to resolve the frequency difference ∆ω as being a different

frequency. The lineshape function can be reduced to

g(t) =
∆ω2

2
t2 (2.24)

where the FFCF is approximated as the distribution of frequencies, ∆ω2. The lineshape in

this limit results in an absorption is a Gaussian.

A(ω) ∝ <
∫ ∞

0

e−(ω−ω01)e−g(t) ∝ e−
(ω−ω01)2

2∆ω2 (2.25)

This limit is in the inhomogenous limit.

There may be systems where the FFCF decays as a multi-exponential

g(t) =
t

T ∗2
+

∆ω2

2
t2 (2.26)

that consists of contributions from both the fast and slow modulation limit (Equations 2.22

and 2.24). The absorption for this lineshape function is a Voigt profile that is a convolution

of a Lorentzian (fast modulation) and a Gaussian (slow modulation) lineshape. An experi-

mentally extracted FFCF may expand beyond these three limiting cases: 1) fast modulation,

2) slow modulation, and 3) a convolution of these two limits. Equation 2.21, however, is

valid along all dynamical regimes.
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2.4 EXTRACTING THE FFCF

The change in shape of the 2D spectra can be quantified by various methods – ellipticities23,24,

center-line slope (CLS)20–22, nodal-slope25, and phase-slope24. In this work, CLS is used.

Building off the previous discussion of the FFCF, the quantities from these various methods

will be shown to be equal to the normalized FFCF in the limit of inhomogeneous broadening.

The focus will be directed on two of the above methods: ellipticity and CLS.

For the pathways that contribute to the GSB+SE peak, the third order response function

(R
(3)
0→1(ω1, ω3, t2)) can be described in terms of the FFCF (C1(t)) as shown as the leading

term in Equation 2.18.20,23

R
(3)
0→1(ω1, ω3, t2) =

4π

(C1(0)2 − C1(t2)2)1/2
× exp(−C1(0)ω2

1 − 2C1(t2)ω1ω3 + C1(0)ω2
3

2(C1(0)2 − C1(t2)2)
) (2.27)

Equation 2.27 can be expanded in terms of 2D-diagonals that are ellipses tilted at 45◦.23

Therefore, the 2D-IR diagonal and off-diagonal peaks are approximately equal to 2D-Gauss-

ians. A combination of two 2D-Gaussian functions can be used to fit the diagonal (GSB+SE)

and off-diagonal (ESA) peaks at a given population time (t2),

G(x, y) =A(e−((x−x0)+(y−y0))2/2σ2
D × e−((y−y0)−(x−x0))2/2σ2

A

+ e−((x−x0−∆)+(y−y0−∆)2/2σ2
D × e−((y−y0−∆)−(x−x0−∆))2/2σ2

A)
(2.28)

where A is the amplitude, x0 and y0 are the center frequencies for x and y, respectively, ∆ is

the anharmonic shift, 2
√

2 ln 2σD is the full width at half max along x, and 2
√

2 ln 2σA is the

full width at half max along y. Therefore, the inhomogeneous broadening of the diagonal

peak is σD, and the homogenous broadening component of the diagonal peak is σA. As a

function of t2, the ellipticity value (ε) is then determined by the σD and σA fits.

ε =
σ2

D − σ2
A

σ2
D + σ2

A

(2.29)

Ellipticity of the 2D-IR peaks is the normalized FFCF23,24 and is dependent on changes at

the FWHM, i.e. wings of the spectra.

For this work, CLS is used and is weighted towards the center of the peak. For extracting

the FFCF with CLS, pump-probe slices are taken along ω1. For the slice where the max
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signal is at ω1 = ω3 = ωcenter, the R
(3)
0→1(ω1, ω3, t2) from Equation 2.27 simplifies to a Gaussian

lineshape.

R
(3)
0→1(ωcenter, ωcenter, t2) =

4π

(C1(0)2 − C1(t2)2)1/2
× exp(− C1(0)ω2

center

2(C1(0)2 − C1(t2)2)
) (2.30)

If the maximum is not at ω1 = ω3, then a δ term is necessary to include that describes the

ω1 of a specific slice of the 2D spectrum for R
(3)
0→1(ω1, ω3, t2).

R
(3)
0→1(δ, ω3, t2) =

4π

(C1(0)2 − C1(t2)2)1/2
× exp(−C1(0)δ2 − 2C1(t2)δω3 + C1(0)ω2

3

2(C1(0)2 − C1(t2)2)
) (2.31)

The first derivative of the above equation can be taken to determine the frequency coordinate

that has the max signal for a specific slice along ω1.

dR
(3)
0→1(δ, ω3, t2)

dω1

=
C1(t2)

C1(0)
=
〈δω01(τ ′′)δω01(0)〉
〈δω01(0)δω01(0)〉

(2.32)

Therefore, in the inhomogeneous limit, the CLS is the normalized FFCF.

In this work, the normalized FFCF determined from the CLS analysis will be represented

as c2(t2). By taking pump-probe slices (or cuts) along ω1, a CLS value for a specific 2D-IR

spectrum is determined. For a 2D-IR spectrum with a diagonal and off-diagonal peak, the

pump-probe slice is fit to a function (a Gaussian, a Lorentzian, or a Voigt profile) to account

for the GSB+SE and the ESA. The frequency at the peak minimum (for the GSB+SE)

is plotted against the ω1 for the given slice. A linear fit is performed on a series of peak

minimums as a function of ω1, where the slope of the linear fit is the CLS value. Plotting

the CLS values as a function of t2, an exponential function can be used to extract out

the frequency fluctuation amplitudes and correlation times of frequency fluctuations. The

error in the measurements are determined by propagating the uncertainty through the peak

minimum determination, the slope fit, and the correlation fitting.
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3.0 EXPERIMENTAL METHODS

3.1 PROTIC IONIC LIQUID SYNTHESIS

Ethyl-ammonium nitrate (EAN) is synthesized by a Brønsted acid-base neutralization reac-

tion.75 For this reaction, an equimolar amount of acid (nitric acid) and base (ethylamine)

concentration are needed. To ensure the reaction is complete, however, one should include

a 5% excess of the base.

The reaction is extremely exothermic. Before adding acid, the temperature of the base

solution needs to be equilibrated in a dry ice-acetone bath for 5 minutes. Also, the amount

of base should not exceed 10-20% of the volume of the round bottom flask. This is a safety

precaution to increase the surface area/sample volume ratio to assist with cooling down the

exothermic reaction.

Acid is added drop-wise into the base solution that is contained in a dry ice-acetone bath

inside of a chemical hood. Before adding the acid, turn on the high-powered fan in the hood.

Only a few drops of acid should be added at a time. Wait a few minutes between drops

until the visible vapor from the reaction dissipates. Once all the acid is added, allow the

mixture to stir in the hood for 1-2 hours. The sample needs to be dried by a vacuum pump

(10 µTorr) that incorporates a liquid nitrogen cooled vacuum trap.

The final product can be characterized by FTIR. For example, EAN will have a strong

NH and nitrate stretch from the ammonium cation and nitrate anion, respectively. NMR

and Mass Spectrometry could also be used for a complimentary characterization.
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3.2 SAMPLE PREPARATION

3.2.1 Aqueous BH –
4

As discussed in Chapter 1, BH –
4 decomposes rapidly in aqueous solutions with H3O+ present

due to an increased rate of the hydrogen evolution reaction (HER). The stability at a specific

pH should be determined before running a 2D-IR experiment. If the HER occurs during an

experiment, then gas bubbles will form in the sample window and scattering of the mid-

IR pulses will decrease the S/N. Time-dependent FTIR studies at different pH values can

determine the stability of the sample during the 2D-IR experiment.
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Figure 11: The BH –
4 vibrational modes can be monitored to determine the overall HER

rate. a) At a pH of 9.5, the complex antisymmetric stretch (ν3) of BH –
4 decreases as it

self-hydrolyzes at room temperature. b) Deformation (δ) and stretching (ν) modes of borate

appear as the HER occurs. The arrows correlate to an increase (↑) or a decrease (↓) in

absorbance for a respective vibrational transistion.

For example, at a slightly basic solution (<0.1 M NaOH→∼ 9.5 pH), the HER occurs on

a timescale of hours as the antisymmetric BH stretch (ν3) and bend (ν4) of BH –
4 decrease

corresponding to a lower [BH –
4 ]. The pH was determined by a calibrated SPR Scientific

Direct basic pH meter & kit (840088). Also, vibrational modes corresponding to borate

derivatives appear corresponding to products of the HER (Figure 11). At this pH, a 2D-IR
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experiment may only be viable in an 1 hour time window as approximately 10% of the sample

decomposes. Around the three hour time window, almost half the sample decomposes and

bubbles are prevalent in the sample window. Therefore, at least 0.1 M of NaOH (> 9.5 pH)

is needed for longer stability of BH –
4 during a 2D-IR experiment.
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Figure 12: The absorbance of the mid-IR spectrum increases significantly with increasing

[NaOH]. This is most notable in the region between 2000 and 3000 cm−1. FTIR are obtained

of 3 M BH –
4 in varying concentrations of NaOH with a pathlength of ∼1 µm: 0.1, 1, 5, and

7 M (blue to red).

Also, high concentrations of NaBH4 (3 M) are used in the 2D-IR experiments. Different

approaches are necessary to ensure the overall absorbance of the ν3 BH stretch is below

0.4. Above 0.4, distortions will occur in a 2D-IR spectrum due to the sample reabsorption

and non-linear effects with the detector. On one hand, OH– absorbs broadly in the mid-IR

(Figure 12). This effect increases as a function of the NaOH concentration. If any pathlength

is used at elevated [NaOH] (> 1 M), then the solvent background saturates the detector.

Therefore, no teflon spacer is used corresponding to an approximate pathlength of ∼1 µm.

On the other hand, BH –
4 is a weaker chromophore (∼ 300 M−1cm−1 for the ν3 mode) than

other vibrational probes, like SCN– or CO2 (∼ 1000 M−1cm−1). Since the pathlength is

small, a high concentration of BH –
4 (3 M) is necessary for an absorbance of ∼ 0.1 while

keeping the overall absorbance (solvent background + ν3 mode of BH –
4 ) below 0.4.
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3.2.2 Ionic Liquids

To ensure the ionic liquids (ILs) are kept dry, the samples are prepared in a glove bag under

an inert N2 atmosphere. All necessary materials are placed in a plastic glove bag equipped

with a N2 gas inlet: brass cell holder or Harrick cell, two CaF2 windows, teflon spacer, and

a vacuum sealed container containing the IL. The glove bag is purged with N2 at least three

times to minimize the amount of atmospheric water in the bag. Then, a few µL of the given

IL is sandwiched between the two windows with the desired Teflon spacer in a spectroscopy

cell (brass cell holder or Harrick cell).

3.3 FTIR

The FTIR spectra are obtained using a Nicolet 6700 FTIR (ThermoFisher Scientific). The

instrument is equipped with a nitrogen purge to eliminate atmospheric bands. The spectra

are baselined to zero using the region at 3950 − 4000 cm−1. The sample FTIR spectra are

normalized to the respective solvent FTIR spectra and subtracted.

The water content of each IL is determined with FTIR before the respective 2D-IR

experiment. The OH stretch of H2O at approximately 3500 cm−1 is used to estimate the

water contamination in each IL.11 The optical density of the OH stretch is converted into

a concentration assuming the molar extinction coefficient is 100 M−1cm−1.101 Repetitive

drying steps and more careful preparation may be necessary to reduce the water content.

3.4 TEMPERATURE-DEPENDENT CALIBRATION

For Chapter 7, temperature dependent 2D-IR spectra are obtained using a temperature-

controlled spectroscopy cell (Harrick). The temperature is monitored for the sample by use

of a thermocouple in contact with one of the CaF2 windows. Cooling of the sample below

room temperature is achieved by using a water-based chiller. A resistive heater incorporated

31



into a temperature-controlled spectroscopy cell is used to increase the temperature past

21 ◦C. At a given temperature, the sample is given ∼5 minutes to equilibrate before data

collection begins.
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Figure 13: The temperature readout from the thermocouple of a temperature-dependent

Harrick cell is calibrated to the direct temperature at the CaF2 window.

The temperature readout from the temperature-controlled spectroscopy cell is calibrated

using thermal paste and an additional external thermocouple. A CaF2 window is placed

in the temperature-controlled spectroscopy cell and is covered with a thin layer of thermal

paste. The external thermal couple is placed in contact with the thin layer of thermal paste

to simulate the sample temperature. For the calibration, the temperature is varied from 0

to 80 ◦C. A linear fit relates the temperature readout from the Harrick cell (Treadout) to the

temperature reading of the external thermocouple on the sample window (Tactual).

Tactual = mTreadout + b (3.1)

where the slope is 0.94 ± 0.02 and the y-intercept is 3.9 ± 0.6 ◦C. At temperatures above

50 ◦C, the difference between the two temperature readings is non-distinguishable.
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3.5 2D-IR

In this manuscript, two separate 2D-IR experimental setups are used: 1) rapid scanning

interferometry and 2) pulse shaping. In this section, the experimental setups are briefly

described including how the set-ups differ with respect to suppressing scatter by modulating

the phase of the mid-IR pulses. Scattering occurs by interference of either the pump or probe

pulses to the heterodyned signal due to deficiencies in the windows (cracks or scratches) or

undesirable inconsistencies in the sample (dirt, aggregates, air bubbles, etc.). This section

ends with a comparison between the two methods where advantages and disadvantages for

both 2D-IR set-ups are discussed.

3.5.1 Rapid Scanning

For Chapters 4 and 5, 2D-IR experiments are collected using a commercial Ti:Sapphire laser

that generates a 805 nm pulse with a duration of 120 fs and a repetition rate of 5 kHz with

a pulse energy of 1 mJ. A seed pulse from a Ti:Sapphire oscillator (Coherent Vitesse) is

amplified by a chirped-pulse amplifier (Coherent Legend Elite).

A home-built tunable optical parametric amplifier (OPA) generates a 2.2 µJ mid-IR

pulse.102 A sapphire crystal first generates white light which mixes with the 805 nm pulse in

2 passes through a Type I beta barium borate (BBO) crystal. The resulting signal and idler

difference frequency mix in a silver thiogallate (AGS) crystal to generate the mid-IR pulse

(1200− 4000 cm−1, ∼ 200 cm−1 full width at half maximum).

The 2D-spectrometer uses a pump-probe geometry to collect the purely absorptive 2D

spectrum.103 The purely absorptive 2D spectrum is a sum of the rephasing and non-rephasing

spectra.

Upon entering the 2D-spectrometer, the mid-IR light is separated by a wedged CaF2

window. The majority of the mid-IR pulse passes through the CaF2 window into a Mach-

Zehnder interferometer. Here, two pump pulses with similar intensity are separated by a

50% beam splitter. One pump pulse is reflected onto a moving arm consisting of two gold

mirrors on a 25 mm DC translation stage. The other pump pulse is transmitted through
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the beam splitter onto two gold mirrors of a stationary arm. Part of the output from

the interferometer is recorded on a single channel mercury cadmium telluride (MCT) array

detector and is Fourier transformed resulting in a linear spectrum at ω1. The other output

consists of the two pump pulses focused on the sample plane with a spot size of 100 µm, and

the two pump pulses are delayed by the coherence time (t1).

To more accurately track t1, a HeNe laser is introduced to the Mach-Zehnder interferom-

eter and follows the same path of the two pumps. One path makes linearly polarized light,

and the other path makes circularly polarized light. The HeNe is used to sort the mid-IR

data by counting its fringes into bins where each bin is 2.11 fs or one period of the wave-

length. A polarization cube at 45◦ separates the HeNe onto two different diodes that each

track the change in the x- and y-directions. This gives information on the interferometer

position and direction.103,104

The probe and reference pulses are separated from two reflections through the CaF2

window and is focussed through a series of gold parabolic mirrors onto the sample. The

third-order nonlinear signal field is heterodyned with the probe pulse, which acts as the

local oscillator in this geometry. The ω3 signal is then recorded on a 2 × 32 MCT array

detector using a single monochromator with a 50 line/mm grating. At 2250 cm−1 , the

resolution at this grating setting is approximately 7 cm−1. For increased spectral resolution,

an increased line/mm grating could be used, however, the frequency range will decrease as

ω3 is still being recorded on just 32 elements of the 2×32 MCT array detector. The reference

is recorded on the other 32 array elements. A 50 mm translation stage varies the population

time (t2), the delay between the second pump pulse and the probe, from -50 ps to 200 ps.

The signal may include scattering from the two pump pulses and/or probe without

modulating the phase of the pulses

Sscatter(ω3, t1, t2) ∝ |Eprobe(ω3) + β[Epump1(ω3, t2, t1) + Epump2(ω3, t2)]|2 (3.2)

where Sscatter(ω3, t1, t2) is the contributions of the scattering to the emitted photon response

while Eprobe(ω3), Epump1(ω3, t2, t1), and Epump2(ω3, t2) are contributions to the scattering

signal by the probe and two pump pulses, respectively.103 β is the fraction of the pump pulses

that reach the detector.103 The probe (Eprobe(ω3)) is time-independent while the pumps are
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time-dependent: pump 1 is dependent on both t1 and t2 and pump 2 is dependent on t2.

The electric field can be designated as cos(ωt+ ψ) where ω is frequency and ψ is the phase.

Scattering of two pulses separated by a time delay can be described as

sscatter =
|Eprobe + Escatter|2

|Eprobe|2
= 1 + β′2 + 2β′ cos(ω3t+ ψ) (3.3)

where t is a time delay (either t1 or t2) and there is a time-independent (1+β′2) and time-

dependent 2β′ cos(ω3t+ ψ) component that incorporates β′ = |Eprobe/Escatter|.103

On one hand, rapid scanning back and forth of the moving arm during t1 suppresses the

scattering for the fixed arm (pump 2) as its independent of t1. In this approach, Fourier

transforming the signal with respect to t1 sends the scattering associated with the fixed arm

to a lower frequency component that is filtered out of the detected signal. On the other hand,

scattering of the moving arm (pump 1) can be suppressed through quasi-phase-cycling during

t2.103,105 This is scattering associated with pump-probe signal, and quasi-phase-cycling occurs

by averaging two 2D-IR spectra by varying t2 for half of the period of the center frequency

of the laser pulse. For example, the center frequency of a BH stretch of BH –
4 is 2250 cm−1

and half of the period is ∼7 fs. For a t2 of 500 fs, two 2D-IR spectra would be obtained and

averaged at 500 fs and 507 fs. Here, the sign of the phase of the moving arm pump flips

(removing its contribution to the signal) as the 3rd order signal’s phase remains constant.

The quasi-phase modulation is for the central frequency, so scattering effects will increase

linearly on both sides of the diagonal of the 2D spectrum.105

3.5.2 Pulse Shaping

In Chapters 6-7, the 2D-IR spectra are collected at the Central Laser Facility at the Ruther-

ford Appleton Laboratory (RAL) in the United Kingdom. The 2D-IR data are collected on

the Lifetime system developed by Donaldson et al. involving a 100 kHz 2D-IR spectrometer

based on Yb:KGW amplifier technology106.

The 6 W amplifier produces a ∼180 fs pulse duration into the two OPAs. One OPA is for

the pumps and one OPA is for the probe and reference. Pump and probe pulses are generated

from Optical Parametric Amplifiers (Orpheus-1 and Orpheus-HP, Light Conversion) driven
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by individual 15W and 6W Yb amplifiers (Pharos-SP and Pharos-HP, Light Conversion)

operating with 300 and 180 fs pulse durations, respectively.

The 2D-IR spectrometer incorporated in the system allowes for rapid acquisitions with

a few µOD of noise on 5000 laser shots.106 Purely absorptive 2D-IR spectra are acquired

in the pump-probe geometry using a collinear pair of pump pulses generated by a mid-IR

pulse shaper (Phasetech Spectroscopy). The pulse shaper consists of two diffraction gratings

and a germanium acousto-optic modulator (Ge-AOM). The first grating disperses the pulse

into different frequencies that pass through a lens, and the Ge-AOM crystal is placed at the

focal plane. The acoustic wave propagating through the Ge-AOM crystal is much slower

than a sub-ps mid-IR pulse, and it can behave as a programmable grating to modulate the

amplitude and phase of the dispersed frequencies. The dispersed frequencies are collimated

through a second lens and the second grating compresses the pulse and reconstructs it back

into the time domain. At the sample plane, the focussed pump and probe spot sizes are

∼60 µm FWHM. The total amount of pump and probe light incident on the sample during

rapid acquisition is ∼12 mW and 2-3 mW, respectively. Sample heating was estimated to

be 2-3 ◦C.106 The instrument response time was determined to be ∼270 fs FWHM using

Optical Kerr Effect Spectroscopy.

Shot-by-shot interferometry (time step 22 fs) with phase cycling at the repetition rate

of the lasers (100 kHz) is used to collect interferograms for Fourier transform into 2D-IR

spectra. The phases of the two pump pulses are shifted for each pair, but the relative phase

remains at 0 (φ1 − φ2 = 0).107 The phases of the pulses are programmed with the acoustic

wave with an arbitrary waveform generator. With control of the phase of the pulses, the

pure phase modulation leads to exact scatter suppression at all frequencies.105

3.5.3 Comparison of Approaches to 2D-IR Spectroscopy

Both 2D-IR experimental set-ups consist of advantages and disadvantages. The pulse shaping

set-up is simpler as the delay times are programmable by the acoustic wave that propagates

through the GeAOM crystal. Therefore, t1 is well established and does not have to be

traced as in the rapid scanning set-up. Also, with the pulse shaping set-up, exact scattering
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suppression can be achieved as the phase can be modulated on a shot by shot basis. For

the rapid scanning set up, quasi-phase modulation techniques are required, such as jittering

the translation stage during t2. By jittering the stage, exact scattering suppression occurs

for the central frequency (ωcenter), and scattering will increase along the diagonal away from

ωcenter. Also, for pulse shaping, more stability can be achieved on a single spectrum due to

a higher shot by shot stability.106

For the pulse shaping set-up there are drawbacks as the RF amplifiers and Ge-AOM

crystal can distort the waveform in a non-linear manner. As the Ge-AOM crystal operates

in the Bragg regime, there is angular dispersion that can distort the temporal profile of a

pulse.108 These effects can be modulated, but it requires an additional level of complexity to

the waveforms. Also, non-linear effects in the Ge-AOM crystal can distort peaks when t1 is

large. For rapid scanning, the t1 time is solely dependent on the length of the translations

stage in the Mach-Zehnder interferometer. Finally, since diffraction gratings are being used

in the pulse shaping set up, the optical throughput is low (30 %)109. The diffraction gratings

are not optimal and light is lost as it reflects off the gratings in different directions. For rapid

scanning, the optical throughput is ∼50 % as a 50/50 beam splitter separates the OPA pulse

into two pumps in the Mach-Zehnder interferometer.
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4.0 CROWDING EFFECT ON DIHYDROGEN BONDS OF BH –
4

The text in this chapter has been adapted from a manuscript being submitted to The Journal

of Physical Chemistry B. An early version of the manuscript was submitted to a pre-print

server: Johnson, C.A., Gronborg K.C., Brinzer T., Ren Z., Garrett-Roe S. ChemRxiv. 2019

(DOI: 10.26434/chemrxiv.9874694). The author’s contribution includes performing all FTIR,

IR-Pump-IR-Probe, and 2D-IR experiments, performing the analysis of the experimental

data, and writing the manuscript except for the molecular dynamic simulations component.

4.1 CHAPTER SUMMARY

Two-dimensional infrared spectroscopy (2D-IR) probes the local solvent structure and dy-

namics of the ν3 mode (BH antisymmetric stretch) of borohydride (BH –
4 ) in aqueous solu-

tions. The 2D-IR spectra of the BH stretches have broad and overlapping bands. Vibrational

energy relaxation occurs on a 2 ps timescale. Energy that is initially deposited in BH stretch-

ing modes and directly in the solvent generates a long lived hot ground state. Before the hot

ground state appears, some indications of intramolecular vibrational energy redistribution

are observed. Within the vibrational lifetime of the BH stretching modes, the rate of struc-

tural relaxation slows proportionally to the NaOH concentration. For a molecular picture,

molecular structures of borohydride in aqueous solutions varying the NaOH concentration

are analyzed with Born Oppenheimer molecular dynamics (BOMD) simulations and Kohn-

Sham density functional theory. We find that elevated NaOH concentrations decrease the

number of dihydrogen bonds, and this slows the rate of the reorganization of the dihydrogen

bond due to an ion crowding effect.
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4.2 INTRODUCTION

Borohydride (BH –
4 ) is a candidate material for hydrogen storage49,110–114 and a strong re-

ductant36,51,115–117. The hydrogen evolution reaction (HER) of BH –
4 has been shown to be

fast enough35,38,40,41,49,118–120 and the energy density high enough that BH –
4 has been con-

sidered for use in hydrogen fuel cells113,121,122. BH –
4 has been suggested as a model system

to study the reduction of CO2 to formate16,51,123. Improved understanding of the solvent ef-

fects of BH –
4 should help improve the optimization of BH –

4 chemistry for hydrogen storage,

chemical reduction applications, and other related applications.

In H2O, BH –
4 can protonate and then undergo a rapid self-hydrolysis to form H2(g) via

the hydrogen evolution reaction (HER).33–37 In CO2 reduction applications, the HER is a

side reaction and thus should be suppressed.51 The HER can be suppressed at a high pH to

limit [H+] and thus lower HER reaction rates.37–42

Solvent fluctuations are well known to play a key role in aqueous phase proton and hydride

transfer. In H2O, BH –
4 forms dihydrogen bonds with H2O molecules that preferentially

solvate around its tetrahedral geometry.124 Recent Born-Oppenheimer molecular dynamics

simulations (BOMD) predict that proton transfer to surrounding waters of solvation are

an important ingredient in the reaction coordinate of reducing CO2 to formate. After the

hydride transfer from BH –
4 to CO2, a water molecule stabilizes the BH3 intermediate forming

BH3OH2 with a ∆G of 0.2 eV at 300 K.16 A umbrella sampling approach was used to select

out different paths along the reaction coordinate.16 If a proton is not immediately transferred

away from the BH3OH2 through a solvent fluctuation to form BH3OH– , however, the reactive

complex falls apart and returns to the reactants. No experiments yet provided the molecular

specificity to test these dynamical predictions.

Two-dimensional infrared (2D-IR) spectroscopy measures solvent fluctuations that are

important to the breaking and forming of hydrogen bonds.6,7 Recent 2D-IR studies show that

the dihydrogen bonds between BH –
4 and H2O rearrange on the same timescale as the hy-

drogen bonds of water itself.19 These experiments were performed at 1 M NaOH to suppress

the HER, and these results suggest that NaOH has a minimal effect on the rearrangement of

dihydrogen bonds, at least at these concentrations. Other ultrafast vibrational spectroscopy
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experiments have characterized the ultrafast dynamics of BH –
4 in non-aqueous liquids and

solids. IR pump-IR probe experiments on BH –
4 determined population relaxation rates

of the antisymmetric stretch and bending modes in isopropylamine and solid NaBH4.125 A

2D-IR experiment examined the ν3 antisymmetric stretch of solid LiBH4 as a function of

deuteration126.

The goal of the present work is to explore the effect of solvent conditions on the struc-

tural relaxation around the BH –
4 molecules. Motivated by previous 2D-IR experiments that

examined how a bulk properties of the solvent (viscosity) correlate to the local solvent dy-

namics in water127 and ionic liquids11,13, we hypothesize that the local structural dynamics

of BH –
4 may scale proportionally to the viscosity of the bulk solvent. To test this, we investi-

gate how the dynamics depend on hydroxide concentration. Molecular dynamics simulations

provide first principles insights into the dihydrogen bonding that in turn will provide insight

into choosing or designing the optimal solvent to control hydride transfer reactions.

In this chapter, we combine 2D-IR spectroscopy with theory for a complete picture of

the dihydrogen bonding in BH –
4 as the pH increases. First, we examine the effect of NaOH

concentration on the linear spectrum of the BH –
4 ν3 mode. Next, we present a qualitative

description for the structure of the 2D-IR spectra. We then discuss vibrational energy

redistribution, relaxation, and thermalization of BH –
4 in aqueous solutions with IR-pump

IR-probe and 2D-IR experiments. We, also, present the 2D-IR spectra as a function of

NaOH concentration (0.1 to 7 M) and the dynamics of solvent reorganization around BH –
4

in water.

Following the structural solvation timescales, we present the BOMD simulations for BH –
4

in two solutions: neat H2O and a 7 M NaOH solution. We first compare the theoretical

linear IR spectrum with experiment. We, then, present the dynamical analyses that provide

molecular insight into the effect of adding high concentrations of NaOH. Finally, we discuss

the resulting physical picture related to the solvent reorganization timescales and how it may

effect the rates of the hydrogen evolution reaction.
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4.3 METHODS

BH –
4 sample preparation and FTIR analysis are described in Chapter 3. This works uses

the rapid scanning 2D-IR set-up as described in Section 3.5.1.

4.3.1 IR-pump IR-probe

Similar to the 2D-IR spectrometer, a 2.2 µJ pulse from the OPA is separated into three

pulses due to most of the pulse transmitting through a wedged CaF2 window, the pump,

and the other part of the light reflecting off of the wedged CaF2 window, probe and reference.

In the pump path, a mid-IR half-waveplate is set to 22.5◦ resulting in elliptically polarized

light. To separate out different pump polarizations, a BaF2 holographic wire grid polarizer

is mechanically rotated between 0 and 90◦ resulting in either parallel (I‖) or perpendicular

(I⊥) pump light. A chopper operating at half the repetition rate (2.5 kHz) blocks every other

pump pulse. The delay between pump and probe pulses are varied with a 50 mm motorized

translation stage with a delay from -50 to 200 ps. The pump and probe pulses are overlapped

at the sample cell. As in the 2D-IR experiments, the signal is recorded on a 2 × 32 MCT

array detector using a single monochromator with a 50 line/mm grating. IR-pump IR-probe

spectroscopy in parallel and perpendicular polarizations gives the isotropic, Iiso = I‖ + 2I⊥,

and anisotropic, Ianiso = (I‖ − I⊥)/Iiso signals.

4.3.2 BOMD

The Born Oppenheimer molecular dynamics (BOMD) simulations have been implemented

using the CP2K program.128 One simulation was for BH –
4 in an aqueous solution, and the

other simulation involved BH –
4 in a 7 M NaOH solution. For BH –

4 in an aqueous solution,

the periodic boundary condition (PBC) volume was 6.2 Å3 with seven H2O and one BH –
4 to

set the density at 1.0 g/cm3, which corresponds to the experimental condition. Due to the

computational feasibility, our simulation was limited to the small cell for PBC calculation.

The issue for divergence by summation of the electrostatic potential of a charged unit cell

were overcome by introducing a homogenous neutralizing charge background as a counterion
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as seen with the Ewald summation technique in the CP2K package.129 We have tested the

two systems with and without a counterion (BH –
4 and NaBH4) in aqueous solution. The

final calculated IR spectra of both systems are almost identical (Appendix A.1). For the

BH –
4 in 7 M NaOH solution, the PBC volume was 6.2 Å3 with five H2O, one OH– , one Na+,

and one BH –
4 to keep the density at 1.0 g/cm3. CP2K calculations used the B3LYP exchange

correlation functional130,131 with D3 dispersion correction132 and GTH pseudo-potentials133

with 6-31G* basis sets. The MD simulations have been implemented in a NVT ensemble

at 300 K with a 0.5 fs time step. An MD integration time step of 0.5 fs approximately

provided only a numerical error of 3 cm−1 for the antisymmetric B-H stretching mode.134

Both systems were equilibrated for more than 200 ps and followed by production runs of 250

ps. The dipole moments at each step were calculated using a Wannier function scheme,135

and IR spectra were calculated with the TRAVIS program.136

4.4 RESULTS AND DISCUSSION

4.4.1 FTIR of BH –
4 in 1 M NaOH

The lineshape of the antisymmetric stretch of BH –
4 (ν3) consists of a complicated shape due

to Fermi resonances (Figure 14a). BH –
4 is tetrahedral (Td point group) with two Raman

active modes (symmetric BH-stretch (ν1) and the symmetric BH-bend (ν2) with A1 and E

symmetry respectively) and two IR active modes (the antisymmetric BH-stretch (ν3) and

the antisymmetric BH-bend (ν4) with both having T2 symmetry). The ν3 mode for BH –
4

in 0.1 M NaOH absorbs at 2261 cm−1. Two Fermi resonances contribute to the overall

lineshape: the overtone of the antisymmetric BH-bending mode (2ν4) and the combination

band between the symmetric and antisymmetric BH-bending mode (ν2 + ν4)137. The 2ν4

mode’s center frequency is at 2204 cm−1, and the ν2 + ν4 mode’s center frequency is at

2317 cm−1. The dark modes can “borrow” oscillator strength from the bright ν3 mode

because they all contain an irreducible representation with T2 symmetry.
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Figure 14: a) Two Fermi resonances borrow “oscillator” strength from the bright anti-

symmetric BH-stretch. FTIR of BH –
4 antisymmetric BH stretching mode: 1 M NaBH4

in 0.1 M NaOH (blue), ν3 (antisymmetric BH-stretch) mode centered at 2261 cm−1 (yel-

low), 2ν4 (overtone of the antisymmetric BH-bend) centered at 2204 cm−1 (orange), and a

ν2 +ν4 (combination bend of symmetric and antisymmetric BH-bend) centered at 2317 cm−1

(green).137 b) FTIR are obtained of 3 M BH –
4 while varying the [OH– ]: 0.1 to 7 M (blue to

red). The spectrum of BH –
4 shifts slightly as a function of base concentration.

The ν3 mode blue shifts 9 cm−1 when the base concentration increases from 0.1 M

(2261 cm−1) to 7 M (2270 cm−1), likely indicating a change of the hydrogen bonding network
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(Figure 14b). The molecular origin of the shift, however, is difficult to assess from FTIR

alone. For the OH (OD) stretch of HOD in D2O (H2O), there is a well-established link

between the vibrational frequency and the strength of hydrogen bonds. No such mapping

has been established for BH –
4 , so no link between the absorption band and the local solvent

environment can be drawn at the level of FTIR measurements.

2D-IR experiments and supporting BOMD simulations will reveal more about the changes

in local solvation environment as the solvent condition changes.

4.4.2 Structure of the 2D-IR Spectrum

ω
3
 /

 2
π

c 
(c

m
-1

)

A
b

s.
 (

a
rb

.)

2140

2180

2220

2260

2300

2150 2200 2250 2300

ω
1
 / 2πc (cm-1)

2ν
4

ν
3

ν
2
+ν

4

11

22

3355

44

Figure 15: Coupling of the broad vibrational bands seen in the linear spectrum translates to

a complicated 2D spectrum. The 2D-IR spectra of 3 M BH –
4 in 1 M NaOH at t2 of 500 fs

consists of at least 5 peaks.

The features in the 2D-IR spectrum of BH –
4 in aqueous solution are broad and unstructured

(Figure 15) in agreement with previous work19. The breadth precludes detailed interpreta-

tion of some features in the spectrum because the broad bands overlap and cancel. The

single, broad diagonal peak corresponds to the ground state bleach (GSB) and stimulated
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emission of the ν3 mode (peak 1). The band is centered at (ω1, ω3) = (2250 cm−1, 2270 cm−1),

and is asymmetrical (peak 4). The unusual shape could be from a crosspeak between ν3 and

2ν4, but could also be inherent asymmetry of the diagonal band. A strong positive peak

appears off of the diagonal (2250 cm−1, 2130 cm−1), which could either be an excited state

absorption (ESA) of the ν3 mode or a crosspeak with the 2ν4 band (peak 3). The large pos-

itive peak (3) is also asymmetrical with a shoulder around (2210 cm−1, 2130 cm−1) (peak

5), which could be overlap of another peak (ESA of 2ν4). A small positive feature (peak

2) lies between the two larger peaks at (2250 cm−1, 2210 cm−1). On the one hand, the an-

harmonicity of peak 3 agrees with the anharmonicity determined from IR-pump IR-probe

measurements (∼ 120 cm−1)125. On the other, the anharmonicty of isotope diluted BH –
4

determined from solid-state 2D-IR is much smaller (44 cm−1)126, more in line with the small

positive feature (peak 2).

4.4.3 Vibrational Energy Redistribution, Relaxation, and Thermalization

From IR-pump IR-probe experiments, the vibrational energy relaxation and redistribution

for BH –
4 can be established. First, the complex pump-probe spectra are assigned with assis-

tance from the 2D-IR spectrum. Next, the population relaxation timescales will be discussed

at each NaOH concentration. From this analysis, a heating effect as a hot ground state (HGS)

is observed. Finally, a pathway for the vibrational energy relaxation and redistribution is

proposed for the ν3 mode of BH –
4 .

Signal of the GSB of the ν3 band is still evident at 200 ps (Figure 16a). The time delay

of the pump-probe experiment is varied from -2 ps to 200 ps. At early times (∼ 200 fs),

three vibrational bands exist: the GSB of the ν3 and 2ν4 and the ESA of the ν3 mode. The

reported population relaxation time of 1 M BH –
4 in 1 M NaOH is ∼ 3 ps, and the ESA of

the ν3 mode completely relaxes by a few ps. The GSB, however, does not completely relax

at 200 ps. Also, the center frequency of the GSB of the ν3 mode red shifts (∼ 10 cm−1)

at long delays. The long-lived negative absorbance of the GSB is strong evidence of a hot

ground state (HGS).
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Figure 16: a) The parallel polarized IR-pump IR-probe spectra of 3 M BH –
4 in 1 M NaOH

exhibits three peaks: the GSB of the ν3 and 2ν4 modes and the ESA of the ν3 mode. The ν3

GSB does not fully decay at 200 ps. b) The vibrational relaxation time of the isotropic signal

of 3 M BH –
4 in 1 M can be resolved by plotting the max amplitude of the center frequency

for the GSB (blue, ∼ 2267 cm−1) and the ESA (red, ∼ 2241 cm−1) of the ν3 as a function

of delay times. The GSB does not decay to zero at 200 ps. The offset from the GSB decay

increases with increasing hydroxide concentrations (inset). c) The ESA and GSB result in a

similar vibrational relaxation time of ∼2 ps for all [NaOH].
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The GSB and ESA of the ν3 mode reveal the vibrational relaxation time for the BH

stretching mode of the isotropic signal (Figure 16b). There is no significant difference be-

tween the vibrational relaxation time for the parallel, perpendicular, and the isotropic signal

(Appendix A.1). The vibrational relaxation time of the ESA is ∼ 2 ps at all [OH– ]. The

GSB amplitude of the ν3 mode decays by a single exponential to a different constant value

for each [OH– ]. The relaxation time is similar for both the GSB and ESA (∼ 2 ps) (Figure

16c). As a result, the vibrational relaxation for the GSB and ESA would be a reasonable

projection of the vibrational lifetime (T1) of the ν3 mode of BH –
4 .

From the GSB T1 fits, the offset increases in magnitude with an increase in [OH– ] (Figure

16b inset). From the linear spectra, the mid-IR absorbance increases with an increase in the

[OH– ] (Appendix A.1). Therefore, an increase in the signal at long times may correlate to

an elevated heating effect where more energy is being deposited into the bath.

From the polarization-dependent pump-probe data, the anisotropy correlates to the re-

distribution of the triply degenerate ν3 mode (Appendix A.1). For the ν3 mode of BH –
4 at

all [OH– ], the early (t ∼ 150 fs) anisotropic value is ∼ 0.05 and the ν3 mode decays on a

fast timescale (∼ 200 fs). Our results for 3 M NaBH4 in all [OH– ] compliment the results

previously recorded for 1 M NaBH4 in 1 M NaOH19. Systems with degenerate modes can

have fast dynamics that reduce the initial anisotropy that are due to the scrambling of the

excitation among the (nearly) degenerate states due to the fluctuating environment.138–142 If

the scrambling is fast enough, then one observes reduced anisotropy. Thus, the molecular re-

orientation is not dependent on the [OH– ] but correlates to the intramolecular redistribution

of the triply degenerate ν3 mode.

Furthermore, the 2D-IR spectra as a function of t2 also show indications of vibrational

energy redistribution (Figure 17). As t2 increases from early times (∼ 0.2 ps) to 1 ps,

peak 4 appears to increase in amplitude. The fast rise of the crosspeak is likely due to the

redistribution of vibrational energy between the ν3 and 2ν4 modes. Though the diagonal

2ν4 peak is not clearly observed, if the 2ν4 mode is pumped and the energy is transferred to

the brighter ν3 mode, the cross-peak can be larger than the diagonal peak. A corresponding

crosspeak due to downhill energy transfer between ν3 and 2ν4 is not observed, likely due to

the overlap with the ESA band (peak 5). In addition at long t2 (200 ps), a thermalization
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signal is evident in the 2D-IR spectra comparable to that from the pump-probe data. We

interpret the long-lived signal of the GSB as a hot ground state, HGS.
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Figure 17: A hot ground state (HGS) is evident at long t2 (200 ps) as the GSB (peak 1)

remains even though the ESA (peak 3) has completely disappeared. 2D-IR spectra of 3 M

NaBH4 in 5 M NaOH solution are obtained at various t2 times. The peak assignments are

similar as to those described in the 2D-IR spectrum of 3 M NaBH4 in 1 M NaOH (Figure

15).

Energy initially pumped into the BH-stretching modes can relax into other intra- and

inter-molecular modes (Figure 18). We find the population decay of 2 ps in good agreement

with both Tyborski et al.125 and Andresen et al.’s126 determination of the vibrational energy

relaxation rates in related systems. Both assigned vibrational energy relaxation timescales

occur from the ν3 mode to the ν4 mode on similar timescales, 3 and 1.5 ps,19,125,126 respec-

tively, and the ν4 mode itself relaxes on a 3-4 ps timescale125,126. Energy initially deposited

in the BH-stretches heats up the environment and causes a GSB that lasts until the local

environment cools, a HGS. The magnitude of this HGS depends on the base concentration.

Similarly, a thermalization effect has been shown to occur for HOD in water143 and with

high [OH– ]127 due to the development of a large absorbance in the spectral window. Energy

deposited into these water vibrations, also, contribute to the HGS that we observe. Temper-

ature dependent FTIR support the conclusion of a HGS (Appendix A.1). The frequencies of

the BH-stretches do not change, but the intensity decreases as temperature increases. This

is consistent with long-lived GSBs without apparent new absorptions.
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Figure 18: A possible mechanism describes vibrational energy redistribution, relaxation, and

thermalization for BH –
4 in an aqueous solution. The IR pump will populate the 2ν4, ν3, or

ν2 + 2ν4 mode, and energy may redistribute between the three modes. Also, the IR pump

excites some solvent modes, directly heating the bath. Vibrational relaxation then occurs to

low frequency bending modes, other intermolecular modes, and thermally populated modes

(HGS) before relaxing to the ground state. Energy deposited in the solvent and BH stretches

heats up the local environment generating the HGS, which cools on a timescale long compared

to the experiment (200 ps).

The HGS and short T1 (∼ 2 ps) limits the t2 range for a 2D-IR experiment on these

systems. First, the T1 of BH –
4 is faster than previously reported causing the t2 to be more

limited than previously expected, i.e the ESA absorbance (peak 3) decays to 0 by 5 ps. CLS

values at times longer than ∼ 4 ps reflect the HGS spectrum, which is essentially a bulk

effect, and not the dynamics of the initially excited molecules.

4.4.4 Spectral Diffusion of BH –
4 in Aqueous Solution Increasing [OH-]

With 2D-IR, the change in shape of the ν3 mode’s diagonal peak reports the dynamics of

molecular motions (Figure 19). 2D-IR spectra for the ν3 mode of BH –
4 are collected at

various population times (t2) while varying the concentration of NaOH: 0.1, 1, 5, and 7 M.
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We limit our analysis to the first 4 ps due to a short T1 and thermalization effect occurring

past 4 ps. As the concentration of [OH– ] increases, the initial tilt of the ν3 mode increases

at early t2 times, thus a more inhomogeneous component is present at high [OH– ] (Figure

19). At 4 ps, the ν3 mode in 0.1 M [OH−] loses correlation with the initial frequency (the tilt

is gone), while in the 5-7 M [OH−] a small inhomogeneous component still exists (a small

tilt remains). As the [OH– ] increases, the linear spectral width of the ν3 mode shows no

apparent change confirming the correspondence to an increased inhomogeneous broadening.
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Figure 19: The tilt, or CLS values (o, red), scale with the hydroxide concentration. 2D-IR

spectra of the ν3 mode of BH –
4 at various delay times are plotted with their corresponding

CLS fit: 3 M BH –
4 in a) 0.1 M NaOH and b) 5 M NaOH.

The timescales of molecular motions are quantified with the CLS of the ν3 mode up

to 4 ps (Figure 20a). The CLS results extract out the normalized frequency fluctuation

correlation function (FFCF)

〈δω(t)δω(0)〉
〈δω(0)δω(0)〉

= A1e
−t/τ1 + c (4.1)

where δω(t) is the time-dependent frequency fluctuation. A single exponential with an offset

is used to extract the timescales of frequency fluctuations where A1 is the amplitude of the
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frequency fluctuation, τ1 is the fast timescale of frequency fluctuations, and c is an offset due

to dynamics on a timescale longer than the experiment resolution.

The timescales of molecular motion of the ν3 mode of BH –
4 slows with increasing [OH– ]

(Table 1). The initial value of the CLS (t2 ∼ 200 fs) at 0.1 M [OH– ] is ∼ 0.1. The CLS

decays on a 0.5 ± 0.2 ps timescale to a small offset (0.02). As the [OH– ] increases, up to

7 M, the initial value of both the CLS and offset increase.

For the fast timescale (τ1), we interpret these dynamics to be the equilibration of the

initial excitation within the triply degenerate Td, ν3 modes and BH librational motions.

Inelastic neutron scattering of solid BH –
4 identify librational motions at ∼ 50 meV, which

have an ∼ 80 fs period144. Giammanco et al. measured an initial anisotropy of < 0.07 and

interpret this as fast (� 200 fs) vibrational energy redistribution within the Td band.19 From

the CLS fits, the low initial CLS value (∼ 0.1 to 0.22 at 200 fs) shows that the majority

of the dynamics that modulate the BH-stretching frequency are in the fast modulation

(homogenous) limit. The motional narrowing limit occurs when the product of the linewidth

and the timescale, Γ, is Γ = ∆τ � 1. Given that the linewidth of the BH vibrations are

∆ ∼ 13 cm−1, Γ for the librations is ∼ 0.17, which is well in the motional narrowing limit.

The Γ for the energy redistribution with the ν3 band should be � 1, also in the motionally

narrowed limit. Finally, the energy transfer between ν3 and 2ν4 should be Γ ∼ 0.4, which is

intermediate motional narrowing.

Table 1: The frequency fluctuation correlation function (FFCF) parameters are determined

for the BH –
4 ν3 mode using a single exponential with offset for BH –

4 in NaOH solutions

(Equation 4.1). The parameters are extracted from CLS fits to the 2D-IR spectra at various

t2 times.

[NaOH] A1 τ1 (ps) c

0.1 M 0.12 (±0.04) 0.5 (±0.2) 0.024 (±0.007)

1 M 0.13 (±0.04) 0.4 (±0.2) 0.034 (±0.008)

5 M 0.19 (±0.04) 0.6 (±0.2) 0.047 (±0.007)

7 M 0.21 (±0.04) 0.8 (±0.4) 0.05 (±0.03)
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Figure 20: The timescales of molecular motion scale with increasing viscosity of the bulk

solvent, i.e increasing [OH– ]. a) CLS values of the ν3 mode of BH –
4 are determined while

varying the bulk viscosity: 3 M BH –
4 in 0.1, 1, 5, and 7 M [OH– ] (blue to red). The corre-

sponding single exponential fit with an offset extracts the frequency fluctuation correlation

function (FFCF) parameters (Equation 4.1). b)The τ1 (∗, red) and offset, c, (o, blue) FFCF

parameters vary with viscosity127 of the respective [OH– ] (0.1-7 M).

For the longer timescale, we do not resolve a clear exponential process and treat the

dynamics as an offset. Giammanco et al.19 resolves 300 fs and 1.8 ps timescales for the

dynamics of BH –
4 in H2O with 0.1 M [OH– ]; the initial value of the CLS and the fast times

that we measure agree within error for low [OH]. There are several potential sources why we

report an unresolved long time. First, our experiments consist of higher BH –
4 concentrations
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(∼ 3 M compared to 1 M19), and we resolve slower dynamics. This is inconsistent with an

energy transfer mechanism (observed in solid borohydride125), which would predict faster dy-

namics at higher concentrations of the vibrational chromophore. Also, in our measurements,

there are clear heating effects after 4 ps. It is possible that the 1.8 ps timescale reported

by Giammanco et al.19 contains a component reflecting the dynamics of a HGS. We suggest

that the differences are mostly due to a slowing down of the structural reorganization from

the higher salt concentrations and the differences in the time window we analyze due to local

heating. Despite these quantitative differences, there is broad agreement in the results and

resulting physical pictures.

In summary, with the first timescale of spectral diffusion that we resolve (τ1 time), we

interpret as hindered translations of a BH –
4 in a particular local solvent shell. The slowest

timescales, captured in the offset, are due to the reorganization of the local solvent shell, i.e.

breaking and forming of dihydrogen bonds.

Viscosity correlates with the dynamics of structural reorganization, and higher viscosity

solutions slow the spectral diffusion of BH –
4 (Figure 20b). The viscosity of < 2 M NaOH is

very similar to neat H2O (∼ 1 cP)127, and the dynamics are determined by the fluctuations

of the bulk water hydrogen bonding network. As the concentration of base increases > 2 M,

the viscosity of water increases to ∼ 6 cP127, and we see a concomitant increase in the

correlation time, which manifests as an increasing τ and offset in the FFCF. Similar effects

have been seen in the dynamics of water itself as a function of [OH– ]127, as well as the slowing

of water dynamics at high salt concentrations145–147. The slowing of the reorganization time

in these other salt solutions is primarily driven by a crowding effect. The first solvation

shells of cations and anions overlap, which slows hydrogen bond switching. The BH –
4 seems

to sense the same slow-down in both the hindered translation in the solvent shell and the

reorganization of its dihydrogen bonds with H2O. It should be noted that the experiments

are performed at a high [NaBH4] (3 M) that will elevate the bulk viscosity across all samples

resulting in viscosity being a minimal effect to the solvent dynamics at increasing [OH– ].
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4.5 BOMD OF BH –
4 IN NEAT H2O AND 7 M NAOH

Born Oppenheimer MD simulations (BOMD) provides molecular insight into the slowing

down of the solvent dynamics at increasing NaOH concentrations. The dynamical structures

of BH –
4 and the free energy profiles incorporating the solvent effect were determined for two

cases: BH –
4 in neat water and BH –

4 in an aqueous solution of 7 M NaOH.

Figure 21: The simulated linear IR spectra is in good comparison to the experiment a) The

linear IR spectrum is simulated with BOMD of BH –
4 in H2O with (red) and without (blue)

7 M NaOH. b) With 7 M NaOH (red), the bright (ν3) and dark (2ν4 and ν2+ν4) BH –
4

vibrational modes are evident as separate peaks in the spectrum. Without NaOH (blue),

there is no clear separation between vibrational modes.

The simulated IR spectrum falls into good agreement with the experiment (Figure 21).

No scaling factor is used. BOMD simulations uses an anharmonic character and allows

for the calculation of overtones, combination bands, and Fermi resonances. In H2O, the

center frequency of the ν3 mode (2270 cm−1) is similar to experimentally observed frequency

(2261 cm−1), and both peaks are broad due to hydrogen bonding (Figure 21b). The 2ν4

and ν2+ν4 modes become clear separate transitions in the 7 M NaOH solution spectrum as

the peaks are less broad. As seen experimentally, the ν3 mode blue shifts as the [NaOH]

increases as there is a decrease in the structural hydrogen bonding network around BH –
4 .
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Figure 22: RDFs are determined for the BH –
4 liquid simulations in H2O with (red,dash) and

without (blue,dash) 7 M NaOH as a function of the distance between a) the boron and water

oxygens (gBOw(r)) b) the boron and water hydrogens (gBHw(r)).The coordination numbers

(CNs) are shown for both cases: with (red, solid) and without (blue, solid) 7 M NaOH.

In the 7 M NaOH case, the impurities of Na+ and OH– ions disrupt how many H2O

molecules are coordinated to BH –
4 . To quantify the solute-solvent structure, we use the

radial distribution functions (RDFs) of the water oxygens (gBOw(r)) and the water hydrogens

(gBHw(r)) around the B atom of borohydride, respectively, at inter-atomic distances (r) in

Figure 22. The first solvation peak of the RDF in BH –
4 liquid simulation has a broad peak

with a B–O distance maximum at 3.45 Å. The coordination number suggests that 4 − 5

solvent waters preferentially coordinate around BH –
4 . With 7 M NaOH, however, the first

solvation peak is sharp at 3.14 Å with one coordinated H2O, and the second peak is broader

at 3.93 Å with approximately 5 coordinated H2O molecules. The B–H RDFs similarly report
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a less coordinated BH –
4 at higher [NaOH]. In neat H2O, the first solvation peak is located

at 2.3 Å with a coordination number of 1–2. On average, two hydrogens of the solvent

H2O and two of the four hydrogens of BH –
4 form two dihydrogen bonds. This is, perhaps,

not surprising. Two dihydrogen bonds are enough to screen the negative charge on the

borohydride. The partial charges on the hydrogens of water are approximately +0.5e, so

the charge of borohydride (−1e) plus two water hydrogens (2 · 0.5e) would be nearly zero.

The two dihydrogen bonds cause a broadening of the antisymmetric B-H stretching mode of

BH –
4 .

For the 7 M NaOH solution, the first solvation peak of the RDF is narrower with a lower

coordination number than that in neat H2O. On average, one hydrogen from the solvent

H2O and only one of the hydrogens from BH –
4 form a single dihydrogen bond. In addition

to the positively charged proton, the nearby Na+ may also serve to balance the remaining

charge.

Figure 23: a) The angles between the B–Na vector and a bisector (θ) or a trisector (φ).

The angle between the bisector and trisector (γ) is used as a reference. b) The probability

distributions of the three angles and c) the potential of mean force (PMF) based on these

angles are determined at 300 K.
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Figure 24: A snap-shot of the equilibrated structures of the BH –
4 BOMD simulations at

room temperature a) without and b) with a 7 M NaOH solution.

The Na+ cation is influential to the coordination of H2O to BH –
4 , so the location of

the Na+ cation affects the construction of the dihydrogen bonds. An interesting question is

whether Na+ prefers to be to a bisector (-BH2) or trisector (-BH3) for BH –
4 . On one hand,

the bisector vector is defined as the line segment which divides the H-B-H angle into two

halves, where two hydrogens are selected as the closest distances from Na+. On the other

hand, the trisector denotes a spatial direction which encloses the same B–H distance of -BH3.

The most probable angles of θ and φ are 12◦ and 50◦, respectively (Figure 23). These angles

indicate that Na+ is usually located near the bisector angle rather than that for a trisector.

Overall, Na+ moves around about 30◦ within the given energy (1.0 kcal/mol) based on the
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potential of mean force (PMF) profile.

The addition of high salt concentrations inhibit the amount of H2O that coordinates

BH –
4 . In H2O, BH –

4 is involved in two dihydrogen bonds with two H2O molecules (Figure

24a). With the addition of 7 M NaOH, only one H2O molecule closely coordinates BH –
4

forming a dihydrogen bond and Na+ coordinates to BH –
4 at a bisector (Figure 24b). Also,

there are 4 H2O molecules in the second solvation shell, and 3 of them preferential coordinates

the OH– . Thus in the base solution, H2O rearranges to coordinate the OH– rather than the

BH –
4 .

4.6 DISCUSSION

Ion pairing occurs in many polar and non-polar solvents12,127,148–152 and water153. In some

cases, ion pairing causes shifts in vibrational frequency. At elevated NaOH concentrations,

the vibrational frequencies from 2D-IR spectroscopy on the OH stretch of an HOD molecule

in H2O shifts with pH.127 In other cases, the changes are more subtle such as changes in the

dynamics. The T1 of a nitrile stretch for SCN– varies with its local solvent environment.148

With BH –
4 , the ion paring does not appear as prominent changes in the linear spectrum.

Instead, ion pairing causes the vibrational frequency fluctuations to slow with an increase of

the concentration of NaOH. Also, the experiments are performed at elevated [NaBH4], so the

frequency fluctuations timescales would not be representative to more dilute solutions. The

general trend, however, of the solvent dynamics slowing down as [NaOH] increases would be

transferable at lower [NaBH4] solutions.

The observed changes in dynamics can be rationalized using a large-angle jump model

of hydrogen bond rearrangement.17,154 In this mechanism, the hydrogen bond breaks as a

H2O molecule rotates, undergoing a large angle jump, and forms a new hydrogen bond with

an approaching H2O molecule. The transition state is a bifurcated hydrogen bond with the

initial and final hydrogen bonding partner. Experiments and theory have shown that adding

hydrophobic species in solution, like trimethylamine-N-oxide (TMAO), occupy space and

limits the trajectories for an approaching H2O, i.e. formation of a new hydrogen bond.154,155
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The excluded volume of the hydrophobe limits the number of accessible transition states thus

lowering the entropy of activation. Our simulations show that the Na+ counterion occupies

space near the BH –
4 , similarly affecting the entropy of activation for the formation of a

new dihydrogen bond. Also, the OH– has a strong coordination shell which may contribute

to locking its coordinated H2O in place. A combination of the excluded volume effect of

Na+ and the high coordination of OH– slows down the rate of the breaking and form of

dihydrogen bonds between BH –
4 and H2O.

The slower timescales of dihydrogen bond rearrangement as a function of [NaOH] and

BOMD simulations shed light on the rate of the hydrogen evolution reaction. In H2O,

two rate constants contribute to the overall rate for the hydrolysis of BH –
4 : kH3O+ and

kH2O
37–42,156.

d[BH −
4 ]

dt
= −kH3O+ [H3O+][BH −

4 ]− kH2O[H2O][BH −
4 ] (4.2)

At a low pH, the reaction with H3O+ dominates the rate of BH –
4 hydrolysis, but at high pH

the reaction with H2O eventually dominates. At this limit, the rate of hydrogen evolution

is solely dependent on kH2O. At high NaOH concentrations, the local solvent environment is

changing as the timescale of the breaking and forming of dihydrogen bonds slow down due

to an ion crowding effect. Therefore, the kH2O may be changing as a function of the salt

concentration which is filling up the coordination sphere. No systematic studies have been

able to detect a concentration dependence on kH2O because the rate studies37–42,156 measured

the hydrolysis reaction as a function of H3O+ and determined the kH2O by extrapolating to

zero concentration. The prediction that kH2O decreases with occupation of the solvation

shell of the BH –
4 could be tested by measuring the rate of hydrolysis as a function of ionic

strength using a bystander salt such as NaCl.

Further 2D-IR spectroscopy studies complemented with a study of HER rates can further

investigate the dependency of salt concentration on kH2O. A temperature-dependent 2D-

IR spectroscopy will reveal an entropy of activation by applying an Eyring analysis on the

temperature-dependent solvation dynamics. The entropy of activation as a function of NaOH

concentration can also test the ion-crowding effecting by determining the activation entropy

and comparing to the excluded volume model of Laage and Hynes154.
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4.7 CONCLUSION

As a function of NaOH concentration, solvation dynamics of BH –
4 are explored through a

combined effort of 2D-IR spectroscopy and BOMD simulations.

Ultrafast infrared vibrational spectroscopy elucidates the vibrational mode coupling, re-

laxation, redistribution and the solvent dynamics of BH –
4 in increasing NaOH solutions.

Vibrational energy relaxation from the BH stretching modes and the solvent background

cause a hot ground state to dominate the spectra after ∼ 4 ps thus limiting the effective

timeframe of the 2D-IR experiment. In the 2D-IR spectra, the breadth of the BH –
4 vi-

brational bands causes spectral congestion which precludes direct assignments of the peaks

and crosspeaks. Rapid vibrational energy redistribution causes some crosspeaks to grow in

the 2D-IR spectra. From the FFCF, the reorganization of the local structural environment

around the BH –
4 slows as the NaOH concentration increases. Two different motions are

determined. The fast τ1 is reported to be a hindered rotation. A slower unresolved timescale

may be related to the breaking and forming of dihydrogen bonds and is reported as an offset

that increases with the NaOH concentration.

BOMD simulations support slower local structural reorganization timescales at elevated

[NaOH]. In H2O, BH –
4 is solvated by 4–5 H2O molecules and forms two dihydrogen bonds

with two of neighboring H2O molecules in the first solvation shell. In an aqueous 7 M NaOH

solution, only one dihydrogen bond forms as one H2O molecule is in the first solvation

shell. A Na+ cation coordinates to BH –
4 at a bisector and an OH– is preferentially solvated

by 3 H2O in the second solvation shell. The crowding effect due to high Na+ and OH–

ions leads to a slower structural reorganization timescale, and the crowding effect gives a

molecular picture for why the rate for the hydrogen evolution reaction slows down at a high

pH.
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5.0 VIBRATIONAL MODE COUPLING OF BH –
4 IONIC LIQUIDS

The following text in this chapter is adapted from a manuscript in preparation with plans to

submit it to the Journal of Physical Chemistry B. The author’s contributions include writ-

ing the manuscript, preforming DSC measurements, performing and analyzing the ultrafast

vibrational spectroscopy experiments, and analyzing the peaks from a simulated 2D-IR spec-

trum.

5.1 CHAPTER SUMMARY

Two-dimensional infrared spectroscopy (2D-IR) probes the local solvent structure and dy-

namics of the ν3 mode (BH antisymmetric stretch) of borohydride (BH –
4 ) in a series of ionic

liquids (ILs). The 2D-IR spectra in ILs consist of well-resolved bands with complex structure

due to Fermi resonances. To assign the complicated pattern of cross-peaks, a model Hamil-

tonian is constructed for the three relevant modes. The vibrational energy cascade is also

addressed as a thermalization effect occurs, as seen previously in aqueous solutions. Energy

from the ν3 mode is deposited into a long lived hot ground state. The solvent dynamics in

the ILs (∼ 30 ps) are much slower than in water (∼ 2 ps), corresponding to slow reorgani-

zation of the first solvation shell. The experiments establish an initial understanding of the

solvation dynamics around this model hydrogen storage material.
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5.2 INTRODUCTION

Ionic liquids (ILs) show promise for many energy storage applications,79,82,157,158 and boro-

hydride (BH –
4 ) ILs, with BH –

4 as the anion, could allow high energy density hydrogen

storage in a liquid material or for use in hydrogen fuel cells.62 Also, ILs are suggested as

catalysts for CO2 reduction,159 and BH –
4 is a strong reducing agent that can reduce CO2 to

formate.51,123 Characterizing the local solvent structure around BH –
4 on a sub-ps timescale

for various solvents, such as ILs, can assist in optimizing the chemistry of BH –
4 for both

hydrogen storage and CO2 reduction applications.

ILs offer a myriad of useful properties ranging from their chemical tunability55,65,160 to

their low vapor pressure.82,161 IL properties can be altered through variation of the anion or

cation. Currently, BH –
4 ILs are being optimized for low vapor pressure, stability, reduced

hydrogen storage costs, low toxicity and CO2 reduction.61,63 In aqueous solutions, NaBH –
4

undergoes a rapid hydrogen evolution reaction (HER),35,38,40,41,49,118–120 and changing the

alkali cation has been demonstrated to alter the rate. LiBH4 has shown a similar rate to

that determined for NaBH4,Brown1961 but the slower HER for KBH4 makes it less suitable

as a candidate for hydrogen fuel cells.112 Overall, there is minimal ability to optimize the

properties of traditional alkali metal BH –
4 where developing BH –

4 ILs allows more room to

adjust the selectivity for a given need, i.e. CO2 reduction.

The BH –
4 anion can directly be probed through its infrared (IR) active stretching and

bending modes. Early FTIR studies showed two IR active modes of BH –
4 : the BH antisym-

metric stretching mode (ν3) and the antisymmetric BH bending mode (ν4).137 The FTIR

spectrum of the ν3 mode displays a complicated shape involving three vibrational peaks.

FTIR studies with isotope labeling attribute the cause of the ν3 modes complicated line-

shape arising from two Fermi resonances: the overtone of the anitsymmetric BH bending

mode (2ν4) and a combination band between the symmetric BH bending mode and the anit-

symmetric BH bending mode (ν2+ν4).137 Anharmonic vibrational calculations of BH –
4 with

various isotope combinations have confirmed the IR assignments.162

To better understand the vibrational coupling caused by the Fermi resonances in the

linear BH –
4 infrared spectra, we use two-dimensional infrared spectroscopy (2D-IR). 2D-IR
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is the vibrational analog of 2D-NMR spectroscopy, we use it to measure the coupling between

vibrations. Also, direct coupling between vibrational modes generates crosspeaks shifted by

the coupling energy,163 allowing their measurement with high precision Fermi resonances

have been shown to cause more complicated patterns of cross-peaks in 2D-IR spectra.99,164

Chemical exchange spectroscopy gives rise to crosspeaks from a chemical reaction such as

the switching from a complexed to an uncomplexed form and vice versa.97 One example for

chemical exchange 2D-IR is the phenol complexation to benzene where the free phenol and

the complexed phenol have different center frequencies.97 As t2 increases, crosspeaks will

grow in as the free phenol becomes complexed and vice versa.

Ultrafast IR vibrational spectroscopy can elucidate structural and dynamical information

for a given system.2–8,11–14 The ultrafast vibrational dynamics of BH –
4 have been explored

in a few studies to characterize both intramolecular vibrational energy relaxation and in-

termolecular motion. The population relaxation times of the BH stretching and bending

modes of NH –
4 have been probed through IR pump-IR probe measurements in a variety of

liquid and crystal environments.19,125,126 Two-color pump-probe experiments provide insight

to the vibrational energy cascade of the ν3 mode to the ν4 mode and other low frequency

BH –
4 modes.125,126 2D-IR measurements have investigated the homogeneity of solid LiBH4

and various deuterated isotopomers.126 In other 2D-IR measurements, the dynamics of the

rearrangement of dihydrogen bonds between BH –
4 and H2O correlate to the hydrogen bond

dynamics of an HOD molecule in H2O.19 As discussed in Chapter 4, we have used 2D-IR

experiments to examine the effect of hydroxide on the dynamics of BH –
4 in aqueous solu-

tions where an elevated concentration of Na+ and OH– ions cause a crowding effect of the

dihydrogen bonds.

The goal of this work is to establish a foundation for the nonlinear spectroscopy of BH –
4

ILs and explore how ILs can tune the rate of structural relaxation around the BH –
4 anion.

The BH –
4 based ILs are classified and compared by thermophysical properties that reveal

vital bulk properties, i.e. viscosity and phase transition temperatures. Using 2D-IR to devel-

oping a molecular understanding of structural relaxation around the BH –
4 anion can provide

additional information and guide the future development of BH –
4 ILs for energy storage ap-

plications as the solvation dynamics can provide insight into the molecular friction of the IL.
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The BH –
4 based ILs investigated in this study are 1-butyl-3-methylimidazolium borohydride

([BMIM][BH4]) and trihexyl-(tetradecyl)phosphonium borohydride ([P14,6,6,6][BH4]). BMIM

is a very common cation in ILs, and [BMIM][BH4] has been shown as a selective reducing

agent.64 In an IL, the P14,6,6,6 cation has been shown to be a “liquifier”165,166 and a good ab-

sorbent for CO2.65 These properties are expected to extend to [P14,6,6,6][BH4]. The effects of

these two cations in BH –
4 ILs have not yet been studied using ultrafast infrared vibrational

spectroscopy.

In this chapter, we compare BH –
4 dissolved in an aprotic IL compared with two bulk

BH –
4 ILs. First, we present the thermophysical properties (viscosity and phase transition

temperatures) of the bulk BH –
4 ILs. Next, we examine the solvent effects from the linear

FTIR spectra of the ν3 mode for each BH –
4 IL. Then, we present 2D-IR spectra of the

BH –
4 ILs. We assign the cross-peaks in the complicated 2D-IR spectra by simulating the

spectra through the construction of a model vibrational Hamiltonian and using response

function formalism. With IR pump-IR probe and 2D-IR data, we then present the vibrational

energy redistribution, relaxation, and thermalization in these ILs. Finally, we present the

dynamics of solvent reorganization around BH –
4 in all three IL samples, showing the solvent

reorganizational timescale can be another tool in the identification/classification toolbox for

BH –
4 ILs.

5.3 EXPERIMENTAL METHODS

Some of the experimental methods are described in earlier chapters. The IL drying and

FTIR analysis are described in Chapter 3. This works uses the rapid scanning 2D-IR set-up

as described in Section 3.5.1. The IR-Pump IR-Probe set up is described in Chapter 4.

5.3.1 BH –
4 Based IL Synthesis

Methyl imidazole (M50834-500G), 1-bromobutane (B59497-500G), sodium borohydride (Na-

BH4) (71320-100G), tetramethylammonium borohydride (N1,1,1,1BH –
4 ) (310689-10G), and
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chloroform (CX1055P-4) were bought from Sigma-Aldrich, St. Louis, USA. The ionic liquid

trihexyl(tetradecyl)phosphonium chloride ([P14,6,6,6][Cl]) was brought from Cytec Industries

Inc. Butyltrimethylammonium bis(trifluoromethylsulfonyl) imide ([N1,1,1,4][Tf2N]) was pur-

chased from IoLiTec (258273-75-5).

Synthesis of [P14,6,6,6][BH4]: 10 g of [P14,6,6,6][Cl] was added to a round bottom flask

containing 50 mL of chloroform and a stir bar. 0.796 g (1.1 eq.) of NaBH4 was added to the

mixture followed by addition of water. The mixture was stirred for 2 hours and the water

was decanted. The chloroform layer was extracted with water three times to remove trace

amounts of NaCl. Finally, the chloroform was evaporated under rotary evaporation (40 ◦C

at 1 mbar) to yield a colorless liquid.

1H NMR (600 MHz, CDCl3) δ 2.347 (m, 8H), 1.486 (m, 8H), 1.301-1.244 (m, 40H), 0.874

(t, 12H), 0.234 (s, 1H), 0.071 (s, 1H), -0.092 (s, 1H), and -0.255 (s, 1H).

Synthesis of [BMIM][BH4] was performed according to a reported procedure64.

The ionic liquids were dried by use of a vacuum pump (10 µTor) to decrease the water

content and confirmed by FTIR (Appendix A.2). [BMIM][BH4] was not completely dry

under vacuum after 24 hours with ∼1.6 M of H2O present. [P14,6,6,6][BH4] and the saturated

N1,1,1,1BH4 in [N1,1,1,4][Tf2N] solution had less than ∼ 0.5 M and ∼ 0.1 M [H2O], respectively.

5.3.2 Viscosity Measurements

Viscosities for [BMIM][BH4] and [P14,6,6,6][BH4] were measured using a Brookfield Model

HBDV-III+CP cone/plate viscometer at 5 ◦C intervals over the temperature range of 5-

65 ◦C. The viscometer was calibrated against the NIST-certified viscosity standards N75

and N100 (Cannon Instruments Company). Ionic liquid samples were dried under vacuum

at 50 ◦C overnight prior to all viscosity measurements.

The viscosity of [N1,1,1,4][Tf2N] was determined with an Anton Paar Modular Compact

Rheometer (MCR 302 WESP). A 25 mm diameter smooth plate was used with a gap height

of 300 µm at room temperature.
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5.3.3 Thermal Analysis

Phase transition temperatures were measured using a Differential Scanning Calorimeter,

DSC, (PerkinElmer DSC4000) cooled by a liquid nitrogen chiller (PerkinElmer IntraCooler

II). About 10 mg of the respective IL was placed in an aluminum pan. Initially, the IL

samples were cooled past -80 ◦C and left to equilibrate for 5 minutes. Each sample was then

heated at a rate of 1 ◦C/min up to 20-30 ◦C. From each thermogram, the glass transition,

crystallization, and melting point temperatures were all determined, if applicable.

5.3.4 Sample Preparation

Samples were prepared on two CaF2 windows (Crystran Ltd, UK) in a brass cell holder.

About 10 µL of the given solution was sandwiched between the two windows with the

desired spacer. ILs are transparent in the mid-IR region but NaBH4 is only sparingly soluble.

Therefore, we use a saturated solution of N1,1,1,1BH4 (150 mM) in [N1,1,1,4][Tf2N] with a 25 µm

Teflon spacer. The bulk ILs ([P14,6,6,6][BH4] and [BMIM][BH4]) were prepared with no spacer

due to a high concentration of BH –
4 present.

5.4 RESULTS

5.4.1 Thermophysical Properties of BH –
4 Ionic Liquids

Two novel BH –
4 ILs are investigated where the cation is varied: BMIM and P14666. Also,

a saturated solution of N1,1,1,4BH4 in [N1,1,1,4][Tf2N] is investigated. The viscosity (η) along

with the glass transition (Tg), crystallization (Tcr), and melting (Tm) temperatures are de-

termined for each IL, if applicable (Table 2).

The phase-transition temperatures are obtained by analyzing thermograms collected with

Differential Scanning Calorimeter (DSC) (Appendix A.2). The Tg for [BMIM][BH4] and

[N1,1,1,4][Tf2N] agrees to other previously reported values for imidazolium and ammonium

based ILs.167 The measured Tg for [P14,6,6,6][BH4]], however, is ∼10 K lower than that for
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imidazolium ILs. [BMIM][BH4] did not have a Tcr or Tm. The lack of a Tcr and Tm in

[BMIM][BH4] is similar to [BMIM][BF4]168. Varying the long alkyl chain of the imidazolium

cation for BF –
4 based ILs shows that any chain smaller than 9 carbon atoms does not

have a melting point or a crystallization point.168 Thus, [BMIM][BF4] and [BMIM][BH4] are

supercooled liquids past room temperature.

Table 2: Thermophysical properties are determined for the novel BH –
4 ILs and

[N1,1,1,4][Tf2N]: viscosity (η) at room temperature, glass transition temperature (Tg), crys-

tallization point (Tcr), and melting point (Tm)

η (cP) Tg (◦C) Tcr (◦C) Tm (◦C)

[BMIM][BH4] 533 -73.3 — —

[P14,6,6,6][BH4] 1064 -63.2 -30.5 0.09

[N1,1,1,4][Tf2N] 100 -76.9 — —

The BH –
4 ILs’ viscosities vary by orders of magnitude and follow an inversely propor-

tional trend to that of Tg.(Table 2) The viscosity for [P14,6,6,6][BH4] is on the same magnitude

of glycerol169. The viscosity of the BH –
4 ILs increase by a factor of 2 as the cation is changed

from BMIM to a sterically bulky P +
14,6,6,6 . The viscosity of [N1,1,1,4][Tf2N] is determined to

be similar to previously reported values170, and is not affected by adding N1,1,1,1BH4 to form

a saturated solution. The viscosity of [N1,1,1,4][Tf2N] is, however, a factor of 5 and 10 less

than that of [BMIM][BH4] and [P14,6,6,6][BH4], respectively.

The temperature dependence of the viscosity for BH –
4 ILs follow a non-Arrhenius behav-

ior as previously seen in imidazolium ILs167 (Figure 25). Therefore, a Vogel-Fulcher-Tamman

(VFT) dependence was used to represent the viscosity as a function of temperature (Ap-

pendix A.2)

ln(η/cP ) = A+
B

T − T0

(5.1)

where A and B are fit parameters. Similar to work from Angel et al.,171 a high viscosity

(1013 cP) is included at the glass transition temperature to help constrain the fitting pa-

rameters. The resulting divergence temperature, T0, falls within ∼ 30 ◦C for each BH –
4 IL

following the previously reported trend for imidazolium ILs167.
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Figure 25: a) The viscosity varies as a function of temperature and follows the Vogel-Fulcher-

Tamman (VFT) model. Temperature-dependent viscosity is measured for the two bulk BH –
4

based ILs: [BMIM][BH4] (black) and [P14,6,6,6][BH4] (blue). The respective VFT fit is plotted

with each IL (Equation 5.1).

Along with the thermophysical properties, the solvent reorganization time of the BH –
4

anion in a 2D-IR experiment can be another effective tool to provide further insight into

structural and dynamical information on these novel BH –
4 ILs. Before we analyze the sub-

ps solvent reorganization timescales, we will discuss the linear spectra for the ν3 mode of

BH –
4 and then address how to assign the 2D-IR spectrum.

5.4.2 FTIR of BH –
4 Ionic Liquids

In an IL, the breadth of the vibrational bands are narrow and the peaks are well defined

(Figure 26a). The well documented complicated lineshape of the antisymmetric BH stretch

mode (ν3) is caused by two Fermi resonances: the overtone of the antisymmetric B-H bend-

ing mode (2ν4) and the combination band between the symmetric and antisymmetric B-H

bending mode (ν2 + ν4).137 The center frequency of the ν3 mode of a saturated solution of

N1,1,1,1BH4 in [N1,1,1,4][Tf2N] (2226 cm−1) is red shifted from the reported center frequency

in aqueous solutions (2261 cm−1), as discussed in Chapter 4. The 2ν4 mode and the ν2 + ν4
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Figure 26: a) The center frequency of the ν3 mode (B-H antisymmetric stretch) is 2226

cm−1 (purple) and is complicated by two Fermi resonances: 2ν4 (orange), the overtone of

the antisymmetric B-H bending mode, and ν2 + ν4 (green), the combination band between

the symmetric and antisymmetric B-H bending mode. FTIR spectra are obtained of a

saturated solution (150 mM) of N1,1,1,1BH4 in [N4,1,1,1][Tf2N] (red). b) The center frequency

of the ν3 mode red shifts for the the BH –
4 ILs. FTIR spectra are obtained for the ν3 mode

of BH−4 dissolved in an aprotic IL (red) vs two bulk BH−4 based ILs: [BMIM][BH4] (black)

and [P14,6,6,6][BH –
4 ] (blue).
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mode of N1,1,1,1BH4 in [N1,1,1,4][Tf2N] (2154 cm−1 and 2293 cm−1) are also redshifted from

BH –
4 in an aqueous solution (2204 cm−1 and 2317 cm−1, respectively). The inadequate

dihydrogen bonding in the aprotic IL contributes to the red shifts and narrower linewidths

than those reported in aqueous solutions.

The ν3 mode for the bulk BH –
4 ILs are red shifted from the saturated solution of

N1,1,1,1BH4 in [N1,1,1,4][Tf2N] (Figure 26b). The center frequency red shifts by 4 and 18

cm−1 in [BMIM][BH4] and [P14,6,6,6][BH4], respectively. In the [BMIM][BH4] sample, dihy-

drogen bonding can occur between BH –
4 and the slightly acidic C-H at the 2-position of

the BMIM+ cation. Therefore, the bluer shift of the ν3 mode for [BMIM][BH4] compared

to [P14,6,6,6][BH4] could correlate to an effect of more dihydrogen bonding. The ratio of the

absorbance for the two Fermi resonances also varies across the ILs. 2D-IR will be able to

provide more insight into the vibrational coupling and local structural environment of these

ILs.

5.4.3 Structure of 2D-IR Spectra of BH –
4 in [N1,1,1,4][Tf2N] and BH –

4 Based

Ionic Liquids

The Fermi resonances of BH –
4 complicate the 2D-IR spectra for the saturated solution of

N1,1,1,1BH4 in [N1,1,1,4][Tf2N] and the two BH –
4 ILs: [BMIM][BH4] and [P14,6,6,6][BH4] (Figure

27). Similar peaks corresponding to the vibrational modes of BH –
4 exist in each IL. A typical

2D-IR spectrum of a vibrational probe consists of two peaks: one negative peak and one

positive peak. The negative peak is found on the diagonal and correlates to a combination

of the ground state bleach (GSB) and stimulated emission (SE) transitions. The positive

peak is anharmonically shifted off-the diagonal and correlates to the excited state absorption

(ESA). Two diagonal bands are clearly evident for the ν3 (peak 4) and ν2+ν4 (peak 7) modes,

thus correlating to the respective GSB and SE transitions. No clear diagonal band for the

2ν4 mode is evident, possibly due to overlap effects with nearby peaks of opposite signs.

Two positive peaks appear anharmonically shifted from peak 4. The anharmonic shifts are

comparable to that determined by solid state 2D-IR (∼ 44 cm−1, peak 5)126 and by IR-

pump IR-probe experiments (∼ 120 cm−1, peak 6).125 Therefore, it appears that two ESA
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transitions exist for the ν3 mode of BH –
4 .
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Figure 27: Several crosspeaks appear in the 2D-IR spectra of BH –
4 in ILs due to vibrational

coupling between the ν3 mode and the two Fermi resonances. 2D-IR spectra are obtained on

various BH –
4 ILs at a t2 of 0.5 ps: a)∼ 150 mM N1,1,1,1BH4 in [N1,1,1,4][Tf2N] b) [BMIM][BH4]

and c) [P14,6,6,6][BH4].

In addition to multiple ESAs, several cross-peaks appear indicating vibrational energy

coupling between the three vibrational modes. A crosspeak is identified as consisting of a

different initial frequency (ω1) from its final frequency (ω3). The obtained 2D-IR spectra

show crosspeaks between ν3 and the 2ν4 modes (peaks 1 and 2) and between the ν3 and

ν2 + ν4 modes (peaks 3, 8, and 9). A crosspeak (peak 10) between the two Fermi resonances

(2ν4 and ν2+ν4) appears, though no complementary peak is observed.

As t2 is varied in the experiment, intramolecular energy redistribution between modes

is evident through the appearance of new crosspeaks (Figure 28). For example, the corre-

sponding crosspeak to peak 1 (peak 14) appears either due to energy redistribution between

the ν3 and the 2ν4 modes or population relaxation of peak 6 causing less overlap/cancelation

effects. There are five additional positive peaks that appear in the 2D-IR spectrum as t2 in-

creases (peaks 11, 12, 13, 15, and 16). The positive peaks are difficult to qualitatively assign

as the corresponding transitions involve a state from the second excited state manifold. A

detailed approach at understanding all possible transitions is necessary to understand the

complicated 2D-IR spectra of BH –
4 ILs.
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5.4.4 Model Hamiltonian Analysis of the Spectrum

Quantitative modeling of the spectra allows an assignment of the complicated 2D-IR spectra

of BH –
4 in [N1,1,1,4][Tf2N]. To model the 2D-IR spectra including the Fermi resonances, we

construct a vibrational Hamiltonian with ν2, ν3, and ν4 modes including cubic and quartic

couplings (Equation 5.2). Building off of previous models, we extend this approach for a

more complete and robust representation for three coupled vibrations.
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Figure 28: Crosspeaks appear over time due to vibrational energy redistribution between

the vibrational modes. 2D-IR spectra of [BMIM][BH4] are obtained with varying t2 from 0.2

to 25 ps.

The vibrational Hamiltonian consists of the creation operator (b†i ), the annihilation op-

erator (bi), the position operator (X̂i) of mode i, and the three and four mode coupling

constants (ηijk and ηijkl, respectively) between modes i, j, k, and l.

H =
4∑
i=2

~ωi(b†ibi + 1/2)

+
4∑

i,j,k=2

ηikj
6
X̂iX̂jX̂k

+
4∑

i,j,k,l=2

ηikjl
24

X̂iX̂jX̂kX̂l

(5.2)
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To reduce the number of free parameters, we treat only six parameters as non-zero: the three

frequencies for the primary transitions ωi, the quartic anharmonicity of the ν3 mode, η3333,

and the coupling constants η223 and either η344 or η234. In this approximation, we assume

that the cubic and quartic diagonal anharmonicities of the lower-frequency modes ν2 and ν4

(η222, η2222, η444, and η4444) are zero,99 and we use only the quartic anharmonicity to describe

the diagonal anharmonicity of the ν3 mode. The dipole operator of the ν3 mode is non-zero,

so it is a dipole allowed transition (a bright mode). The dipole operator of the other two

modes is zero (dark modes), and they only contribute to the spectrum through their mixing

with the ν3 mode.

The matrix form of this Hamiltonian is calculated in a product-mode basis of states

including up to ten quanta in each mode. Diagonalization of the Hamiltonian provides the

eigenvalues and eigenvectors. The ten quanta ensure that the eigenvalues and eigenvectors

are converged. The physical interpretation of the eigen-energies is clear, but the eigenvectors

are complicated. This type of calculation is effectively a vibrational configuration interaction

treatment in the harmonic oscillator basis, truncated at a certain level. The eigenvectors are

mixed configurations. This mixing is a representation of the dynamical correlation of the

vibrations, which is the essential physical ingredient necessary to capture Fermi resonances.

The configuration mixing is the process which allows the overtone and combination bands

to mix with the bright state and become IR active.

This approach consists of strengths and weaknesses. Eq. 5.2 is an effective Hamiltonian

with 6 free parameters. It should be noted that the dimensionality of the problem is re-

duced from nine to three, which means we are treating only one of the triply degenerate

sets of modes. This vastly reduces the size of the Hamiltonian matrix, at the cost of not

correctly treating the symmetry of the problem. As a result, the effective coupling constants

are not directly related to the coupling constants from an anharmonic quantum chemistry

calculation.

In addition, we neglect quartic couplings. In general, cubic and quartic couplings are of

similar order of magnitude, and quartic terms are required to maintain a bound potential

for all values of the normal mode displacement. For the current work, the fitting of the

spectra do not converge with quartic couplings, so only cubic couplings are retained. The
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eigenvectors and eigenvalues are checked to ensure that no spurious divergences contaminate

the results by, for example, checking that the lowest energy state has very high overlap with

the uncoupled vibrational ground state. Future work will extend this formalism to correctly

treat the symmetry and dimensionality to connect these couplings to vibrational potential

energy surfaces from quantum chemistry.

Diagonalizing this vibrational Hamiltonian generates eigenvalues and eigenstates of the

coupled modes. Matrix elements of the dipole operator in the eigenvector basis provides

the transition amplitudes between eigenstates. The eigen-energies and mixing coefficients

are inputs to a response-function formalism which sums over all the rephasing and non-

rephasing pathways and generates the 2D spectra.96 The line-broadening is applied to the

simulations based on the experimentally extracted frequency fluctuations of the diagonal ν3

band (Section 5.4.3).

The free parameters of Equation 5.2 are adjusted to reproduce the features in the exper-

imental spectrum (Appendix A.2). The parameters are highly coupled; they are sensitive

to small changes but not unique in their ability to reproduce the spectrum. For example,

spectra calculated with two different forms of coupling of the ν4-mode to the ν3-mode are

successful at reasonably reproducing the spectra. Both η2,3,4 6= 0 and η344 6= 0 can produce

similar features in the spectra, essentially the eigenvalues and dipole matrix-elements. As

such, we suggest that this model provides a qualitative picture of the complex vibrational

manifold of states and guides our assignment of the transitions.

The resulting complicated energy level diagram (Table 3) shows only the states that carry

appreciable oscillator strength (> 1% of the largest transition). Each eigenstate exhibits

mixed excited state character, but the largest components identify eigenstates 4, 5, and 6

as the 2ν4, ν3, and ν2 + ν4 modes, as expected. The mixture of the |0, 1, 0〉 configuration

in eigenstates 4 and 6 is what lends oscillator strength to these otherwise dark modes, the

defining characteristic of Fermi resonances. The two-exciton manifold is more complicated,

including 7 mixed states (eigenstates 14 through 20) that can be reached from the one-exciton

manifold.

From the eigenvalues and eigenstates of the coupled modes, the simulated spectrum re-

produces key features of the experiment (Figure 29). In all, 21 pathways contribute to 18
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Table 3: The energy levels are formulated by diagonalizing the anharmonic Hamiltonian

(Equation 5.2). The nomenclature for a given state is |ν2, ν3, ν4〉. Therefore, the representa-

tion of the first excited state of the ν3, overtone, and combination band are |0, 1, 0〉, |0, 0, 2〉,

|1, 0, 1〉 respectively. The first excited state manifold contains three mixed energy levels.

The second excited state manifold is more complex with 7 mixed states that contribute to

transitions in the 2D-IR spectra.

Energy Levels (#) Energy (cm−1) States, |ν2, ν3, ν4〉

( % contributing)

1 0 |0, 0, 0〉 (100 %)

1st Excited State Manifold

4 2160 |0, 0, 2〉 (86 %)

|0, 1, 0〉 (13 %)

5 2208 |0, 1, 0〉 (65 %)

|0, 0, 2〉 (21 %)

|1, 0, 1〉 (14 %)

6 2272 |1, 0, 1〉 (77 %)

|0, 1, 0〉 (22 %)

2nd Excited State Manifold

14 4292 |0, 0, 4〉 (47 %)

|0, 1, 2〉 (33 %)

15 4342 |0, 2, 0〉 (55 %)

|0, 0, 4〉 (29 %)

|1, 1, 1〉 (10 %)

16 4386 |1, 0, 3〉 (35 %)

|0, 2, 0〉 (26 %)

|0, 1, 2〉 (21 %)

|0, 0, 4〉 (18 %)

17 4427 |1, 1, 1〉 (36 %)

|0, 1, 2〉 (24 %)

|2, 0, 2〉 (22 %)

|1, 0, 3〉 (22 %)

18 4474 |1, 0, 3〉 (40 %)

|2, 0, 2〉 (21 %)

|0, 1, 2〉 (20 %)

|1, 1, 1〉 (10 %)

19 4527 |2, 1, 0〉 (58 %)

|3, 0, 1〉 (26 %)

|1, 1, 1〉 (11 %)

20 4562 |2, 0, 2〉 (53 %)

|1, 1, 1〉 (30 %)
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Figure 29: a) The simulated spectrum does reproduce key features of the experiment, however

there are some minor differences. The results from the simulated 2D-IR spectrum reveal

that there are 21 pathways that contribute to 18 peaks. The BH –
4 spectrum is simulated by

response function formalism. The simulated BH –
4 2D-IR spectrum is labeled by the most

contributing pathway to a given peak. The diagonal peaks (a, c, e), the ESA (b, c, f),

negative (g, i, k, n, o, and r) and positive crosspeaks (h, j, m, p, g) are all accounted for.

b) Wave mixing diagrams represent the most contributing pathway to a given peak. The

wave mixing diagrams are separated by the given population state at ω1.
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peaks in the 2D-IR spectrum of BH –
4 . Multiple Liouville pathways exist for each peak, but

for simplicity, we list only the pathway with the largest contribution for each peak. Inter-

state coherence pathways are included in the calculations but are not the most contributing

pathway for any peak.

Many excitation pathways contribute to the 2D spectra, which we summarize in wave-

mixing diagrams (Figure 29). In the wave mixing diagram, the first two electric field inter-

actions are from the pump pulses. The third pulse generates another coherence state in the

first or second excited state. There is then an emitted field, photon echo, that heterodyne

mixes with the local oscillator. The third interaction can either connect the ground state

and the one-exciton manifold (blue arrows), which corresponds to stimulated emission and

ground state bleaches, or the one- and two-exciton manifolds (red arrows), which corresponds

to excited state absorptions.

Each peak can be designated by the sequence of electric field interactions that connect

the different eigenstates. For example, peak a comes from three electric field interactions

between eigenstates 1 and 4. As another example, pumping the ν2 + ν4 mode (eigenstate

6) and then the 2ν4 mode (state 16, ∼ 50 % |1, 0, 3〉) generates a crosspeak in the bottom

right of the spectrum (peak p). In this way, each peak in the spectrum can be assigned to

different pathways up and down the ladder of mixed vibrational states.

Two interesting features deal with two excited state absorptions (peaks d and l). Both

originate from excitations of the ν3 mode (eigenstate 5), ascending to eigenstates 16 and 15,

respectively. Eigenstate 15 is predominantly a 2ν3 ≡ |0, 2, 0〉 state which accounts for the

high intensity of peak l. Eigenstate 16 on the other hand, is predominantly a mixture of the

overtone (|0, 0, 2〉 and combination bands (|1, 0, 1〉), namely |1, 0, 3〉.

As much as the simulated spectrum captures many features of the experimental spectrum,

there are some differences. The ordering of the intensities of the overtone and combination

band is not correct in the linear and 2D spectra (diagonal peaks). In addition, the simulation

gives stronger crosspeaks g and h than those observed experimentally. Given the simplicity

of the model, these shortcomings are not unexpected, and more complex models may be

able to better capture the features of the experimental observations. Overall, the modeling

provides an initial understanding of the origin of the peaks in the 2D spectrum and sets the
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stage for characterizing the dynamics.

5.4.5 Vibrational Energy Redistribution, Relaxation, and Thermalization of

BH –
4 Ionic Liquids

Polarization-dependent IR pump-IR probe experiments assess the vibrational lifetime of the

ν3 mode. To isolate the vibrational lifetime from rotational effects, we measure the IR pump-

IR probe spectrum from −2 to 200 ps in parallel and perpendicular polarization conditions

to calculate the isotropic signal, which is equivalent to a magic angle experiment.172 The

parallel and perpendicular polarization conditions also allow us to isolate rotational dynamics

by calculating the anisotropy.

The IR pump-IR probe spectra show multiple transitions which we assign to absorptions

of the ν3 and 2ν4 modes (Figure 30a). The overlap of the peaks make them difficult to assign

solely on the pump-probe spectra. Based on our analysis of the structure for the 2D-IR

spectra, the IR pump-IR probe spectra reveal 4 transitions in the spectral window: the GSB

of the ν3 (peak 4) and 2ν4 (not seen in the 2D-IR spectra) modes and the two ESA of the

ν3 mode (peak 5 and 6).

The second ESA amplitude decays to zero, whereas the GSB decays to an offset (Figure

30b). The vibrational relaxation time is measured for the isotropic signal by plotting the

max/min amplitude of a single frequency as a function of delay time for the GSB and the

second ESA of the ν3 mode, respectively. Represented here by the constant (c) in the GSB

fit, a significant bleach at ∼ 200 ps remains for the BH –
4 ILs that indicates a thermalization

effect and the existence of a hot ground state (Figure 30b inset). Vibrational energy relax-

ation from the BH-stretch into the low-frequency bends and intermolecular motions leads

to signals which relax on the timescale of thermal transport of the excited sample volume.

Similar solvent heating effects are observed for BH –
4 in aqueous solutions as discussed in

Chapter 4.
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Figure 30: a) The GSB of the ν3 mode is still evident at ∼ 200 ps. The IR Pump-IR Probe

spectra of [P14,6,6,6][BH –
4 ] in the all parallel direction reveals four transitions: GSB for the

ν3 and 2ν4 modes and the two ESA of the ν3 mode. b) The population relaxation time

(T1) is determined from the isotropic signal. For the isotropic signal of [P14,6,6,6]][BH –
4 ],

the amplitude at a single point of the ν3 GSB (2216 cm−1) and for the second ν3 ESA

(2084 cm−1) is plotted with respect to delay time. An offset represents a long lived GSB or

hot ground state (HGS) and varies in amplitude across the investigated ILs (inset).
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Table 4: The population lifetime (T1) for each IL sample is determined by plotting the

max/min amplitude of the GSB and second ESA of the ν3 mode for the isotropic signal. The

ESA fits to a single exponential, and the GSB fits with a single exponential that includes an

offset to account for the long-lived HGS. The amplitude of the fit is represented by A and c

is the offset.

[BMIM][BH4] [P14,6,6,6][BH4] N1,1,1,1BH –
4

in [ N1,1,1,4][Tf2N ]

GSB

A −1.5± 0.2 −1.87± 0.09 −1.3± 0.05

T1 (ps) 2.0± 0.5 5.3± 0.7 6.4± 0.6

c −0.90± 0.09 −0.25± 0.08 −0.02± 0.04

ESA

A 1.10± 0.06 0.95± 0.05 0.48± 0.01

T1 (ps) 2.4± 0.3 4.6± 0.7 4.7± 0.4

The GSB and the second ESA peaks of the ν3 mode decay on slightly different timescales

between ILs (Table 4). A single exponential with an offset represents the decay of the GSB

along with the long lived hot ground state, and a single exponential correlated well to the

decay of the second ESA. The vibrational relaxation time calculated from the isotropic signals

yields a vibrational lifetime (T1) in the given solvent. The reported T1 times are slower

in [P14,6,6,6]][BH –
4 ] (∼ 4.7 ps) and the saturated solution of N1,1,1,1BH4 in [N1,1,1,4][Tf2N]

(∼ 6.5 ps) than in [BMIM][BH4] (∼ 2 − 3 ps). For [BMIM][BH4], the faster T1 could be

attributed to a larger water content.

The measured anisotropy does not correlate to the molecular rotational dynamics of

BH –
4 in different solvation environments (Appendix A.2). The anisotropic signal of the ν3

mode of BH –
4 is ∼0.05 at early times (t∼150 fs) and decays on a fast timescale (∼200 fs) for

all IL samples. The anisotropic results measured in ILs correlate to what was measured for

the ν3 mode of BH –
4 in Chapter 4. As the ILs in this study are 100-fold more viscous than

H2O, the anisotropy correlates to the intramolecular redistribution of the triply degenerate
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ν3 mode and is independent of the bath environment.

With 2D-IR, intramolecular energy redistribution between the bright mode and the Fermi

resonances is determined from an amplitude change in crosspeaks. Analysis of the 2D-IR

spectra (Figure 28) gives an approximately 200 fs rise and a few ps decay. We interpret the

kinetics of the crosspeak as a mixture of intramolecular vibrational energy redistribution,

vibrational energy relaxation, and thermalization. The fast rise (200 fs) of peak 1 is likely

due to the redistribution of vibrational energy between the ν3 and 2ν4 modes. The kinetics

of the corresponding crosspeak (peak 14), which is due to downhill energy transfer between

ν3 and 2ν4. The kinetics, however, are not clear as peak 14 overlaps with two positive peaks

that have ESA character. Other crosspeaks’ amplitudes vary with t2 and correlate energy

transfer between the three coupled vibrational modes, but the kinetics are in the motionally

narrowing limit.

5.4.6 Solvent Reorganizational Dynamics of BH –
4 Ionic Liquids

The solvent dynamics of BH –
4 vary with the ILs under investigation revealing different

local solvent structures. 2D-IR spectra are collected up to 30 ps for each BH –
4 IL under

investigation. In each IL, the vibrational lifetime of the ν3 mode is determined to be ∼3 to

6 ps depending on the respective sample. Due to the evidence of a thermalization effect, any

CLS result at long t2 (∼ 10 ps) will no longer correlate to the molecule initially excited and

will contain no information on the local solvent environment.

In the ILs at early t2 (∼ 0.2 ps), the 2D-IR spectrum of the ν3 mode indicates a larger

inhomogeneous component than seen previously in aqueous solutions19,173 (Figure 28). Due

to the complicated nature of the BH –
4 2D-IR spectra, center line slope (CLS) was performed

only on peak 4, which is the GSB and SE of the ν3 mode, similar to Chapter 4 and other

BH –
4 studies19.

The FFCF parameters are extracted from the CLS results (Figure 31a). The initial

CLS value (t2 ∼ 200 fs) for the ν3 mode is ∼ 0.35, ∼ 0.31, and ∼ 0.32 for N1,1,1,1BH4 in

[N1,1,1,4][Tf2N], [P14,6,6,6][BH4], and [BMIM][BH4] respectively. A biexponential function is

used to represent the relaxation of the ν3 mode in the ILs, where A1 and A2 are the amplitude
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of the frequency fluctuations, τ1 is the fast time component of the timescale of frequency

fluctuations, and τ2 is the slow time component (Table 5).

c2(t) = A1e
−t/τ1 + A2e

−t/τ2 (5.3)
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Figure 31: a) The resulting dynamics correlate to the solvent reorganization timescale in

different ILs. The CLS values are calculated for all ILs and are fitted to a biexponetial

N1,1,1,1BH4 in [N1,1,1,4][Tf2N] (red), [P14,6,6,6][BH4] (blue), and [BMIM][BH4] (black).

Table 5: FFCF parameters are determined for the BH –
4 ν3 mode using a biexponential fit

to the CLS values for BH –
4 in an aprotic IL and both BH –

4 ILs, respectively.

τ1 (ps) τ2 (ps) A1 A2

[BMIM][BH4] 0.2 (±0.2) 9.2 (±0.7) 0.2 (±0.2) 0.27 (±0.01)

[P14,6,6,6][BH4] 0.3 (±0.2) 17 (±2) 0.14 (±0.06) 0.257 (±0.009)

150 mM N1,1,1,1BH –
4 0.5 (±0.1) 33 (±7) 0.14 (±0.02) 0.259 (±0.008)

in [N1,1,1,4][Tf2N]

The fast and slow timescales vary in the ILs under investigation (Table 5). The fast time

(τ1) is on a sub-picosecond timescale, and the slow time (τ2) varies on a picosecond timescale
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(9.2 to 33 ps). Overall, the bulk BH –
4 ILs reorganize on a faster time scale than the saturated

solution of N1,1,1,1BH –
4 in [N1,1,1,4][Tf2N](Figure 31b). Between the two BH –

4 ILs, the more

sterically hindered [P14,6,6,6][BH4] reorganizes on a slower timescale than [BMIM][BH4].

5.5 DISCUSSION

As discussed in Chapter 4, the BH –
4 2D-IR spectrum in H2O is broad, and the peaks are

unresolved, but in an IL, the BH –
4 2D-IR spectrum is narrow, and the peaks are resolved.

The narrowed vibrational modes of BH –
4 in an IL result in less overlap of peaks with opposite

signs resulting in cancelation effects. In the BH –
4 ILs 2D-IR spectra, there are a total of

16 identifiable peaks compared to only 5 possible peaks in the 2D-IR spectra of BH –
4 in

H2O. In the IL spectra, there is a well-defined overlap between peak 4 (ν3 GSB/SE) and

a crosspeak (ν3 and 2ν4). In the H2O spectra, peak 4 is asymmetrical, and it is not clear

that ν3 GSB/SE is overlapping with a crosspeak. For another example, peak 5 (ν3 ESA) is

clearly visible in the IL spectra, but in the aqueous spectra, overlap with the broad peak 4

causes it to appear as a small positive amplitude. Overall, the resolved 2D-IR spectra allow

a better understanding of vibrational coupling between the dark and bright modes BH –
4 in

solution.

Using a Hamiltonian model approach, we can assign the complex 2D-IR spectra of BH –
4

in ILs. Previous ultrafast vibrational experiments on BH –
4 have identified quite different

anharmonicities for the ν3 mode: a small (44 cm−1) by IR-pump IR probe spectroscopy125

and a large (120 cm−1) anharmonicity by solid state 2D-IR. In the IR pump-IR probe exper-

iments for the BH –
4 ILs, both excited state absorbances are also evident. Our Hamiltonian

model approach enables the assignment of those two ESA peaks (peak 5 and 6) with a re-

spective pathway (d and l). Both pathways have a population state of the |0, 1, 0〉 (ν3) mode,

but the second coherence time populates eigenstate 15 and 16 for peaks 5 and 6, respectively.

Both of these mixed eigenstates consist of a |0, 2, 0〉 character. Thus, the pathways correlate

to a ESA peak for the ν3 mode. In eigenstate 15, the |0, 2, 0〉 state contributes to over half of

the character for the given state. Eigenstate 16, however, has |1, 0, 3〉 character as the most
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contributing state, and the |0, 2, 0〉 state is only contributing 26%.

In addition to understanding vibrational mode coupling, we can lay out the vibrational

energy cascade in an IL from the IR Pump-IR Probe data. Previously reported, a similar

mechanism describes the vibrational energy redistribution, relaxation, and thermalization in

aqueous solutions174. The IR pump populates one of the BH stretching modes or Fermi reso-

nances: 2ν4, ν3, or ν2 + 2ν4. As seen by crosspeaks in the 2D-IR spectra, vibrational energy

redistribution will occur between the three coupled modes on a fast timescale (∼ 200 fs).

Vibrational energy will then relax to low-frequency bends and intermolecular motions. As

seen by an apparent bleach at long t2 (∼ 200 ps) from the IR pump-IR probe and 2D-IR, the

vibrational energy will then relax into thermally populated states (HGS) before ultimately

relaxing to the ground state.

Vibrational energy can relax into several low frequency modes of H2O, resulting in a

faster relaxation of the ν3 mode. The reported T1 for the ν3 mode varies in each IL.

The [BMIM][BH4] sample in the IR pump-IR probe experiment has a larger water con-

tent (∼1.6 M) than in the other two IL samples. While drying the sample, the sample

degraded through self hydrolysis through a visual observation of H2(g) generation after a few

hours, thus the IL could not be completely dried. As the ν3 mode relaxes, broad water modes

will accept more energy, resulting in a faster T1 that is more on par with the T1 in aqueous

solutions, as discussed in Chapter 4.

The thermalization effect, shown by the offset in the GSB , is consistent with the trend

of the T1 of the ν3 mode. As discussed in Chapter 4, a thermalization effect occurs in 3 M

NaBH4 solutions in high base concentrations. When T1 is large, as in [N1,1,1,4][Tf2N], cooling

of the ν3 mode occurs instantaneously. In the bulk BH –
4 ILs, however, T1 is faster than the

cooling time. Similar T1 effects were seen for the nitrile stretch of SCN– in ILs, where water

was introduced12. Thus, the rate of energy transfer to the solvent (H2O modes) results in

a faster energy jump. The thermalization effect hinders the effective t2 range for extracting

the FFCF. It should be noted that the thermalization effect is governed by the heat transfer

out of the pump beam through the solvent windows and then dispersed throughout the

sample.175

From the FFCF, timescales of frequency fluctuations are determined that correlate to
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local solvent structural dynamics. The initial amplitude of the FFCF (t2 →0.2 ps) is higher

in the IL samples, so something is slower than in water. Overall, we determine a fast and

slow timescale in the IL samples. The fast dynamics (τ1) are approaching the motional

narrowing limit and slightly vary with IL. In aqueous solutions, Giammanco et al.19 resolve

a 300 fs timescale for the dynamics of BH –
4 in H2O, and in Chapter 4, we resolve a 200 to

800 fs fast solvent reorganizational time of BH –
4 in aqueous solutions with increasing NaOH

concentrations. As the fast time is independent of the bath environment, τ1 may correlate

to the intermolecular energy redistribution of the triply degenerate ν3 mode.

In other ionic liquids, the solvent dynamics trend linearly with viscosity. Spectral diffu-

sion of CO2 in a variety of ILs13 follows a nearly linear trend with viscosity over a wide range,

from 13–104 ps and 12 to 170 cP. The dynamics of SCN– 12 and HOD176 fall on the same

trend line.13 The τ2 of the N1,1,1,1BH4 in [N1,1,1,4][Tf2N] fall substantially below this trend

line as it has a reported viscosity of 100 cP. The previous trendline would predict dynamics

on a ∼ 60 ps timescale, while we observe a ∼ 33 ps timescale. This suggests that the local

reorganization around the BH –
4 is perhaps not gated by the motion of the ions of the IL

solvent in the same way.

Also, the BH –
4 ILs do not follow a correlation of viscosity with the local dynamics as seen

previously in imidazolium ILs. The viscosity of [BMIM][BH4] and [P14,6,6,6][BH4] (533 and

1064 cP, respectively) are 5 and 6-fold larger than the ILs studied with CO2.13 Therefore, it

would be expected that spectral diffusion in the BH –
4 ILs would occur on a slower timescale

than 104 ps, yet the spectral diffusion times are on par with CO2 in lower viscosity solvents

(12 cP). The reorganization of the ion cage around a BH –
4 anion is expected to be different

from CO2. In aqueous solutions, the slow spectral diffusion times of the ν3 mode of BH –
4

correlate to the reorganization of dihydrogen bonds.19 Therefore, the spectral diffusion time

may be influenced by the reorganization of these dihydrogen bonds, resulting in a faster

timescale. The 2-position on the BMIM cation is acidic and could dihydrogen bond with

the partially negative charged hydrogens of BH –
4 . Methylating the 2-position of the cation

for [BMIM][BH4] could probe the influence of dihydrogen bonds in the IL where we would

expect a slower spectral diffusion time more on par with viscosity. It should also be noted

that a large amount of water in the [BMIM][BH4] could indicate that dihydrogen bonding is
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occuring between water and the BH –
4 anions in the first solvation shell.

Directly comparing the two BH –
4 ILs, the 2-fold less viscous [BMIM][BH4] has a 2-fold

faster spectral diffusion time than [P14,6,6,6][BH4]. The P +
14,6,6,6 cation is bulkier than the

BMIM cation, especially due to the long 14 carbon alkyl chain. A further 2D-IR study

of varying the long alkyl chain component of a P +
X,6,6,6 cation (where x is the long alkyl

chain component) and varying the alkyl chain of the imidazolium cation could provide new

insights into how sterics of the cation may influence molecular motions of these novel BH –
4

ILs. Molecular dynamic simulations can provide further insight into how the BH –
4 ILs

undergo solvent reorganization compared to the well established imidazolium ILs.

5.6 CONCLUSION

In addition to bulk thermophysical properties, we identify spectroscopic characteristics for

bulk BH –
4 ILs and BH –

4 dissolved in an aprotic IL. In ILs, the vibrational linewidths are

narrower than water173, which allows an analysis of the vibrational coupling between bright

(ν3) and dark (2ν4 and ν2+ν4) modes in the spectrum. A model Hamiltonian approach is

able to capture the complicated structure of the Fermi resonances in the 2D-IR spectra.

The eigenstates show that the excited state manifold consists of mixed character of three

primary vibrational modes (ν2, ν3, and ν4), thus revealing that two peaks in the 2D-IR

spectra arise from the ESA of the ν3 mode. The vibrational energy cascade of the ν3 mode

of BH –
4 was probed through analysis of vibrational relaxation dynamics determined from

polarization-dependent IR pump-IR probe data and of crosspeaks in the 2D-IR spectra.

The timescales of frequency fluctuation give insights into how complex liquids may influ-

ence the local solvation shell around the BH –
4 and provide another tool to assist in classifying

these novel ILs. Further analyzing the 2D-IR data, we extract a FFCF that reveals aspects

of the local structural dynamics. In [N1,1,1,4][Tf2N], the slow solvent reorganizational time

(τ2) is much slower than reported for BH –
4 bulk ILs and does not correlate to previous

viscosity trends,13 indicating the structural reorganization around the BH –
4 anion is gated

in a different way. Similarly for the BH –
4 ILs, [BMIM][BH –

4 ] resulted in a faster τ2 than
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[P14,6,6,6][BH4]. This difference is likely due to a complementary effect of dihydrogen bond-

ing in the wet [BMIM][BH –
4 ] sample and steric effects with the bulky P +

14,6,6,6 . Overall,

these spectroscopic characteristics, i.e. vibrational coupling, thermalization, relaxation, and

spectral diffusion, can assist in classifying these novel BH –
4 ILs.
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6.0 REORIENTATION-INDUCED SPECTRAL DIFFUSION OF EAN

The text in this chapter has been adapted from a manuscript being submitted to the Journal

of Chemical Physics. An early version of the manuscript was submitted to a pre-print

server: Johnson, C.A., Parker, A.W., Donaldson, P.M., Garrett-Roe S. ChemRxiv. 2019.

DOI: 10.26434/chemrxiv.9876524. The author’s contribution includes choosing the system,

performing all FTIR and 2D-IR experiments, assisting in the set up of the 2D-IR experiments

at the Central Laser Facility at the Rutherford Appleton Laboratory, performing the analysis

of the 2D-IR data (except for the 2D-Anisotropy), and writing the manuscript.

6.1 CHAPTER SUMMARY

Using ultrafast two-dimensional infrared spectroscopy (2D-IR), a vibrational probe (thio-

cyanate, SCN– ) was used to investigate the hydrogen bonding network of the protic ionic

liquid ethyl-ammonium nitrate (EAN). The 2D-IR experiments were performed in both

parallel (〈ZZZZ〉) and perpendicular (〈ZZXX〉) conditions at room temperature. The

non-Gaussian lineshape in the FTIR spectrum of SCN suggests two sub-ensembles. Vi-

brational relaxation rates provide evidence of the dynamical differences between the two

sub-ensembles: charge depleted (alkyl chain) and charge dense (ammonium headgroups and

nitrate ions) regions. The measured rates for spectral diffusion depend on polarization, in-

dicating reorientation-induced spectral diffusion (RISD). A model of restricted molecular

rotation (wobbling in a cone) fully describes the observed spectral diffusion in EAN. This

complete characterization of the dynamics at room temperature provides the basis for the

temperature-dependent measurements in Chapter 7.
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6.2 INTRODUCTION

Protic ionic liquids (PILs) are room-temperature molten salts of a Brønsted acid and Brøn-

sted base78,177. Their high thermal stability, low vapour pressure, high proton conductance,

and “water-like” hydrogen-bonding makes them promising as proton-conducting electrolytes

for next-generation fuel cells79,82. The exact molecular mechanism of proton transport,

however, is still unclear. Proton transport, in turn, is fundamentally controlled by the

hydrogen bond network – its structure and fluctuations dictate if protons move independently

of the proton donor (Grotthus transport) or with the proton donor (vehicular transport).

The lack of a clear mechanistic picture for hydrogen bond dynamics in PILs limits the

strategic development and chemical synthesis for applications in industrial processing, and

proton conducting electrolytes.

The PIL ethyl-ammonium nitrate (EAN), the first room temperature ionic liquid to be

discovered77, has been extensively studied ever since it was synthesized in 1914. EAN is

a “good” PIL (∆pKa = pKa(base) − pKa(acid) = 11.93)75,178, meaning the acid and base

dissociate completely. In addition, EAN behaves like an ideal solution of independent ions78

and conducts electricity by free diffusion of the ions178.

EAN forms an extended, three-dimensional hydrogen bonding network comparable to

that of H2O(l) suggesting it may have a similar proton transfer mechanism to H2O(l). EAN

consists of three hydrogen bond donors on the cation and three hydrogen bond acceptors on

the anion; the large hydrogen bond angles between the cation and anions result in a major-

ity of bent hydrogen bonds.85 Far-IR spectroscopy shows that the hydrogen bond stretch-

ing and bending modes in EAN are comparable in energy to that of H2O(l).83 Dielectric

spectroscopy179 and combined dielectric relaxation and optical Kerr effect spectroscopies180

provide a detailed picture of the temperature dependence of structural relaxation modes in

the liquid. Classical molecular dynamics (MD) simulations find the average hydrogen bond

lengths in EAN to be comparable to those of strong hydrogen bonds, and the timescales

of molecular rotations of the ammonium cation (NH stretch) are faster in comparison to

PILs with weakly interacting single hydrogen bonds181. Furthermore, ultrafast mid-IR spec-

troscopy suggests that the ammonium of EAN undergoes large angle jumps when switching
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hydrogen bond partners.84

EAN displays both structural and dynamical heterogeneity.89,182 Ionic liquids (ILs) in

general have a propensity to form polar and non-polar domains with sizes on a nanometer

length-scale. The polar domains are charge dense and dominated by electrostatic ordering

of the cations and anions, whilst the non-polar domains are charge depleted and dominated

by weaker van der Waals interactions between alkyl groups.92,183 Neutron scattering experi-

ments and modeling show that EAN has alternation of charge-enhanced and charge-depleted

regions on a nanometer lengthscale.89,182 In EAN and ethyl-ammonium formate, ultrafast

IR-pump IR-probe experiments reveal different rotational times depending on the region

under investigation; ionic sub-domains relax much more slowly than the hydrophobic sub-

domains.86 In MD simulations, increasing the alkyl chain length of a primary ammonium

PIL increases the dynamical heterogeneity.184 Solutes can effectively report the dynamical

heterogeneity because the solute’s vibrational and rotational dynamics can differ in the soft

or stiff regions94,185.

The nitrile stretch of SCN– , the ν3 mode, is sensitive to its local environment148. In

water, neutron scattering suggests that SCN– accepts one hydrogen bond along with two

additional “hydration bonds,” which are Coulombic in nature, within the first hydration

shell.186 Early MD simulations notes few linear hydrogen bonds with water187 and many

arrangements of dipolar character, while more recent MD simulations of SeCN– 188 find an

average of 3-4 hydrogen bonds, with one of them being an axial (linear) hydrogen bond.

Ultrafast infrared spectroscopy can use the ν3 mode of pseudo-halide anions to investigate

ultrafast vibrational dynamics of water and other polar solvents148,189–194, concentrated ion

solutions195–197, ILs11,12,152,198,199, supported IL membranes200, deep eutectic solvents201, and

colloid emulsions202. Furthermore, a combination of MD simulations and ultrafast infrared

spectroscopy have developed a spectroscopic map of SeCN– in D2O that describes the fre-

quency dependence of the nitrile stretch on the hydrogen bonding environment188.

2D-IR spectroscopy can report two-point correlations in vibrational frequency and orien-

tation. The frequency fluctuation correlation function (FFCF) is revealed through a change

in shape of the 2D-IR spectra. The intensities of the spectra encode the orientations of

the chromophores with respect to the lab frame. Orientational relaxation can be measured
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through both the orientational anisotropy from pump-probe spectra, the standard technique,

and also two-dimensional anisotropy, from 2D-IR spectra203. When an IR chromophore’s vi-

brational frequency depends on its instantaneous orientation (like a Stark shift), then the fre-

quency and orientational dynamics become coupled.26,27 The relative angle of the molecule’s

dipole with the local electric field determines the magnitude of the vibrational frequency

shift. As a result, rotation of either the molecule with the respect to a fixed solvation cage

or rotation of the solvent electric field relative to the molecule will produce fluctuations in

the vibrational frequency. First described by Fourkas et al. for Vibrational Sum Frequency

Generation28 and elaborated by Fayer et al. for 2D-IR spectroscopy26,27, the FFCF extracted

from 2D spectra can be decomposed into reorientation-induced spectral diffusion (RISD) and

structural spectral diffusion (SSD) when polarization information is available.

The dynamics of SCN– in EAN at room temperature are presented in this chapter in

comparison to H2O. The 2D-IR lineshapes of SCN– in H2O indicate only a single ensemble

and are thus a negative control for sub-ensembles in this context. In Chapter 7, we will

compare the activation energies for the dynamics of SCN– in EAN and H2O in detail.

In this chapter, we develop an assignment of the two sub-ensembles of SCN– in EAN.

The non-Gaussian structure of the IR absorption spectrum of SCN– in EAN hints of the

presence of two hydrogen bonding environments. The two sub-ensembles are indicated by

the frequency-dependent rate of vibrational relaxation in the 2D-IR measurements. The

SCN– band shifts and narrows as a function of the population time, t2, which strongly

indicates two different vibrational relaxation rates. We also observe that the rates of de-

cay of rotational anisotropy are frequency dependent, and the frequency fluctuations also

vary somewhat across the spectra. Nevertheless, the time constants for rotational motion

and frequency fluctuations are the same for the two sub-ensembles, within error. Treating

the frequency and rotational dynamics as representing an average of the two ensembles, a

wobbling-in-a-cone RISD model shows that rotational motion suffices to account for the ob-

served spectral diffusion on a few picosecond timescale. The slower times in the rotational

anisotropy decay (∼ 25 ps) are believed to represent the slower process of total orientational

relaxation either through rotational diffusion or cone-jump processes. The temperature de-

pendence and activation energies of the dynamics of SCN– in EAN determined through this
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approach are reported in Chapter 7.

6.3 EXPERIMENTAL METHODS

The synthesis of EAN, sample preparation, and FTIR methods are described in Chapter 3.

This chapter uses the pulse shaping 2D-IR set-up as described in Section 3.5.2.

6.3.1 EAN Synthesis

Ammonium thiocyanate (NH4SCN, purity > 97.5%), ethyl-amine (67-70 %wt), and 15.7 M

HNO3 were purchased from Sigma Aldrich. EAN was synthesized by an acid-base titration.

Before use, the PIL was dried using a vacuum pump (10 µTorr). Solutions were 100 mM of

NH4SCN added to dry EAN and H2O respectively. The water content in EAN was < 40 mM

after drying, confirmed by FTIR (Appendix A.3).

6.3.2 2D-IR

The 2D-IR spectra were recorded simultaneously in the parallel (〈ZZZZ〉) and perpendicular

(〈ZZXX〉) direction for both SCN– in EAN and H2O. This enabled polarization dependent

data sets to be collected with high signal-to-noise in a matter of minutes. For this chapter,

each pair of simultaneously collected 〈ZZZZ〉 and 〈ZZXX〉 2D-IR spectra were recorded

with 10s of averaging. Thus, a total of 37 waiting times per temperature meant that 23

temperatures could be collected in under 3 hours. Before the sample, a wire grid polarizer

was accurately set to polarize the probe beam at 45◦ to the bench. The pump pulses were

kept parallel to the bench. After the sample, another wire gird polarizer was used to reflect

and transmit the 〈ZZZZ〉 and 〈ZZXX〉 signals respectively, which were routed to a separate

128 element MCT array detectors. The 〈ZZXX〉 signal was corrected after collection by

multiplying the amplitude of the 2D signal by a correction factor (0.89, i.e. 10 % error).

The correction factor was determined by adjusting the anisotropy from a negative offset

attributed to a 10 % transmission error in the wire-grid polarizer. The spectral resolution
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was 4 cm−1 for ω1 and 3 cm−1 for ω3. The population time (t2) was varied up to 11 ps for

both samples. A thermalization effect was evident for EAN at a long t2 (> 11 ps); the short

vibrational lifetime of the CN stretch in H2O (2 ps) limits the effective t2 range (∼ 5.5 ps).

6.4 RESULTS

6.4.1 FTIR

The linear IR spectrum of the nitrile stretching mode (ν3) of SCN– EAN provides the first

hint that there may be multiple local environments of SCN– in EAN (Figure 32). In H2O,

the center frequency of the ν3 mode of SCN– is 2065 cm−1 with a FWHM of ∼36 cm−1.

The center frequency of the ν3 mode of SCN– in EAN is 2059 cm−1 with a FWHM of

∼50 cm−1; the ν3 band is also asymmetric with a shoulder at 2070 cm−1. The appearance of

a shoulder suggests that SCN– populates two different environments in EAN. We will show

that via measurements of the ν3 absorption band, 2D-IR can provide additional insight into

the hydrogen bonding network of EAN using SCN– as a vibrational probe.

6.4.2 2D-IR

The change of the shape of the 2D-IR spectra of SCN- with time is complex (Figure 33a).

The inhomogeneous linewidth is ∼ 40 cm−1 at early t2 times. The spectra remain stretched

along the diagonal at 10 ps, indicating that spectral diffusion is not complete in the timeframe

of the experiment. In addition, while spectral diffusion occurs, the center frequency of the

nitrile band shifts from 2065 cm−1 at t2 = 0.2 ps to ∼ 2075 cm−1 at 10 ps and simultaneously

narrows.

To visualize the change in the spectrum, we fit the slices of the spectrum along the

pump axis (ω1) to two Gaussian peaks, one positive and one negative, to account for the

negative ground state bleach (GSB) and stimulated emission (SE) and the anharmonically

shifted, positive excited state absorption (ESA). These fits determine two parameters, the

peak frequency, ωcenter, and the peak width, σ, which are functions of the initial frequency,
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Figure 32: Solvent-subtracted FTIR spectra of the nitrile stretching mode, ν3 , of SCN– in

EAN (blue) and H2O (red). In EAN, the nitrile stretch of SCN– consists of an asymmetrical

shape that suggests more than one hydrogen bonding environment.
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Figure 33: 2D-IR spectra are obtained on the nitrile stretch of SCN– in a) EAN and b)H2O

at 19 ◦C in the 〈ZZZZ〉 polarization condition. Spectral diffusion is much faster in H2O

(< 1 ps) than in EAN (∼ 10 ps).
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ω1. The anharmonic shift is constant with frequency and waiting time (∼ 20 cm−1).

For Markovian dynamics on a harmonic potential, one expects the centers of the peaks,

ωcenter, to relax to the center of the band (∼ 2065 cm−1)20,23,204. Vibrational modes initially

at both low and high frequency will, on average, move towards the average frequency as

a function of time. Additionally, one expects the widths of the peaks, σ, to begin at the

homogeneous linewidth and then increase together until they reach the average linewidth.

This simple expectation, however, is not what is observed here. The center frequencies

(Figure 34a) initially move to toward the center (during the first 1-2 ps) and then all begin to

shift to higher wavenumbers (∼ 2070 cm−1). The widths start near the homogeneous width,

∼ 12 cm−1, and they all increase with time. One side of the spectrum, however, broadens

more than the other (Figure 34b).

The vibrational relaxation rate also seems to vary across the spectrum. To isolate pop-

ulation relaxation from orientational relaxation, we calculate the isotropic spectrum 2D-IR

spectrum, Siso(ω1, t2, ω3), from the 〈ZZZZ〉 and 〈ZZXX〉 measurements, SZZZZ(ω1, t2, ω3)

and SZZXX(ω1, t2, ω3),

Siso(ω1, t2, ω3) = SZZZZ(ω1, t2, ω3) + 2SZZXX(ω1, t2, ω3). (6.1)

Each slice along ω1 is fit to positive and negative Gaussian profiles representing the ESA and

GSB/SE peaks in the 2D-IR spectrum. We assume single exponential loss of the ESA and

SE which refill the GSB. Fitting the integrated Gaussian representing the ESA at each ω1 to

an exponential decay we determine the vibrational relaxation time constant, T1 (Figure 34e).

At low ω1 (2030 cm−1), the apparent T1 time is ∼ 2 ps, and, at high ω1 (2090 cm−1) it is

∼ 4 ps. The loss of signal on the low frequency frequency side of the spectrum relative to

the high frequency side of the spectrum is due to faster vibrational relaxation. This effect

causes the peak in the 2D-IR spectrum to shift as a function of t2.

6.4.3 A Model Fitting Approach

To test the hypothesis that two overlapping subensembles with different vibrational relax-

ation dynamics cause the observed changes in the spectra, we simulate the spectra and
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Figure 34: Summary of the analysis of the 2D-IR spectra show frequency-dependent changes

in position, width, and amplitude. a) The peaks of the 0-1 band (GSB/SE) as a function

of ω1 shift as a function of t2. In the first ∼ 2ps, the peaks converge towards the average

frequency due to spectral diffusion. Afterwards, the peak centers shift progressively higher in

frequency. c) The width of the 0-1 band increases in an ω1-dependent fashion. At 0.2 ps, all

slices of the 0-1 band has a ∼ 12 cm−1 standard deviation. Over time, the width of all slices

increases, but the widths increase much more on the low frequency side of the spectrum. e)

The apparent vibrational energy relaxation time, T1, extracted from the spectra also vary

across the spectrum from 2 − 4 ps. b,d,e) Simulations of the 2D-IR spectra using response

function formalism and assuming two sub-ensembles reproduce these measures of the spectra

semi-quantitatively.
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perform a global fit of the model parameters. We calculate third-order response functions

based on truncating the cumulant expansion at second order (equivalent to assuming Gaus-

sian statistics). For each subensemble, we include independent, free-fitting variables for the

timescales of frequency fluctuations, orientational relaxation, and population relaxation.

To describe frequency fluctuations, we used a Kubo lineshape96 function incorporating

a fast (homogeneous) and a slow component

g(t) =
t

T2

+ ∆2 τ 2

(
e−t/τ − 1 +

t

τ

)
(6.2)

where T2 is the dephasing time, ∆ is the range of frequencies sampled by the chromophore,

and τ is the correlation time. To describe orientational relaxation, we assume single exponen-

tial decay of the orientational correlations, and the appropriate orientational averages and

orientational relaxation were incorporated to reproduce parallel and perpendicular spectra.96

Errors are estimated by bootstrapping.205 The nonlinear least squares fitting is repeated on

100 synthetic data sets, in which random samples of the full data set are chosen, with replace-

ment, to preserve the number of data points. The observed variation in fit parameters serves

as an estimate of the error. To describe population relaxation, we assume single exponential

loss of the ESA and SE, which refills the GSB and is described by a time constant, T1. In the

fitting procedure, each sub-ensemble has an independent lineshape, orientational relaxation

time, and vibrational lifetime. The 〈ZZZZ〉 and 〈ZZXX〉 were fit simultaneously at each

respective t2 and temperature.

The complete set of best fit parameters is given in the Appendix A.3. The most notable

results are that the spectra are best fit with two sub-ensembles separated by ∼ 15 cm−1.

The low-frequency sub-ensemble contributes a higher initial intensity by a factor of 1.4, but

decays more rapidly (T1 = 2.0 ps versus 5.7 ps). The lower frequency sub-ensemble has faster

dynamics, both reorientational times (22±1 ps versus 34±1 ps) and spectral diffusion times

(3.3± 0.5 ps versus 11.1± 0.5 ps).

Overall, the two population 2D-IR simulation replicates the main features in the 2D-IR

spectra of SCN– in EAN data (Figure 35). At early t2, the GSB peak is elongated along the

diagonal. As t2 increases, the GSB visibly shifts to the higher frequency side as the lower
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Figure 35: The simulated 2D-IR spectra involving two populations reproduce the main

features of the experimental 2D-IR spectra for the nitrle stretch of SCN– in EAN at 〈ZZZZ〉

polarization: a) simulated from two different populations at 19 ◦C b) experimental SCN–

in EAN. c) The residuals begins to show a systematic error at long t2 (¿5 ps) indicating

an unaccounted for HGS. At early t2 (0.2 ps), the max residual value is ∼ 4 % of the max

experimental signal and decreases to ∼ 1 % at long t2 (10 ps).
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frequency region of the GSB relaxes in a few ps. At a long t2 (10 ps), there is a systematic

error in the residuals due to a hot ground state (HGS) that is not accounted for.

Analyzing the simulated spectra in the same way as the experimental spectra (Figure 34)

shows reasonable, semi-quantitative agreement. The band centers shift towards higher fre-

quency on the same timescale as the experiment (Figure 34b). As the lower frequency

population relaxes, the longer-lived population dominates and causes the spectrum and the

peak centers to converge towards higher frequency, though the magnitude of the shift is

somewhat less than the experiment. The widths of the bands also increase as in the experi-

ment (Figure 34d), though the spread is less than in the experiment. Lastly, the trend of the

apparent T1 as a function of ω1 for the simulated data is similar to the experiment (Figure

34e). The two populations overlap, and T1 increases smoothly across ω1. At low ω1 (2030—

2060 cm−1), the trend of the apparent T1 is concave up indicating the most contributing

sub-ensemble in that frequency range. (Note that the T1 times extracted from treating the

simulated spectra like the experimental spectra are similar, but not identical to the T1 times

in the best-fit simulations (2 ps and 5.7 ps).) At high ω1 (2060—2080 cm−1), the apparent

T1 goes through an inflection point revealing a new sub-ensemble. On the high frequency

side, there is a moderate difference in magnitude of the apparent T1, which we attribute to

systematic error from thermalization effects (hot ground state).

There are some limitations to the spectral modeling. At long t2 (> 5 ps), the two-

population simulated model falls short of duplicating the exact experimental trends for the

center frequency and width and at high frequency for T1. The HGS shifts the experimental

center frequency artificially increasing the lineshape width. Also, the long-lived HGS inflates

T1 at high frequencies. There may also be inaccuracies in the model lineshape due to several

assumptions. The model assumes that 1) the FFCF is polarization independent, 2) the FFCF

is single exponential, and 3) orientation and frequency factorize. There are indications

that each of these assumptions is not rigorously correct, which will be highlighted in the

following Sections. Despite these limitations, the model supports the hypothesis that two

sub-ensembles with different vibrational relaxation rates are responsible for the apparent

shift in the center position of the peaks in the 2D-IR spectra and the observed frequency-

dependent variation of the spectral linewidth.
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In the next section (Section 6.4.4), we show the correlation between the orientational

dynamics and the initial frequency of the vibrational chromophore by examining the 2D

rotational anisotropy, which motivates the subsequent RISD analysis (Section 6.4.5.2).

6.4.4 Rotational Anisotropy

Rotational anisotropy in the 2D-IR data is inconclusive regarding the two overlapping sub-

ensembles in EAN. Analyzing the full two-dimensional rotational anisotropy shows that the

timescale for decay of rotational anisotropy does vary across the 2D-IR spectrum, showing

that rotational motion and spectral diffusion are coupled.

The two-dimensional anisotropy map directly shows how the anisotropy depends on the

vibrational frequency (Figure 36a). As was first demonstrated for liquid water203, a two-

dimensional anisotropy map can be calculated from each point in a set of 2D-IR spectra

α(ω1, t2, ω3) =
SZZZZ(ω1, t2, ω3)− SZZXX(ω1, t2, ω3)

SZZZZ(ω1, t2, ω3) + 2SZZXX(ω1, t2, ω3)
. (6.3)

At early times, t2 = 0.2 ps, the anistropy is near 0.4 along the diagonal and decreases to

below 0.3 away from the frequency diagonal. If there is no rotational anisotropy, then the

value should be constant across the entire ω1, ω3 plane.

The 2D anisotropic signal decays at different rates for different frequencies. Timescales

can be extracted by fitting each point of the 2D anisotropic signal to a biexponential function.

The amplitude of the fastest motions is small (∼ 0.05) for all points (data not shown) but

including this term increases the quality of the fits. The weighted correlation time, τ total
rot ,

τ total
rot (ω1, t2, ω3) =

∫
dt α(ω1, t2, ω3)/0.4 (6.4)

varies from ∼ 25 ps near to the ω1-ω3 diagonal to ∼ 5 ps in the off-diagonal regions (Fig-

ure 36b). This is the first important indicator of the coupling of rotations and vibrational

frequency fluctuations (Section 6.4.5.2). This observation suggests that molecules whose vi-

brational frequencies remain correlated also tend to maintain rotational correlations. Along

the diagonal, there are two regions of slightly slower decay of the rotational anisotropy, which

are suggestive of the two sub-ensembles, but the times for each region are similar.
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Figure 36: The 2D anisotropy of SCN– in EAN at 19 ◦C is frequency dependent. a) The

initial value of the anisotropy is highest (∼ 0.4) near the diagonal and lower (< 0.3) away

from the diagonal. b) The total rotational correlation time for each point in the 2D anisotropy

spectrum, τ total
rot (Eq. 6.4), varies across the spectrum. The times are the slowest along the

frequency diagonal (∼ 30 ps) and fastest off the diagonal (∼ 5 ps), which indicates coupling

of rotational motion and vibrational frequency fluctuations. (Inset) Rotation times near the

frequency diagonal (red line) vary mildly.
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Rotational anisotropy for the excited state absorption decays on longer timescales, up to

∼ 100 ps in some regions. In the ideal case, the rotational anisotropy should decay identically

for GSB/SE and ESA. Our calculations suggest that a combination of the spectral diffusion

and frequency shifts due to the frequency-dependent vibrational relaxation rate lead to a

slower decay of the rotational anisotropy. As a note of caution, the longest population

times in the experiment are 12 ps so the rotational timescales > 10 ps should be treated as

estimates based on the initial slope of the anisotropy decay. The reported times are thus

lower bounds and slower processes could be present. Thermal signals do appear in the 2D-IR

spectra beyond ∼ 10 ps, though typically thermal transients are isotropic.86,206

In summary, the two-dimensional rotational anisotropy shows that rotational motions

and vibrational frequency fluctuations of the SCN– are correlated. The next section will

treat the coupled dynamics with the theory for reorientation-induced spectral diffusion.

6.4.5 Frequency Fluctuations

The 2D-IR signal depends on the vibrational frequency of the SCN– probe molecule, the

laser polarizations, and the orientation of the molecule with respect to the laser fields. Typ-

ically, the orientation and vibrational frequency of the vibrational chromophore are assumed

to be uncorrelated, in which case the third-order response function factorizes into terms

that depend on orientation and vibrational frequency. In such an ideal case, the vibrational

frequency fluctuation correlation function can be determined in any polarization condition.

When the molecule’s vibrational frequency depends on its orientation, however, one can no

longer separate the frequency fluctuations from rotational motions. Thus, the measured

frequency fluctuation correlation functions depend on the polarization condition employed

by the experiment. To emphasize this dependence on polarization, the extracted correla-

tion functions will be referred to as polarization-weighted frequency fluctuation correlation

functions (PW-FFCFs).

The PW-FFCFs of SCN– in H2O and EAN depend on the laser polarization config-

uration, which indicates RISD. This section will describe the measured PW-FFCFs and

subsequent analysis using a model of RISD and SSD.
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6.4.5.1 PW-FFCFs Separating the RISD from the PW-FFCFs, c2(t2), of SCN– will fur-

ther explore the dependence of rotational motions on the frequency fluctuations. To extract

the PW-FFCF, we perform a CLS analysis over both sub-ensembles (2040 to 2082 cm−1), thus

the PW-FFCF consists of contributions from both low- and high-frequency sub-ensembles,

which is reasonable given the broad similarity of rotational times. The CLS of both the

〈ZZZZ〉 and 〈ZZXX〉 spectra begin near ∼ 0.8 (a large inhomogeneity). Spectral diffusion

is not complete for either the 〈ZZZZ〉 or 〈ZZXX〉 within the timeframe of the experiment

(∼ 11 ps). The CLS of 〈ZZXX〉 is less than 〈ZZZZ〉, a strong indicator of RISD.
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Figure 37: The PW-FFCFs (c2(t2)) are determined with a CLS analysis of SCN– in EAN:

〈ZZZZ〉 (blue), 〈ZZXX〉 (purple) and in H2O: 〈ZZZZ〉 (red), 〈ZZXX〉 (orange). In both

cases, the 〈ZZXX〉 CLS decays faster than the 〈ZZZZ〉 CLS. The data are well described

by exponential fits (solid lines) as well as the RISD models (dashed lines). In H2O, the

difference is smaller but still significant (inset).

The PW-FFCFs of SCN– in H2O also show RISD, but it is less pronounced (Figure 37

inset). In H2O, the initial CLS value is much less than EAN. At an early time (t2 ∼ 0.2 ps),

the initial CLS values for the 〈ZZZZ〉 signal (0.296± 0.005) are similar but systematically

larger than the 〈ZZXX〉 signal (0.267 ± 0.008). For both polarization signals, spectral

diffusion occurs within a few ps, and, again, the CLS of 〈ZZXX〉 signal is always lower than

〈ZZZZ〉.
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Table 6: The parameters for the PW-FFCF at room temperature are extracted from the

CLS values (Figure 37) using a biexponential for EAN and a single exponential for H2O.

a2 τ1 (ps) a2 τ2 (ps) τtotal (ps)

EAN

〈ZZZZ〉 0.3± 0.02 0.2± 0.1 0.795± 0.003 13.3± 0.2 10.7± 0.5

〈ZZXX〉 0.05± 0.01 0.3± 0.2 0.791± 0.007 9.2± 0.3 7.3± 0.5

H2O

〈ZZZZ〉 0.35± 0.01 0.96± 0.04 — — 0.338± 0.009

〈ZZXX〉 0.33± 0.01 0.83± 0.04 — — 0.274± 0.008

The frequency fluctuation dynamics are clearly much slower in EAN than in H2O (Table

29. Different mathematical functions are required to extract the PW-FFCF from the CLS

results for SCN– in EAN and in H2O. In EAN, a biexponential fit captures both fast and slow

frequency fluctuations; in H2O, a single exponential is sufficient to fit the decay. Since the

individual time constants and amplitudes are cross-correlated due to the linear dependence

of the exponential functions, we also report an integrated correlation time, τFFCF
total

τFFCF
total =

∑
i

aFFCF
i τFFCF

i . (6.5)

The integrated correlation time accounts for motions in the motionally narrowing limit that

decrease the amplitude as these motions are not incorporated in the timescale. The τFFCF
total

extracted from 〈ZZZZ〉 is slower than that for 〈ZZXX〉 in both EAN and H2O, as expected

for RISD. The timescale of frequency fluctuations are slower in EAN than H2O by ∼ 10 ps.

One explanation for a slower timescale is that EAN (32 cP207) is more viscous than H2O

by 30 times, but the individual τi dynamics do not differ by the same magnitude. It should
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be noted, however, that the τtotal timescales differ roughly by the same magnitude difference

between the viscosities of EAN and H2O. We explore the assignment of the EAN dynamics

further in the the Discussion (Section 7.5) and in Chapter 7.

While we fit the low and high frequency parts of the spectrum simultaneously, the CLS

values and PW-FFCF fits are mildly dependent on the ω1 range for SCN– in EAN (data not

shown). While the exponential fit constants are consistent with faster dynamics on the low

frequency edge and slower dynamics on the high frequency side, the differences were limited

to the first ∼ 2 ps and the 2–10 ps range decayed with very similar rates. Having few data

points along ω1 also leads to uncertainty in the slope of center lines, so the error bars in the

low and high windows largely overlap with the average CLS.

We also attempted to fit the two overlapping sub-ensembles with a method proposed

by Yuan et al.208. This approach also failed to resolve separate dynamics for the two sub-

ensembles (Appendix A.3). Because the two sub-ensembles overlap in frequency (much more

than in the Yuan et al.208) and one spectral feature decays in amplitude much faster than

the other, the extracted fitting parameters are strongly cross-correlated.

Neither the 〈ZZZZ〉 nor 〈ZZXX〉 PW-FFCFs alone indicate the presence of more than

one sub-ensemble of SCN– in EAN. To determine CLS requires fitting over a frequency

range (2040–2082 cm−1). We interpret the resulting fits as a weighted average of the two

sub-ensembles. Nevertheless, the FFCFs decay in nearly exponential fashion in the observed

time-window, leaving no obvious signatures of differences in dynamics. We suspect this is

a result of the significant overlap of the two distributions, which makes separating the sub-

ensembles in the spectrum impossible, and the differences in vibrational relaxation rates,

which biases the extracted PW-FFCFs to the longer-lived species.

Analyzing the 2D-IR spectra directly provides an average characterization of the fre-

quency fluctuation dynamics of SCN in EAN, but it was unable to capture robustly the

differences in dynamics of the two sub-ensembles. Further analysis based on a model of

RISD demonstrates that hindered rotational motion is sufficient to explain the observed

spectral diffusion of SCN– in EAN.
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6.4.5.2 RISD Unifies Anisotropy and FFCF Measurements One framework to

understand the frequency fluctuations of a vibrational chromophore considers the coupling

of the vibrator’s dipole to the local electric field created by the surrounding solvent, like a

Stark effect. This model naturally couples rotational motion and the vibrational frequency,

which explains the observed variation of timescales and activation energies in the different

polarization conditions.

The simplest qualitative picture of reorientation-induced spectral diffusion (RISD) is the

Stark effect. If the vibration of a molecule is anharmonic and has a projection onto the dipole

of the molecule, then vibrational frequency of that mode will depend on the angle between

the local electric field and the molecular dipole. Molecules aligned with the local electric field

will have frequencies shifted in one direction; molecules aligned against the field will have

frequencies shifted in the other direction; and molecules perpendicular to the field will have

no net shift. The constant of proportionality for this frequency shift is the Stark tuning rate.

The consequence for 2D-spectroscopy is that different polarization conditions will observe

different rates of spectral diffusion. In the all parallel configuration, 〈ZZZZ〉, molecules

that have not rotated contribute the most to the spectrum. In the crossed-polarization

configuration, 〈ZZXX〉, molecules that have rotated contribute the most to the spectrum.

Molecules that do not rotate tend to keep their orientation relative to the local solvent field,

so do not change their vibrational frequency as much as the molecules which do rotate and

tend to move to a different angle relative to the local field and a new vibrational frequency.

As a result, the FFCF measured in the 〈ZZZZ〉 polarization condition will relax to zero

more slowly than the 〈ZZXX〉 polarization condition when there is RISD.

A theory for the effects of RISD on 2D-IR spectra is derived in the context of the Stark ef-

fect26,27, but the essential physical picture is the same even when the origin of the vibrational

frequency shifts is not a true Stark effect. Theoretical work has shown that both electro-

statics beyond the dipole approximation and chemical interactions, like charge transfer, play

important roles in determining the C−−−N stretching frequency188,209,210. Nevertheless, if these

interactions are vectorial in nature, i.e. they depend on the orientation of the molecule, then

they can be incorporated into the conceptual framework of RISD. For SeCN– , the electric

field at the position of the C projected onto the CN bond-vector does accurately predict
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the C−−−N stretching frequency, but this is largely due to a cancellation of effects188. This

phenomenological association of local electric field with vibrational frequency still strongly

supports the concept that the vibrational frequency will be sensitive to molecular orientation.

The contributions of molecular rotation and structural fluctuations of the solvent can be

quantitatively separated.26–28 As a starting ansatz, we take the PW-FFCF to be a sum of

two frequency fluctuation correlation functions,

Cp(t) = 〈δωv(t)δωv(0)〉+ 〈δωs(t)δωs(0)〉

= Cv
p (t) + Cs(t)

(6.6)

Here, δωv is the frequency shift due to interactions that depend on molecular orientation, so

they are vectorial in nature, and δωs is the frequency shift due to orientation independent

effects that are scalar in nature. The term Cv
p carries all of the polarization dependence

and represents the relative orientation of the solvent cage. The scalar term, Cs, is polar-

ization independent and relates to isotropic physical effects, such as density fluctuations.

The polarization independent scalar term becomes necessary to include when the two PW-

FFCFs (〈ZZZZ〉 and 〈ZZXX〉) converge to a non-zero value (an offset) in the system211.

We neglect this term, as in previously studied systems26,27, because the PW-FFCFs do not

converge to a offset. In this approximation, the PW-FFCF can be simplified to the product

of SSD, F (t), and RISD, Rp(t),

Cp(t) = F (t)Rp(t). (6.7)

Additionally, the time dependence of the RISD, Rp(t), can be expressed solely in terms

of the reorientation time for each polarization condition after the appropriate orientational

averaging of the signals26,27. For 〈ZZZZ〉, the result is

RZZZZ(t) =
〈δω(t)δω(0)〉para

∆2/3
=

3

25

[
11L1(t) + 4L3(t)

1 + 0.8L2(t)

]
, (6.8)

while for 〈ZZXX〉 the result is

RZZXX(t) =
〈δω(t)δω(0)〉perp

∆2/3
=

3

25

[
7L1(t)− 2L3(t)

1− 0.4L2(t)

]
. (6.9)
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Figure 38: The PW-FFCF (〈ZZZZ〉, red and 〈ZZXX〉, blue) of SCN– in EAN at 19 ◦C

are fit with a model that separates structural and rotational as independent contributions

to spectral diffusion. a) A model with one rotational time and biexponential SSD fails to fit

the data. b) A wobbling-in-a-cone model captures the observed dynamics.

where ∆ is a normalization factor for the total frequency fluctuation amplitude. Assuming

the reorientation of the dipole’s motion to be diffusive, the lth-order Legendre polynomial

orientational correlation function is26

Ll(t) = e−l(l+1)Dmt, (6.10)

where the orientational diffusion constant, Dm, is inversely proportional to the molecular

rotational timescale from an anisotropy experiment

Dm = 1/(6τ rot). (6.11)

To emphasize the parametric dependence of Rp(t) on the reorientation time, τ rot, we will

write it as Rp(t; τ
rot).

In H2O, a model of free rotational diffusion and a single exponential decay of SSD,

Cp(t2) = aSSD exp(−t2/τSSD)Rp(t2; τ rot) (6.12)
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adequately describe the data (Figure 37 inset). The total SSD timescale (τSSD
total = aSSDτSSD)

is similar to the rotational timescale (τ rot), and, therefore, both rotations and local structural

changes contribute to spectral diffusion of SCN– in H2O.

In EAN, neither a model based on a single rotational time and a single exponential SSD

(Eq. 6.12) (data not shown), nor biexponential SSD

Cp(t2) =
(
aSSD

1 exp(−t2/τSSD
1 ) + aSSD

2 exp(−t2/τSSD
2 )

)
×Rp(t2; τ rot)

(6.13)

fit the 〈ZZZZ〉 and 〈ZZXX〉 data simultaneously (Figure 38a). The biexponential SSD fit

falls between the two PW-FFCFs. The data suggest both the presence of faster rotational

motion, which causes the observed separation of 〈ZZZZ〉 and 〈ZZXX〉, and also slower

reorientation which maintains the offset from zero.

Models that restrict or bias reorientation naturally provide these two timescales. The

wobbling-in-a-cone model provide convenient analytical forms to parameterize the PW-FFCF

data. Following Kramer et al.27, the orientational correlation function, Ll(t), can be approx-

imated in terms of an exponential decay to an offset, Sl. The term Sl is a complicated

function of the order, l, and the half-cone angle, θ. The time-constant of the decay, τl,eff ,

itself depends both on the rotational diffusion constant, Dm, and the order, l,

Ll(t) = S2
l + (1− S2

l ) exp(−t/τl,eff). (6.14)

This form of L(t) can be inserted in Eqs. 6.8 and 6.9. We found that a constant SSD,

F (t) = aSSD, was sufficient to fit the data. The constant accounts for the product of the

Stark tuning rate and the variance of the electric field fluctuations due to the solvent (Ref.27,

Eq. 15). Our final fitting function for the PW-FFCFs was then

Cp(t2) = aSSDRp(t2; τ rot). (6.15)

We were also able to model the data successfully as the sum of two independent rotational

terms

Cp(t2) = F1(t)Rp(t2; τ rot
1 ) + F2(t)Rp(t2; τ rot

2 ) (6.16)
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Table 7: Simultaneously fitting the 〈ZZZZ〉 and 〈ZZXX〉 CLS (19◦C) provides SSD and

RISD timescales in H2O, τSSD and τ rot, respectively. In EAN, it provides a RISD time, τ rot,

and cone half-angle, θ.

EAN H2O

aSSD 0.81 0.341

τSSD (ps) — 1.9

τSSD
total (ps) — 0.65

τ rot (ps) 2.6 0.56

θ (degrees) 108 —

where τ rot
1 and τ rot

2 are two independent rotational timescales. This model fits the PW-FFCF

data because it also provides two rotational times (decay to an offset), but the model is not

consistent with the observed 2D-anisotropy or frequency dependent CLS (data not shown).

We, therefore, disfavor this model and prefer the model of restricted reorientation, Eqs. 7.8

and 6.15.

In summary, for SCN– in EAN, a model of restricted reorientation fits the data. Ro-

tational motion fully accounts for the observed spectral diffusion, and no SSD time can be

extracted. for SCN– in H2O, both SSD and RISD contribute to spectral diffusion in the

timeframe of the experiment and can be characterized.
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6.5 DISCUSSION

6.5.1 Molecular Interpretation of Heterogeneous Dynamics

Our experiments suggest two sub-ensembles for the SCN– in EAN. In previous pump-probe

measurements, heterogeneous dynamics were detected in ammonium based PILs86. Popula-

tion relaxation of SCN– shows strong indications of dynamical heterogeneity in EAN. One

sub-ensemble is characterized by a lower vibrational frequency (2059 cm-1) and shorter vibra-

tional relaxation time (∼ 2 ps).The other sub-ensemble has a higher vibrational frequency

(2070 cm-1) and longer vibrational relaxation time (∼ 5 ps). Based on these features, we

propose a molecular description of the solvation environment around the SCN– in each sub-

ensemble. Based on calculations of hydrogen bonding to SeCN– in water,212 the apparent

vibrational frequency shifts suggest that the low frequency ensemble has more, but weaker,

hydrogen bonds, while the high frequency ensemble has fewer, but stronger, hydrogen bonds.

Many other experiments have used the rate of vibrational relaxation of SCN– as a probe of

the local solvation environment12,148,149,191,193,213. Ren et al.12 also identified sub-ensembles

of SCN– with different vibrational relaxation rates in an aprotic ionic liquid. In that case,

the lower frequency, shorter lived sub-ensemble was identified as an effect of water in the first

one or two solvation shells. In the present case, the linear spectra and 2D-IR dynamics did

not change significantly over the range of water content that we could access (1 M–40 mM),

which suggests, but does not completely rule out, that the effect is not due to the presence

of water. In a Fermi’s golden rule picture,193,213,214 the vibrational lifetime is proportional

to the product of the square of a coupling constant and the vibrational density of states of

accepting modes. Our experiments are not able to separate these two possible contributions,

but at least one of the two quantities must be high enough to double the rate of vibrational

relaxation.

Our proposed assignment is also consistent with the heterogeneous dynamics observed

in molecular simulations of imidazolium ionic liquids and EAN. Molecular simulations94,185

provide evidence that translational and rotational motion of a vibrational probe are slower

when it is involved in a strong, specific hydrogen bond. In imidazolium ionic liquids, these
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structures are associated with charge dense regions of the liquid, while the faster domains

are associated with relatively charge depleted regions. EAN also consists of regions that are

enhanced and depleted charge density89; the charge depleted regions are relatively concen-

trated in the alkyl chain length, and the charge dense regions are relatively concentrated

in the ammonium headgroups and nitrate ions. Similarly, molecular simulations show that

the cation-anion regions of EAN resulted in slower reorientation dynamics due to the strong

interactions, while the alkyl chain region reoriented on a faster timescale due to a lack of

strong Coulombic interaction184.

In EAN, the frequency fluctuations are dominated by rotational motions, while, in H2O,

both SSD and RISD contribute. While dynamical heterogeneity is present with respect to

T1 in EAN, the 2D-ansiotropy plot reveals that there is no difference in anisotropy along ω1.

Therefore, it is reasonable to analyze the dynamics over the average of the two subensem-

bles. In EAN, RISD fully captures the frequency fluctuations dynamics, because the SSD

is unresolved. The RISD analysis in EAN, however, is not biexponential, i.e. a separate

rotational timescale for each sub-ensemble. Instead, a wobbling in a cone RISD approach

provides a single fast timescale (∼ 2 ps). The timescale correlates to SCN– undergoing free

diffusive rotations in a constrained angular space. In previous pump-probe measurements84,

a long-lived rotation was identified by examining the ND stretch of EAN with a large angle

jump (106 ◦) comparable to the angle extracted from the wobbling in a cone approach used

here (108 ◦). The 2D anisotropy analysis suggests longer rotational timescales (20-40 ps),

which could be large angle jumps to a new local environment where the SCN– explores a

new cone. The observed cone angles are large, which is inconsistent with a specific steric

hindrance. (Considering both the S and N ends of the molecule, the SCN– would sweep out

a full sphere even at half-angles of 90 ◦.) The cone could also be the effect of an energetic bias

in the rotational distribution, which was also observed for SCN– in an ionic liquid colloidal

dispersion.202,211

Overall, a two population model may be an over simplification to effectively capture

all the nuances of the multiple subenembles of EAN with SCN– , and further molecular

simulations are needed to test our interpretation of how the solute SCN– behaves in EAN.

The insights on the solvation environment of EAN fueled a temperature-dependent 2D-IR
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study where we explore an interpretation of the thermodynamics of the transition state of

SCN– in EAN compared with H2O in Chapter 7.

6.6 CONCLUSION

In this chapter, we quantitatively characterize the dynamics and heterogeneity of the 3D

hydrogen bonding network in the PIL EAN. The 2D-IR experimental approach used allowed

the data to be gathered in a timescale of hours by collecting the 〈ZZZZ〉 and 〈ZZXX〉 si-

multaneously at 100 kHz.203 Combined with the analysis approach synthesized from the work

of others26,27,203, this approach provides a powerful protocol for the further characterization

of other PILs with a view to establishing 2D-IR spectroscopy as a useful tool for developing

molecular models of PILs in support of tuning their properties for practical applications.

In summary, we observe dynamical heterogeneity in the 3D hydrogen bonding network

of the PIL, EAN. Using SCN– as a vibrational probe in EAN, the linear FTIR spectra

reveals a high frequency shoulder on the vibrational band of the nitrile stretch. From our

2D-IR data, the molecular rotation and vibrational relaxation timescales are found to be

frequency dependent leading to the hypothesis that SCN– resides in at least two structural

sub-ensembles. This is confirmed by simulating the 2D-IR spectra. Applying the RISD

analysis, we determine that the frequency fluctuations are in the RISD limit, and a wobbling-

in-a-cone model extracts a single fast timescale of molecular rotation. There are slower

reorientations (∼ 30 ps timescale) responsible for the final loss of rotational anisotropy,

which may be large angle jumps. Overall, we interpret the two different sub-ensembles in

EAN to be correlated to charge depleted (alkyl chain) and charge dense regions (ammonium

headgroups and nitrate ions). In Chapter 7, we develop the investigation of the dynamics

of hydrogen bonding of SCN– in EAN and H2O to obtain the temperature-dependence and

activation energies of SCN– in EAN and H2O.
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7.0 TEMPERATURE-DEPENDENT DYNAMICS OF EAN

The text in this chapter has been adapted from a manuscript being submitted to the Journal

of Chemical Physics. Elements of this chapter were part of a submission to a pre-print

server: Johnson, C.A., Parker, A.W., Donaldson, P.M., Garrett-Roe S. ChemRxiv. 2019.

DOI: 10.26434/chemrxiv.9876524. The author’s contribution includes choosing the system,

performing all FTIR and 2D-IR experiments, assisting in the design of the 2D-IR experiments

at the Central Laser Facility at the Rutherford Appleton Laboratory, performing all analysis,

and writing the manuscript.

7.1 CHAPTER SUMMARY

Using ultrafast two-dimensional infrared spectroscopy (2D-IR), a vibrational probe (thio-

cyanate, SCN– ) is used to compare the hydrogen bonding network of the protic ionic liq-

uid ethyl-ammonium nitrate (EAN) to that of H2O. In the previous chapter, we assigned

the spectral features of two subensembles for SCN– in EAN. This chapter presents 2D-

IR experiments in both parallel (〈ZZZZ〉) and perpendicular (〈ZZXX〉) conditions as a

function of temperature for both EAN (14 − 130 ◦C) and H2O (5 − 89 ◦C). With polariza-

tion control, the frequency fluctuation correlation function can be separated into structural

and rotational components. An Arrhenius analysis leads to independent activation energies

for the 〈ZZZZ〉, 〈ZZXX〉, isotropic, anisotropic signals, structural spectral diffusion, and

reorientation-induced spectral diffusion. The rotational activation energies are similar for

both EAN and H2O suggesting that SCN– follows a similar jump model, i.e. where hy-

drogen bond reorientation is dominated by large angular jumps stemming from molecular
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rotation dynamics. The frequency prefactors are explained through the entropy of activation.

7.2 INTRODUCTION

Protic ionic liquids (PILs) are promising solvents for chemical synthesis215,216, CO2 absorp-

tion,80 and hydrogen fuel cells.79,82 Understanding PIL’s hydrogen bonding network and

proton transfer dynamics is crucial in further developing them as electrolytes for fuel cells.

The PIL ethyl-ammonium nitrate (EAN) shows similarities in hydrogen bonding patterns

and dynamics to that of water84,86,89,182,217. This evidence suggests that the hydrogen bond-

ing network of EAN has similar hydrogen bond strength and thermodynamics as water. The

enthalpy and entropy of activation for breaking hydrogen bonds in EAN, however, has yet

to be determined.

Polarization and temperature-dependent two-dimensional infrared spectroscopy (2D-IR)

can extract the activation energy for molecular processes. In these experiments, we use

SCN– as a probe of hydrogen bond dynamics in EAN. When hydrogen bonding is the

dominant contribution to the frequency fluctuations, then the activation energy of hydrogen

bond switching can be extracted from temperature-dependent 2D-IR. Previous temperature-

dependent 2D-IR experiments of OH (OD) bands of HOD in D2O (H2O), for example, have

found the activation energy to break water-water hydrogen bonds in H2O to be 3.5 kcal/mol

and 6.2 kcal/mol under different polarization conditions.9,10 Also, a temperature-dependent

2D-IR study of SCN– in various imidizolium ILs analyzed the alkyl chain-length dependence

of the activation energy for structural reorganization in a series of aprotic ionic liquids.14

Temperature-dependent 2D-IR studies are most commonly performed in one polarization

condition (usually all parallel polarizations, less often the magic angle). At a single polariza-

tion condition, however, the frequency correlation function may contain contributions of both

spectral diffusion from rotation of the probe molecule, reorientation-induced spectral diffu-

sion (RISD), and structural motions of the surrounding solvent, structural spectral diffusion

(SSD) to the signal.26,27 Using both parallel (〈ZZZZ〉) and perpendicular (〈ZZXX〉) po-

larizations, a more complete picture of the independent structural and rotational activation
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energies of hydrogen bond switching in EAN and H2O can be achieved.

In Chapter 6, we provided an analysis of polarization dependent 2D-IR experiments

SCN– in EAN and H2O at room temperature. At least two hydrogen bonding environments

for SCN– in EAN exist. The two subensembles have similar CN-stretching frequencies but

they are distinct in their vibrational relaxation rates. Due to spectral overlap of the two

subensembles, individual molecular rotation timescales and vibrational frequency fluctua-

tions could not be fully resolved for each subensemble. Averaging over the two-subensembles,

a RISD model based on restricted molecular rotation (wobbling in a cone) fully describes

the observed spectral diffusion in EAN.

In this chapter, we separate the rotational and structural components of the activation

energy for hydrogen bond switching of EAN and H2O using SCN– as a vibrational probe.

First, we will present the temperature dependent 2D-IR data of the nitrile stretch (ν3) of

SCN– in EAN and H2O. Next, we discuss the temperature dependence of the polarization-

weighted frequency fluctuation correlation function (PW-FFCF) dynamics. Then, we present

the temperature dependence of the anisotropy from an average of both sub-ensembles in

EAN. Finally, we separate the rotational and structural contributions to the PW-FFCF of

SCN– in EAN and H2O.

7.3 EXPERIMENTAL METHODS

The synthesis of EAN, sample preparation, FTIR, and temperature calibration of the spec-

troscopy cell methods are described in Chapter 3 and the previous chapter. This chapter uses

the pulse shaping 2D-IR set-up as described in Section 3.5.2 and polarization-dependence as

described in the previous chapter.

7.3.1 Temperature-dependent 2D-IR

For EAN, the temperature ranged from just above its glass transition temperature (13 ◦C)75

up to 160 ◦C, but degradation of the sample was apparent above 130 ◦C. For H2O, the
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temperature was varied from 5 to 89 ◦C. Cooling of the sample below room temperature was

achieved by using a water-based chiller. A resistive heater incorporated into a temperature-

controlled spectroscopy cell (Harrick) was used to increase the temperature from room tem-

perature up to 160 ◦C. At a given temperature, the sample was given ∼5 mins to equilibrate

before data collection began. The temperature was monitored by use of a thermocouple in

contact with one of the CaF2 windows.

7.4 RESULTS

7.4.1 Temperature-dependent Spectral Diffusion Dynamics

In EAN, the change of the shape of the 2D-IR spectra is complex reflecting the two hydro-

gen bonding subensembles as described in Chapter 6. In the linear spectra, shoulder on the

ν3 mode of SCN– in EAN is the first suggestions of multiple ensembles. Because the two

subensembles overlap, the corresponding 2D-IR spectra show only one peak for ground state

bleach and stimulated emission (blue) and one anharmonically shifted excited state absorp-

tion (red). With a polarization- and temperature-dependent study, separating the SSD and

RISD components of the PW-FFCF can reveal which motion dominates spectral diffusion.

Temperature-dependent 2D-IR spectra of SCN– in EAN and H2O are obtained for both

〈ZZZZ〉 (Figure 39a-b) and 〈ZZXX〉 polarization conditions (Appendix A.4). At a low

temperature (14 ◦C), the ν3 fundamental of SCN– in EAN is stretched along the diagonal

with a large inhomogenous component at early times (t2 = 0.2 ps), and spectral diffusion

is not complete within the time frame of the experiment (t2 ∼11 ps). As the temperature

increases (130 ◦C), the homogenous linewidth increases and spectral diffusion is nearly fin-

ished within 5 ps. In H2O, even at a temperature close to the freezing point (5 ◦C), the

ν3 fundamental of SCN– shows substantial homogeneous character, and spectral diffusion

occurs within a few ps. As temperature increases, rate of spectral diffusion also increases;

by 89 ◦C spectral diffusion is complete within 1 ps.

The CLS values at early time (t2 ∼ 0.2 ps) decrease with elevated temperature as the
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Figure 39: a) A larger inhomongeneous component is evident at low (14 ◦C) than high (130

◦C) temperatures of the 〈ZZZZ〉 2D-IR spectra of SCN– in EAN. b) As seen in EAN, a

similar trend is evident for the 〈ZZZZ〉 2D-IR spectra of SCN– in H2O at low (5 ◦C) and

high (85 ◦C) temperatures. c) As the temperature increases (14, 34, 54, 74, 94, 110, and

130 ◦C), the FFCF (c2(t2) determined by CLS for SCN– in EAN shows a faster spectral

diffusion time (blue to red). d) The FFCF of SCN- in H2O determined by CLS shows faster

frequency fluctuations (blue to red) with elevated temperatures (5, 24, 44, 64, 89 ◦C).
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motions begin to approach the motional narrowing limit (Figure 39c-d). In EAN, the low

temperature (14 ◦C) CLS value (0.80± 0.01) decreases to 0.66 as the temperature increases

to 130 ◦C. In H2O, the low temperature (5 ◦C) initial CLS value (0.360 ± 0.005) decreases

to 0.115 at 89 ◦C.

EAN and H2O require different functional forms to accurately fit the PW-FFCF (c2(t2).

In EAN, a biexponential fit captures both a fast and slow frequency fluctuations. The

integrated correlation time, τFFCF
total , provides a more stable descriptor of the dynamics as a

function of temperature

τFFCF
total =

∑
i

aFFCF
i τFFCF

i . (7.1)

The individual time constants and amplitudes are cross-correlated due to the linear depen-

dence of the exponential functions. The total correlation time is less sensitive to this effect

and incorporates the variation in both amplitudes and time constants. In H2O, a single

exponential fits the PW-FFCF at all temperatures, and the integrated correlation is simply

τFFCF
total = aFFCF

1 τFFCF
1 .

Spectral diffusion is a thermally activated process in both EAN and H2O, but it is

always slower in EAN than in H2O (Table 29). Comparing the 〈ZZZZ〉 signals at room

temperature, the frequency fluctuations in EAN are 15-fold slower than H2O. The dynamics

speed up with increasing temperature until, by ∼ 100 ◦C, they are similar to H2O at room

temperature (Figure 39). As the temperature increases in EAN (14 ◦C to 130 ◦C), τZZZZ
total

decreases from 12.0 ± 0.6 ps to 3 ± 1 ps. As the temperature increases in H2O (5 ◦C to

89 ◦C), τZZZZ
total decreases from 0.51± 0.01 ps to 0.09± 0.006 ps. A similar trend is determined

for the 〈ZZXX〉 signal (Appendix A.4).

The timescales of frequency fluctuations follow an Arrhenius behavior for both EAN and

H2O (Figure 40)

ln(1/τ) = ln(A)− Ea/kBT, (7.2)

where kB is Boltzmann’s constant, Ea is the activation energy (slope of the Arrhenius plot)

and A is the “frequency prefactor” (y-intercept of the Arrhenius plot), which is usually

interpreted as the frequency of motion over the barrier. The Arrhenius fit parameters for

each polarization condition differ in both EAN and H2O (Table 9). In EAN, the activation
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Table 8: The PW-FFCF are determined using exponential fits to the CLS results (Figure

39) for SCN– in EAN and H2O at various temperatures.

a2 τ1 (ps) a2 τ2 (ps) τtotal (ps)

EAN

14 ◦C

〈ZZZZ〉 0.03± 0.03 0.2± 0.2 0.799± 0.004 15.0± 0.3 12.0± 0.6

〈ZZXX〉 0.045± 0.02 0.3± 0.2 0.803± 0.007 10.1± 0.3 8.1± 0.6

130 ◦C

〈ZZZZ〉 0.26± 0.08 1.5± 0.4 0.43± 0.08 6± 1 3± 1

〈ZZXX〉 0.42± 0.07 1.3± 0.2 0.25± 0.07 7± 2 2± 2

H2O

5 ◦C

〈ZZZZ〉 0.40± 0.01 1.19± 0.06 — — 0.51± 0.01

〈ZZXX〉 0.383± 0.009 1.08± 0.05 — — 0.41± 0.01

89 ◦C

〈ZZZZ〉 0.144± 0.007 0.62± 0.07 — — 0.09± 0.006

〈ZZXX〉 0.12± 0.01 0.56± 0.09 — — 0.066± 0.007
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energy for the 〈ZZXX〉 signal (2.8±0.1 kcal/mol) is slightly larger than that for the 〈ZZZZ〉

signal (2.7±0.1 kcal/mol)), both roughly 4kBT . The inverse of the frequency prefactor ranges

from 60 to ∼ 100 fs for 〈ZZZZ〉 and 〈ZZXX〉, respectively. In H2O, there is no significant

difference in the energy of solvent reorganization (∼ 4.3-4.5 kcal/mol). The inverse of the

frequency prefactors for 〈ZZZZ〉 (0.21 ± 0.06 fs) and 〈ZZXX〉 (0.11 ± 0.03 fs) are both

unrealistically fast. Both timescales are much faster than the fastest intermolecular motions

in water, the librational mode (∼ 40 fs). Comparing the 〈ZZZZ〉 signals, the energy values

determined for the frequency fluctuations in H2O (4.3 ± 0.2 kcal/mol) are roughly 3kBT

higher than in EAN (2.8 ± 0.07 kcal/mol). A similar trend emerges in the 〈ZZXX〉 signals.

Adding H2O (0.1−1 M) to EAN had little influence on the reported Ea (Appendix A.4). The

spectral diffusion times are faster but the activation energies are not statistically different

from the dry EAN for both 〈ZZZZ〉 and 〈ZZXX〉 signals.
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Figure 40: The activation energies for the spectral diffusion timescales at a given polarization

are similar for SCN– in EAN (∼ 2.7 kcal/mol) and H2O (∼ 4.3 kcal/mol), respectively.

An Arrhenius model is used to fit the polarization-temperature-dependent CLS results for

SCN– in H2O (〈ZZZZ〉, red and 〈ZZXX〉, orange) and EAN (〈ZZZZ〉, blue and 〈ZZXX〉,

purple).

In summary, the frequency fluctuation dynamics of SCN– in EAN (averaging over the

two subensembles) and in H2O lead to statistically different activation energies and frequency
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Table 9: The Arrhenius fit parameters are determined from the polarization/temperature

dependent timescales of frequency fluctuations for SCN– in EAN and H2O.

Arrhenius Fit

1/A (fs) Ea (kcal/mol)

EAN

〈ZZZZ〉 100± 40 2.7± 0.1

〈ZZXX〉 60± 10 2.8± 0.1

H2O

〈ZZZZ〉 0.21± 0.06 4.3± 0.2

〈ZZXX〉 0.11± 0.03 4.5± 0.2

prefactors. The frequency fluctuations themselves can contain contributions from rotations

and from fluctuations of the local environment. Before we can disentangle these two con-

tributions from the PW-FFCF, the timescales of molecular rotations need to be determined

from the rotational anisotropy.

7.4.2 Temperature-dependent Rotational Anisotropy

In this section, we characterize the temperature dependence of the timescale of molecular

rotation (τ rot) for SCN– in both EAN and H2O. As with the PW-FFCF, we will now

characterize the temperature dependence of the dynamics of SCN– in both EAN and H2O.

In Chapter 6, the 2D anisotropy shows that the rotational timescale varies mildly with

vibrational frequency.

To quantitatively analyze the temperature dependent rotational anisotropy, we reduce

the full 2D anisotropy to the equivalent of a pump-probe spectrum. The 2D-IR spectra for
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〈ZZZZ〉 and 〈ZZXX〉 are both converted to a pump-probe spectrum by integrating across

ω1 (1960 to 2120 cm−1). The GSB/SE and ESA features are fit to two overlapping Gaussians

of opposite signs, and the rotational anisotropy at each t2, α(t2), is then

α(t2) =
SZZZZ(t2)− SZZXX(t2)

SZZZZ(t2) + 2SZZXX(t2)
(7.3)

where Sp is the integrated area of the GSB/SE component for polarization p.

Using this measure of the rotational anisotropy, both H2O and EAN qualitatively show

thermally activated rotational dynamics (Figure 41). For EAN at 14 ◦C, near its freezing

temperature, rotational anisotropy decreases little (from 0.4 to 0.3) over the time range

accessed by the experiment. At 130 ◦C, the rotational dynamics are faster. The initial value

of the anisotropy (0.35) is less than the ideal value (0.4) due to rotations moving into the

motionally narrowed regime. The rotational anisotropy then decays to ∼ 0.05 by 11 ps. For

H2O at 5 ◦C, near its freezing temperature, the initial anisotropy signal is ∼ 0.35, and it

decays to ∼ 0.07 by 6 ps. At 89 ◦C, the anisotropy begins at ∼ 0.28 and decays to zero by

4 ps.
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Figure 41: The timescale of molecular rotation is slower in EAN than H2O for the ν3 mode

of SCN– . The 2D-IR data is converted into a pump-probe spectrum for each t2, and the

anisotropy is calculated for SCN– in EAN (14 ◦C, blue and 130 ◦C, purple) and H2O (5 ◦C,

red and 89 ◦C, orange).
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The qualitative description is made quantitative by fitting the anisotropy decays as a

function of temperature (Table 10). A single exponential suffices to fit the H2O data. A

biexponential is needed to fit the EAN data. To compare H2O and EAN, we again calculate

a total correlation time by integrating the normalized orientational correlation function.

τ rot
total =

∫ ∞
0

α(t)/0.4 dt (7.4)

where α(t) is the rotational anisotropy exponential fit, and 0.4 is the ideal initial value for

the anisotropy. In principle, one can analyze the temperature dependence for each term

in a multiexponential fit. As with τFFCF
total , we find the total correlation time, τ rot

total, to be a

more stable fitting parameter than the individual time constants. At all temperatures, the

rotational dynamics of SCN– in EAN, as quantified by τ rot
total, are much slower than in H2O.
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Figure 42: The temperature dependence of τ rot
total follows an Arrhenius behavior in both EAN

and H2O. An Arrhenius model is used to fit the temperature dependent τ rot
total for SCN–

in EAN (blue) and H2O (red). The Arrhenius fit for the temperature dependent τ rot
total is

shown in relation to the temperature dependent Arrhenius fits at low (2046 cm-1) and high

(2076 cm-1) ω1

.

The rotational timescales fit to an Arrhenius model; the log of the rate varies linearly with

inverse temperature (Figure 42). As discussed in Chapter 6, the anisotropy varies across ω1
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Table 10: Temperature-dependent timescales of molecular rotation are determined through

exponential fits of the anisotropy of SCN– in EAN and H2O.

arot
1 τ rot

1 (ps) arot
2 τ rot

2 (ps) τ rot
total (ps)

EAN

14 ◦C 0.040± 0.003 1.0± 0.2 0.361± 0.003 35± 1 31± 4

130 ◦C 0.090± 0.009 0.8± 0.1 0.25± 0.01 6.0± 0.3 4± 1

H2O

5 ◦C 0.364 ± 0.005 3.5± 0.1 — — 3.2± 0.3

89 ◦C 0.348± 0.004 1.02± 0.02 — — 0.889± 0.004
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Table 11: The Arrhenius parameters are determined for the timescales of molecular rotation

of SCN– in EAN and H2O.

1/Arot (fs) Erot
a (kcal/mol))

EAN 150± 40 3.0± 0.2

H2O 9± 2 3.2± 0.2

for SCN– in EAN. As a result, the Erot
a varies across ω1 (Appendix A.4). Therefore, using an

average across the vibrational band, the Erot
a and Arot lie in between a limit of the Arrhenius

parameter for low and high ω1.

Though the timescales for rotational motion are very different in EAN and H2O, the

activation energies are, remarkably, the same within error (Table 11). The cause for the

distinctly different timescales is not the energy of activation but the frequency prefactor, A;

in units of time, 1/Arot was slower in EAN (150± 40 fs) than H2O (9± 2 fs). We interpret

the frequency prefactors for rotations below (Section 7.5).

So far, we have shown the temperature-dependent dynamics and activation energy for

the PW-FFCF and anisotropy. For SCN– in EAN, both of these analyses involve an average

over both subensembles. With the temperature-dependent rotational anisotropy in hand, we

will now disentangle the SSD and RISD components from the PW-FFCF.

7.4.3 Temperature-dependent RISD

Using the approach described in Chapter 6, we determined the RISD for SCN– in EAN

as a function of temperature. Briefly, in this approximation, the PW-FFCF, Cp(t), can be
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simplified to the product of SSD, F (t), and RISD, Rp(t).

Cp(t) = F (t)Rp(t). (7.5)

Additionally, the time dependence of the RISD, Rp(t), can be expressed solely in terms

of the reorientation time for each polarization condition after the appropriate orientational

averaging of the signals26,27.

In H2O, a single exponential was used to model the SSD component of the PW-FFCF

Cp(t2) = aSSD
1 e−t2/τ

SSD
1 Rp(t2; τ rot

total). (7.6)

Here, τSSD
1 represents the timescale of solvent structural reorganization.

In EAN, neither a single nor biexponential F (t) was able to fit the data. To describe

the average rotational motions, a restricted molecular rotation (wobbling in a cone) model

is used for Rp(t)

Cp(t2) = F (t)Rp(t; τ
rot) (7.7)

where τ rot
1 is a molecular rotational time inside of a restricted angular space of θ. Following

Kramer et al.27, the orientational correlation functions, Ll(t), are defined in terms of an

exponential decay to an offset, Sl, which is a function of the Legendre polynomial order, l,

and the half-cone angle, θ,

Ll(t) = S2
l + (1− S2

l ) exp(−t/τl,eff). (7.8)

Rp(t2, τ
rot) is constructed from the appropriate combination of these orientational correlation

functions27. The simplest form for SSD that fit the data was a constant, F (t) = aSSD.

Simultaneous fitting of the 〈ZZZZ〉 and 〈ZZXX〉 CLS results separated the SSD from

the RISD (Table 12). As discussed in Chapter 6, we extract from the EAN data a fast

molecular rotation time (3 ps) and a large half cone angle (θ = 108◦). The half cone

angle does not vary significantly with temperature. Overall, τRISD decreases with increasing

temperature in both EAN and H2O comparable to the trend in τ rottotal. In addition to τRISD,

a timescale for SSD (τSSD) is extracted in H2O.

The SSD and RISD time constants follow an Arrhenius behavior (Figure 43). The

inverse of the integrated SSD time (τSSD
total = aSSD

1 τSSD
1 ) represents the rate of structural
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Table 12: The temperature-dependent PW-FFCFs are separated into their RISD and SSD

components for SCN– in EAN and H2O.

aSSD τSSD (ps) τRISD (ps) θ (degrees)

EAN

14 ◦C 0.81 — 2.9 107

130 ◦C 0.68 — 0.70 109

H2O

5 ◦C 0.55 2.4 0.8 —

89 ◦C 0.14 1.4 0.3 —

solvent reorganizational dynamics, and its logarithm follows a linear trend against inverse

temperature (Figure 43a). The rate of SSD in EAN is represented by an upper bound. In

both EAN and H2O the inverse of the RISD timescale (τRISD) represents the rate of SCN–

rotating in a hydrogen bonding network, and its logarithm is also linear against inverse

temperature (Figure 43b).

The activation energy for the RISD component (ERISD
a ) in both H2O and EAN is a few

kBT lower than the SSD component (ESSD
a ) in H2O (Table 13). The ERISD

a of the RISD

component in EAN is statistically similar to ERISD
a in H2O.

The main difference between the various Arrhenius fits of τRISD is the frequency prefac-

tors. First, the prefactors in EAN are much slower than in H2O. As with the anisotropy, the

large difference in observed dynamics are due to the frequency prefactors, not the activation

energies. The apparent attempt time in H2O is at least an order of magnitude lower than in

EAN.
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Figure 43: The activation energy for the SSD and RISD of SCN– in H2O and EAN are

determined. a) An Arrhenius model is used to fit the temperature dependent SSD timescales

in H2O (red). Estimating the upper-limit for SSD in EAN, the timescales are expected to

fall below this line if they were able to be resolved (blue). b) An Arrhenius model is also

used to fit the temperature dependent RISD components in H2O (red) and EAN (blue).
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Table 13: Arrhenius fit parameters are determined for the timescales of structural fluctua-

tions (τSSD) and molecular rotations (τRISD) for SCN– in EAN and H2O.

1/A (fs) Ea (kcal/mol))

EAN

τRISD 16± 4 2.9± 0.1

H2O

τSSDtotal 0.7± 0.1 3.9± 0.1

τRISD
1 5± 3 2.8± 0.3
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7.5 DISCUSSION

7.5.1 Separating Activation Energies for Rotations and SSD

In this work, we combine polarization and temperature dependence to extract activation

energies for RISD and SSD separately. Kramer et al. extended the RISD concept developed

for vibrational sum-frequency-generation spectroscopy28 to explain that the polarization de-

pendence of the FFCF is due to the coupling of rotational motion to spectral diffusion.26,27

Temperature-dependent dynamics naturally access activation energies, but, without sepa-

rating the RISD and SSD, we could report as many as four separate activation energies –

from PW-FFCFs measured in 〈ZZZZ〉, 〈ZZXX〉, and magic-angle conditions as well as

the rotational anisotropy itself. The approach developed in this chapter provides a specific

way to separate the activation energies of rotations of the probe molecule and structural

fluctuations of the solvent cage.

The sensitivity of apparent activation energy to the laser polarization has been noted in

the literature. For example, experiments in different polarization conditions report different

activation energies for spectral diffusion of the OH/D stretch in water, 3.5 kcal/mol in the

〈ZZZZ〉 configuration9 and 6.2 kcal/mol at the magic angle.10 In contrast, no statistical

difference exists between the EFFCF
a for the parallel and perpendicular signals for each SCN–

in EAN or H2O. A model of spectral diffusion based on thermally activated rotations and

frequency fluctuations reproduces the observation that the 〈ZZZZ〉 and 〈ZZXX〉 signals

give similar activation energies and does not explain the discrepancy observed in water (data

not shown). From extracting the SSD and RISD components (Equations 7.6 and 7.7), what

the model shows very clearly is that apparent activation energies extracted from the PW-

FFCF can vary from being dominated by rotations (RISD limit) to being dominated by

structural fluctuations (SSD limit).

In H2O, spectral diffusion of the PW-FFCF is dominated by SSD. The ESSD
a is statis-

tically similar to EFFCF
a , while the Ea for molecular rotations (Erot

a and ERISD
a ) are approx-

imately 2 to 3kBT lower, respectively. Our reported EFFCF
a for SCN– in water is ∼ 1kBT

higher than the literature value for OH spectral diffusion9,10 in the 〈ZZZZ〉. We suspect that
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the different vibrational probes (C−−−N as opposed to O−D stretches) are coupled to different

motions of the solvent. The literature value at the magic angle10, however, is significantly

higher than any of our reported activation energies.

In EAN, spectral diffusion of the PW-FFCF is dominated by RISD. The SSD compo-

nent could not be resolved within the timeframe of the experiment (∼ 11 ps). The ERISD
a

determined from τRISD are on par to the EFFCF
a and Erot

a .

The activation energy for SCN– rotation in EAN is similar to that in H2O. The ERISD
a is

statistically similar to the ERISD
a in H2O. This similarity implies that SCN– rotating in an

hydrogen bonding environment, either EAN or H2O, undergoes similar processes of breaking

and forming hydrogen bonds.

Bulk viscosity is another perspective to rationalize the observed dynamical trends. At

room temperature, the viscosity of EAN is 30-fold higher than H2O207, and the observed

dynamical timescales are all longer in EAN, though not by a factor of 30. As seen in previous

IL studies14,71, the correlation dynamics (τFFCF
total ) scale linearly as a function of temperature

with the bulk viscosity in both EAN and H2O (Figure 44). This relationship provides

insight into intermolecular ”friction” that may determine the bulk viscosities. The activation

energy determined by the temperature dependent viscosity (4.9 kcal/mol)73, however, is

∼4 kT higher than are reported EFFCF
a s. This difference is not uncommon and has been

previously reported when a solute is being used to probe dynamical information in the

solvent underreports the Ea from bulk dynamics218. Overall, the activation energies for

these dynamical properties in water and EAN do not track with the viscosity; therefore, the

difference lies in the frequency prefactors.
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ity of the solvent. The τFFCF
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the respective temperature for EAN73 (blue, o) and H2O219 (red, o, inset). The viscosities

were extracted using a piecewise cubic Hermite polynomial method for H2O but only an

exponential function for EAN due to an insufficient temperature range. An additional data

point for a different reported viscosity of EAN at room temperature is shown for comparison

(black, ∗)207.

7.5.2 Frequency Prefactors Reflect Activation Entropy

The Arrhenius prefactors can be rationalized based on analogy to the jump model proposed

by Thompson and Laage17,220. In water, where hydrogen bond reorientation is dominated by

large angular jumps, the timescale of water reorientation, τrot, can be decomposed into the

time between jumps to new hydrogen bonding partners, τjump, and a time associated with

the rotation of an intact hydrogen bond, τframe,

1

τrot

=
1

τjump

+
1

τframe

. (7.9)

In water the hydrogen bond dynamics are dominated by the large angle jumps (τjump), and

the reorientation of the OH and its hydrogen bonding partner together, τframe, is a minor

channel.
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Thompson and Laage221 analyzed dynamics of hydrogen bonds in a series of alcohols. As

the alcohol chain lengths increase, the volume available for new hydrogen bonding partners

decreases. This slows the rate of new hydrogen bond formation because molecules must

wait until a new hydrogen bonding partner is nearby before a hydrogen bond switch can

occur. To quantify the change in available volume, they define a volume in the transition

state blocked by atoms that cannot accept a new hydrogen bond, f ,155,221 and find a direct

relation to the jump times
1

1− f
=
τROH

jump

τ
H2O
jump

. (7.10)

They find the dynamical slowdown in ethanol, for example, is 10 (f = 0.90).221. By analogy,

we calculate this quantity comparing the rotational dynamics of SCN– in EAN and water

1

1− f
=
τEAN

rot

τ
H2O
rot

, (7.11)

and we find f = 0.91. The similarity of the excluded volume factors suggests that a similar

excluded volume mechanism is at play here. The dynamics of the vibrational probe in EAN,

SCN– , are probably not dictated by large angle jumps directly. If the dynamics of the

nearby solvent is dictated by large angle jumps, for which there is evidence84, it is possible

that the same dependence on activation volume might apply. In the alcohols, as the alkyl

chain increases, frame reorientation eventually contributes.221 Perhaps the higher viscosity

in EAN reduces this contribution to the reorientational dynamics. A chain length dependent

series of ammonium nitrate PILs could test our claim that PILs undergo a similar excluded

volume mechanism as H2O. Also, our interpretation calls for molecular simulations to test

this proposed model in detail.

The differences in dynamics between SCN– in EAN and water are due not to differences

in the activation energies but in the size of the accessible phase-space at the transition state.

In other words, the entropy of activation, ∆S‡, is the critical quantity. We interpret the

observed frequency prefactors based on the Eyring equation for the rate of a process, k,

k =
κkBT

h
exp(∆S‡/kB) exp(−∆H‡/kBT ) (7.12)
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Table 14: An Eyring analysis is performed to extract the enthalpy (∆H‡) and entropy (∆S‡)

of activation for SCN– in EAN and H2O.

〈ZZZZ〉 〈ZZXX〉 Anisotropy RISD SSD

EAN

∆H‡ (kcal/mol) 2.0 ± 0.1 2.2 ± 0.1 2.4 ± 0.2 2.3 ± 0.1 —

∆S‡ (cal·mol-1·K-1) −1.4 ± 0.3 0.0 ± 0.4 −2.7 ± 0.7 2.4± 0.3 —

H2O

∆H‡ (kcal/mol) 3.7 ± 0.2 3.9 ± 0.2 2.4 ± 0.2 2.1± 0.3 3.3± 0.2

∆S‡ (cal·mol-1·K-1) 11.1 ± 0.8 12.4 ± 0.8 3.0 ± 0.6 5 ± 1 8.5 ± 0.5

where h is Planck’s constant, κ is the transmission coefficient, ∆H‡ is the enthalpy of ac-

tivation, and ∆S‡ is the entropy of activation. Lacking other knowledge, we assume a

transmission coefficient of unity, κ = 1 and temperature independent ∆H‡ and ∆S‡.

The difference of ∆S‡ between EAN and H2O assist in explaining the differences in the

unrealistic barrier attempt frequency (Table 14). Fitting our data to an Eyring equation

the ∆H‡ and ∆S‡ can be extracted from the slope and intercept, respectively. As expected,

the ∆H‡ is approximately 0.6 kcal/mol less than the respective Ea (∆H‡ = Ea −RT ). The

∆S‡s in H2O for both reorientation and SSD are positive. The magnitudes are similar to

those reported for hydrogen bond jumps in alcohols222 and CO2 in an imidazolium ionic

liquid223. A positive ∆S‡ means that the transition state is associated with a larger phase-

space volume than the reactant state. This difference is qualitatively associated with the

relative increase in the number of configurations of neighboring molecules at the transition

state (“disordered”) compared to the reactant state (“ordered”). Because the “reaction”

occurs in a high dimensional space of many solvent degrees of freedom, the assumption of

a one-dimensional reaction coordinate in the Arrhenius model fails, leading to unrealistic
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frequency prefactors. In EAN, however, the ∆S‡ ranges from −2.7 to −2 cal·mol-1·K-1

suggesting more order, or mode stiffening, in the transition state relative to the ground

state. Atomistic molecular modeling of the transition state could provide a more detailed

molecular picture of this intriguing observation.

7.6 CONCLUSION

Temperature-dependent 2D-IR with polarization control reveals activation energies and bar-

rier attempt frequencies for molecular rotations and structural motions. The polarization

weighted FFCF contains contributions from both structural and reorientation-induced spec-

tral diffusion, SSD and RISD, respectively, which follow an Arrhenius behavior. The Erot
a for

SCN– to rotate in the hydrogen bonding network of EAN is similar to that of H2O, but the

rates are slower in EAN. Applying an Eyring approach to understand the frequency prefac-

tors revealed that H2O has a positive entropy of activation while the more viscous and rigid

structure of EAN produces a slightly negative entropy of activation for rotational motion.

In H2O, the activation energies from spectral diffusion are dominated by SSD. In EAN, the

activation energies from spectral diffusion are dominated by RISD. As discussed in Chap-

ter 6, the low frequency sub-ensemble correlates to SCN– with more but weaker hydrogen

bonds, and the slower rotational time in the high frequency sub-ensemble correlates to SCN–

with fewer, more directional hydrogen bonds, which may correspond to charge-depleted and

charge-enhanced regions of the EAN.

This presented analytical method shows what can be accomplished in understanding

the structural and rotational components of the solvent reorganization activation energies

with polarization and temperature dependent 2D-IR. From our interpretations of the 2D-

IR data, EAN appears to be ‘water-like’ in terms of the energy needed to rotate SCN–

in a hydrogen bonding network and is consistent with a jump model mechanism. These

observations provide new insights into the molecular properties that make PILs promising

candidates as proton conducting electrolytes over more commonly used aqueous electrolytes.
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8.0 CONCLUSION

This research investigation focuses around understanding the solvent fluctuations that drive

hydride and proton transfer in various hydrogen bonded networks: hydride donors, hydride

molten salts, and protonated molten salts. 2D-IR is used to resolve solvent reorganization

timescales that relate to the important solvent fluctuations for proton and hydride transfer,

i.e. the breaking and forming of hydrogen bonds.

In this work, two different systems are studied with 2D-IR spectroscopy: BH –
4 and EAN.

To study hydride donors, the dihydrogen bonds of BH –
4 are directly probed through the BH

antisymmetric stretch in aqueous solutions of increasing OH– concentrations. A quantitative

approach is developed to assign the multiple crosspeaks as a result of vibrational coupling of

bright and dark modes. To study proton transfer, the nitrile ν3 stretch of SCN– indirectly

probes the hydrogen bonded PIL EAN. By combining polarization and temperature control,

a comprehensive 2D-IR study establishes what can be understood from solvation dynam-

ics. Overall, this research investigation focuses around vibrational mode coupling, solvent

dynamics, and separating the solvent dynamics into rotational and structural motions.

8.1 VIBRATIONAL MODE COUPLING IN BH –
4

The complex 2D-IR spectrum of the BH antisymmetric ν3 stretch of BH –
4 is assigned.

Isotope labeled FTIR studies in the 1970’s assign the complicated linear spectra of the BH

ν3 stretch as mixing with two Fermi resonances.137 The two dark modes are an overtone of the

antisymmetric BH bend, 2ν4, and a combination band of the symmetric and antisymmetric

BH bends, ν2+ν4. The linear spectrum is well-established, but higher-order IR spectroscopy
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results in a more complicated spectrum as states in the excited state manifold are reached.

For BH –
4 , two different anharmonicities are reported in solid-state 2D-IR (44 cm−1)126 and

in IR-pump IR-probe spectroscopy (120 cm−1)125.

For the 2D-IR spectrum of BH –
4 in an IL, two peaks contain character of the second

excited state of the ν3 mode. The 2D-IR spectrum of the ν3 mode for BH –
4 in H2O shows 5

peaks; while in an IL, a total of 16 peaks are resolved. Fewer dihydrogen bonds in an aprotic

IL result in narrow linewidths and less cancelation effects. To identify the 2D-IR peaks, the

spectra are simulated with a response function formalism and fall in good agreement with

that of the experiment. In the spectral window, the simulation reveals three vibrational

states in the first excited state manifold that contribute to the 2D-IR spectrum: 2ν4, ν3, and

ν2+ν4. The second excited state manifold, however, consists of 7 states with mixed character

that contribute to the 2D-IR spectrum. Two peaks shifted below the diagonal peak for the

ν3 mode have character of the excited state absorbance of ν3 with similar anharmonicities

to that determined in other ultrafast IR experiments.

8.2 SUPPRESSING THE HER OF BH –
4

Controlling the hydrogen evolution reaction (HER) of BH –
4 is critical to improve the hydride

donor’s hydrogen storage and reductant potential. For use in hydrogen storage, the HER

can be beneficial to release H2(g), but suppressing the HER is necessary for long time storage.

For use as a reductant, the HER is parasitic and needs to be eliminated, so the hydride is

not transferred to other protons. One avenue for suppressing the HER is by manipulating

the pH. At high OH– concentrations, the rate of the HER slows down.38,39

At an elevated pH, 2D-IR spectroscopy is used to monitor the solvent fluctuations of

the dihydrogen bonds between BH4 and H2O. As the NaOH concentration increases, the

dynamics of solvent fluctuations slow down. On one hand, the increase in viscosity at elevated

NaOH concentrations is one explanation for the trend in dynamics. On the other hand,

BOMD simulations provide support of an ion crowding effect. At elevated concentrations

of hydrophopes in H2O, a crowding effect inhibits the accessible number of transition states
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for the breaking and forming of hydrogen bonds in a jump model.154,155 With BH –
4 in

elevated NaOH concentrations, the Na+ and OH– ions show similar behavior to that of a

hydrophobes. In neat H2O, BH –
4 forms dihydrogen bonds with 2 H2O molecules and is

solvated by an additional 2-3 H2O molecules in the first solvation shell. Adding 7 M NaOH,

the first solvation shell of BH –
4 consists of just one H2O molecule, i.e. one dihydrogen

bond. The decrease in the amount of solvated H2O near BH –
4 is due to a Na+ cation

that coordinates to BH –
4 at a bisector, and a OH– ion in the second solvent shell that

preferentially coordinates to 3 H2O molecules.

The combined effort of 2D-IR and BOMD simulations sheds light on the classic rate

studies performed 60-70 years ago. In an aqueous solution, two rate constants contribute to

the rate of BH –
4 hydrolysis: kH3O+ and kH2O. Therefore, at a higher pH, the rate is solely

dependent on kH2O. A rate constant depends on the local environment and is suggestive

of restructuring of that environment. In this case, the dihydrogen bond is confined due to

coordination with a counterion and the structured hydration of a OH– ion in the second

solvation shell. This molecular picture postulates that kH2O will decrease, so kH2O may be a

function of the solvation shell around BH –
4 .

A compelling path forward is to provide experimental evidence of the hydroxyborohydride

intermediates during the HER of BH –
4 . With ab initio molecular dynamics, Li et al. propose

a comprehensive mechanism for the HER of BH –
4 .33 The overall reaction is exothermic with

two endothermic steps involving an initial BH5 intermediate and a metastable intermediate,

BH3OH. Since the HER is pH dependent, the reaction can be catalyzed by the addition of an

acid to lower the activation energy for addition of the initial proton. Therefore, an ultrafast

pH jump may extract the intermediates that have low reaction barriers if they occur on an

ultrafast timescale (fs to ps).

An UV Pump-IR Probe experiment can be designed to facilitate a fast proton transfer

and probe the hydroxyborohydride intermediates on an ultrafast timescale. Upon UV exci-

tation, the pKa of a photoacid, like 2-napthol, transfers a proton within 150 fs as its pKa

decreases.224–227 Then at various delay times, the intermediates can be probed by differences

in the intermediates’ vibrational frequencies for a B-O and/or B-H stretch. One key issue is

to suppress the HER before the photoacid is excited. A possible solution is to include a rapid
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mixing element where a solution of BH –
4 at a high pH is mixed with a solution including

the photoacid. The sample will be mixed before entering the sample window, so the pH

will be low enough to protonate 2-napthol but not low enough to degrade BH –
4 before the

excitation of the photoacid.

8.3 EAN: ROTATION LIMITED DYNAMICS

The nitrile ν3 stretch of SCN– indirectly probes the three dimensional hydrogen bonding

network of EAN. The population relaxation lifetime (T1), anisotropy, and solvent dynamics

are frequency dependent. Different T1s at low and high frequency indicate that SCN– is

experiencing two subensembles, i.e. dynamical heterogeneity in EAN. According to MD

simulations and neutron scattering experiments,86,182,228,229 these subensembles correspond

to charge dense (ammonium and nitrate ions) and charge depleted (alkyl chain) regions.

With polarization control, the FFCF can be separated into structural and rotational

motions. Due to spectral overlap, the molecular rotation timescale (anisotropy) and solvent

dynamics (FFCF) of each subensemble in EAN could not be separated. Thus, the respective

dynamics were averaged over both subensembles. The solvent dynamics from the FFCF are

due to rotations of SCN– in EAN as the structural motions are too slow to be resolved. The

rotational motions of SCN– in EAN follow a wobbling in a cone model where rotations are

restricted in an angular space, i.e. a cone. Coincidently, the angular space (108 ◦) is similar

to the suggested large angle jump (106 ◦) from a long-lived rotation with IR Pump-IR Probe

spectroscopy.84

8.4 EAN ∼ H2O: THERMALLY ACTIVATED DYNAMICS

After the room temperature solvent dynamics of SCN– in EAN are established, a tempera-

ture dependent 2D-IR study explores the enthalpy and entropy of solvent reorganization. For

SCN– in EAN, the Ea from the anisotropy, PW-FFCFs, and RISD (reorientation-induced
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spectral diffusion) are statistically similar, because the rotational motions are the dominat-

ing contribution to spectral diffusion. For SCN– in H2O, both a SSD (structural spectral

diffusion) and RISD timescale are extracted from the PW-FFCFs. In H2O, the SSD is the

dominating feature of spectral diffusion as the ESSD
a is statistically similar to EFFCF

a .

The similar Erot
a of SCN– in H2O and in EAN suggests that the rotation mechanisms

are the same. If the dynamics around SCN– follows a jump model in EAN and in H2O,

a model for the excluded volume effect can define the transition state as being blocked by

atoms which are unable to accept a new hydrogen bond

1

1− f
=
τEAN

jump

τ
H2O
jump

. (8.1)

where f is the excluded volume factor and τjump is the jump timescale.155,221 By comparing

the timescales of molecular rotations, an excluded volume factor is determined to explain

a slow down in the dynamics. Surprisingly, the value determined in comparing H2O with

EAN (f = 0.91) is the same for that determined for ethanol (f = 0.90)221, thus providing

more suggestive evidence that large angle jumps are involved in the breaking and forming of

hydrogen bonds in EAN.

These investigations fueled us to revisit a classic 2D-IR experiment: HOD in H2O or D2O.

The Ea varies with polarization in two different temperature dependent 2D-IR experiments

for the all parallel condition9 and at the magic angle10. From the analysis of SCN– in EAN

and SCN– in H2O, the Eas for the PW-FFCF are not statistically different for the parallel,

perpendicular, and isotropic signals. 2D-IR experiments were performed by probing the OD

stretch of HOD in H2O at the Central Laser Facility at the Rutherford Appleton Laboratory.

Our preliminary analysis suggests the Ea for the FFCF is not polarization dependent contrary

to the reported values in the literature. The 2D-IR data are currently being analyzed along

with complementary molecular dynamics simulations.

Another polarization- and temperature-dependent 2D-IR experiment explores the effect

of chain length on a series of ammonium formate PILs. The Ea of solvent reorganization may

increase as a function of chain length due to the aliphatic component slowing down rotational

motions. A chain length study will also provide more evidence of the entropy of activation

and the excluded volume effect compared to a series of alcohols221. An interesting preliminary
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result is that at longer chain lengths (butyl-ammonium formate) the two subensembles are

visible as separate diagonal peaks in the 2D-IR spectrum.

In summary, 2D-IR can elucidate the solvent dynamics related to solvent fluctuations

which are important to understand for optimizing proton and hydride transfers. With po-

larization and temperature control, 2D-IR can provide a Ea for structural and rotational

motions from overlapping distributions. A comprehensive study of the solvent dynamics

provides new insights and more detailed descriptions to the motions that contribute to spec-

tral diffusion. In this research investigation, the solvent dynamics provide new molecular

insights into how the HER is suppressed and elucidating ‘water-like’ mechanisms of a pro-

tonated molten salt for promising use as a proton conducting electrolyte.
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APPENDIX

A.1 BH –
4 IN [NAOH]

A.1.1 Temperature-Dependent FTIR
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Figure 45: The overall trend of the absorbance of the BH –
4 decreases as temperature in-

creases. FTIR are obtained of 3 M BH –
4 in 0.1, 1, 5, and 7 M NaOH at temperatures: 10,

20, 30, 40, 50, and 60 ◦C (blue to red).
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Temperature-dependent FTIR is obtained of 3 M BH –
4 in 0.1, 1, 5, and 7 M NaOH at

temperatures of 10, 20, 30, 40, 50, and 60 ◦C. The temperature is varied by a water based

isotemp cooling/heating recirculating chiller (Fisher Scientific) and is monitored by a J-type

thermocouple (National Instruments USB-TC01). The thermocouple is kept in contact with

one of the CaF2 windows in the sample cell. Once the thermocouple reaches the desired

temperature, the sample is left to equilibrate for five minutes before collection. Overall the

absorbance of BH –
4 tends to decrease as the temperature increases (Figure 45). The spectra

also show no apparent frequency shifts with change in temperature.
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A.1.2 Pump-Probe Data

Table 15: The GSB of the ν3 of BH –
4 mode does not fully decay in 200 ps. The amplitude

at 2267 cm−1 as a function of delay time is fit to a single exponential with an offset for the

parallel, perpendicular, and isotropic signal from the IR Pump-IR probe data.

A1 τ1 (ps) c

0.1 M NaOH

Parallel 0.63 (±0.04) 2.3 (±0.4) 0.07 (±0.03)

Isotropic 0.61 (±0.04) 2.4 (±0.5) 0.07 (±0.03)

Perpendicular 0.59 (±0.05) 2.5 (±0.5) 0.07 (±0.03)

1 M NaOH

Parallel 0.88 (±0.05) 2.1 (±0.3) 0.14 (±0.03)

Isotropic 0.73 (±0.03) 2.3 (±0.2) 0.12 (±0.02)

Perpendicular 0.66 (±0.02) 2.4 (±0.2) 0.11 (±0.01)

5 M NaOH

Parallel 1.2 (±0.08) 2.3 (±0.4) 0.33 (±0.05)

Isotropic 1.1 (±0.07) 2.6 (±0.4) 0.30 (±0.04)

Perpendicular 0.98(±0.07) 2.7 (±0.3) 0.29 (±0.05)

7 M NaOH

Parallel 1.1 (±0.05) 2.2 (±0.2) 0.33 (±0.03)

Isotropic 1.0 (±0.05) 2.4 (±0.3) 0.33 (±0.03)

Perpendicular 0.96 (±0.05) 2.5 (±0.3) 0.33 (±0.03)
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Table 16: The ESA decay correlates to the vibration lifetime of the ν3 mode of BH –
4 . The

amplitude at 2141 cm−1 as a function of delay time is fit to a single exponential fit for the

parallel, perpendicular, and isotropic signal from IR Pump-IR probe data.

A1 T1 (ps)

0.1 M NaOH

Parallel 0.40 (±0.03) 1.5 (±0.2)

Isotropic 0.38 (±0.03) 1.7 (±0.2)

Perpendicular 0.38 (±0.03) 1.8 (±0.3)

1 M NaOH

Parallel 0.53 (±0.02) 1.7 (±0.1)

Isotropic 0.45 (±0.01) 1.8 (±0.1)

Perpendicular 0.42 (±0.01) 1.9 (±0.1)

5 M NaOH

Parallel 0.74 (±0.08) 1.6 (±0.3)

Isotropic 0.70 (±0.05) 1.7 (±0.3)

Perpendicular 0.67(±0.05) 1.8 (±0.3)

7 M NaOH

Parallel 0.68 (±0.05) 1.5 (±0.2)

Isotropic 0.66 (±0.04) 1.6 (±0.2)

Perpendicular 0.64 (±0.04) 1.7 (±0.2)
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Figure 46: There is no statistical difference in the anisotropy signal for BH –
4 in all NaOH

solutions: a) 0.1 M NaOH, b) 1 M NaOH, c) 5 M NaOH, d) 7 M NaOH. The anisotropy

signal is reported from ∼ 150 fs to 2 ps.

Table 17: The anisotropy correlates to the intramolecular redistribution of the ν3 mode of

BH –
4 . The sum of amplitudes at three frequencies (2264 cm−1, 2271 cm−1, 2278 cm−1) for

the parallel, perpendicular, and isotropic signal from the IR Pump-IR probe data are used

to calculate the anisotropic signal as a function of delay time. A single exponential iss fit to

reveal the timescale of molecular rotations.

A1 τrot (ps)

0.1 M NaOH 0.1 (±0.1) 0.1 (±0.1)

1 M NaOH 0.1 (±3) 0.06 (±0.07)

5 M NaOH 0.08 (±0.03) 0.20 (±0.06)

7 M NaOH 0.1 (±0.1) 0.2 (±0.2)
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A.1.3 BOMD Simulations

Figure 47 shows the special distribution functions calculated with BOMD simulations by

using the TRAVIS program. In neat H2O, it is obvious that the oxygen distribution in

the fist solvation sell constructs the spherical shape around BH –
4 . Also, hydrogen has

some distributions inside of the oxygen shell, indicating that the formation of dihydrogen

bonds between BH –
4 and H2O. In 7 M NaOH, however, the oxygen distribution is not

clearly forming a spherical shape which suggests a weak interaction between H2O and BH –
4 .

Also, the hydrogen distribution inside of the oxygen shell has a smaller distribution range

compared to that in the BH –
4 liquid simulations. Therefore, there is a decrease in the

number of dihydrogen bonds as the NaOH concentration increases.

Figure 47: The three dimensional spatial distribution functions (SDFs) are determined at

the isovalue, 50 nm−3 for the BH –
4 liquid simulations a) in neat H2O and b) in a 7 M NaOH

solution. Oxygen and hydrogen distributions are described with yellow and white colors,

respectively. The pink ball indicates the boron atom.

The IR spectra is calculated by simulating BH –
4 with/without counterion, Na+ in aque-

ous solution to check the divergence of the spurious Coulombic interactions between the

charged unit cells. Figure 48 shows similar spectral features in the simulated IR spectra

calculated for both BH –
4 and NaBH4 in an aqueous solution.
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Figure 48: The simulated IR spectra is calculated for BH –
4 (blue) and NaBH4 (orange) in

an aqueous solution.
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A.2 BH –
4 ILS

A.2.1 Water Content from FTIR
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Figure 49: The water content in each IL is determined through FTIR. The FTIR spectra are

obtained on a) N1111BH4 in [N1,1,1,4][Tf2N], b) [P14,6,6,6][BH4], and c) [BMIM][BH4] at room

temperature. The insert in each spectrum zooms into the 3000-3700 cm−1 region to observe

the O-H stretch of water.

150



The water content of each IL is determined with FTIR before the respective 2D-IR experi-

ment as discussed in Chapter 3 (Figure 49).

The water contamination varies in each IL. In the OH stretching region, the FTIR

spectra of N1111BH4 in [N1,1,1,4][Tf2N] and [P14,6,6,6][BH4] show both free and hydrogen bonded

water, but the [P14,6,6,6][BH4] OH stretching modes are red shifted. The [BMIM][BH4] FTIR

spectrum only shows a broad OH stretching mode correlating to hydrogen bonded water.

The estimated water content for the N1111BH4 in [N1,1,1,4][Tf2N] sample (0.072 M) is lower

compared to the bulk BH –
4 ILs: [P14,6,6,6][BH4] (0.5 M H2O) and [BMIM][BH4] (1 M H2O).

The broad OH stretching peak and large water content in [BMIM][BH4] indicate that

water is forming dihydrogen bonds with BH4. While drying, the [BMIM][BH4] always has a

constant stream of bubbles after hours of drying. Therefore, it is difficult to dry this sample

anymore for fear of degrading the sample by observing a constant generation of H2g.
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A.2.2 Temperature-Dependent FTIR
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Figure 50: The FTIR spectra of a) TMABH4 in [N1,1,1,4][Tf2N], b) [P14,6,6,6][BH4], and c)

[BMIM][BH4] at room-temperature show differing characteristics. The maximum of the boro-

hydride peak of [P14,6,6,6][BH4] is red-shifted by ∼ 18 cm−1 from those found in the other two

ionic liquids. The temperature-dependent FTIR spectra of d) TMABH4 in [N1,1,1,4][Tf2N],

e) [P14,6,6,6][BH4], and f) [BMIM][BH4] show that as temperature increases the overall ab-

sorbance of the asymmetric stretch of borohydride decreases. The spectra of [BMIM][BH4]

shows potential signs of degradation of the BH4 into boric acid.
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Temperature-dependent FTIR spectra are obtained of 150 mM TMABH4 in [N1,1,1,4][Tf2N]

and of [P14,6,6,6][BH4] using a CaF2 windows separated with a 25 µm teflon spacer. The

temperature-dependent FTIR spectra of [BMIM][BH4] are collected similarly without the

use of a teflon spacer. The temperature is varied from 10 ◦C to 70 ◦C in ten degree intervals

by a water-based isotemp cooling/heating recirculating chiller (Fisher Scientific). The tem-

perature is monitored using a J-type thermocouple (National Instruments USB-TC01) that

is kept in contact with one of the CaF2 windows of the sample cell. Once the thermocouple

indicates that the desired temperature is reached, the sample is left to equilibrate for five

minutes before collection.

The full spectrum of each ionic liquid show the asymmetric stretch of borohydride, peak

in the box, along with other peaks characteristic of the ionic liquid being studied (Figure 50

a-c). The asymmetric stretch of borohydride red-shifts in [P14,6,6,6][BH4] by by ∼ 18 cm−1.

The temperature-dependent FTIR spectra show a clear trend of decreased absorbance of

the asymmetric borohydride stretch as the temperature is increased (Figure 50 d-f).

A.2.3 VFT Fit Parameters

Table 18: The viscosity of the BH –
4 ILs follow a non-Arrhenius behavior and are fit with a

Vogel-Fulcher-Tamman as a function of temperature.

[BMIM][BH4] [P14,6,6,6][BH4]

A -2 (± 1) -1.5 (±0.2)

B (K−1) 1000 (± 200) 1000 (±100)

T (K) 168 (± 6) 179 (±1)
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A.2.4 DSC
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Figure 51: The DSC thermograms reveal the phase transitions for a) TMABH4 in

[N1,1,1,4][Tf2N], b) [P14,6,6,6][BH4], and c) [BMIM][BH4].

The phase transition temperatures are determined by differential scanning calorimetry (DSC)

for all IL samples in this study (Figure 51). Initially, the the IL sample is cooled past -80 ◦C

and left to equilibrate for 5 minutes. The sample is then heated at a rate of 1 ◦C/min up

to 20-30 ◦C. From each thermogram, the glass transition, crystallization, and melting point

temperatures are all determined if applicable. The thermogram of [BMIM][BH4] shows only

a glass transition temperature by a baseline change at -73.3 ◦C., thus the IL is a supercooled
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liquid up too room temperature. The thermogram of [P14,6,6,6][BH4] reveals all three possible

transitions.

A.2.5 Vibrational Relaxation Times

IR pump-IR probe experiments are performed on all IL samples in this study. The delay

times are varied from -0.2 ps to 200 ps. At each delay time, the IR pump polarization are

varied between parallel and perpendicular polarization.

Table 19: The vibrational relaxation times (tpara) for the parallel signal are not significantly

different between the GSB and the ESA of the ν3 mode of BH –
4 .

[BMIM][BH4] [P14,6,6,6][BH4] 150 mM N1,1,1,1BH –
4

in [ N1,1,1,4][Tf2N]

GSB

A -1.8 (±0.2) -2.0 (± 0.1) -1.55 (±0.07)

tpara (ps) 1.9 (±0.6) 4.8 (±0.8) 6.0 (±0.7)

c -0.9 (±0.1) -0.3 (±0.1) -0.03 (±0.06)

ESA

A 1.26 (±0.09) 1.02 (±0.08) 0.58 (±0.03)

tpara (ps) 2.2 (±0.3) 4.1 (±0.8) 4.3 (±0.5)

The vibrational relaxation times are calculated for each polarization sequence. The min

amplitude of the GSB of the ν3 mode and the max amplitude of the second ESA are plotted

as a function of delay time. The amplitude as a function of time is fit to a single exponential

for the ESA (Table 19). A single exponential with an offset is used for the GSB due to a long

lived bleach at 200 ps (Table 20). There is no significant difference between the vibrational

relaxation time due to polarization.
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Table 20: The vibrational relaxation times (tperp) for the perpendicular signal are not signif-

icantly different between the GSB and the ESA of the ν3 mode of BH –
4 .

[BMIM][BH4] [P14,6,6,6][BH4] 150 mM N1,1,1,1BH –
4

in [ N1,1,1,4][Tf2N]

GSB

A -1.4 (±0.2) -1.72 (± 0.08) -1.2 (±0.05)

tperp (ps) 2.1 (±0.6) 5.6 (±0.9) 6.8 (±0.6)

c -0.89 (±0.09) -0.24 (±0.07) -0.02 (±0.04)

ESA

A 1.02 (±0.05) 0.87 (±0.04) 0.440 (±0.009)

tperp (ps) 2.6 (±0.3) 4.9 (±0.6) 5.2 (±0.3)
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A.2.6 Anisotropy

The anisotropy is calculated from the parallel and perpendicular IR pump-IR probe data

(Ianiso = (I‖ − I⊥)/(I‖ + 2I⊥)). Similar to the determination of the vibrational relaxation

times, the min amplitude of the GSB of the ν3 mode of BH –
4 is used.

The initial anisotropy values (<0.1) for all IL samples are low indicating the timescales

are mostly in the motionally narrowing limit (Figure 52). The anisotropy values decay to 0

within a few 100 fs.

A single exponential is used to capture the fast molecular reorientational timescale (trot)

of BH –
4 (Table 21). The timescales for all of the IL samples are in the motionally narrowing

limit. The fast trot indicates a fast reorientation of the triply degenerate ν3 mode.

Table 21: The anisotropy reveals the timescale of molecular rotations (trot). A single expo-

nential is used to extract the trot for the ν3 mode of BH –
4 in [BMIM][BH4], [P14,6,6,6][BH4]

and 150 mM N1,1,1,1BH –
4 in [N1,1,1,4][Tf2N].

[BMIM][BH4] [P14,6,6,6][BH4] 150 mM N1,1,1,1BH –
4

in [ N1,1,1,4][Tf2N]

A 0.03 (± 0.09) 0.08 (±0.07) 0.2 (±0.1)

trot (ps) 0.2 (±0.7) 0.2 (±0.2) 0.12 (±0.05)
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Figure 52: Anisotropy results of a) N1,1,1,1BH –
4 in [N1,1,1,4][Tf2N], b) [P14,6,6,6][BH4], and c)

[BMIM][BH4] show a fast reorientation of the triply degenerate ν3 mode.
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A.3 EAN RISD

A.3.1 Water Content from FTIR

The FTIR spectrum of EAN has two main identifiable vibrational bands (Figure 53). The

NH stretch vibrational band is centered at 3093 cm-1 and is broad due to hydrogen bonding.

The nitrate antisymmetric vibrational band appears at 1326 cm-1 and 1400 cm-1. The peaks

are saturated from using a 25 µm spacer. The EAN spectrum has a weak overtone in the

region were the antisymmetric nitrile stretch (ν3) of SCN– appears.

The water content is estimated by the water band around 3500 cm-1. This method

of estimating the water content in an IL produces comparable results to a Karl-Fischer

titration.11 A clear OH vibrational band is not present. This is due to a small amount of

H2O present, along with overlap of the tail end of the NH vibrational band. We estimate

the water content in EAN to be less than 40 mM.
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Figure 53: In EAN, the mid-IR region (1800-2200 cm-1) is clear from any strong vibrational

modes. The antisymmetric nitrile stretch (ν3) of SCN– appears on top of a weak overtone

band of EAN, and subtracting off the solvent spectrum reveals EAN to have an asymmetrical

shape (insert).
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A.3.2 Simulated Spectra for Two Subensembles

The 2D-IR spectra are calculated in the typical approximations of Gaussian statistics. We

factorize the orientational and frequency fluctuation terms. The cumulant expansion allows

us to represent the frequency fluctuations in terms of the two-time frequency correlation

functions. In these approximation, the total response from the two subensembles is

S(t1, t2, t3) =
2∑
i=1

aiY i
p (t1, t2, t3)P i(t1, t2, t3)

(
6∑
j=1

Ri
j(t1, t2, t3)

)
(.1)

where ai is the intensity contributed by species i, Y i
p is the orientational response for po-

larization condition p, P i models population relaxation, and Ri
j is frequency response from

Feynman diagram j, each given for subensemble component i.

Frequency fluctuations lead to the typical third-order response functions

Ri
1(t1, t2, t3) = exp(−iωi0(t1 − t3) + φ) exp(−gi(t1) + gi(t2)− gi(t3)

− gi(t1 + t2)− gi(t2 + t3) + gi(t1 + t2 + t3)) (.2)

Ri
2(t1, t2, t3) = Ri

1 (.3)

Ri
3(t1, t2, t3) = −(µi12)2Ri

1 exp(i∆anht3) (.4)

Ri
4(t1, t2, t3) = exp(−iωi0(t1 + t3)− φ) exp(−gi(t1)− gi(t2)− gi(t3)

+ gi(t1 + t2) + gi(t2 + t3)− gi(t1 + t2 + t3)) (.5)

Ri
5(t1, t2, t3) = Ri

4 (.6)

Ri
6(t1, t2, t3) = −(µi12)2Ri

3 exp(−i∆i
anht3) (.7)

where ωio is the center frequency of component i, ∆i
anh is the anharmonicity, µi12 is the ratio

of the transition dipole moment of the v = 1→ 2 and v = 0→ 1 transitions, φ accounts for

residual phase error in the measurement, and gi is the lineshape function. We use a Kubo

lineshape with a fast (homogeneous) mode and an intermediate (spectral diffusion) mode

gi(t) =
t

T i2
+ (∆i)2 (τ i)2

(
e−t/τ

i − 1 +
t

τ i

)
(.8)
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Orientational dynamics are accounted for with the usual orientation factors depending

on the laser polarization. The parallel polarization (〈ZZZZ〉) gives rise to a term

Y i
ZZZZ(t1, t2, t3) =

1

9
exp

(
− t1
τ io

)(
1 +

4

5
exp

(
− t2
τ io

))
exp

(
− t3
τ io

)
, (.9)

where τ io is the orientational relaxation time. Similarly, the perpendicular (crossed) polar-

ization (〈ZZXX〉) gives rise to

Y i
ZZXX(t1, t2, t3) =

1

9
exp

(
− t1
τ io

)(
1− 2

5
exp

(
− t2
τ io

))
exp

(
− t3
τ io

)
. (.10)

Population relaxation is modeled with a term

P i(t1, t2, t3) = exp

(
− t1

2T i1
− t2
T i1
− t3

2T i1

)
, (.11)

where the factor of 2 accounts for the more rapid signal decay during the coherence times.

The signal is calculated in the rotating frame; the time domain has 64 steps separated by

dt = 0.05 ps. The initial point in the time-domain is divided by 2 to reduce baseline artifacts

due to the single-sided signal. The FFT is performed with zero-padding to 128 points.

We find that the nonlinear least-squares fitting converged faster when defining the fre-

quency and amplitude of one subensemble relative to the other, in this case ω
(2)
0 = ω

(1)
0 − δω

and a(2) = ra(1). The table below reports the resulting frequency splitting δω and amplitude

ratio r. Additionally, the anharmonicities and transition dipole ratios are each identical

within error, so they are collapsed to a shared free parameter, ∆
(1)
anh = ∆

(2)
anh = ∆anh and

µ
(1)
12 = µ

(2)
12 = µ12.

The constrained nonlinear least-squares fitting is performed in MATLAB using the active-

set algorithm as implemented in fmincon. The reported fit values are robust to the precise

values of the constraints (not reported). The error function that is minimized is the sum of

the sum of the root-mean-square deviation of the experimental spectra and the simulation

including both polarization conditions.

The resulting best fit parameters are summarized in Table 22.
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Table 22: Best fit parameters of the spectral simulation

parameter description value

shared parameters

r intensity ratio 1.4

ω
(1)
0 center frequency 2064 cm−1

δω frequency difference 15.5 cm−1

∆anh anharmonic shift 20.6 cm−1

µ12 1-2 dipole
√

2.0

φ phase error -3◦

species 1

τ
(1)
o reorientation time 33.8 ps

T
(1)
1 vibrational relaxation 5.7 ps

T
(1)
2 pure dephasing 1.2 ps

∆(1) inhomogeneous width 14 cm−1

τ (1) spectral diffusion time 11 ps

species 2

τ
(2)
o reorientation time 22.5 ps

T
(2)
1 vibrational relaxation 2.0 ps

T
(2)
2 pure dephasing 1.3 ps

∆(2) inhomogeneous width 17 cm−1

τ (2) spectral diffusion time 3.2 ps

162



A.3.3 Low and High Sub-ensemble Ellipticity Fits

In the 2D-IR spectrum, we attempt to separate the low and high frequency sub-ensembles

that SCN– experiences in EAN. This method was previously published on separating differ-

ent species that MeSCN– experiences in concentrated LiCl solutions.208

Using similar assumptions as Yuan et. al.208, we limit the amount of free fitting param-

eters to six. The free fitting parameters are A, σD, and σA for each sub-ensemble where A

is the amplitude, σD is the inhomogenous broadening component, and σA is the homoge-

nous broadening component. The amplitude for both the diagonal and off-diagonal peaks

are treated as the same. The center frequencies are set by the linear IR spectra and are

only allowed to vary by ∼0.5 cm−1. Also, the anharmonicity is set as the same for both

subensembles and is only allowed to vary by ∼2 cm−1.

The ellipticity fits fail to capture both the high and low sub-ensembles at early t2 (Figure

54). At early t2 (0.2 to 2 ps), the ellipticity values appear to be random, thus the low and

high frequency subensembles are unable to be separated using this method.

0 0.4 0.8 1.2 1.6 2
0

0.4

0.8

1.2

High Freq

Low Freq

t
2
 (ps)

c 2
(t

2
)

Figure 54: The ellipticity values are determined for the low and high frequency subensembles

from the two 2D Gaussian fits for SCN– in EAN.
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A.4 EAN TEMPERATURE-DEPENDENT

A.4.1 Temperature-Dependent (T1)

The vibrational lifetime (T1) is extracted from the calculated isotropic signal, Iiso = IZZZZ +

2IZZXX (Figure 55). The isotropic 2D-IR spectra is converted to a single pump-prob spectra

by summing the areas across ω1 (1950-2120 cm-1). The single pump-probe spectra at each t2

fits to a double Gaussian (GSB and ESA). The integrated area of the GSB is then calculated.

The integrated area of the GSB peak is plotted across t2 for each temperature and fit to a

single exponential.
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Figure 55: The vibrational lifetime (T1) of the ν3 mode of SCN– varies little with temperature

in both EAN (19 ◦C, blue and 130 ◦C, black) and H2O (19 ◦C, red and 89 ◦C, purple). The

T1 is determined through an exponential fit of the area of the ground state bleach (GSB) as

a function of t2.

T1 does not vary with temperature in both EAN and H2O (Table 23). At room temper-

ature, the T1 of EAN (3.88 ± 0.09) is larger than that in H2O (2.25 ± 0.03). Therefore,

we are able to collect longer t2 times for EAN. Increasing the temperature does not result in

any statistical difference between the T1 for EAN and H2O respectively.

164



Table 23: The vibrational lifetime (T1) of the ν3 mode of SCN– in EAN and H2O are not

temperature dependent. The apparent T1 is determined from the isotropic signal.

a1 T1 (ps)

EAN

19 ◦C 2.25 ± 0.05 3.88 ± 0.09

130 ◦C 1.93 ± 0.04 3.64 ± 0.07

H2O

19 ◦C 1.96 ± 0.03 2.25 ± 0.03

89 ◦C 1.87 ± 0.04 2.48 ± 0.06

A.4.2 Frequency and Temperature-Dependent Anisotropy

A pump-probe projection is accomplished by taking slices of the spectrum along ω1. For

each ω1 slice, the resulting pump-probe signal is fit to a double gaussian function and is

integrated to determine an area. The anisotropic signal is then calculated from the 〈ZZZZ〉

and 〈ZZXX〉 areas as a function of t2.

Table 24: From the calculated IR Pump-IR Probe data, the rotational molecular motion for

the ν3 mode of SCN– in EAN is shown to be frequency dependent: Low ω1 (2024 to 2050

cm−1), High ω1 (2054 to 2080 cm−1), and Total ω1 (1954 to 2120 cm−1).

arot1 τ rot1 (ps) arot2 τ rot2 (ps) τ rottotal (ps)

EAN

Low ω1 0.422 ± 0.007 14.3 ± 0.8 — — 15.1 ± 0.2

Total ω1 0.044 ± 0.004 1.0 ± 0.2 0.353 ± 0.004 32 ± 2 28 ± 4

High ω1 0.044 ± 0.004 1.5 ± 0.3 0.354 ± 0.005 40.2 ± 3 36 ± 5
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The molecular rotation timescale in EAN is frequency dependent (Table 24). Different

IR Pump-IR probe (PP) spectra are calculated varying the ω1 range for EAN at room

temperature. The anisotropy, α, is

α =
I‖ − I⊥
I‖ + 2I⊥

(.12)

where I‖ is the pump-probe signal from the 〈ZZZZ〉 measurement, I⊥ is the pump-probe

signal from the 〈ZZXX〉measurement. A biexponential fit is used to extract the timescale of

molecular rotations (τ rot). The low frequency PP signal produces a faster molecular rotation

time than the high frequency PP.

These results support the conclusion of two overlapping subensembles with different

rotational times, as concluded from the global fitting of the data.

A.4.3 Temperature-Dependent FFCF for SCN– in EAN at 〈ZZXX〉

Similar to the 〈ZZZZ〉, spectral diffusion occurs faster in the 〈ZZXX〉 as temperature increases

(Figure 56). For SCN– in EAN at an early t2 (∼ 0.2 ps), a large inhomogeneous is present

as the peak is stretched along the diagonal (Figure 56a). Spectral diffusion does not occur

within the timeframe of the experiment (∼ 11 ps). For SCN– in H2O at an early t2 (∼ 0.2 ps),

mainly a homogeneous component is present (Figure 56b). Spectral diffusion occurs within

a few ps.
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Figure 56: a) A larger inhomogeneous component is evident at low (14 ◦C) than high (130

◦C) temperatures of the 〈ZZXX〉 2D-IR spectra of SCN– in EAN. b) A similar trend as seen

in EAN is evident for the 〈ZZXX〉 2D-IR spectra of SCN– in H2O at Low (5 ◦C) and high

(85 ◦C) temperatures. c) As the temperature increases (blue to red), the FFCF determined

by CLS for SCN– in EAN (〈ZZXX〉) shows a faster spectral diffusion time. d) Also, the

FFCF of SCN- in H2O (〈ZZXX〉) is determined by CLS shows faster solvent reorganization

times with elevated temperatures (blue to red).

CLS extracts the PW-FFCF for SCN– in both EAN and H2O at all temperatures (Figure

56c-d). At 14 ◦C, the initial CLS value (at ∼ 0.2 ps) is 0.809 ± 0.008 but decreases to

0.61±0.01 at 130 ◦C. In H2O, the initial CLS value decreases by ∼ 0.25 from 5 (0.330±0.003)

to 89 ◦C (0.093± 0.003).
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Table 25: Temperature-dependent FFCF fit paramaters for the 〈ZZXX〉 signal of SCN– in

EAN and H2O.

a1 τ1 (ps) a2 τ2 (ps) τtotal (ps)

EAN

14 ◦C 0.04 ± 0.02 0.3 ± 0.2 0.803 ± 0.007 10.1 ± 0.3 8.1 ± 0.6

130 ◦C 0.43 ± 0.07 1.3 ± 0.2 0.25 ± 0.07 7 ± 2 2 ± 2

H2O

5 ◦C 0.383 ± 0.009 1.08 ± 0.05 — — 0.41 ± 0.01

85 ◦C 0.13 ± 0.02 0.51 ± 0.07 — — 0.068 ± 0.006

The timescale of solvent reorganization follows an Arrhenius behavior. For SCN– in

EAN, the FFCF fits to a biexponential function, and for SCN– in H2O a single exponential

function extracts the parameters of the FFCF (Table 25). The total correlation time (τFFCF
total )

gives the best representation for the timescale of solvent reorganization and is calculated from

integrating the exponential form of the FFCF over t2. As the temperature increases, the

τFFCF
total decreases as solvent reorganization motions become faster.

168



A.4.4 EAN Spiked with H2O

A.4.4.1 FTIR H2O is added to EAN to understand the effect it would have on the

solvent dynamics. Various concentrations of H2O (100 mM, 500 mM, and 1000 mM) added

to dry EAN show an increase in the broad OH vibrational band around 3500 cm-1 (Figure

57).
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Figure 57: EAN spiked with various amounts of water shows an increase in the OH antisym-

metric stretch of H2O at 3500 cm-1 (insert). FTIR spectra are obtained on dry EAN (blue)

and EAN spiked with 100 mM H2O (red), 500 mM H2O (gold), and 1000 mM H2O (purple).
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A.4.4.2 2D-IR Spectra No significant difference exists between spectral features of dry

and wet EAN (Figure 58). 2D-IR spectra are obtained in both the 〈ZZZZ〉 and 〈ZZXX〉.
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Figure 58: No significant changes in lineshape features (homogeneous and in inhomogeneous

linewidths) are evident with spiking EAN with copious amounts of water. 2D-IR spectra

is obtained on a) dry EAN and EAN spiked with b) 100 mM H2O c) 500 mM H2O and d)

1000 mM H2O. The 2D-IR spectra are for the 〈ZZZZ〉 signal at room temperature.

The population time is varied from 200 fs to 11 ps, and the temperature is varied from

14 ◦C to 130 ◦C. At early t2 (∼ 200 fs), the peak is stretched along the diagonal indicating a

large inhomogeneous linewidth component. As t2 increases, the peak becomes more round,

but spectral diffusion does not fully occur within the experimental time (t2).

A.4.4.3 Vibrational Relaxation Lifetimes The vibrational lifetime (T1) for the nitrile

stretch of SCN– in dry EAN and wet EAN are calculated from the isotropic signal (Figure
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59). At early t2, there is an initial decrease in the area from dry EAN to EAN with 1000 mM

of H2O.
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Figure 59: The area of the GSB decreases with the amount of water added, however, the

apparent T1 did not vary. The T1 is determined through an exponential fit of the area of

the GSB as a function of t2 for dry EAN (blue) and EAN spiked with 100 mM H2O (red),

500 mM H2O (purple), and 1000 mM H2O (black).

The apparent T1 does not vary significantly in dry or wet EAN (Table 26). A single

exponential is fit to the area of the calculated pump-probe spectra from the 2D-IR spectra

as a function of t2. The T1 for EAN and wet EAN is ∼ 3.85 ps.

Table 26: No difference exists in T1 of the ν3 mode of SCN– in dry EAN and with various

amounts of water added for the isotropic signal.

a1 T1 (ps)

Dry 2.25 ± 0.05 3.88 ± 0.09

100 mM H2O 2.01 ± 0.05 3.95 ± 0.1

500 mM H2O 2.18 ± 0.05 3.82 ± 0.09

1000 mM H2O 1.78 ± 0.04 3.82 ± 0.09
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A.4.4.4 Anisotropy The timescale of molecular rotation of SCN– in dry and wet EAN

are determined from the anisotropic signal (Figure 60). The anisotropy is calculated by

projecting the 2D-IR spectra into a single pump-probe signal. At early t2 (∼ 0.2 ps), the

initial anisotropic value decreases as the H2O concentration in EAN increases. As water is

added, more motions fall into the motionally narrowing limit.
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Figure 60: The timescale of molecular rotation is not significantly different between dry EAN

(blue) and EAN spiked with 100 mM H2O (red), 500 mM H2O (purple), and 1000 mM H2O

(black). The 2D-IR data is converted into a single pump-probe spectra for each t2 and the

anisotropy is calculated from the GSB areas from the 〈ZZZZ〉 and 〈ZZXX〉 signals.
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Table 27: The timescale of molecular rotation is determined through fitting the anisotropy

with a biexponential fit for the the ν3 mode of SCN– in dry EAN and with various amounts

of water added.

arot
1 τ rot

1 (ps) arot
2 τ rot

2 (ps) τ rot
total (ps)

Dry 0.044 ± 0.004 1.0 ± 0.2 0.353 ± 0.004 32 ± 2 28 ± 4

100 mM H2O 0.050 ± 0.007 1.3 ± 0.4 0.322 ± 0.008 46 ± 7 37 ± 8

500 mM H2O 0.063 ± 0.009 1.7 ± 0.4 0.33 ± 0.01 40 ± 6 33 ± 8

1000 mM H2O 0.062 ± 0.009 1.5 ± 0.4 0.35 ± 0.01 42 ± 7 37 ± 9

The timescale of molecular rotations are not significantly different for SCN– in dry and

wet EAN (Table 27). A biexponential function is fit to the anisotropic signal to reveal the

timescale of molecular rotations. Integrating the biexponential reveals the total timescale

of molecular rotations that factors in the increase of rotations falling into the motionally

narrowing limit. However, the total correlation time is not significantly different for any

amount of H2O added to EAN.

The timescale of molecular rotation follows an Arrhenius behavior in dry and wet EAN

(Figure 61). Fitting the timescale of molecular rotation to an Arrhenius model reveals

the activation energy needed to cause molecular rotations of SCN– in EAN (Erot
a ) and the

frequency prefactor (Arot).

The energy needed to rotate SCN– in EAN does not significantly differ as a function of

H2O concentration (Table 28). The Erot
a increases as H2O is added to EAN, but there is no

significance between Erot
a . The frequency prefactor decreases drastically as water is added to

EAN as motions become faster.
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Figure 61: The anisotropy follows an Arrhenius behavior but shows no significant difference

between dry EAN (blue) and EAN spiked with 100 mM H2O (red), 500 mM H2O (purple),

and 1000 mM H2O (black).

Table 28: From the Arrhenius fits, the energy to cause molecular rotations of SCN– in dry

EAN Are not significantly different from EAN spiked with copious amounts of water.

1/Arot (fs) Erot
a (kcal/mol))

Dry 150 ± 40 3.0 ± 0.2

100 mM H2O 60 ± 100 3.7 ± 0.7

500 mM H2O 60 ± 60 3.7 ± 0.5

1000 mM H2O 9 ± 50 3.5 ± 0.6

A.4.4.5 FFCF The timescale of solvent reorganization is determined from the PW-

FFCF (Figure 62). For 〈ZZZZ〉, the initial CLS value (∼ 0.8 at 0.2 ps) does not vary

significantly between dry and wet EAN. As t2 increases, a larger difference in the CLS values

are visible between the wet and dry EAN.
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Figure 62: The timescale of solvent reorganization decreases as water is added to EAN. CLS

extracts the PW-FFCF of the ν3 mode of SCN– in dry EAN (blue) and EAN spiked with

100 mM H2O (red), 500 mM H2O (purple), and 1000 mM H2O (black) at 14 ◦C for the

〈ZZZZ〉.

As water is added to EAN, the timescale of solvent reorganization decreases (Table 29).

The FFCF fits effectively to a biexponential timescale, and the total correlation time (τFFCF
total )

is determined through integrating the function over t2. From dry to EAN with 1000 mM of

H2O the timescale of solvent reorganization decreases by a few ps.

Table 29: The total timescale of solvent reorganization decreases with water content in EAN.

From CLS fits to the 2D-IR 〈ZZZZ〉 spectra, the extracted FFCF fits with a biexponential

function.

a2 τ1 (ps) a2 τ2 (ps) τFFCF
total (ps)

Dry 0.33 ± 0.03 0.2 ± 0.2 0.799 ± 0.004 15.0 ± 0.3 12.0 ± 0.6

100 mM H2O 0.04 ± 0.02 0.2 ± 0.1 0.798 ± 0.003 15.6 ± 0.2 12.5 ± 0.7

500 mM H2O 0.05 ± 0.01 0.23 ± 0.06 0.782 ± 0.002 13.1 ± 0.2 10.2 ± 0.7

1000 mM H2O 0.033 ± 0.008 0.4 ± 0.2 0.788 ± 0.004 13.1 ± 0.3 10.4 ± 0.6
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A.4.4.6 Temperature-Dependent FFCF The temperature dependence of τFFCF
total fol-

lows an Arrhenius behavior for both polarization conditions (Figure 63). The rate of solvent

reorganization (ln(1/τFFCF
total )) is linear in respect to inverse temperature. The Arrhenius

model reveals the energy for the solvent to reorganize around SCN– (EFFCF
a ).
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Figure 63: No significant difference in the energy for solvent reorganization exists in dry

EAN (blue) and EAN spiked with 100 mM H2O (red), 500 mM H2O (purple), and 1000 mM

H2O (black) of a) the 〈ZZZZ〉 and b) the 〈ZZXX〉 .

No difference in the energy for solvent reorganization exists for dry and wet EAN in

either polarization condition (Table 30). The EFFCF
a and AFFCF are not significantly different

between dry and wet EAN, but the AFFCF is different between 〈ZZZZ〉 and the 〈ZZXX〉.
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Table 30: The timescale of solvent reorganization follows an Arrhenius behavior in dry EAN

and EAN spiked with copious amounts of water. The energy to reorganize the solvent

(EFFCF
a ) and the prefactor (AFFCF) are similar for dry EAN and EAN with water.

1/AFFCF (fs) EFFCF
a (kcal/mol))

〈 ZZZZ 〉

Dry 100 ± 20 2.7 ± 0.2

100 mM H2O 130 ± 50 2.6 ± 0.3

500 mM H2O 140 ± 30 2.5 ± 0.2

1000 mM H2O 120 ± 20 2.6 ± 0.1

〈 ZZXX 〉

Dry 56 ± 10 2.8 ± 0.1

100 mM H2O 70 ± 30 2.7 ± 0.3

500 mM H2O 60 ± 20 2.7 ± 0.2

1000 mM H2O 50 ± 20 2.8 ± 0.3
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Hamm, P. Vibrational Dynamics of LiBH 4 by Infrared Pump-Probe and 2D Spec-
troscopy. J. Phys. Chem. A 2009, 113, 12838–12846.

[127] Roberts, S. T.; Ramasesha, K.; Petersen, P. B.; Mandal, A.; Tokmakoff, A. Proton
Transfer in Concentrated Aqueous Hydroxide Visualized Using Ultrafast Infrared Spec-
troscopy. J. Phys. Chem. A 2011, 115, 3957–3972.

[128] Hutter, J.; Iannuzzi, M.; Schiffmann, F.; VandeVondele, J. cp2k: atomistic simulations
of condensed matter systems. WIREs Comp. Mol. Sci. 2014, 4, 15–25.

[129] Sulpizi, M.; Sprik, M. Acidity constants from DFT-based molecular dynamics simula-
tions. J. Phys. Condens. Matter 2010, 22, 284116.

[130] Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made
Simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

187



[131] Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Results obtained with the correlation
energy density functionals of becke and Lee, Yang and Parr. Chem. Phys. Lett. 1989,
157, 200 – 206.

[132] Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio
parametrization of density functional dispersion correction (DFT-D) for the 94 ele-
ments H-Pu. J. Chem. Phys. 2010, 132, 154104.

[133] Goedecker, S.; Teter, M.; Hutter, J. Separable dual-space Gaussian pseudopotentials.
Phys. Rev. B 1996, 54, 1703–1710.
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