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Abstract. Anthropogenic emissions of CO2 to the atmosphere have modified the carbon cycle for more than
2 centuries. As the ocean stores most of the carbon on our planet, there is an important task in unraveling the
natural and anthropogenic processes that drive the carbon cycle at different spatial and temporal scales. We
contribute to this by designing a global monthly climatology of total dissolved inorganic carbon (TCO2), which
offers a robust basis in carbon cycle modeling but also for other studies related to this cycle. A feedforward
neural network (dubbed NNGv2LDEO) was configured to extract from the Global Ocean Data Analysis Project
version 2.2019 (GLODAPv2.2019) and the Lamont–Doherty Earth Observatory (LDEO) datasets the relations
between TCO2 and a set of variables related to the former’s variability. The global root mean square error
(RMSE) of mapping TCO2 is relatively low for the two datasets (GLODAPv2.2019: 7.2 µmolkg−1; LDEO:
11.4 µmolkg−1) and also for independent data, suggesting that the network does not overfit possible errors in
data. The ability of NNGv2LDEO to capture the monthly variability of TCO2 was testified through the good
reproduction of the seasonal cycle in 10 time series stations spread over different regions of the ocean (RMSE: 3.6
to 13.2 µmol kg−1). The climatology was obtained by passing through NNGv2LDEO the monthly climatological
fields of temperature, salinity, and oxygen from the World Ocean Atlas 2013 and phosphate, nitrate, and silicate
computed from a neural network fed with the previous fields. The resolution is 1◦×1◦ in the horizontal, 102 depth
levels (0–5500 m), and monthly (0–1500 m) to annual (1550–5500 m) temporal resolution, and it is centered
around the year 1995. The uncertainty of the climatology is low when compared with climatological values
derived from measured TCO2 in the largest time series stations. Furthermore, a computed climatology of partial
pressure of CO2 (pCO2) from a previous climatology of total alkalinity and the present one of TCO2 supports
the robustness of this product through the good correlation with a widely used pCO2 climatology (Landschützer
et al., 2017). Our TCO2 climatology is distributed through the data repository of the Spanish National Research
Council (CSIC; https://doi.org/10.20350/digitalCSIC/10551, Broullón et al., 2020).
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1 Introduction

The ocean is the major carbon reservoir of the Earth. Most of
this carbon occurs as dissolved inorganic carbon (TCO2, also
known as DIC or CT; Ciais et al., 2013; Tanhua et al., 2013).
Three species make up TCO2: dissolved CO2 (generally con-
sidered to be the sum of the dissolved CO2 itself, CO2(aq),
and carbonic acid, H2CO3), bicarbonate ion (HCO−3 ), and
carbonate ion (CO2−

3 ). The relative concentrations of these
species with respect to each other determine the seawater pH
(Zeebe and Wolf-Gladrow, 2001). The seawater CO2 chem-
istry system can be represented as a set of chemical equilib-
ria reactions that describe the speciation of the various ions
of TCO2 as follows:

CO2(g) 
 CO2(aq)
CO2(aq)+H2O 
 H2CO3

H2CO3 
 H++HCO−3
HCO−3 
 H++CO2−

3 .

Since the Industrial Revolution, the concentration of TCO2 in
the global ocean has increased, generally to a certain depth
level (depending on the particular processes in each ocean
area) due to the entry of CO2 into the seawater from the at-
mosphere (Sarmiento and Gruber, 2002; Doney et al., 2009;
Vázquez-Rodríguez et al., 2009; Bates et al., 2012; Sallée
et al., 2012; Khatiwala et al., 2013). The uptake is driven by
the increasing partial pressure of CO2 (pCO2) in the atmo-
sphere relative to the ocean, generated by the anthropogenic
emissions of CO2 that cause an annual net flux of this gas
into the ocean (Le Quéré et al., 2018). Accompanying the
change in TCO2, the pH and carbonate ion concentration
have been declining because of the anthropogenic process
previously mentioned, these changes being reflected in the
proportions of the chemical species of TCO2 (Kleypas and
Langdon, 2000; Orr et al., 2005). These changes in seawa-
ter chemistry framed in the ocean acidification process can
negatively influence various processes involving marine or-
ganisms such as calcification, growth, and survival (Orr et
al., 2005; Fabry et al., 2008; Hendriks et al., 2010; Hoegh-
Guldberg and Bruno, 2010; Kroeker et al., 2013).

In addition to the secular trends driven by the uptake of
anthropogenic CO2, ocean TCO2 varies both temporally and
spatially as a consequence of several natural processes. This
variability may reach values of 15 % of the mean TCO2 value
in the ocean (Lee et al., 2000). The processes that increase
TCO2 are net flux of CO2 from the atmosphere to the ocean,
organic matter remineralization, and the dissolution of cal-
cium carbonate (CaCO3). The processes that reduce TCO2
are net flux of CO2 from the ocean to the atmosphere, pri-
mary production, and calcification. Advection and mixing
also influence the variability of TCO2 in these two ways
(Sabine et al., 2002). In the surface ocean, the main vari-

ables influencing the variability of TCO2 are temperature
and salinity (Weiss et al., 1982; Lee et al., 2000; Wu et al.,
2019), through the modification of the solubility of CO2, af-
fecting the seawater pCO2 (which is almost instantaneous)
and thus the air–sea CO2 flux, which eventually drives the
change in TCO2 over time. Nutrients and oxygen can also
reflect the processes that modify the concentration of TCO2
through their consumption and release, like during the cy-
cling of organic matter (Körtzinger et al., 2001; Bauer et al.,
2013). From products generated with measured data (Key et
al., 2004; Takahashi et al., 2014; Lauvset et al., 2016) and in
modeling studies (e.g., Doi et al., 2015), it is known that the
global surface distribution of TCO2 follows a zonal gradient:
there is a reduction in its concentration from the poles to the
Equator, reflecting the processes that control its variability.
Key et al. (2004) emphasize that this distribution is associ-
ated with the distribution pattern of nutrients. Recently, Wu
et al. (2019) found that the distribution of surface-salinity-
normalized TCO2 (nDIC) has two main drivers: temperature
and upwelling. At depth, the variation shown in almost any
measured profile of TCO2 mainly reflects the remineraliza-
tion of organic matter and, to a lesser extent, the dissolution
of CaCO3 (Millero, 2007), resulting in an increase in TCO2
from the surface to intermediate depths.

Understanding the distribution and variability of TCO2
in the ocean and its secular trends driven by anthropogenic
carbon uptake is needed to assess the magnitude and possi-
ble impacts of ocean acidification. It is also necessary for
the evaluation of numerical models that include the car-
bon cycle and their estimates of past, current, and future
ocean carbon cycle behavior (e.g., Yool et al., 2013; Au-
mont et al., 2015; Butenschön et al., 2016; Le Quéré et al.,
2016;) Goris et al., 2018). Seasonality of TCO2 and the hor-
izontal and vertical variability underscore the necessity to
design a climatology with both monthly and spatial resolu-
tions according to the processes that influence this variable
on a global scale. The existing climatologies of TCO2 do
not include all these characteristics collected together. Key
et al. (2004) and Lauvset et al. (2016) built an annual cli-
matology at 33 depth levels using interpolation techniques
with data from the Global Ocean Data Analysis Project ver-
sion 1 (GLODAPv1; Key et al., 2004) and version 2 (GLO-
DAPv2; Key et al., 2015; Olsen et al., 2016), respectively.
Takahashi et al. (2014) published a monthly climatology for
the surface ocean computed from climatologies of pCO2 and
total alkalinity (AT). Other studies used the covariability be-
tween TCO2 and other more commonly measured variables
discussed above for mapping and gap-filling via empirical
regressions and neural networks. Lee et al. (2000) used tem-
perature and nitrate to compute surface nDIC with an area-
weighted error of ±7 µmolkg−1. Sauzède et al. (2017) and
Bittig et al. (2018) trained neural networks with GLODAPv2
data to compute TCO2 over the depth range 0–8000 m with
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an accuracy of±9 and±7.1 µmolkg−1, respectively. The in-
put variables used in those studies were location, pressure,
temperature, salinity, dissolved oxygen, and time.

In the present study, we introduce the use of neural net-
works for going one step further in the design of a climatol-
ogy. We have generated a climatology of TCO2 with a reso-
lution consistent with that of the climatology of AT of Broul-
lón et al. (2019): horizontal resolution of 1◦× 1◦, 102 depth
levels between 0 and 5500 m, and a monthly (0–1500 m) and
annual (1550–5500 m) temporal resolution. The availability
of global databases containing variables of the seawater CO2
system with more and more data – e.g., GLODAPv2.2019;
the Lamont–Doherty Earth Observatory (LDEO) database
(Takahashi et al., 2017); the Surface Ocean CO2 Atlas (SO-
CAT; Bakker et al., 2016) – and the great ability of the neu-
ral networks to interpolate as shown in other climatologi-
cal studies about CO2 system variables (Landschützer et al.,
2014; Broullón et al., 2019) show the appropriateness of this
approach for generating a global monthly climatology cover-
ing more than the surface ocean.

2 Methodology

2.1 Neural network design

A feedforward neural network was configured to compute
TCO2 in the global ocean and to create a global climatol-
ogy based on the good results previously obtained with this
method in similar studies (e.g., Broullón et al., 2019). Briefly,
a neural network of this type (Fig. S1a in the Supplement) is
used to extract relationships between a set of input variables
and a target one through a training process. At this stage, the
inputs are passed through different parallel layers composed
of a tunable number of neurons to reach values as closest as
possible to the target ones (Fig. S1a). Initially, all inputs en-
ter each neuron of the first layer, where they are multiplied by
different weights depending on the neuron they go to. Inside
the neurons (Fig. S1b), the results of the previous operation
are summed, and a bias is added. The obtained value inside
each neuron is passed through an activation function, which
yields an output. The outputs of each neuron in each layer go
to the following layer undergoing the same process described
to this point. In the last layer, which is composed of one neu-
ron, a unique value for the target variable is calculated for
each pair consisting of inputs and a target. This value is com-
pared to the desired one, and the difference between both val-
ues is backpropagated through the entire network in order to
adjust the weights and biases and to start the processes again
and reach an accurate output value after multiple iterations.
A complete description of the most common algorithms used
to backpropagate and minimize the errors can be found in
Rumelhart et al. (1986), Levenberg (1944), and Marquardt
(1963).

The method used here is equivalent to that fully described
by Broullón et al. (2019) for AT. In addition to the target vari-

able (TCO2 instead of AT), the main changes in the present
study compared to that of Broullón et al. (2019) are the inclu-
sion of the input variable “year”, accounting for the anthro-
pogenic increase in the TCO2 pool, and the use of the pCO2
database from the LDEO (Takahashi et al., 2017) in addi-
tion to the extended GLODAPv2.2019 (Olsen et al., 2019)
to enable more robust TCO2 estimates in the surface ocean.
Similar to Broullón et al. (2019), the neural networks were
trained using the Levenberg–Marquardt method (Levenberg,
1944; Marquardt, 1963) through the trainlm function (de-
tailed in Beale et al., 2018) in MATLAB. The splitting of
the database used in the present study (see Sect. 2.2) into the
sets needed for training and testing the network is depicted in
Fig. 1. The data were randomly associated with each dataset
to capture (training) and evaluate (test) all possible variabil-
ity. The input variables are temperature, salinity, phosphate,
nitrate, silicate, oxygen, sample position, and year (Fig. S1a).
The number of neurons tested in the unique hidden layer to
find the best neural network was 16, 32, 64, 128, and 256.
Ten networks were trained for each number of neurons. The
criteria for selecting the final number of neurons are based
on a trade-off between the root mean square error (RMSE;
between the measured TCO2 and that estimated by the neu-
ral network) on the one hand and the generalization of the
network (to prevent overfitting, maintaining a similar error
in the training and in the test sets) on the other hand. Further-
more, an additional criterion based on the influence of each
input variable on the TCO2 extracted with the connection
weight approach (Olden and Jackson, 2002) was followed
to ensure that biogeochemical input variables have a larger
influence on the TCO2 estimates than the input variables re-
lated to sample position for selecting a proper network. The
influence of each input variable on the computed TCO2 was
obtained from Eq. (1):

Ci =

H∑
k=1

wik · wk, (1)

where Ci is the relative importance of the input variable i, H

the number of neurons in the hidden layer, wik the weight of
the connection between the variable i and the neuron k of the
hidden layer, and wk the weight of the connection between
the neuron k of the hidden layer and output layer.

2.2 Data

We included the LDEO database version 2016 (Taka-
hashi et al., 2017; https://www.nodc.noaa.gov/ocads/oceans/
LDEO_Underway_Database, last access: 13 November
2017) because it contains significantly more data in the sur-
face layer than GLODAPv2.2019. Since the higher variabil-
ity in the surface layer may lead to high errors in model-
ing variables of the seawater CO2 system (e.g., Carter et al.,
2018; Bittig et al., 2018; Broullón et al., 2019), including the
LDEO database should force the network to reach a more

https://doi.org/10.5194/essd-12-1725-2020 Earth Syst. Sci. Data, 12, 1725–1743, 2020

https://www.nodc.noaa.gov/ocads/oceans/LDEO_Underway_Database
https://www.nodc.noaa.gov/ocads/oceans/LDEO_Underway_Database


1728 D. Broullón et al.: A global monthly climatology of TCO2

Figure 1. Division of the complete database in the datasets needed to train the neural network. The percentages in each level are relative to
the number of data in the previous one. Data in the datasets of the first level are always the same for each network. Data in the sets of the
second level are randomly associated with each set for each network to find the best network weights because of the different starting points
in the error weight space of the training process (see also Broullón et al., 2019).

robust fit. The idea is that these additional data probably
have more different relationships between input variables and
TCO2 to help the neural network to adequately capture spa-
tiotemporal variability. The pCO2, temperature, and salin-
ity data from the LDEO were monthly averaged for each
year in a 1◦× 1◦ grid. The points where the standard devi-
ation (SD) of the averaged pCO2, temperature, and salin-
ity were greater than±20 µatm, 1.5 ◦C, and 0.5, respectively,
were discarded since the objective is to capture the monthly
variability, and therefore an extremely high submonthly vari-
ability could lead to errors. To obtain TCO2 values from the
LDEO data, an additional variable of the CO2 system is nec-
essary, for which we take AT computed using the neural
network NNGv2 of Broullón et al. (2019). The input vari-
ables required by NNGv2 were obtained from (1) tempera-
ture and salinity from the LDEO; (2) filtered oxygen from
the World Ocean Atlas version 2013 (WOA13; see Broullón
et al., 2019); and (3) phosphate, nitrate, and silicate com-
puted with CANYON-B (Bittig et al., 2018) using the previ-
ous variables as inputs. Finally, TCO2 was calculated from
this AT and the averaged pCO2 using the MATLAB version
of the CO2SYS program (van Heuven et al., 2011); we used
the dissociation constants of Mehrbach et al. (1973; as refit
by Dickson and Millero, 1987) and the borate dissociation
constant of Dickson (1990). Note that we used this software
and set of constants for all seawater CO2 chemistry calcu-
lations in the present study. The TCO2 calculated this way
and the associated input variables were used as a part of the
training and testing data for the neural networks created here.
The final number of data points derived from the LDEO was
54572.

To represent interior ocean conditions, the GLO-
DAPv2.2019 database (Olsen et al., 2019) was added to the
LDEO dataset for training and testing the neural network.
Only samples which had data for all input variables and
TCO2 were used. This database was included in two ways:
(1) only samples where all variables passed the second qual-
ity control (n= 287953; Olsen et al., 2016; Olsen et al.,
2019; hereafter abbreviated Gv2QC) and (2) all samples (n=
321647; hereafter abbreviated Gv2). Therefore, two neural

network options were trained and tested: NNGv2QCLDEO
and NNGv2LDEO, respectively.

2.3 Comparison of methods

We compared our method with CANYON-B of Bittig
et al. (2018), where TCO2 values were also computed from
multiple input variables. Both methods are based on neural
networks but with certain differences as summarized in Ta-
ble 1.

An error analysis was carried out in the same areas for
which this was done by Broullón et al. (2019) for AT
and in several depth ranges (0–50, 50–200, 200–500, and
500–1000 m and 1000 m–bottom) for the two methods (our
method and CANYON-B) and for the two datasets (Gv2QC
and LDEO). The Gv2QC database was analyzed in this sec-
tion instead of Gv2 because in the designing of CANYON-B
only quality-controlled data were included. The analysis of
CANYON-B using the LDEO dataset is useful to evaluate
the validity of the approach followed by converting pCO2
to TCO2 since CANYON-B has not been trained with this
dataset.

Computed pCO2 from AT and TCO2 derived from neural
networks was also evaluated in the LDEO dataset to assess
the adequacy of including this dataset in our approach and
to assess the ability of NNGv2 of Broullón et al. (2019) and
the present TCO2 neural network to compute other variables
of the seawater CO2 system. Furthermore, we compared the
magnitude of the errors with the ones obtained by Land-
schützer et al. (2014), in which pCO2 is computed directly
with a neural network, to evaluate the accuracy of our com-
puted pCO2.

2.4 Validation

In addition to the ability to compute TCO2 using the Gv2
and LDEO test sets, the neural network has been tested us-
ing independent data from 10 ocean time series, located in
different regions of the world ocean (data were obtained
from https://www.nodc.noaa.gov/ocads/oceans/time_series_
moorings.html, last access: 4 June 2019): Hawaii Ocean
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Table 1. Differences between the methods used in the present study and in CANYON-B (Bittig et al., 2018).

Bittig et al. (2018) This study

Training technique Bayesian regularization Levenberg–Marquardt
Input variables Temperature, salinity, oxygen, position, and time Temperature, salinity, oxygen, phosphate, nitrate, sili-

cate, position, and time
Datasets GLODAPv2 (Olsen et al., 2016) GLODAPv2.2019 (Olsen et al., 2019)

LDEOv2016 (Takahashi et al., 2017)

Time-series (HOT ALOHA and HOT ALOHA SURFACE;
Dore et al., 2009), Bermuda Atlantic Time-series Study
(BATS; Bates et al., 2012), European Station for Time-series
in the Ocean at the Canary Islands (ESTOC; González-
Dávila et al., 2010), Iceland Sea time series (ICELAND;
Olafsson et al., 2010), Irminger Sea time series (IRMINGER;
Olafsson et al., 2010), Kyodo North Pacific Ocean time se-
ries (KNOT; Wakita et al., 2010), K2 (Wakita et al., 2010),
Ocean Weather Station Mike (OWS; Gislefoss et al., 1998),
and Kerguelen Islands in the Indian sector of the Southern
Ocean (KERFIX; Jeandel et al., 1998). CANYON-B was
also used to compute TCO2 in the time series to show the
differences between that method and ours. The TCO2 val-
ues were obtained by feeding the neural networks with the
measured values of the input variables at each time series.
The data from these time series allow us to test the ability
of the neural network to reconstruct not only the seasonal
variability of TCO2 at the various locations and depths sam-
pled but also its long-term trends. For the trend analyses, the
measured and estimated TCO2 values were deseasonalized
following Bates et al. (2014).

As an additional test, the measured pCO2 or the pCO2 cal-
culated from measured TCO2 and AT at the time series sta-
tions was compared with pCO2 calculated from the neural-
network-generated values of AT and TCO2. This provides
insight into the combined performance of the NNGv2 of
Broullón et al. (2019) and the neural network designed in
the present study. Furthermore, we compared the magnitude
of the errors to that obtained by Landschützer et al. (2014)
for some of the time series.

2.5 Climatology of TCO2

We used the selected network, based on the results of the
analyses described above, to construct a climatology of
TCO2. Climatologies of the input variables were passed
through the network to obtain the climatological fields of
TCO2. The spatiotemporal resolution of the product is deter-
mined by that of the climatologies used as inputs: 1◦×1◦ hor-
izontal resolution, 102 upper depth levels of the WOA13, and
monthly (for 0–1500 m depth) to annual (for 1550–5500 m
depth) temporal resolution. Temperature and salinity clima-
tologies were obtained from objectively analyzed WOA13
fields (Locarnini et al., 2013; Zweng et al., 2013; https:
//www.nodc.noaa.gov/OC5/woa13/woa13data.html, last ac-

cess: 6 February 2017). Oxygen, phosphate, nitrate,
and silicate climatologies were taken from Broullón
et al. (2019; https://doi.org/10.20350/digitalCSIC/8644, last
access: 1 August 2019). These climatologies of nutrients
were created using the objectively analyzed climatologies of
temperature, salinity, and oxygen (Garcia et al., 2014; oxy-
gen climatology from WOA13 has been filtered by applying
a fifth-order one-dimensional median filter through the depth
dimension; see Broullón et al., 2019) from the WOA13 in
CANYON-B (Bittig et al., 2018). As a year input is needed,
we decided to center the TCO2 climatology around 1995
based on the time distribution of the data used to create
the WOA13 climatologies: the World Ocean Database 2013
(Boyer et al., 2013).

The computed climatological values were compared with
those from measured data to assess the uncertainty of the
climatology since the WOA13 does not offer an uncer-
tainty field with the objectively analyzed climatologies. Un-
fortunately, only two locations have enough measured data
to calculate a pure climatological value of TCO2 for each
month: HOT ALOHA and BATS. The measured values were
monthly averaged at several depth levels, and the anthro-
pogenic carbon as calculated by Lauvset et al. (2016) was
added or subtracted to correct the data to the reference year
of the climatology according to

TCOyear2
2 = TCOyear1

2 −Cant2002

[
(1+ 0.0191)(year1−2002)

− (1+ 0.0191)year2−2002], (2)

where TCOyear2
2 is the TCO2 corrected for year2, which is

the reference year of the climatology; TCOyear1
2 is the TCO2

measured in year1, Cant2002 is the anthropogenic carbon for
2002; and 0.0191 is the annual increase rate derived from
the scaling factor determined by Gruber et al. (2019) for the
global ocean between 1994 and 2007.

We compared our climatology with previously published
climatologies of TCO2. The monthly surface climatology
created by Takahashi et al. (2014) was used to assess the
spatiotemporal differences in the surface layer. The annual
climatology of Lauvset et al. (2016) was used to evaluate the
spatial differences in the deeper parts of the ocean. For the
comparisons, the climatologies of Takahashi et al. (2014) and
Lauvset et al. (2016) were adjusted to the year 1995, subtract-
ing the anthropogenic carbon (Cant) of Lauvset et al. (2016)
as in Eq. (2).
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Finally, a surface climatology of pCO2 was computed
from the TCO2 climatology of the present study and the AT
climatology of Broullón et al. (2019) to assess the potential
of computing climatologies of other variables of the seawa-
ter CO2 system. For comparison, the updated monthly pCO2
climatology from Landschützer et al. (2016, 2017) was used.
The values between 1981 and 2010 were averaged to ob-
tain the climatological year 1995. The variable selected from
Landschützer et al. (2017) was that labeled as spco2_raw (sea
surface pCO2) in the netCDF file.

It should be noted that the RMSE and the bias were ob-
tained for all the comparisons, the last statistic being com-
puted as the difference between the measured (or computed
by the method to compare) TCO2 and the one obtained with
the neural network of the present study.

3 Results

3.1 Neural network analysis

Following the established criteria to obtain the optimal num-
ber of neurons, the configuration with 128 neurons in the hid-
den layer was selected. From the 10 networks trained with
this number of neurons for each approach (NNGv2LDEO
and NNGv2QCLDEO), the ones with the lowest influence
of the position input variables were selected. These two net-
works present a similar RMSE in both training and test
datasets, showing there is no overfitting. Because in Gv2QC,
both NNGv2LDEO and NNGv2QCLDEO produce the same
global RMSE (6.1 µmolkg−1), it is likely that the Gv2 dataset
contains high-quality measurements, and the possible errors
in the non-QC data of this dataset are clearly avoided by
the network; otherwise NNGv2LDEO should have a higher
RMSE in the test dataset than NNGv2QCLDEO because of
an overfitting of the errors in the Gv2 dataset. The same holds
for the LDEO dataset. The network properly fitted TCO2
derived from the LDEO dataset since it does not significa-
tively increase the global RMSE relative to a network only
trained with Gv2. Therefore, we decided to continue with
NNGv2LDEO only since it has fitted more relationships be-
tween variables (e.g., Gv2 has more data points than Gv2QC
in the Mediterranean Sea), providing a more robust fitting.
For this network, the influence of each input variable on the
computed TCO2 is depicted in Fig. S2. The position vari-
ables together (latitude, clongitude, slongitude, and depth)
have no more than 30 % influence, allowing biogeochemical
variables to be the main ones responsible for the variability of
TCO2. Furthermore, the input variable year has an influence
lower than 5 %. This is probably responsible for capturing the
positive interannual trend due to the TCO2 increase derived
from anthropogenic emissions of CO2 to the atmosphere (see
Sect. 3.2).

The global RMSE is quite low for the Gv2 dataset and for
the LDEO dataset (Fig. 2). The measured and the computed
data are highly correlated (Fig. 2), and the bias is negligi-

ble in both datasets. The higher RMSE in the LDEO dataset
likely results from the higher variability of TCO2 in the
surface layer and from uncertainties in its calculation from
pCO2.

The RMSE by area and depth for NNGv2LDEO and
CANYON-B in Gv2QC is shown in Table 2. The high-
est errors for the two methods are in the 0–50 m layer for
the Gv2QC dataset and the LDEO dataset. These errors get
smaller with increasing depth for all areas, and the depth-
weighted RMSE of the two methods is not significantly dif-
ferent below 50 m. In the LDEO dataset, NNGv2LDEO pro-
duces a lower error than CANYON-B, except for two ar-
eas: East GIN (Greenland, Iceland, and Norwegian) Seas
and the Bengal Basin (Table 2), although there are only
9 and 13 data points, respectively, in each area. Interest-
ingly, CANYON-B is able to reproduce the TCO2 data de-
rived from the complete LDEO dataset with a lower error
than the one it obtains for the complete Gv2QC dataset in
the surface ocean (RMSE LDEO: 16.4 µmolkg−1; RMSE
Gv2QC, 0–5 m: 17.8 µmolkg−1), supporting the approach
of computing reliable TCO2 values from the pCO2 of the
LDEO dataset and the AT computed with NNGv2 (Broul-
lón et al., 2019) since CANYON-B was not trained with
the LDEO database. A similar result was obtained for
NNGv2LDEO but with a higher difference between the two
errors (RMSE LDEO: 11.4 µmolkg−1; RMSE Gv2QC, 0–
5 m: 17.1 µmolkg−1). Finally, the surface RMSE towards
LDEO data of NNGv2LDEO is clearly lower than that of
CANYON-B. This shows the value of including pCO2-
derived surface TCO2 among the training data, through
which there are more fitted relations in our new method.

For data from Gv2 where no QC was performed for
at least one of the variables used in the present study
(Gv2noQC), the RMSE also decreases with increasing depth
( < 50 m: 22.5 µmolkg−1; 50–200 m: 9.8 µmolkg−1; 200–
500 m: 7 µmolkg−1; 500–1000 m: 5.4 µmolkg−1; > 1000 m:
5.4 µmolkg−1). Thus, the error in Gv2noQC is similar to that
in the areas with the highest error in Gv2QC (Table 2; ex-
cept in Beaufort Sea, where the error is considerably higher).
However, the higher error in Gv2noQC is mainly caused by
the samples located in the Arctic Ocean since cruises in the
Atlantic and Pacific oceans are modeled with a very low er-
ror. Therefore, using Gv2noQC does not imply the introduc-
tion of low-quality data in our study; otherwise the network
would not compute TCO2 with low errors in Gv2QC be-
cause of an overfitting of the possible low-quality data that
Gv2noQC could contain.

In general, the highest differences between measured and
estimated TCO2 occurs in the high-latitude surface oceans
(Figs. 3 and 4). In Gv2, 40 % of the samples with differences
beyond±3RMSE (3 times RMSE; threshold selected to refer
to samples with large residuals) are at latitudes greater than
70◦ N. In the LDEO dataset, 39 % of the samples with dif-
ferences beyond ±3RMSE are from latitudes south of 70◦ S.
These samples where RMSE is high are 7.5 % of the total
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Figure 2. Regression of TCO2 computed using NNGv2LDEO and TCO2 in Gv2 and the LDEO dataset. The graph is divided into pixels.
The color of each pixel is determined by the number of points inside it. Note the logarithmic scale of the pixels accounting for the large
number of data.

Figure 3. Differences between (a) Gv2 TCO2 and NNGv2LDEO TCO2 (0–30 m) and (b) LDEO TCO2 and NNGv2LDEO TCO2 (0 m).
This figure was made with Ocean Data View (Schlitzer, 2016).

north of 70◦ N in Gv2 and 42 % of the total south of 70◦ S
in the LDEO dataset. The samples with low salinities have
the highest errors (Fig. 4). A total of 41.5 % of the samples
in Gv2 and 43 % in the LDEO dataset with differences be-
yond±3RMSE have salinities below 33. Furthermore, in the
LDEO dataset, the number of samples with residuals beyond
±3RMSE increases with increasing SD of both pCO2 and
salinity in the monthly averaging in each pixel in the LDEO
subset (Fig. S3). This result shows the difficulty of modeling
areas with a high submonthly variability in pCO2 and salin-
ity and supports the exclusion of the averaged LDEO data
with a high SD since it could cause the network to interpret
the submonthly variability as monthly variability (note that
the purpose of this study is to capture the monthly variabil-
ity).

Like for modeling AT (Takahashi et al., 2014; Broullón
et al., 2019), the Arctic Ocean is one of the regions with
the highest RMSE of neural-network-estimated TCO2. The

major Arctic rivers contribute TCO2 concentrations ranging
between 400 and 3600 µmolkg−1 (estimated by Tank et al.,
2012), derived mainly from carbonated rocks in the water-
sheds. Other areas like the Okhotsk Sea also show a high
RMSE (Table 2 and Fig. 3), probably because of the high
riverine input of TCO2 (Watanabe et al., 2009). An input
variable accounting for the contribution of the rivers to the
TCO2 pool would improve the neural network performance
in areas like these, but it is not available.

The errors of the pCO2 computed in the LDEO dataset
with TCO2 from NNGv2LDEO and AT from NNGv2
(Broullón et al., 2019) are similar to the errors obtained by
Landschützer et al. (2014) for the SOCAT database in some
of the areas (10–16 µatm; Table 2). This result shows the
potential of computing pCO2 values with neural networks
trained for other variables of the seawater CO2 system, at
least in some ocean regions. The global error of the pCO2
in the LDEO dataset is clearly higher than that obtained by
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Table 2. RMSE (bias) by area and depth for TCO2 and pCO2, computed with CANYON-B and NNGv2LDEO in Gv2QC and LDEO
datasets. For each depth range, the RMSE (bias) in each area was weighted by the contribution of its data to the total. Units are micromoles
per kilogram (µmolkg−1) for TCO2 and microatmospheres (µatm) for pCO2.

TCO2 pCO2

0–50 m 50–200 m 200–500 m 500–1000 m > 1000 m 0 m
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Takahashi et al. (2014)

West GIN Seas 16.8 21.2 14.2 15.3 6.4 6.7 5.5 6.8 4.1 5 4 4.1 28.6 34.9
(7.6) (18.1) (−1.7) (0.7) (−0.6) (0.3) (−1.1) (−0.5) (0.9) (1.3) (0.8) (0.8) (17.2) (35.2)

East GIN Seas 11.1 9.2 10.2 11.4 5.9 6.2 4.6 5.2 3.5 4 3.9 3.7 17.3 15
(14.1) (5.6) (1.6) (1.3) (0.5) (2.9) (−0.8) (1.7) (−0.6) (2.3) (−0.6) (0.1) (22.4) (9.4)

High Arctic 13.3 32.4 20.2 24.1 11.4 12.3 6.5 6.6 6.8 7.6 6.1 6.2 43 79.1
(−8.3) (13.7) (−1.1) (4.4) (−0.1) (1.7) (0.1) (−0.2) (−0.1) (0.6) (−0.4) (−1.1) (−22.8) (22.6)

Beaufort Sea 29.7 42 54 53.1 14.5 13.3 8.1 9.2 7.5 8.4 6.5 7.2 58.7 135.6
(0.8) (10) (0.1) (1.3) (−1.7) (1.8) (0.1) (−1) (2) (−0.5) (1.1) (−2.1) (6.7) (5.3)

Labrador Sea 5.3 7.5 10.5 11.6 5.4 6.6 4.1 4.3 3.5 3.7 2.7 3.1 10.7 13.6
(0.6) (2.7) (−0.9) (1.3) (−0.2) (1.6) (−0.6) (1.4) (−0.1) (1.5) (0.2) (1.6) (1) (4.5)

Subarctic Atlantic 11.7 14.6 9 11.1 4.5 5.4 4.3 4.8 4.2 4.6 4 4.3 21.9 26.7
(3.3) (11.5) (−2.3) (1.5) (0.1) (1.9) (0.1) (0.3) (0.1) (0.4) (−0.2) (0) (7.8) (23.2)

North Atlantic Drift 11.1 12.9 13.3 14.5 9.9 10.4 7.8 7.8 4.3 4.5 3.5 3.6 21 24.7
(0.5) (5.7) (−1.3) (0.5) (0.7) (0.5) (0) (−0.4) (0.2) (0.1) (0.3) (−0.1) (1.4) (10.3)

Central Atlantic 7.9 9.6 15.8 14.9 6.6 6.5 5.2 5.1 4.6 4.5 4.3 4.4 13.5 17.4
(−0.3) (−1.2) (0) (0.3) (0.2) (1) (−0.5) (0.5) (−0.1) (0) (0) (0) (−0.3) (−2)

South Atlantic Transition Zone 7.7 13.8 7.2 7.8 5.4 5.7 5.7 4.7 5 4.8 4.3 4.2 14.6 25
(−1.3) (−2.1) (−0.9) (0.3) (0.8) (0.1) (1.1) (0.7) (−0.1) (1) (0.5) (0.3) (−2.7) (−5.2)

Antarctic Atlantic 11.8 19.2 8.6 10 4.6 5.4 3.5 3.8 3.1 3.1 3.1 3.1 25.6 41.5
(1.4) (20.9) (−1.6) (0.5) (0) (0.4) (−0.1) (0.3) (0.1) (0.3) (0) (0.3) (4.9) (50.9)

Kuroshio Alaska Gyre 10.9 12.3 8.5 12.2 6.4 8.1 5 5.2 4.5 4.3 3.7 3.9 20.7 23.7
(1.6) (1.5) (−0.9) (2.4) (0.9) (0.3) (0.3) (1.1) (0.6) (0.3) (0.4) (0.3) (3.7) (3.4)

North Central Pacific 26.3 34.5 9.6 15 6.8 8.3 4.2 4.7 4 4.1 3.4 3.8 46.7 56.6
(−3.6) (−9.6) (0.2) (3.4) (0.5) (0.4) (0.3) (0.5) (−0.3) (0.3) (0.3) (0) (−0.4) (−7)

Okhotsk Sea – – 23.1 16.4 11.3 6.8 6.3 5.1 5.2 3.4 4.1 3.5 – –
– – (0.9) (1.6) (−1.2) (−0.7) (−2.3) (−1.6) (−4) (−1.3) (1.2) (1.9) – –

Central Tropical North Pacific 8 9.7 7.9 8.8 7.2 7.2 4.9 5 4.3 4.5 3.6 3.8 14.2 17.2
(−1.3) (−3.2) (−0.9) (0.5) (0.5) (1.2) (−0.6) (0.2) (−0.4) (0.5) (−0.2) (0.2) (−2.1) (−5.6)

Tropical East North Pacific 11.1 14.5 10.9 13.8 5.9 8.5 2.6 3.4 2.1 2.1 2.4 2.1 20.8 28.2
(−0.1) (−4.5) (0.9) (−1.4) (0.3) (2.5) (0.3) (1.7) (0) (0.6) (−0.2) (−0.3) (0.2) (−8.8)

Panama Basin 12.5 17.4 10.2 9.5 6.5 3.9 4 5.8 3.8 3.2 4.2 4.3 25.8 38.8
(−0.7) (0.7) (−3.4) (1.5) (−2.7) (−6.7) (2.3) (−1.2) (0.8) (1.4) (0) (2.8) (−0.3) (1.3)

Central South Pacific 10.1 12.9 10.3 10.9 8.9 9.4 4.4 4.5 3.8 3.8 3.3 3.5 18.6 24.3
(−2.1) (−3.4) (1.2) (−0.7) (0) (0.2) (−0.1) (0.8) (−0.1) (−0.4) (0) (−0.1) (−3) (−5)

East Central South Pacific 10.7 15.4 10.6 15.2 6.9 7.5 4.1 2.8 3.8 3.5 3.3 3 24.1 34.2
(−1) (−0.1) (0.6) (1.4) (1.2) (1.3) (0.4) (0.1) (−0.5) (−0.2) (−0.6) (0.3) (−1.2) (0.5)

Subpolar South Pacific 6.9 7.9 5.8 7.7 5 5.4 2.9 2.8 4.7 4.8 4.1 4.4 13.7 16
(1.2) (−0.9) (−0.7) (2.4) (0.4) (0.6) (0.9) (1.7) (−1) (1.2) (0.7) (1) (2.4) (−2.2)

Antarctic Pacific 19.5 29.3 8.3 7 3.6 4.1 2.7 3.3 2.6 2.9 2.6 2.1 34.1 53.8
(1.9) (4.9) (−1.4) (0.5) (−0.5) (0.5) (−0.1) (0.7) (0.3) (0.3) (0.5) (−0.1) (7.7) (14.9)

Main North Indian 10.8 13 10.5 12.9 8.1 7.8 3.2 3.3 2.4 2.6 3.1 3.7 19.8 23.5
(−1.8) (−7.7) (2.8) (1.7) (−0.1) (0.5) (0.7) (0.9) (−0.4) (−0.4) (−0.2) (0.2) (−2.8) (−12.7)

Red Sea 18.3 20.9 12 16.8 9.4 8.7 7.6 7.9 7.4 5.7 3.3 7.2 28 32.3
(−13.9) (−16.7) (−4.3) (−3.5) (0.2) (−3.7) (−4.3) (−5.1) (1) (−4.4) (−1.3) (−1.1) (−21) (−25.5)

Bengal Basin 6 3.7 9.8 7.4 7.4 6.4 2 2.1 1.9 2.1 2 2.2 10.7 6.7
(1.1) (−5.5) (−0.2) (2) (0.3) (1.3) (0.4) (1.1) (0.4) (−0.2) (−0.6) (−0.4) (1.4) (−10.2)

Main South Indian 8.1 10.4 9.1 10 7.1 6.9 3.8 3.8 4.2 4.5 3.4 3.8 14 17.7
(−0.2) (0.4) (−0.1) (1) (0.3) (0.6) (−0.1) (0.9) (0.1) (1.1) (0.1) (0.1) (−0.1) (0.9)

South Indian Transition 8 9.4 5.3 5.3 4.1 4.4 4 3.7 3.9 3.4 3.4 3.7 16 18.8
(−0.4) (0.7) (−1.7) (−0.4) (0.8) (0.8) (0) (0.5) (−0.2) (0.3) (−0.6) (−0.9) (−0.7) (1.9)

Antarctic Indian 9.7 11.8 6 6.8 4.1 4.7 3 3.3 2.5 2.6 2.7 2.6 23.2 28.7
(1.1) (5.9) (−1.4) (0.2) (0.4) (0.6) (0.1) (0.3) (−0.3) (0.3) (0.3) (0.5) (3.9) (15.3)

Circumpolar Southern Ocean 15.9 24.5 7.6 8.2 4.4 4.9 3.1 3.4 2.9 2.9 2.9 2.7 30.7 48.9
(0.9) (9.8) (−1.6) (0.4) (−0.2) (0.3) (−0.1) (0.2) (0) (0.2) (0.1) (0.2) (4.7) (25.7)

Weighted 11.1 15 11 12.1 6.6 7 4.3 4.5 4 4.1 3.5 3.7 21.1 29.6
(0) (2.8) (−0.5) (0.8) (0.2) 0.8) (−0.1) (0.5) (−0.1) (0.3) (0.1) (0.2) (1.3) (7.5)
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Figure 4. Histograms and box plots of differences between measured and neural-network-computed TCO2 in (a) Gv2 and (b) LDEO.
∗ TCO2 computed from measured pCO2 and neural-network-derived AT.

Landschützer et al. (2014) for the SOCAT dataset (22 vs.
12 µatm, respectively), although the critical areas are mainly
the same (Fig. S4): equatorial Pacific upwelling system, Arc-
tic and subarctic waters around the Alaska Peninsula, the
Southern Ocean, the Gulf Stream, and the North Atlantic
Current. At this point, the following should be considered:
(1) the pCO2 computed in the present study is derived from
AT and TCO2 and not from specific modeling for pCO2, and
therefore it contains errors associated with this computation
(∼ 6 µatm; Millero, 1995) and the neural network estimates
of AT and TCO2; (2) the present study includes the Arc-

tic region where the highest errors occur (Table 2; Beaufort
Sea and High Arctic areas); and (3) there is a longer tem-
poral range in the present study (1973–2016). The analysis
of Landschützer et al. (2014) in the LDEO dataset for data
that differ from SOCAT shows a global error higher than the
one obtained in the present study for all LDEO data between
1998 and 2011 (25.9 vs. 21.3 µatm, respectively). The error
between 40◦ S and 40◦ N is similar in the two studies (Land-
schützer et al., 2014: 16.5 µatm; NNGv2LDEO: 16.4 µatm).
Although it is not the main objective of this work, these last
two results show how NNGv2LDEO and NNGv2 (Broullón
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et al., 2019) have the potential to compute pCO2 values be-
tween 40◦ S and 40◦ N with similar errors as the method with
the lower error in the pCO2 modeling to obtain a climatology
and with lower errors in high latitudes for the LDEO dataset,
even taking into account the inclusion of the critical area of
the Arctic in the computation of the error of the pCO2 from
the present study (it is not included in Landschützer et al.,
2014) and the higher number of data from high latitudes in
the present study (15 479 vs. 3799).

3.2 Time series validation

The good generalization of the network in the test dataset
containing data from Gv2 and the LDEO dataset with a sim-
ilar RMSE as the one reached in the training set is also
evidenced through independent time series data (Table 3).
Except for KERFIX, where the number of data points is
very low and Olsen et al. (2019) suggested an adjustment
to the original data of −39 µmolkg−1, TCO2 computed us-
ing NNGv2LDEO and CANYON-B at the time series lo-
cations is characterized by low errors and biases (Table 3).
NNGv2LDEO computes TCO2 with a lower RMSE and bias
than CANYON-B for most of the time series stations (Ta-
ble 3). CANYON-B reaches a lower RMSE in HOT ALOHA
SURFACE and ESTOC than NNGv2LDEO, but the bias is
considerably higher in these time series for CANYON-B.

The seasonal variability is well captured by
NNGv2LDEO, showing its great potential to design a
monthly climatology. In the surface layer, where the sea-
sonal variability is the highest, the computed values are
strongly correlated with the measured TCO2 in all the time
series (Fig. 5). In addition, the high correlation holds for all
depths (Table S1). The TCO2 computation with a low error
in these time series located in different oceanic regimes as
well as in the areas of Table 2 shows the good performance
of NNGv2LDEO in almost any region of the ocean.

Assessing the potential of neural networks to obtain values
of other variables of the seawater CO2 system in the time se-
ries, pCO2 calculated with AT from NNGv2 (Broullón et al.,
2019) and TCO2 from NNGv2LDEO compared quite well
with pCO2 as measured or calculated from AT and TCO2 at
the time series stations (Table 4). Except for BATS, the pCO2
obtained in the present study has a lower error than that re-
ported by Landschützer et al. (2014; Table 4). In contrast, the
bias in the present study is higher, except for ESTOC. Con-
sidering the error involved in the calculation of pCO2 from
AT and TCO2 (∼ 6 µatm); Millero, 1995), and the error in
the computed AT and TCO2 with the neural networks (Ta-
ble 4), our results demonstrate again the ability of NNGv2
and NNGv2LDEO to calculate other variables of the seawa-
ter CO2 system with a relatively low error.

Using NNGv2LDEO, it is also possible to reproduce the
secular trends in TCO2. Using seasonal detrending to en-
hance the multiannual changes, similar trends in the longer
time series are found for the measured TCO2 and the neural-

Figure 5. Measured (blue line) and computed (orange line) TCO2
with NNGv2LDEO for the depth range 0–15 m (0–30 m in panel
b) for several time series. (a) BATS, (b) HOT ALOHA SURFACE,
(c) ESTOC, (d) ICELAND, (e) IRMINGER, (f) KNOT, (g) K2 and
(h) OWS.

network-computed TCO2 (Table 5). The same holds for
pCO2 (Table 5), although at the IRMINGER site the trend
obtained from the neural-network-generated data is signifi-
cantly lower than that from measured data. The neural net-
works seem to capture the anthropogenic influence in the
seawater CO2 system and thus the ocean acidification pro-
cess (Fig. 6). Furthermore, using NNGv2LDEO increases the
number of TCO2 data where the various inputs were mea-
sured but not TCO2 itself. This allows for the evaluation of
high-frequency changes (Fig. 6) and for the calculation of
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Table 3. RMSE and bias between measured and computed TCO2 concentrations in several time series. The comparison was done using only
water samples where all the input variables for NNGv2LDEO and the TCO2 were measured in the same water sample.

NNGv2LDEO CANYON-B

Time series Location Time period n RMSE Bias RMSE Bias
(µmolkg−1) (µmolkg−1) (µmolkg−1) (µmolkg−1)

BATS 31.7◦ N, 64.2◦W 1988–2014 4121 7.7 0.1 7.7 −0.6
HOT ALOHA 22.8◦ N, 158◦W 1988–2017 4054 5.4 −0.5 5.1 −2
HOT ALOHA SURF 22.8◦ N, 158◦W 1988–2016 281 6.3 −1.6 5.8 −5.1
ESTOC 29.3◦ N, 15.5◦W 1995–2008 1697 7.1 0.8 6.6 4.7
ICELAND 68◦ N, 12.7◦W 1985–2013 1322 5.4 5.6 6.9 5.3
IRMINGER 64.3◦ N, 28◦W 1991–2013 1086 4.8 3.3 7.5 6.6
K2 47◦ N, 160◦ E 1999–2008 615 3.6 1.3 6.3 2.4
KNOT 44◦ N, 155◦ E 1997–2008 1321 5.8 −0.8 7.2 −1.9
OWS 66◦ N, 2◦ E 2001–2007 803 6.8 −1 10.5 −4.7
KERFIX 50.4◦ S, 68.2◦ E 1992–1994 38 13.2 26.4 13.1 28.9

Table 4. RMSE and bias between measured pCO2 (and in some cases, computed from measured AT and TCO2 in time series where pCO2
was not measured) and computed pCO2 with AT from NNGv2 (Broullón et al., 2019) and TCO2 from NNGv2LDEO in several time series.
The time period for pCO2 from this study is the same as in Table 3. Consult Table 2 in Landschützer et al. (2014) for its time period. The
depth range is 0–15 m. Only time series with more than 30 data points are included. RMSE and bias for computed AT with NNGv2 (Broullón
et al., 2019) and TCO2 with NNGv2LDEO are included to show the errors in the variables used to compute TCO2.

pCO2 AT TCO2

NNGv2LDEO Landschützer et al. (2014) NNGv2 (Broullón et al., 2019) NNGv2LDEO

Time series RMSE Bias RMSE Bias RMSE Bias RMSE Bias
(µatm) (µatm) (µatm) (µatm) (µatm) (µatm) (µatm) (µatm)

BATS 17.2 9.7 15.6 0.4 5.6 −1.7 10.1 4.4
HOT ALOHA SURF 10.3 −3.6 11.6 0.1 5.0 0.9 6.5 −1.6
ESTOC 10.6 2.7 14.5 −7.1 2.6 −2.7 5.3 −0.6
ICELAND 16 14.8 – – 5.4 0.7 5.4 5.4
IRMINGER 13.1 −1.8 22.6 −1.1 7.0 −0.4 6.6 −1.1
K2 18.1 −3.2 27.8 −0.2 5.1 −0.5 5.7 −2.4
KNOT 20.8 8.6 – – 6.6 −7.3 8.2 −2.5

interannual trends with a low error (as temporal sampling bi-
ases are reduced).

3.3 Climatology

Using NNGv2LDEO we have demonstrated its ability to
compute TCO2 values with low errors and especially to cap-
ture the monthly variability of this variable. In addition, the
climatologies of the input variables used to create the clima-
tology of TCO2 have been satisfactorily evaluated previously
for the construction of an AT climatology (Broullón et al.,
2019). Considering these results, a monthly climatology of
TCO2 is obtained by passing the input climatologies through
NNGv2LDEO.

The spatial distribution of the surface annual mean cli-
matology of TCO2 (Fig. 7a) is similar to two recent cli-
matologies: those of Takahashi et al. (2014) and Lau-
vset et al. (2016). The largest surface TCO2 concentra-

tions occur in the Southern Ocean, subpolar North Atlantic,
Nordic Seas, and Mediterranean Sea (note that the latter
is not included in these other climatologies). In general,
surface TCO2 decreases from high to low latitudes. The
Indian and the Pacific oceans are characterized by lower
concentrations of TCO2 at higher latitudes than the At-
lantic, the latter being the ocean with the highest surface
TCO2 by area. TCO2 increases with depth in all oceans,
in particular in the upwelling regions, where this increase
is expanded eastwards with depth (Fig. 7b and video at
https://doi.org/10.20350/digitalCSIC/10551, Broullón et al.,
2020). Depending on the area, the values reach a maximum
at certain intermediate depths, and below it the concentration
gradually decreases or remains almost constant (Fig. S5).

The largest seasonal variability occurs at the surface at
high latitudes, in the Pacific upwelling region, the equato-
rial African coasts, and in the area under influence of the
Amazon River (Fig. 8a). At depth, the seasonal variability de-
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Table 5. Long-term trends (seasonally detrended) of the measured and computed TCO2 and pCO2 from neural networks at time series
locations in the depth range 0–15 m.

TCO2 (µmolkg−1 yr−1) pCO2 (µatmyr−1)

Time series Measured Computed Measured∗ Computed

BATS 1.2 1.1 1.8 1.7
HOT ALOHA SURF 1.7 1.3 1.8 1.4
ICELAND 0.9 0.9 1.5 1.6
IRMINGER 0.6 0.5 2.5 1.7

∗ Computed from measured AT and TCO2 in time series where pCO2 was not measured.

Figure 6. Time series of TCO2 using NNGv2LDEO at (a) BATS and (b) HOT ALOHA locations. The water column shows a higher
concentration of TCO2 year by year. This figure was made with Ocean Data View (Schlitzer, 2016).

creases, except for the Pacific upwelling region, where it in-
creases and moves progressively northward between 30 and
150 m (Fig. 8b). This increase is correlated with the high sea-
sonal variability of the climatologies of nutrients, oxygen,
and temperature at these depths. Czeschel et al. (2012) also
showed an increase in the subsurface variability of oxygen
from measured profiles. Similar increases also occur in the
Indian Ocean north of 20◦ S between 50 and 100 m and in
the equatorial Atlantic Ocean in the same depth range. At the
1500 m level, the seasonal variability is below 10 µmolkg−1

in most of the ocean (Fig. 8c). This last result shows that an
annual climatology below 1500 m is sufficient.

Although the surface patterns of the annual mean of the
TCO2 climatology are very similar to those of the other re-
cent climatologies (Takahashi et al., 2014; Lauvset et al.,
2016), differences do occur. The annual mean climatology of
the present study is closest to that of Takahashi et al. (2014;
Table 6). The largest differences between these two clima-
tologies are located in the Arctic, North Pacific, Peru up-
welling area, western South Pacific, and the area of influ-
ence of the Antarctic Circumpolar Current (Fig. S6a). The

Atlantic and the Indian oceans do not show significant dif-
ferences. Our climatology shows more deviations from that
of Lauvset et al. (2016), compared in the grid of Takahashi
et al. (2014; Table 6). The highest differences are found in the
North Pacific, around Antarctica, the Nordic Seas, the South
and North Atlantic, and in several less localized areas around
the oceans (Fig. S6b). When the climatology of Takahashi
et al. (2014) is compared to that of Lauvset et al. (2016), the
differences are even higher (Table 6), and the critical areas
are the same of those of the previous comparison. Although
it is clear that discrepancies between the three climatologies
are derived from the different methods used, the higher sim-
ilarity between ours and the one of Takahashi et al. (2014)
is probably due to the influence of the same source used to
create them, the World Ocean Atlas.

The comparison of our climatology with that of Lauvset
et al. (2016) at the 33 depth levels of Lauvset et al. (2016)
shows a reduction in the RMSE with depth. Between 0 and
1000 m, the RMSE is reduced from∼ 32 to 7 µmolkg−1 (Ta-
ble S2; note the higher RMSE at surface compared to the one
obtained for the grid of Takahashi et al., 2014, because of

Earth Syst. Sci. Data, 12, 1725–1743, 2020 https://doi.org/10.5194/essd-12-1725-2020



D. Broullón et al.: A global monthly climatology of TCO2 1737

Figure 7. Annual mean climatology of TCO2 at (a) 0 m, (b) 100 m, and (c) 1000 m. This figure was made with Ocean Data View (Schlitzer,
2016).

Figure 8. Seasonal amplitude of TCO2 at (a) 0 m, (b) 100 m, and (c) 1500 m. The contour lines of 25, 50, 75, and 100 µmolkg−1 are shown.
This figure was made with Ocean Data View (Schlitzer, 2016).

the inclusion of areas which are not included in the latter’s
grid, and the difficulty of modeling TCO2 in some areas, like
the Arctic and the Mediterranean Sea). This reduction with
depth is probably due to the reduction in the variability in
most of the ocean below the surface. The surface values in
Lauvset et al. (2016) are likely characteristic of months in
which most of the sampling was carried out. Because of the
lower variability of TCO2 at depth, the values are closer to
the annual mean, and therefore the two compared climatolo-
gies are more similar at depth than at surface depth levels.
Below 1000 m, the differences between the two climatologies

are not significant, with an RMSE around 5 µmolkg−1 and a
bias around 0.5 µmolkg−1 at each depth level (Table S2).

Our monthly climatology shows a high correspondence
with that of Takahashi et al. (2014), although the RMSE val-
ues show that there are also large differences in certain areas
(Table 7). These areas are mainly the same as those in the
comparison of the annual mean climatologies, but some other
small regions with high differences appear for each month all
through the ocean (Fig. S7).

Unfortunately, the uncertainty of the TCO2 climatol-
ogy cannot be assessed globally and robustly. As Broullón
et al. (2019) stated, the unavailability of an uncertainty field
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Table 6. Comparison of four annual mean surface climatologies of TCO2. Numbers in the lower left corner represent RMSE. Numbers in
the upper right corner represent r2.

RMSE (µmolkg−1) – r2 NNGv2LDEO Lauvset et al. (2016)∗ Takahashi et al. (2014)

NNGv2LDEO – 0.93 0.97
Lauvset et al. (2016)∗ 19.8 – 0.90
Takahashi et al. (2014) 13.2 23.7 –

∗ The domain analyzed is the same as in Takahashi et al. (2014) for coherency reasons.

Figure 9. Comparison of the monthly climatological profiles of TCO2 computed from measured data (red profile; shadow area is the SD of
the averaged values at each depth level) and those from the TCO2 climatology at the (a) BATS and (b) HOT ALOHA locations. The units
on the x axis are micromoles per kilogram (µmolkg−1).

associated with the objectively analyzed WOA13 climatolo-
gies does not allow us to perform a proper global uncer-
tainty assessment. Therefore, the analysis is relegated to the
areas where repeated sampling of TCO2 has been carried
out monthly over a long period, that is, the HOT ALOHA
and BATS time series stations. The climatology of TCO2

from NNGv2LDEO is consistent with the monthly climato-
logical values at these two places (Fig. 9). In general, the
profiles from the TCO2 climatology are within the variabil-
ity range (shadow area in Fig. 9) of the monthly averaged
measured data for each depth level. In the upper 30 m of
the water column, the climatology of TCO2 differs from
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Table 7. Comparison of the monthly TCO2 climatology of Taka-
hashi et al. (2014) and the one of the present study.

Month RMSE Bias r2

(µmolkg−1) (µmolkg−1)

January 16 3.0 0.95
February 16.7 1.5 0.94
March 15.8 2.5 0.95
April 17 2.6 0.95
May 16.8 2.5 0.95
June 17.2 3.2 0.95
July 22.6 4.0 0.92
August 17.8 3.4 0.95
September 15.5 2.5 0.97
October 15.6 2.3 0.96
November 15.7 2.7 0.96
December 17.6 4.3 0.95

the measured BATS data from May to August. This differ-
ence is mainly explained by the surface error of the net-
work shown for this time series in Fig. 5a, where the com-
puted TCO2 decreases from maximum to minimum sooner
than the measured TCO2. For HOT ALOHA, the RMSE of
the profiles of the TCO2 climatology oscillates between 3.6
and 9.2 µmolkg−1 with a mean value of 6.3 µmolkg−1 (bias
range: −3.8 to 1.2 µmolkg−1; mean bias: −1.4 µmolkg−1).
At BATS, the RMSE is lower than for HOT ALOHA: 1.1
to 8.5 µmolkg−1 with a mean value of 4.4 µmolkg−1 (bias
range: −1.4 to 7.6 µmolkg−1; mean bias: −2.5 µmolkg−1).
Furthermore, the seasonal variability of the TCO2 climatol-
ogy is quite similar to that of the measured data at BATS
and HOT ALOHA (Fig. S8). Although in other time se-
ries there are not enough measured data to obtain climato-
logical values, these pseudoclimatological values also corre-
late very well with the TCO2 climatology (data not shown).
These results suggest that the climatology is robust in differ-
ent oceanographic regimes and adequately captures the sea-
sonal cycle of TCO2.

It has been demonstrated in this study that pCO2 and pos-
sibly other variables of the seawater CO2 system can be com-
puted from AT and TCO2 derived from neural networks with
a relatively low error in different datasets (LDEO in Sect. 3.1
and time series in Sect. 3.2). The pCO2 climatology (Fig. S9)
computed from the TCO2 climatology of the present study
and the AT climatology of Broullón et al. (2019) is very sim-
ilar to that of Landschützer et al. (2017). The differences be-
tween the annual mean climatology of the two studies are
below 15 µatm in most of the ocean (RMSE: 8.3 µatm; bias:
2.9 µatm; r2: 0.82). The differences above this threshold are
mainly located in the Pacific equatorial upwelling system, the
eastern part of the South Pacific Gyre, Nordic Seas, Labrador
Sea, Atlantic section of the Southern Ocean, Bay of Ben-
gal, and the waters surrounding the eastern margin of Asia
(Fig. S10). In most of these areas, both methods have the

greatest errors (Figs. 2 and 4 in Landschützer et al., 2014,
and Fig. S4 of the present study).

On a monthly basis, the RMSE between the two pCO2
climatologies is between 13.6 and 15.6 µatm, and the cor-
relation is lower than for the annual mean comparison (r2:
0.55–0.72 vs. 0.82). The areas with the higher differences
are the same as in the annual comparison, but other small
regions appear along the ocean month by month (Fig. S11).
Furthermore, the seasonal variability in the two climatolo-
gies matches in a great extension of the ocean, although there
are areas with notable differences (Fig. S12). In general, the
pCO2 climatology is quite similar to that of Landschützer
et al. (2017), and this result helps show that both the TCO2
climatology of the present study and the AT climatology of
Broullón et al. (2019) are mostly robust and suggest that cli-
matologies of other seawater CO2 system variables can be
confidently computed.

4 Data availability

The climatologies of TCO2 and pCO2 as well as
NNGv2LDEO designed in this study are available at the data
repository of the Spanish National Research Council (CSIC;
https://doi.org/10.20350/digitalCSIC/10551; Broullón et al.,
2020).

5 Conclusions

We presented a tool for computing TCO2 in the global
ocean. Compared to previous methods, the uncertainties in
such computations have been reduced. Including two up-
dated datasets containing thousands of measurements of in-
organic carbon variables across the ocean in the training of
the neural network, we were able to capture a wide range of
variability of TCO2. The low errors obtained in independent
subsets at time series stations are further evidence of the po-
tential of the network in computing TCO2.

Our global monthly climatology created with a neural net-
work is the first that covers the oceans from the surface to the
abyss at such temporal resolution. In addition to the accuracy
of the network, the low uncertainty of the climatology in dif-
ferent regions and its usefulness in creating climatologies of
other seawater CO2 chemistry variables (i.e., pCO2) show
its robustness. Therefore, we present the global climatology
of TCO2 to the scientific community to complement the re-
cently designed climatology of AT by Broullón et al. (2019)
for its use in the initialization and evaluation of models or
any other analysis related to the carbon cycle.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-12-1725-2020-supplement.
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