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Abstract 

Associations Between Cardiorespiratory Fitness, Adiposity, and White Matter Integrity 

 

Alina Lesnovskaya, MS 

 

University of Pittsburgh, 2020 

 

 

 

 

White matter (WM) is essential for transmitting neural signal between brain regions, and 

supporting healthy brain aging and cognitive function. Risk for WM deterioration is heightened in 

overweight and obesity, whereas increasing cardiorespiratory fitness may promote WM integrity. 

However, there is a lack of research comparing adiposity and cardiorespiratory fitness with WM. 

Further, it is not clear whether increasing cardiorespiratory fitness may outweigh the influence of 

excess adiposity on WM integrity in middle adulthood. In a sample of adults with overweight and 

obesity, we examined whether cardiorespiratory fitness and adiposity associate with WM integrity, 

both independently and jointly. We assessed WM pathways sensitive to cardiorespiratory fitness, 

adiposity, or both, and tested potential interactions. 

Baseline data from 125 middle-aged participants (Mage = 44.33 ± 8.60), with overweight 

or obesity (MBMI = 32.45 ± 4.19), were included in the study. Fitness was assessed via a 

submaximal graded exercise test. To quantify adiposity, whole body estimates of body fat % were 

calculated using dual-energy X-ray absorptiometry. Diffusion weighted images were acquired 

during an MRI protocol. We conducted whole-brain voxelwise analyses using the FMRIB’s 

Software Library randomise function to examine main effects of adiposity and fitness, as well as 

the interaction term, on WM integrity. 

After controlling for age, gender, and years of education, there were no significant main 

effects of adiposity or cardiorespiratory fitness on FA (all p > .05). There was a significant 

interaction (p = .03) such that with higher fitness levels, greater adiposity was associated with 
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higher WM integrity, whereas with lower fitness levels greater adiposity was negatively associated 

with WM integrity.  

This pattern of findings was unexpected, and may be a function of the unique nature of the 

sample or related to the confounding effects of WM lesions or local inflammation. Future work 

may focus on accounting for the influence of WM lesions, and extending the analysis to older 

adults and patient populations. 
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1.0 Introduction 

The deterioration of neural tissue is evident in both healthy and pathological aging. Neural 

decay correlates with reduced cognitive ability (Isaac et al., 2011; Draganski, Lutti, & Kherif, 

2013) and has been identified as a precursor to dementia (Morra et al., 2009). Deterioration of 

white matter (WM), a type of brain tissue responsible for connecting widely distributed neural 

networks, is particularly problematic as it hinders the transmission of information between cortical 

regions. Studies of WM microstructure link atrophy to reduced executive function (Kennedy & 

Raz, 2009) and reduced ability to adapt to aging-related cognitive decline (de Lange et al., 2016). 

Given the current lack of successful pharmaceutical therapies for neurodegeneration and related 

decline, it is critical to study and intervene on modifiable risk factors prior to the loss of cognitive 

abilities.  

Risk of neural deterioration is heightened in overweight and obesity, conditions 

characterized by the excessive accumulation of fatty or adipose tissue. The prevalence of obesity 

among adults in the United States, alone, is 39.8% (Hales, Carroll, Fryar, & Ogden, 2017) and 

estimates of the associated economic burden extend beyond $200 billion (Hammond & Levine, 

2010). Mounting evidence links greater adiposity with reduced neural function and morphology 

(Driscoll et al., 2011; Jagust, Harvey, Mungas, & Haan, 2005). Accordingly, it has become 

increasingly important to investigate methods of offsetting the potentially harmful effects of excess 

adiposity on the brain. Recent work suggests that a promising intervention for adiposity-related 

neural decline is increasing cardiorespiratory fitness. Cardiorespiratory fitness facilitates better 

overall physiological health (Myers et al., 2015) by mitigating several of the consequences of 

obesity. Lee and colleagues (2012) investigated the effects of changes in fitness and fatness in 
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3,148 healthy adults over the course of six years. After controlling for confounds, they found that 

maintaining or increasing fitness lowered the risk of hypertension, metabolic syndrome, and 

hypercholesterolemia. Moreover, while fat gain heightened the risk of all three outcomes, 

maintaining or improving fitness reduced this effect. These results demonstrate that fitness may 

improve cardiovascular health and mitigate the influence of adiposity on cardiometabolic 

outcomes. This is notable since cardiovascular and metabolic risk are correlated with the structural 

integrity of the brain (Knopman et al., 2011; Marebwa et al., 2018). Yet, it remains unclear whether 

attenuating the negative effects of adiposity through fitness also extends to brain health.  

On its own, fitness has been correlated with brain structure and function (Kramer & 

Erickson, 2007). Mounting evidence points to a beneficial association of fitness with WM health 

(Colcombe et al., 2003; Oberlin et al., 2016). Yet, research on the relationship between 

cardiorespiratory fitness and WM integrity remains limited and has focused primarily on healthy 

older adults. Furthermore, it is currently unknown if the possible benefits of cardiorespiratory 

fitness outweigh the influence of excess adiposity on WM integrity in middle adulthood. Thus, the 

purpose of the current investigation is to examine the associations between WM integrity and both 

cardiorespiratory fitness and adiposity in a sample of adults with overweight and obesity. 

Specifically, our aims are the following:  

Aim 1: Examine the association between cardiorespiratory fitness and WM integrity in a 

sample of obese and overweight adults, and identify regions that are sensitive to cardiorespiratory 

fitness, but not adiposity. Hypothesis 1: Higher cardiorespiratory fitness will be significantly 

associated with greater WM integrity in this sample, particularly in the corona radiata, inferior 

fronto-occipital fasciculus (IFO) and longitudinal fasciculi. 
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Aim 2: Examine the association between adiposity and WM integrity in a sample of obese 

and overweight adults, and identify regions that are associated with adiposity, but not 

cardiorespiratory fitness. Hypothesis 2: Higher percentage of whole-body adiposity will be 

significantly associated with lower WM integrity in this sample, particularly in the fornix.  

Aim 3: Examine the associations between adiposity, cardiorespiratory fitness, and WM 

integrity in a sample of obese and overweight adults, and identify WM pathways that are sensitive 

to both adiposity and fitness. To account for the possibility of an interaction, we also aimed to test 

for interaction effects of adiposity and fitness on WM integrity. Hypothesis 3: Whole-body 

adiposity and cardiorespiratory fitness will both be associated with WM integrity in the corpus 

callosum and cingulum. Specifically, we predicted that cardiorespiratory fitness and adiposity 

would yield cumulative effects in these regions, such that individuals high in fitness and low in 

adiposity will have higher regional WM integrity than those with higher adiposity or lower fitness 

levels. 

1.1 White Matter Microstructure 

Human neural tissue is composed of grey matter and WM. Grey matter consists of neuronal 

cell bodies and their branching dendrites, while WM is primarily made up of axons and glia (Fields, 

2008). Axons extend from cell bodies to transmit electrical signals between regions of grey matter. 

Glial cells form myelin, a fatty sheath that surrounds the axon and regulates the speed and strength 

of signal transmission. Accordingly, WM fiber bundles facilitate communication between widely 

distributed neuronal networks. Deterioration of WM structure, evident in advancing age, can lead 

to impaired neural connectivity and reduced cognitive ability.  
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Magnetic resonance imaging (MRI) provides a measure of brain morphology, including 

global and regional WM volume, as well as identification of WM hyperintensities (WMH). 

However, conventional MRI provides only a superficial depiction of WM, neglecting the intricate 

nature of fiber structure. Moreover, neuroimaging methodologies that are sensitive to WM 

microstructure reveal abnormalities that appear otherwise unremarkable in standard MR scanning 

(Pfefferbaum & Sullivan 2002). Diffusion weighted imaging (DWI) is a form of MRI that is 

uniquely sensitive to the diffusion properties of water molecules within brain matter (Le Bihan & 

Breton, 1985). As such, this modality allows researchers to analyze the microstructure of WM in 

vivo. Diffusion tensor imaging (DTI) is an approach used to model the neuroanatomical 

information attained by DWI, based on the mathematical principles of the diffusion tensor (Basser, 

Mattiello, & Lebihan, 1994). DTI provides information about the orientation, direction, and rate 

of water diffusion within different types of brain tissue. Fractional anisotropy (FA), a main 

outcome measure of DTI, quantifies the directional preference of water diffusion within a voxel. 

Diffusion within healthy WM tends to be anisotropic, or restricted in all directions except along 

the axon, whereas diffusion within the cerebrospinal fluid (CSF) is isotropic, or fully unrestricted. 

Isotropic diffusion within WM is thought to relate to demyelinated or damaged fiber structure, and 

reflects less WM microstructural integrity (Sullivan & Pfefferbaum, 2006). DTI also provides 

information about additional properties of WM organization, including mean diffusivity (MD), 

radial diffusivity (RD), and axial diffusivity (AD). MD inversely measures membrane density, 

with high values distinguishing CSF from both gray and white brain matter (Feldman, Yeatman, 

Lee, Barde, & Gaman-Bean, 2010). Low AD and high RD values are of interest because they tend 

to relate to damage to axonal structure and the breakdown of myelin, respectively (Song et al., 

2003; Song et al., 2005). Nevertheless, FA is the most global index of WM microstructure, 
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combining information across all of the elements of DTI, and is equally consistent with fiber 

density, axonal structure, and myelination (Beaulieu, 2002).   

1.1.1 Healthy White Matter Development 

DTI has allowed researchers to characterize healthy WM development across the lifespan. 

These analyses find the trajectory of WM growth to be best represented by an inverted U-shaped 

quadratic function (Bartzokis et al., 2001; Bartzokis et al., 2004). Westlye and colleagues (2010) 

corroborated these findings in a sample of 430 healthy individuals between the ages of 8 and 85. 

Examining global WM volume, they found that WM growth occurs at an accelerated pace from 

childhood into midlife, plateaus around the age of 40, and begins to decline after age 65. 

Interestingly, FA was observed to reach its peak earlier than did WM volume, around the third 

decade of life, after which it slowly declined until reaching a sharper drop around age 65. The 

observations of FA were largely stable across WM pathways, with the exception of the 

hippocampal cingulum bundles. These fibers showed less consistent decline later in life than the 

other WM tracts, a parallel finding to that of Hsu and colleagues’ (2008) analysis of FA in the 

temporal lobes during aging. A number of possible underlying explanations may account for this 

inconsistency. For instance, it may be the case that the hippocampal cingulum bundles are simply 

more resistant to aging-related decline than other tracts. Another possibility is that changes in the 

FA of these fibers are dependent upon differences in lifestyle factors that the study had not 

accounted for, such as aerobic exercise and dietary habits. These possibilities indicate the 

importance of exploring the regional influence of lifestyle factors on WM microstructure. 

Furthermore, changes in WM microstructure are important to characterize, as investigations 

utilizing FA find that aging-related losses in WM integrity (Madden et al., 2012) are even more 
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pronounced in the presence of cognitive deficits (Medina et al., 2006) and dementia (Kuczynski et 

al., 2010). The integrity of WM is also associated with cognition, particularly processing speed 

and executive functioning (Madden et al., 2008; Turken et al., 2008, Vernooj et al., 2009), and 

reduced WM integrity relates to impairment in these cognitive domains. 

1.2 Adiposity and White Matter Integrity 

Recent studies of microstructural changes in WM have shown reduced integrity in multiple 

pathways as a function of obesity (Kullmann, Schweizer, Veit, Fritsche, & Preissl, 2015). Body 

mass index (BMI), calculated as weight (kg) divided by height (m2), is one of the most common 

metrics used for indexing body fat, with a measurement of 30.0 or higher accepted as an indicator 

of obesity and 25.0 to 29.9 corresponding to overweight. A study (Ryan & Walther, 2014) of 

healthy elderly women, found that BMI inversely correlated with FA in the temporal lobe WM 

and the corticospinal tract. Studies of both older (Bettcher et al., 2013) and younger adults (Xu, 

Li, Lin, Sinha, & Potenza, 2013; He et al., 2015) support an inverse relationship between BMI and 

FA in the corpus callosum, cingulum, and fornix. Furthermore, high adiposity appears to advance 

the effects of aging on WM deterioration. Tract-based measurements of FA show age-related 

decline in the fibers of the corpus callosum, especially in the genu WM (Sullivan, Adalsteinsson, 

& Pfefferbaum, 2005). Correspondingly, in a lifespan sample of 103 adults between the ages of 21 

and 86, Stanek and colleagues (2011) correlated increasing BMI with lower WM integrity in the 

genu, splenium, and fornix. Deterioration was especially heightened in the splenium and body of 

the corpus callosum in older adults with high BMI. In all, BMI appears to consistently associate 

with FA in the corpus callosum and nearby medial WM pathways including the fornix and 
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cingulum, regions essential for transmitting signals between the temporal and frontal lobes (Jones, 

Christiansen, Chapman, & Aggleton, 2013; Nowrangi & Rosenberg, 2015), and implicated in 

memory and executive function (Grambaite et al., 2011). Notably, these are the same cognitive 

domains previously mentioned as being markedly sensitive to declines in WM integrity. The 

associations between BMI and cingulum FA is also notable considering Westlye and colleagues’ 

(2008) finding that the hippocampal cingulum shows less consistent reductions in later adulthood 

than do other pathways. This suggests that the fibers of the cingulum bundles may be particularly 

sensitive to individual lifestyle differences, and experience considerable harm related to elevated 

BMI.  

It is important to note that the majority of studies examining associations between obesity 

and related factors with WM have primarily focused on BMI. BMI is a useful metric for 

quantifying obesity within and across populations (Shah & Braverman, 2012), particularly because 

it is inexpensive and simple to calculate (Burkhauser & Cawley, 2008). However, BMI is limited 

as a measure of adiposity by its failure to distinguish between lean muscle and fat mass, as well as 

additional factors such as water retention. Thus, an individual with high muscle mass and little 

accumulation of fatty tissue may have the same BMI as an individual with little muscle mass and 

high adiposity, despite the latter of the two resulting in much higher risk for obesity-related health 

problems. While previous investigations have successfully linked BMI to brain outcomes, more 

accurate measurements of adiposity include whole body estimates of body fat composition, such 

as dual-energy X-ray absorptiometry (DEXA). Several investigations (Burns, Johnson, & Watts, 

2010; Burns, Johnson, Watts, Swerdlow, & Brooks, 2010; Karlsson et al., 2013) have utilized 

measures of body fat composition to link adiposity to cortical thickness and WM volume, but few 

have applied these approaches to WM microstructure. A small number of studies have linked other 
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measures of adiposity, including waist-to-hip ratio combined with BMI (Verstynen et al., 2013), 

and waist circumference (Allen, Muldoon, Gianaros, & Jennings, 2016), to global FA. Still, 

investigations using metrics of adiposity other than BMI are few in number and do not illuminate 

regional effects. Thus, it will be important to determine whether previously established patterns of 

WM microstructural changes with high BMI are maintained when utilizing whole body 

measurements of body fat. 

1.2.1 Adiposity is Related to Cognition 

The impact of adiposity on WM heath is also reflected in its effect on cognition. In a 

systematic review of 30 studies, Smith, Campbell, and Trollor (2011) reported that obesity was 

consistently related to cognitive deficits in children, adolescents, and adults, but not older adults. 

The authors reasoned that the lack of consistent findings in elderly populations may be due to the 

inadequacy of BMI in distinguishing between fat and muscle mass, especially as body composition 

changes during aging. In addition, weight loss in older adults may be confounded by fat and muscle 

loss due to illness, which itself can impair cognitive performance. Still, there is robust evidence 

for poor cognitive performance related to adiposity in all other age groups. In a study of 2,000 

school-aged children and adolescents, Li, Jackson, and Zhang (2008) found that after adjusting for 

age, gender, and socioeconomic status (SES), overweight correlated with poor performance on 

tests of working memory and attention, as well as global cognition. In adults, one prospective study 

(Wolf et al., 2007) found that increases in waist-to-hip ratio from early to late midlife predicted 

worse executive functioning. Furthermore, recent work (Zhang et al., 2018) showed that WM 

integrity mediates the relationship between adiposity and cognition in otherwise healthy adults, 

particularly with regard to processing speed and executive function. Altogether, it appears that 
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adiposity imparts a harmful effect on both WM integrity and cognitive function. These findings, 

considered alongside reports (Whitmer, Gunderson, Barrett-Connor, Quesenberry, & Yaffe, 2005; 

Singh-Manoux et al., 2018) that indicate an increased risk of dementia in obesity, underscore the 

importance of intervention.  

1.2.2 Potential Mechanisms Underlying Associations Between Adiposity and White Matter 

Several mechanistic theories have been put forth to explain the effect of adiposity on the 

brain. Rosano, Marsland, and Gianaros (2012), as well as Verstynen and colleagues (2013), 

postulated that obesity partly influences WM microstructure as a consequence of adiposity-

induced systemic inflammation. Specifically, central adipose tissue is a potent source of 

proinflammatory cytokines (Coppack, 2001), including interleukin-6 (IL-6), interleukin 1 beta IL-

1β, and tumor necrosis factor alpha (TNF-α). These cytokines are able to pass the blood-brain 

barrier and elicit an inflammatory response within the microglia of the central nervous system 

(CNS). In an activated state, microglia show an increased capacity to bind with oligodendrocytes, 

a form of glial cell (Mosley & Cuzner, 1996). Additionally, activated microglia release toxic 

substances, such as nitric acid, which induce the death of oligodendrocytes (Zajicek, Wing, 

Scolding, & Compston, 1992), consequently degrading myelin structure.  

Although much of the data has been derived from animal models, studies in human subjects 

lend support to the theory. Bettcher and colleagues (2015) repeatedly assessed systemic 

inflammation and WM integrity in a sample of 276 older adults over a span of six years. After 

controlling for demographic variables and vascular risk factors, they found that more rapid 

decreases in C-reactive protein (CRP), a marker of systemic inflammation, associated with higher 

FA in the dorsal and temporal SLF and uncinate fasciculi. Bettcher and colleagues (2013) also 
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assessed the combined influence of inflammatory and vascular factors on the association between 

body mass and WM. BMI was independently related to FA in the fibers of the cingulate and genu. 

The combination of vascular risk factors, including smoking and hypertension, and inflammatory 

markers, such as IL-6, mediated the association between BMI and FA in the fornix and middle-

posterior regions of the corpus callosum. The authors suggested that these regions may be 

particularly sensitive to the vascular and inflammatory factors that mediate the relationship 

between body mass and WM. These findings lend support to previous studies (Jurgens, 

Amancherla, & Johnson, 2012; Kern et al., 2012) that find the hippocampus and fornix, which 

serves as a major hippocampal output tract, to be markedly sensitive to inflammation. 

1.3 Cardiorespiratory Fitness and White Matter 

Alongside studies that establish a link between adiposity and WM, research has shed light 

on the salutary relationship between cardiorespiratory fitness and WM integrity. Cardiorespiratory 

fitness refers to the body’s ability to take in and deliver oxygen to working muscles during periods 

of sustained activity, and it can be improved by engagement in aerobic exercise (Manley, 1996). 

Aerobic exercise is a form of physical activity that increases cardiovascular workload by engaging 

large muscle groups over extended periods of time. To meet the energy demands of prolonged 

physical exertion, aerobic exercise leads to elevated oxygen consumption, and habitual 

engagement in aerobic exercise increases overall oxidative capacity. Accordingly, 

cardiorespiratory fitness is often objectively measured as the maximal oxygen intake level of the 

cardiorespiratory system (VO2max), and is reflective of habitual aerobic exercise.  
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Studies of the relationship between fitness level and WM microstructure find that higher 

fit individuals have higher FA in widespread tracts that interconnect the frontal, temporal, parietal, 

and occipital gray matter, as well as both cerebral hemispheres. Namely, Johnson, Kim, Clasey, 

Bailey, and Gold (2012), as well as Tarumi and colleagues (2015), linked fitness to FA in the body 

and genu of the corpus callosum, internal and external capsules, corona radiata, and superior 

longitudinal fasciculi (SLF). Further, Marks and colleagues (2007) reported a relationship between 

fitness and FA in the unicate fascilicus and cingulum, which interconnect frontal and medial-

temporal brain regions. Tseng and colleagues (2013) compared WM in 10 sedentary older adults 

and 10 older master athletes. They found that master athletes had higher FA in the right IFO, right 

superior corona radiata (SCR), both SLF hemispheres, and the left inferior longitudinal fasciculus 

(ILF). Analyses of the relationship between fitness and WM integrity have also been conducted in 

memory impairment. In a study of 22 patients with memory deficits and a high risk of progression 

to dementia, as identified by the presence of biomarkers of Alzheimer’s disease (AD), Teixeira 

and colleagues (2016) reported a positive correlation between FA and VO2max in the longitudinal 

fasciculus, fronto-occipital fasciculus, and corpus callosum. Likewise, in a recent study of 37 older 

adults in the early stages of AD, Perea and colleagues (2016) reported that higher fitness correlated 

with higher FA in the right IFO, a WM pathway connecting frontal, temporal, and occipital 

cortices. These effects have been replicated across numerous other investigations (Burzynska et 

al., 2014; Hayes, Salat, Forman, Sperling, & Verfaellie, 2015; Opel et al., 2019). Altogether, these 

studies suggest that fitness may be diffusely protective of WM integrity, even in the context of 

neuropathology.  

Exercise interventions, which allow for causal inference, provide further evidence of the 

role of fitness in preserving WM integrity. Exercise interventions typically consist of at least one 
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exercise group and at least one control group. To control for the biasing effects of socialization, 

standard exercise trials are designed to ensure that each group receives comparable levels of social 

engagement. A one-year intervention (Voss et al., 2013) in 70 sedentary, but otherwise healthy, 

older adults found that increased cardiorespiratory fitness after exercise training was related to 

higher frontal and temporal WM integrity. Parallel findings were reported in an eight-month trial 

(Schaeffer et al., 2014) with overweight children. Moreover, in a recent trial with children between 

the ages of 7 and 9, participation in a 9-month exercise program was associated with increased 

WM integrity in the genu of the corpus callosum of the intervention group, but not the control 

group (Chaddock-Heyman et al., 2018). Overall, higher aerobic fitness is related to higher FA in 

various regions connecting frontal, temporal, and occipital cortices. While the positive association 

is strong across studies, there is somewhat of a lack of consensus with regard to regional 

specificity. This limitation may be accounted for by the small sample sizes found in a number of 

these studies, a challenge associated with aerobic fitness testing, which tends to be expensive and 

contains a level of participant burden. Interestingly, it is also not yet known how longevity and 

magnitude of fitness differentially relates to WM and so, regional integrity may vary as a function 

of these factors.  

1.3.1 Cardiorespiratory Fitness is Related to Cognition 

Fitness has also been found to support cognitive function. In a longitudinal study of healthy 

older adults (Barnes, Yaffe, Satariano, & Tager, 2003), low baseline cardiorespiratory fitness 

related to steeper declines in global cognitive performance, measured at baseline and at a 6-year 

follow-up. Participants with lower baseline cardiorespiratory fitness also performed worse than 

their higher fit counterparts on all cognitive tests administered at follow-up, especially measures 
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of global cognition, attention, and executive function. An exercise intervention (Colcombe et al., 

2005) with older adults found that after six months, individuals in the physical activity group 

exhibited increased performance on the Rockport 1-mile walk test (Kline et al., 1987), a measure 

of cardiovascular fitness that is highly concordant with estimates of cardiorespiratory fitness. 

Furthermore, individuals in the physical activity group demonstrated enhanced speed and accuracy 

on a test of working memory when compared to a stretching and toning group. In addition, a recent 

pilot exercise trial randomized 101 participants to a control group, or one of three aerobic exercise 

groups: 75 minutes of exercise per week (min/wk), 150 min/wk, and 225 min/wk. They reported 

that attention improved as a function of exercise, regardless of dose, and there was a dose-response 

relationship between exercise and visuospatial processing. Other studies (Liu et al., 2012; DeFina 

et al., 2013) have suggested that higher fitness relates to a lower risk of later life dementia. 

Although the causal direction of this relationship is unclear, overall, it is apparent that increased 

fitness relates to neurocognitive advantages. 

1.3.2 Potential Mechanisms Underlying Associations Between Fitness and White Matter 

With regard to mechanisms, elevated aerobic fitness promotes the delivery and utilization 

of oxygen throughout the cardiovascular system. Animal models (Van Praag, Shubert, Zhao, & 

Gage, 2005; Ding, Vaynman, Akhavan, Ying, & Gomez-Pinilla, 2006) demonstrate that exercise-

related improvements in oxidative capacity upregulate neuronal growth factor expression, 

including insulin-like growth factor I (IGF-I) and brain-derived neurotrophic factor (BDNF). 

Heightened levels of these growth factors are associated with neurogenesis and increased cortical 

thickness throughout gray matter (Erickson et al., 2010; Erickson et al., 2011; Morel, León, 

Uriarte, Reggiani, & Goya, 2017) and recent evidence suggests that this may also be the case for 
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WM. For instance, Maillard and colleagues (2016) examined WM and BDNF in 557 middle-aged 

adults, finding a subtle but significant positive relationship between levels of serum BDNF and 

FA. Likewise, Feeney and colleagues (2017) found that in a sample of individuals with diffusely 

low FA related to traumatic brain injury (TBI), higher levels of serum IGF-I were associated with 

greater increases in splenium FA over time. These findings converge with the animal literature, 

which indicates that BDNF serves to downregulate the action of myelin‐associated glycoprotein 

(MAG), an inhibitor of axonal growth (Ghiani, Ying, de Vellis, & Gomez‐Pinilla, 2007). 

Accordingly, exercise reduces the action of MAG in rats, but the effect disappears when the action 

of BDNF is blocked. Other animal work has demonstrated that voluntary exercise precedes an 

increase in BDNF and induces enhanced axonal regrowth following sensory nerve injury (Molteni, 

Zheng, Ying, Gómez-Pinilla, & Twiss, 2004). Taken together, these findings suggest that aerobic 

fitness may improve WM integrity by promoting the expression of neuronal growth factors.  

Alternately, another possible mechanistic pathway underlying the benefits of 

cardiorespiratory fitness on WM integrity is through an effect of exercise on inflammatory 

pathways. A number of studies found that plasma concentrations of the inflammatory cytokine IL-

6 increase substantially during bouts of exercise (Nielsen, Secher, Christensen, & Pedersen, 1996; 

Pederson & Hoffman-Goetz, 2000; Pederson, Steensberg, & Schjerling, 2001). They demonstrated 

that as exercise intensity increased, particularly in the amount of muscle groups recruited, levels 

of serum IL-6 increased as well, and suggested that the likely sites of IL-6 production during 

exercise are contracting limb and skeletal muscle cells. These results seem somewhat 

counterintuitive due to the heightened levels of IL-6 found in obesity. However, the authors 

indicated that there may exist a difference in the effects of acute increases in IL-6, demonstrated 

during exercise, and those of chronically elevated IL-6 that are characteristic of obesity. One 
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possible explanation is that muscle-derived IL-6 operates in a different manner than IL-6 produced 

by adipocytes, and may have a beneficial effect on metabolic function (Lyngsø, Simonsen, & 

Bülow, 2002; Wallenius et al., 2002; Hall et al., 2003; Keller et al., 2003). This line of research 

suggests that systemic IL-6 may actually be a consequence, rather than a cause, of chronic 

metabolic disorders, including obesity, and may function to downregulate the action of other 

aspects of metabolic dysregulation, such as TNF-α (Febbraio & Pederson, 2002). Accordingly, 

studies in animals have shown that levels of TNF-α are elevated in IL-6 knockout mice (Matthys, 

Mitera, Heremans, Van Damme, & Billiau, 1995). Along a similar vein, other studies in mice have 

shown that aerobic exercise leads to a decrease in a number of inflammatory markers including 

TNF-α (Lowder, Padgett, & Woods, 2006; Vieira et al., 2006; Cook et al., 2016). However, 

evidence of an inflammatory-regulating effect of exercise has not been well-established in humans 

(Starkie et al., 2003) and more work is needed to demonstrate whether cardiorespiratory fitness 

influences brain health through immune mechanisms. Still, the current evidence highlights the 

possibility that cardiorespiratory fitness may impact WM integrity by mitigating the negative 

effects of elevated adiposity. 

1.4 Adiposity, Fitness, and White Matter Integrity 

Overall, the current view in the obesity literature is that excess adiposity is related to 

accelerated decay of WM microstructure (Kullmann, Schweizer, Veit, Fritsche, & Preissl, 2015) 

and impairment in related cognitive modalities, including executive function (Wolf et al., 2007). 

It has been suggested that the connection between excess adiposity and WM degeneration is 

mediated by increased activity of inflammatory cytokines secreted by fatty tissue (Verstynen et 
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al., 2013). These cytokines set off an inflammatory chain reaction that results in the death of 

oligodendrocytes, cells which are primary components of WM. In contrast, evidence from 

observational and intervention studies (Johnson, Kim, Clasey, Bailey, & Gold, 2012; Voss et al., 

2013) indicates that aerobic fitness may protect WM integrity and related cognitive function. One 

mechanism by which this may occur is through the upregulation of neuronal growth factors, 

induced by increased oxidative capacity (Van Praag, Shubert, Zhao, & Gage, 2005). Proliferation 

of growth factors, such as BDNF, leads to increased genesis of new neurons, thereby increasing 

the quantity of cells that constitute WM. Another perspective suggests that increased 

cardiorespiratory fitness, attained through engagement in aerobic exercise, actually promotes the 

action of muscle-derived IL-6, which may inhibit other inflammatory cytokines that harm WM 

(Pedersen & Hoffman-Goetz, 2000). The question remains as to whether fitness or adiposity has a 

more robust influence on WM integrity and if the effects are general or regionally specific. In 

addition, the dynamics of these associations are not well understood. For instance, it is not known 

if the associations of cardiorespiratory fitness and adiposity on WM integrity are additive, or if the 

variables interact such that one offsets the impact of the other.  

In the past, weight loss has been proposed as the most effective therapy for obesity and 

related morbidity (Dixon, 2010). More recent research suggests that increasing fitness, achieved 

through engagement in physical activity, may be another route to mitigate the adverse effects of 

obesity. Studies comparing the associations of adiposity and fitness with cardiovascular health 

suggest that this is the case (Lee et al., 2012). A number of these investigations report a surprising 

effect, in which individuals with overweight or obesity and high cardiorespiratory fitness tend to 

have better cardiovascular outcomes than their low-fit, normal weight counterparts (Lavie, De 

Schutter, & Milani, 2015). In one such study, McAuley and colleagues (2012) reported that among 
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9,563 adult men, those with low cardiorespiratory fitness experienced an increasing risk of 

cardiovascular events and all-cause mortality as a function of BMI. Among participants with high 

fitness, there was no significant difference in risk in any of the BMI categories. Moreover, a meta-

analysis of 10 studies (Barry et al., 2014) demonstrated that mortality rates in low-fit individuals 

are double that of fit individuals, regardless of BMI. These studies emphasize the importance of 

aerobic fitness in playing a protective role against the impact of obesity on cardiovascular health. 

However, the influence of aerobic fitness in offsetting the consequences of obesity has received 

little attention with regard to brain structure, in general. One recent study (Boyle et al., 2015) 

compared the impact of physical activity, rather than fitness, and BMI on gray matter volume, and 

found that greater amounts of self-reported walking correlated with greater brain volume, even 

when controlling for BMI. Others report conflicting results, suggesting that the associations 

between self-reported physical activity and gray matter volume is not maintained after accounting 

for BMI (Ho et al., 2010). Seemingly, fitness has the potential to promote brain health. However, 

thus far, there has been very little research addressing whether the benefits of cardiorespiratory 

fitness extend above and beyond the effects of altering body fat, in the context of the brain. In 

addition, crucial details concerning how fitness and adiposity differentially influence distinct brain 

regions, and WM pathways, remain unknown.  

Through a mechanistic lens, increasing fitness appears to be a plausible means of 

promoting WM integrity. Whether by potentially promoting axonal growth within WM, or by 

inducing an anti-inflammatory response, elevating fitness may be protective against adiposity-

induced WM degeneration. Presently, few studies have examined the ability of fitness to mitigate 

the impact of adiposity on WM. One investigation (Marks, Katz, Styner, & Smith, 2010) compared 

the effects of VO2max on WM with BMI and abdominal girth in 15 participants. They revealed 
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that while both measures of adiposity negatively correlated with FA in the right posterior 

cingulum, higher fitness levels were related to increased FA in the left middle cingulum. Moreover, 

fitness explained 28.5% of the variance in left middle cingulum FA. This suggests that adiposity 

and fitness both relate to WM microstructure, but in distinct brain regions. Nevertheless, given the 

very small sample size in this study, more research is needed to establish whether the benefits of 

fitness can attenuate the damage of obesity on WM. Understanding the relative impact of these 

factors on brain health is meaningful from a medical and public health perspective, and may better 

inform the development of targeted interventions and prioritization of health guidelines, 

particularly for those at risk for later life cognitive decline. 

1.5 Current Study 

The purpose of the current investigation was to examine associations between fitness, 

adiposity, and FA, and to evaluate whether fitness offsets the impact of adiposity throughout the 

brain and within specific WM pathways. Furthermore, as a strength of the current study, we 

assessed adiposity using DEXA, the current gold standard for measuring body fat. We focused this 

study on young to middle aged adults, for several reasons. First, as the majority of previous 

investigations that independently studied WM in obesity and fitness have focused on older adults, 

there is a gap in the current literature with regard to young and midlife adults. This is important 

from a preventative perspective, as both fitness and adiposity may require earlier intervention to 

substantially promote healthy WM aging. In addition, as outlined by lifespan studies, volumetric 

WM growth reverses in the sixth decade of life, whereas FA begins to decline several decades 

earlier. These findings highlight a need to investigate the impact of lifestyle on FA in younger 
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populations. Importantly, we aimed to focus this study on both overweight and obese adults, a 

sample for whom research elucidating the impact of fitness level and extent of adiposity on brain 

health is particularly applicable. Given that obesity is thought to accelerate the process of brain 

aging, it is valuable to extend the scope of this research to overweight and obesity in early 

adulthood and midlife.  

To account for unanticipated relationships between adiposity, fitness, and WM that may 

arise in this unique sample of obese and overweight adults, we utilized a whole brain analysis of 

WM FA. Nevertheless, studies in related samples suggest that adiposity and fitness associate with 

FA in certain WM pathways more so than others. Based on the most consistent associations found 

in the literature, we hypothesized that VO2submax, alone, would be significantly associated with 

FA in the corona radiata, longitudinal fasciculi, and IFO (Hypothesis 1), while body fat 

percentage, alone, would be significantly associated with FA in the fornix (Hypothesis 2). 

Furthermore, in line with previous reports, we hypothesized that both fitness and adiposity would 

be associated with WM in the corpus callosum and cingulum (Hypothesis 3). These hypothesized 

relationships are modeled in Figure 1. Mechanistic theories suggest that while the action of 

adiposity on WM integrity is through elevated systemic inflammation, cardiorespiratory fitness 

promotes heightened WM integrity by upregulating neuronal growth-factors and axonal genesis. 

Given these distinct mechanistic pathways, we predicted that the influence of fitness and adiposity 

in the corpus callosum and cingulate would be additive. However, as previous literature also 

suggests the possibility of a regulatory effect of aerobic exercise on inflammatory cytokines, we 

also planned to examine whether cardiorespiratory fitness and adiposity interact in any of these 

potentially significant WM pathways. Altogether, testing these associations will elucidate on the 
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plausibility of enhancing cardiorespiratory fitness to mitigate WM microstructural deterioration in 

adults with obesity or overweight. 

 

Figure 1. Hypothesized relationships between adiposity, fitness, and regional FA 

1.5.1 Secondary Aims 

A major strength of the proposed analysis is our use of DEXA as a measure of adiposity, 

as this technique quantifies body fat without the added confound of skeletal and muscle tissue 

weight. Yet, the majority of previous studies examining the influence of adiposity on brain health 

have used BMI as a metric of body fat. To assess for consistency between previous research and 

the current investigation, our secondary goal is to compare the associations between adiposity, 

fitness, and WM integrity, when adiposity is quantified by both BMI and body fat percentage. 

Thus, the secondary aims of this study were: (1) to examine the strength and direction of the 

relationship between adiposity, as indexed by BMI alone, and WM integrity, and identify pathways 

of significance; and (2) to identify WM pathways that are significantly associated with both 

adiposity, as indexed by BMI, and VO2submax. In these regions, we also planned to assess for any 

potential interaction in the influence of adiposity, as indexed by BMI, and VO2submax on WM 

integrity. To address these aims, we conducted an additional whole brain analysis of WM, 
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substituting BMI for body fat percentage. Ultimately, we expected that the results of the secondary 

analysis would be consistent with the primary hypotheses. 



22 

2.0 Methods 

2.1 Participants 

One hundred and twenty-five participants were recruited from a parent study (PI: Jakicic) 

that investigated the effects of a 12-month dietary and physical activity intervention. Participants 

were informed of the neuroimaging ancillary study (PI: Erickson) during a baseline session of 

the parent study. Eligible participants interested in the neuroimaging component were required to 

have enrolled in the ancillary study prior to commencing the intervention.  

Participants were between the ages of 22 to 55 years, with BMI indices in the obese and 

overweight range (25.0 – 39.9 kg/m2). Recruitment occurred in the Pittsburgh community via 

newspaper, radio advertisements, and direct mailing. Potential participants underwent an initial 

phone screening that assessed for eligibility. Participants were required to provide written consent 

prior to inclusion in the parent and ancillary study. 

2.1.1 Exclusionary Criteria 

Participants were excluded if they had: history of bariatric surgery; current medical 

condition that could affect body weight (e.g., cancer, diabetes mellitus); current cardiac conditions 

that increase risk of a cardiac event (e.g., congestive heart failure); resting systolic blood pressure  

higher than 159 mmHg or resting diastolic blood pressure higher than 89 mmHg; eating disorder; 

alcohol or substance abuse; current treatment for psychological disorders, psychotropic medication 

within the past 12 months, or hospitalization for depression within the past five years; report of 
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exercise for more than three days per week for more than 20 minutes per day in the last three 

months; report of weight loss greater than 5% or participation in a weight reduction diet in the past 

3 months; contraindication to MRI (e.g., metal implant, claustrophobia); history or presence of 

neurological disorder (e.g., dementia, stroke); history of developmental pathology; traumatic brain 

injury; and left-handedness. Individuals who were pregnant, breastfeeding, or planning to become 

pregnant during the duration of the intervention were excluded from the study. Individuals with a 

substantial history of welding work or tattoos with metal components (e.g., iron oxide) were 

subject to additional safety screening prior to participation. In addition, participants were required 

to obtain consent from a physician to engage in both the exercise intervention and in fitness testing. 

2.2 Study Protocol 

The present study is cross-sectional in nature and relied solely on the baseline 

measurements of the parent exercise intervention. Participants attended multiple baselines 

assessment visits. At these sessions, participants provided demographic information and had height 

and weight measured by intervention staff. To assess body fat percentage, participants underwent 

DEXA scanning. Participants also completed VO2submax cardiorespiratory fitness testing, a less 

invasive variant of VO2max testing that is terminated at approximately 85% of maximal oxygen 

capacity. Lastly, participants underwent an MRI protocol that included a DTI sequence. 
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2.3 Instruments 

2.3.1 Demographics 

Basic demographic information including age, race, ethnicity, gender, and education, as 

well as medical history were collected during the baseline session with a brief questionnaire.  

2.3.2 Body Mass Index Calculation 

Height and weight measurements were used to calculate BMI using a calibrated 

stadiometer, as weight (kg) divided by height (m2). 

2.3.3 Body Composition Assessment 

Baseline measures of adiposity were assessed using whole body composition DEXA. 

DEXA utilizes x-rays to create full body, two-dimensional images of skeletal and soft tissue 

structure which can then be used to calculate percent body fat. Participants were scanned for about 

5 minutes in a supine position, which was adjusted to include all body parts in composition 

measurements.  

2.3.4 Cardiorespiratory Fitness Testing 

Cardiorespiratory fitness, indexed by VO2submax, was assessed during a graded 

submaximal exercise test conducted on a motor-driven treadmill. Participants were instructed to 

walk at a speed slightly faster than normal walking pace, and at grade that increased every 2 
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minutes by 2%, while oxygen uptake was recorded at 30 second intervals. Heart rate and blood 

pressure were monitored by a trained nurse and cardiologist. VO2submax was calculated as the 

level of oxygen uptake when 85% of age-predicted maximum heart rate was reached. Testing 

lasted between 5 to 15 minutes depending on oxygen uptake level. Following exercise testing, the 

participants were given a recuperation period of 10 minutes. 

2.3.5 DTI Acquisition 

Diffusion weighted images were acquired during an MRI protocol [echo time (TE) = 96ms, 

repetition time (TR) = 11100ms] in a standard a Siemens Verio 3-Tesla magnet with a 32-channel 

transmit-receive head coil. Foam inserts were positioned inside of the head coil to restrict head 

motion. Fifty 2.4mm3 slices were imaged along the anterior-posterior commissure. T2-weighted 

acquisition was followed by six repetitions of a 56-direction diffusion-weighted echo planar scan 

(b-value = 2,000 s/mm2). 

2.4 DTI Processing 

DTI data was acquired in order to test the effects of cardiorespiratory fitness and body fat 

on WM integrity, as well as whether cardiorespiratory fitness attenuates the influence of high body 

fat on WM integrity.   

During initial preprocessing, DTI images were qualitatively assessed for signal loss and 

artifact. DTI images were then processed utilizing several features of FMRIB Software Library 

(FSL; Image Analysis Group, FMRIB, Oxford, UK; Smith et al., 2004).  Data for each participant 
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underwent standard eddy correction, a process that registers the brain image to a reference in order 

to adjust for field distortions. Next, we used the Brain Extraction Tool (BET; Smith and Nichols, 

2009) to skull strip the images of non-brain tissue. Diffusion tensor values, including FA, were 

calculated for each voxel with the DTIfit function.  

The FA data was then processed using FSL’s tract-based spatial statistics toolbox (TBSS; 

v1.2; Smith et al., 2006). TBSS algorithms aligned FA images across multiple subjects into a 

standard space (Smith et al., 2006). The process then zeroed the end slices of the FA images to 

remove likely outliers. Next, images were aligned into the standard FSL FA brain template 

(FMRIB58_FA), which was pre-registered to MNI152 space. This process involved a non-linear 

transformation of FA images for each participant to the FSL template.  Then, TBSS generated a 

mean FA image and a skeleton of major WM tracts (Figure 2) across all participants, thresholded 

at 0.2 (Smith et al., 2007). This is a standard thresholding value, used to ensure the inclusion of 

major WM tracts in the skeleton. Lastly, the normalized FA image for each participant was aligned 

onto the skeleton, resulting in the final image file containing all of the processed FA data that was 

then fed into voxelwise statistics processing.  

 

Figure 2. Example skeleton of major WM pathways created by TBSS 
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2.5 Statistical Analysis 

We conducted a whole-brain voxelwise analysis using the FSL randomise function to 

examine the main effects of body fat and fitness, as well as the interaction term, on FA. Randomise 

examined the correlation between an explanatory variable (EV), such as VO2submax, and the 

outcome, FA, by testing the t-statistic for each voxel against the null distribution, which was 

generated with a sequence of 5000 permutations. All EVs were demeaned prior to being input into 

the regression matrix. This is a requirement of the randomise function for both categorical and 

continuous variables. We also applied the Threshold-Free Cluster Enhancement (TFCE) technique 

at a threshold of p < .05 in order to correct for multiple comparisons. Age, gender, race, and years 

of education were included as covariates for all group level analyses. To identify all significant 

pathways, we overlaid the statistically-derived images of p-values at each voxel, generated by the 

randomise function for each main effect and for the interaction, onto the Johns Hopkins University 

(JHU) 1mm International Consortium of Brain Mapping (ICBM) DTI-81 atlas of WM pathways 

(Figure 3). We then extracted average FA values from significant clusters and export the data into 

the IBM Statistical Package for the Social Sciences (SPSS; SPSS Inc., 2011) and used the SPSS 

PROCESS macro for post-hoc modeling. Figures were produced using the R (R Core Team, 2014) 

package ggplot2 (Wickham, 2009). 

Aim 1: To test our first hypothesis, we calculated the regression model of the association 

between body fat percentage and FA, as well as the regression model of the main effect of 

VO2submax on FA. We identified significant pathways that corresponded solely to the association 

between VO2submax and FA.  

Aim 2: To test our second hypothesis, we again utilized the estimated regression model of 

the association between body fat percentage and FA, as well as the regression model of the 
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association between VO2submax and FA. We identified significant pathways that corresponded 

solely to the association between body fat percentage and FA.  

Aim 3: To test our third hypothesis, we assessed the regression model of the association 

between body fat percentage and FA, as well as the regression model of the main effect of 

VO2submax level on FA. We then identified significant WM pathways that were simultaneously 

associated with body fat percentage and VO2submax. In addition, to test the possibility of an 

interaction effect, we estimated the multiplicative regression model of the interaction term, 

calculated as the product of VO2submax and body fat percentage. We then identified significant 

pathways that specifically corresponded to the association between the interaction term and FA. 

Lastly, in order to investigate our secondary aims, we utilized the same statistical 

procedures used to test our three primary hypotheses, with the substitution of BMI for body fat 

percentage. 

 

Figure 3. JHU ICBM DTI-81 white matter labels atlas 
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3.0 Results 

3.1 Demographics 

An initial 125 participants were enrolled in the neuroimaging ancillary to the parent study. 

During the preprocessing stage of the DTI analysis, one participant was excluded due to excessive 

artifact in their imaging data. For the 124 remaining participants, Table 1 summarizes 

demographic characteristics. The distribution of the sample was generally skewed, with a greater 

proportion of female participants (79%) and individuals aged 40 or older (74.2%). In addition, the 

great majority of the sample identified as Caucasian/White (72.6%) or African American/Black 

(20.2%). Table 2 summarizes the associations between body fat percentage, VO2submax, BMI, 

and demographic characteristics. Pearson correlations revealed that male participants (r = -.5; p < 

.0001) had higher fitness levels and lower body fat percentages (r = .5; p < .0001) compared to 

women. Body fat percentage and BMI were positively correlated with each other (r = .5; p < 

.0001). Age, race, and education did not correlate with VO2submax, BMI, or body fat percentage 

in this sample (all p > 0.5). 
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Table 1. Demographic characteristics 

N 

Gender (%) 

Female 

Male 

Years of Age (M, SD) 

Years of Education (M, SD) 

Race (%) 

Asian/Asian American 

African American/Black 

Caucasian/White 

Multiracial 

DEXA Body Fat % (M, SD) 

VO2submax (M, SD) 

BMI (M, SD) 

124    

79 

21 

44.33 ± 8.60 

16.40 ± 2.63 

2.4 

20.2 

72.6 

4.8 

0.43 ± 0.06  

22.74 ± 4.37 

32.45 ± 4.19 

Table 2. Associations among demographic characteristics and explanatory variables 

Body Fat % BMI VO2submax 

Gender r .67*** .05 -.49*** 

Age r -.06 -.12 -.12 

Education r -.09 -.16 .10 

Body Fat % r - .49*** -.56*** 

BMI r - - -.24** 

*p < .05, **p < .01, ***p < .001
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3.2 Primary Results 

Our primary aims involved assessing the association between VO2submax and FA, as well 

as body fat percentage and FA, and examining potential pathways of overlap. To address the three 

primary hypotheses, we conducted whole-brain voxelwise analyses using the FSL randomise 

function to test the association between VO2submax and FA, as well as the association between 

body fat percentage and FA. 

3.2.1 Hypothesis One 

Our first hypothesis was that cardiorespiratory fitness would be significantly associated 

with FA, such that higher VO2submax would relate to higher FA values. We further predicted that 

given the most consistent findings in the literature, VO2submax, but not adiposity, would be 

significantly related to FA in the corona radiata, longitudinal fasciculi, & IFO. Whole-brain 

voxelwise analyses did not reveal any significant main effects between VO2submax and FA that 

met our cluster thresholding (p > 0.05). These results were contrary to our hypothesis in that there 

was no significant relationship between VO2submax and FA across the brain, or within any 

specific regions of interest in this sample. 

3.2.2 Hypothesis Two 

Our second hypothesis was that adiposity would be significantly associated with FA, such 

that higher adiposity would relate to lower FA values. We further predicted that given the most 

consistent findings in the literature, adiposity, but not VO2submax, would be significantly related 
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to FA in the fornix. Whole-brain voxelwise analyses did not reveal any significant main effects 

between body fat percentage and FA that met our cluster thresholds (p > 0.05). These results did 

not lend support to our hypothesis that there would be an association between body fat percentage 

and FA across the brain, or within any specific regions of interest in this sample. 

 

3.2.3 Hypothesis Three 

Our third hypothesis was that both cardiorespiratory fitness and adiposity would 

significantly associate with FA in certain WM pathways, specifically in the corpus callosum and 

cingulum. We first predicted that the effects of VO2submax and body fat percentage in these 

regions would be additive, such that the net influence of these variables on FA would vary as a 

result of a relative negative effect of higher body fat percentage and a relative positive effect of 

higher VO2submax. However, whole-brain voxelwise analyses revealed that neither VO2submax, 

nor body fat percentage, showed significant main effects (both p > 0.05) with FA. We had also 

posited that there may exist an interaction between VO2submax and body fat percentage. To test 

this, we estimated the multiplicative regression model of the interaction term (VO2submax * body 

fat percentage). Whole-brain voxelwise analyses revealed a significant interaction between 

VO2submax and body fat percentage in several WM clusters (p = 0.03). 

To model the data, we utilized the JHU 1mm ICBM DTI-81 WM labels atlas to extract 

significant clusters that overlapped with previously defined WM fiber tracts. Clusters of 

significance primarily corresponded to the genu of the corpus callosum (gCC), however, there was 

also apparent overlap with the body of the corpus callosum (bCC), both the left and right anterior 

corona radiata (aCR-L; aCR-R), and left superior corona radiata (sCR-L). Table 3 summarizes 
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average FA values in the whole brain cluster, along with each significant region of interest. Figure 

4 depicts the overlap between the WM atlas and significant clusters. 

We extracted average FA values and utilized the SPSS PROCESS macro to model the 

relationships among body fat percentage, VO2submax, and FA in each of the significant regions 

of interest, as well as in the general cluster of significance as a whole. The results of these 

interaction analyses were consistent with the results of the whole-brain voxelwise analyses 

conducted in FSL, and showed a significant interaction between VO2submax and body fat 

percentage in the whole brain cluster and each region of interest. These statistics are shown in 

Table 4. We then used the R package ggplot2 to create interaction plots depicted in Figure 5. The 

interaction plots illustrated an effect such that the association between body fat percentage and FA 

differs as a function of fitness level. As expected, among individuals with low levels of fitness, 

higher body fat percentage was associated with lower FA. However, contrary to our hypothesis, 

among individuals with high levels of fitness, higher body fat percentage was associated with 

greater FA. This effect was consistent in each of the significant WM pathways, and in the larger 

whole brain cluster of significance, as well. 

 

Table 3. FA in whole brain cluster and regions of interest (M ± SD) 

 

 

 

 

Whole Brain Cluster  

Genu (Corpus Callosum) 

Body (Corpus Callosum) 

Anterior Corona Radiata (Right) 

Anterior Corona Radiata (Left) 

Superior Corona Radiata (Left) 

.58 ± .03 

.70 ± .03 

.65 ± .04 

.50 ± .04 

.44 ± .04 

.45 ± .05 
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Figure 4. Significant clusters for the interaction of VO2submax and body fat % on FA 

Clusters of significance (red outline; p < .05) overlaid on the JHU 1mm ICBM DTI-81 WM 

atlas. Corresponding WM pathways included: genu of the corpus callosum (gCC), body of the 

corpus callosum (bCC), both right and left anterior corona radiata (aCR-R; aCR-L), and left 

superior corona radiata (sCR-L).  

 

Table 4. Tests of highest order, unconditional interaction effects (SPSS PROCESS) 

 ΔR2 ΔF(1, 117)  b s.e. t(117)* 

Whole Brain Cluster .10 16.27***  .04 .01 4.03*** 

Genu (Corpus Callosum) .07 10.16**  .03 .01 3.18** 

Body (Corpus Callosum) .08 11.41**  .04 .01 3.38** 

Anterior Corona Radiata (Right) .06 8.80**  .04 .01 2.97** 

Anterior Corona Radiata (Left) .10 15.29***  .04 .01 3.91*** 

Superior Corona Radiata (Left) .07 9.51**  .05 .02 3.08** 

*p < .05, **p < .01, ***p < .001 
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Figure 5. Plots A–F depict interactions between body fat % and VO2submax on FA 

Plots created using the R ggplot2 package demonstrate the interaction between body fat % and 

VO2submax on FA in the full voxelwise significance cluster as a whole (A), the genu (B) and 

body of the corpus callosum (C), and the right (D) and left (E) anterior corona radiata, and left 

superior corona radiata (F). To facilitate graphical representation of the interaction, fitness level 

is partitioned into categories based on standard deviations from the mean VO2submax level: 

dotted blue represents -1 SD; dashed purple represents the mean; and solid red represents +1 SD. 

3.3 Secondary Results 

As a majority of previous studies comparing the impact of cardiorespiratory fitness and 

adiposity on WM integrity utilized BMI rather than DEXA, we aimed to assess for consistency 

between previous work and the current investigation. Thus, the secondary aims of this study were 

to: (1) to examine the relationship between adiposity, as indexed by BMI alone, and WM integrity, 

and identify significant pathways; and (2) to identify WM pathways that are significantly 

associated with both adiposity, as indexed by BMI, and VO2submax.  To address these aims, we 

conducted the same whole brain voxel-wise analyses used to test the primary aims, substituting 

BMI for body fat percentage. Whole-brain voxelwise analyses did not reveal any main effects 

between BMI and FA (p > 0.05). As this null finding was also evident in the relationship between 

VO2submax and FA in this sample, we were not able to assess for potential regional overlaps. To 

test for a potential interaction effect, we estimated the multiplicative regression model of the 

interaction term (VO2submax * BMI). Whole-brain voxelwise analyses did not reveal any 

significant interaction between BMI and FA (p > 0.05). 
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4.0 Discussion 

The primary aim of this study was to shed light on the relationships between 

cardiorespiratory fitness, adiposity, and WM integrity in a large sample of cognitively healthy 

adults with overweight and obesity. Given previous findings, we hypothesized that 

cardiorespiratory fitness and adiposity would be independently associated with WM integrity in a 

number of pathways. Specifically, we predicted that cardiorespiratory fitness, but not adiposity, 

would exhibit a positive association with WM integrity in the corona radiata, longitudinal fasciculi, 

and IFO. In contrast, we hypothesized that adiposity, but not cardiorespiratory fitness, would 

exhibit an inverse association with WM integrity in the fornix. We also hypothesized that both 

adiposity and cardiorespiratory fitness would be associated with WM integrity in a number of 

overlapping regions, particularly the corpus callosum and cingulum.  

Although a large body of literature suggests that the action of cardiorespiratory fitness and 

adiposity on WM health operates through independent mechanisms, other evidence indicates that 

these variables impact WM through shared pathways. Accordingly, a number of scenarios 

plausibly characterize the associations between adiposity, cardiorespiratory fitness, and WM 

integrity in regions of overlap. Given the larger body of current evidence, we first hypothesized 

that we would find main effects of both cardiorespiratory fitness and adiposity in the corpus 

callosum and cingulum, indicating that the impact of these variables is independent and 

cumulative. In this scenario, increasing fitness may contribute to improved WM integrity, even in 

individuals exposed to the detrimental effects of high adiposity. Alternately, owing to the 

possibility that there may exist an interaction between adiposity and cardiorespiratory fitness in 

their influence on WM integrity, we also predicted that we may find a moderating effect of 
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cardiorespiratory fitness. In this scenario, we expected that any detriment of adiposity would be 

moderated by cardiorespiratory fitness level, such that the negative consequences of high body fat 

composition on WM integrity would not be apparent in those who are highly fit.  

Contrary to our hypotheses, voxelwise whole-brain analyses failed to reveal any significant 

main effect relationships between cardiorespiratory fitness, indexed by VO2submax, and whole 

brain FA. This contradicts previous findings, as most published reports examining 

cardiorespiratory fitness and physical activity have found significant effects on WM integrity 

(Sexton et al., 2016). However, the majority of these studies have focused on older adults. 

Although lifespan studies of WM integrity report that FA tends to peak and then slowly decline 

after the third decade of life, the participants in the current study ranged in age from 22 to 55 years 

of age.  Thus, it is possible that this age range is still too early to detect fitness-related alterations 

in WM integrity.  

Likewise, we also failed to find significant main effect associations between adiposity, 

measured using DEXA estimates of body fat percentage, and whole brain FA. Notably, few 

previous investigations that utilized DEXA reported a significant relationship between body fat 

percentage and WM integrity. Instead, the bulk of previously reported findings included BMI as a 

metric of adiposity. This, coupled with our null main effect results, indicates that body composition 

may simply not relate to WM integrity. Thus, to examine the consistency of our findings with 

previous work, we conducted additional voxel-wise analysis substituting body fat percentage for 

BMI. However, the results of our secondary voxel-wise analyses were similar to our primary 

DEXA main effects analyses, revealing that BMI did not significantly relate to FA in our sample. 

These results contradict a number of previously published findings, pointing to the likelihood that 

the unexpected outcomes of this study are a function of the unique nature of our sample. 
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Further, voxel-wise whole-brain analyses revealed significant interaction effects between 

body fat percentage and VO2submax on FA that corresponded to a number of WM pathways. 

These included the genu and body of the corpus callosum, as well as the bilateral anterior corona 

radiata, and left superior corona radiata. However, post-hoc modeling of the associations did not 

corroborate our predictions. Specifically, we found that in all of the regions of significance, higher 

body fat percentage was related to lower FA only in low fit individuals. Unexpectedly, higher body 

fat percentage was related to higher FA in high fit individuals. In contrast to our predictions, and 

previous findings, these results appear to suggest that higher adiposity may actually be beneficial 

for WM integrity in highly fit adults with overweight and obesity. 

 Given the breadth of previous findings that elevated adiposity has a detrimental effect on 

brain structure, function, and overall health, it seems surprising that adiposity would be protective 

in fit adults. A few recent studies of dementia risk reported a paradoxical effect of overweight and 

obesity that reduced risk of dementia in elderly participants (Atti et al., 2007; Fitzpatrick et al., 

2009). The authors noted that high BMI may play a different role in older age than in early life. 

For instance, individuals with overweight or obesity who live to older adulthood without 

experiencing fatal cardiovascular complications may have elevated health status to begin with. In 

addition, weight gained later in life or after menopause may not have the same harmful impact on 

health as long-term adiposity throughout midlife. Thus, it seems unlikely that such a protective 

effect of adiposity would be apparent in a young to mid-life adult sample. Furthermore, studies 

focusing on brain structure and WM health have not yet reported such findings.  

There are a number of possible explanations for the lack of anticipated findings in this 

study. First, it may be possible that in a sample with overweight or obesity, variations in body fat 

percentage and VO2submax are not sufficient to influence substantial differences variations in FA. 
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While this study was unique in its focus on young to mid-life adults with overweight and obesity, 

the sample did exhibit a somewhat restricted range of BMI and body fat percentage. This limited 

our ability to find significant effects of adiposity that may only be evident when comparing high 

levels of adiposity to those that are in the low range. Likewise, previous work has linked 

overweight and obesity to lower levels of cardiorespiratory fitness and engagement in physical 

activity (Olds et al., 2011; Ostojic, Stojanovic, Stojanovic, Maric, & Njaradi, 2011). Thus, it is 

also possible that the VO2submax range was restricted in this sample, when compared to healthy 

adults.  

The demographic distribution of participants in this study was also skewed with regard to 

several variables. First, there was a much great proportion of female participants than male 

participants. Females tend to have lower fitness and are more susceptible to adiposity than males, 

and this was the case in our sample. Gender also appears to influence WM integrity, with higher 

FA values in the splenium of the corpus callosum in males (Inano, Takao, Hayashi, Abe, & 

Ohtomo, 2011). Interestingly, Mueller and colleagues (2011) reported that increased BMI was 

significantly related to decreased WM integrity in the corpus callosum, in female participants only. 

Accordingly, the gender skew in our sample may have further contributed to restricted variability 

in the data. Moreover, we did not survey participants about menopause status, and were not able 

to use this variable as a covariate in the current investigation. It is not yet known how menopause 

may influence structural brain connectivity, and so this may have contributed to additional noise 

in the data.  

Lastly, an important consideration is that lesions in WM, known as white matter 

hyperintensities (WMH), are common in aging-related brain pathology. WMH are 

microstructurally similar to healthy appearing WM and have been shown to confound FA results 



 41 

in previous investigations. Svärd and colleagues (2017) reported that WMH load significantly 

alters WM integrity estimates in the dorsal and ventral cingulum, the superior longitudinal 

fasciculus, and the corticospinal tract. The authors noted that without adjusting for WMH, high 

WMH load may result in an inaccurately low estimate of WM integrity in healthy participants and 

an overestimation in patient populations. Although some reports show that WMH are also found 

at increased rates in obesity (Kim, Seo, Kwak, & Kim, 2017), we were not able to image for WMH 

in the current study. Thus, unknown WMH load may have significantly confounded the results in 

the current study, and future investigations comparing the influence of fitness and adiposity on 

WM integrity should adjust for WMH. 

Ultimately, this study sought to examine the relationship between adiposity, 

cardiorespiratory fitness, and WM integrity in adults with overweight and obesity. There were 

several limitations in the current study that may have led to a number of null findings and 

unexpected results. Still, this work was the first to examine the nuances of fitness and adiposity 

and their relationship to WM integrity in adults with overweight and obesity, a population that is 

at increased risk for pathological brain aging and increased need for effective intervention. 

Accordingly, it is essential for future investigations to continue to examine the influence of 

adiposity and fitness on the brain prior to the development of later-life brain pathology. This work 

is particularly important as rates of obesity and dementia are projected to continue increasing, and 

has significant implications for early intervention trials and the development of targeted and 

effective changes to public health policy. 
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