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PENAMBAHBAIKAN ALGORITMA GENETIK - RANGKAIAN 

PERSEPTRON BERBILANG LAPISAN UNTUK PENGKELASAN DATA 

 

ABSTRAK 

Secara umumnya, algoritma genetik (GA) konvensional mempunyai beberapa 

kelemahan seperti penumpuan pramatang, kecenderungan terperangkap pada 

penyelesaian optima setempat dan ketidakupayaan penalaan di sekitar kawasan 

berpotensi. Oleh itu, GA ditambahbaik dengan strategi pencarian, penghasilan 

semula dan elitisma baharu dicadangkan dalam kajian ini. Pernambahbaikan pertama 

melibatkan perubahan kepada struktur operasi GA yang mana ia menumpu pencarian 

di sekitar kawasan berpotensi tinggi. Kedua, teknik baharu penghasilan semula yang 

dinamakan Segmented Multi-Chromosome Crossover (SMCC) telah diperkenalkan. 

Teknik tersebut mengelak kemusnahan maklumat hampir optima yang terkandung 

dalam segmen genetik dan membolehkan generasi baharu mewarisi maklumat 

penting daripada berbilang induk. Ketiganya, tiga jenis variasi elitism dinamakan 

sebagai Best Among Normal and Improved Population (BANI), Best Between 

Similar Rank (BBSR) dan Equally Contributed (EQ) telah dibangunkan. Ia 

melibatkan pertandingan di kalangan individu terbaik daripada populasi normal dan 

ditambahbaik untuk kelangsungan pada generasi selepasnya. GA yang ditambahbaik 

kemudiannya digunakan untuk mengoptimasi dan merekabentuk rangkaian 

perseptron berbilang lapisan (MLP) secara automatik bagi penyelesaian masalah 

pengkelasan corak. Bilangan nod terlindung, nilai pemberat sambungan awalan dan 

pemilihan ciri MLP yang memainkan peranan penting dalam menentukan prestasi 

pengkelasan dipilih untuk dioptimasi secara automatik oleh GA ditambahbaik. 

Prestasi GA ditambahbaik telah dinilai menggunakan fungsi ujian penanda aras yang 



xiv 

rumit serta berbilang mod dan dibandingkan dengan GA piawai. Berdasarkan 

kekerapan sesuatu algoritma menghasilkan keputusan terbaik terhadap fungsi ujian 

yang berbeza; ianya telah terbukti bahawa prestasi teknik yang dicadangkan 

mengatasi GA piawai. BANI, BBSR dan EQ mencatatkan 30, 18 dan 17 kekerapan 

keputusan terbaik masing-masing berbanding GA piawai yang hanya mencatatkan 3 

keputusan terbaik. Manakala, prestasi pengkelasan GA-MLP yang ditambahbaik 

telah dinilai menggunakan set-set data yang berbeza dari segi saiz ciri kemasukan 

dan bilangan kelas keluaran. Keputusan menunjukkan keberkesanan algoritma 

baharu daripada segi peratusan ujian kejituan. Peratus peningkatan keseluruhan 

sebanyak 0.6%, 0.1% dan 0.3% bagi ujian kejituan dicatatkan oleh BANI, BBSR dan 

EQ berbanding dengan GA-MLP piawai. 
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IMPROVED GENETIC ALGORITHM-MULTILAYER PERCEPTRON 

NETWORK FOR DATA CLASSIFICATION 

 

ABSTRACT 

In general, conventional genetic algorithm (GA) has several drawbacks such as 

premature convergence, high tendency to get trapped in local optima solution and 

incapable of fine tuning around potential region. Thus, new improved GA that 

focuses on new search, reproduction and elitism strategy is proposed in this study. 

The first improvement involves changes in the operational structure of GA in which 

it concentrates the search in highly potential area in the search region. Secondly, a 

novel reproduction technique called Segmented Multi-Chromosome Crossover 

(SMCC) is introduced. The proposed technique avoids the destruction of nearly 

optimal information contained in the gene segment and allows offspring to inherit 

highly important information among multiple parents. Thirdly, three new variations 

of elitism scheme namely Best Among Normal and Improved Population (BANI), 

Best Between Similar Rank (BBSR) and Equally Contributed (EQ) are developed. It 

involves competition among best individuals from normal and improved population 

to ensure survival in the next generation. The improved GA is then applied for 

optimization and automatic design of multilayer perceptron (MLP) neural network  

in solving pattern classification problem. Hidden node size, initial weights and 

feature selection of the MLP that play significant role in the classification 

performance are selected to be automatically optimized by the improved GA. The 

performance of improved GA has been evaluated using highly complicated and 

multimodal benchmark test functions and compared with the standard GA. Based on 

the occurrences of the best result obtained by an algorithm across different test 
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functions; it is proven that the proposed method outperforms standard GA. BANI, 

BBSR and EQ scores 30, 18 and 17 occurrences respectively compared to the 

standard GA that only scores 3 occurrences. Meanwhile, the improved GA-MLP 

classification performance has been evaluated using datasets that vary in input 

features and output sizes. The results demonstrate the effectiveness of the new 

algorithms in term of test accuracy percentage. There is an overall improvement of 

0.6%, 0.1% and 0.3% in test accuracy of BANI, BBSR and EQ compared to the 

standard GA-MLP. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

The general research area of this study is artificial intelligence that has significant 

contribution to the life style of modern civilization. A variety of new technologies 

and applications emerge resulted from the research advancement in this area. These 

include machines that learn and decide on their own actions (Galindo and Saffiotti, 

2013), web crawlers that systematically index information in websites (Xu et al., 

2014) and intelligent assistants that automatically detect financial fraud (Barraclough 

et al., 2013) or diagnose diseases (Nahar et al., 2013). 

The term artificial intelligence was first introduced in 1956 by John 

McCarthy, during the first academic conference on the subject at Dartmouth College 

in New Hampshire (McCarthy et al., 2006). He defines artificial intelligence as 

 

“the science and engineering of making intelligent machines, especially 

intelligent computer programs”. 

 

Another well accepted definition of artificial intelligence is provided by Bellman 

(1978), i.e., 

 

“the automation of activities that we associate with human thinking, activities 

such as decision-making, problem solving, learning”. 

 

Meanwhile, Schalkoff (1990) defines artificial intelligence as 
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“A field of study that seeks to explain and emulate intelligent behavior in 

terms of computational processes” 

 

In the perspective of engineering discipline, artificial intelligence deals with 

the development and building of intelligent machine and software that can perform 

activities requiring human intelligence. While the goal of pure science discipline 

emphasizes on understanding the intelligent behavior, engineering discipline focuses 

on the design, development and implementation of the intelligent system itself, 

together with the relevant concepts, theories, techniques and the applications. Tasks 

involve intelligent action include problem solving, classification, perception, 

optimization, learning, motion planning, natural language processing and etc. In 

order to design and develop a machine that exhibits these intelligent behaviors, 

various issues have to be first understood and addressed. For example, how machines 

can acquire, represent and store knowledge, and consequently learn and generate 

intelligent behaviour (Gruber, 2013). Another issue is on how to transform sensory 

signal into symbols to be manipulated by machines in order to perform logic 

operations (Akce et al., 2013). Due to the variety of issues to be addressed pertaining 

to the intelligent behavior of the machine, the research activities of artificial 

intelligence has branched out into a number of sub-areas such as knowledge 

representation, optimization, search, machine learning, pattern recognition and 

computational intelligence tools. 

Pattern recognition (Cherkassky et al., 2012, Meyer-Baese and Schmid, 2014) 

continues to be of great interest among all the sub-areas of artificial intelligence, due 

to the rapid growth of applications that can benefit from it. It is an essential part of 

our daily routine that occurs without the conscious effort of the individual. Patterns 

are transferred to human brain via sensing organ to be processed into useful 
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information, and consequently, the judgments and decision for the pattern are made 

(Duda et al., 2000). But, to computerize this system is not an easy task. The 

development of pattern recognition system involves the invention and integration of 

specific methods, algorithms and equipments in order to perform the task. Some of 

the important application areas of pattern recognitions are image and speech analysis 

(El Ayadi et al., 2011, Loo et al., 2014, Lopez-de-Ipina et al., 2014), character 

recognition (Li et al., 2012, Chacko et al., 2012), medical diagnostics (Foster et al., 

2014, Yoo et al., 2014) and machine diagnostics (Najafi et al., 2012, Wang et al., 

2011, Widodo et al., 2011), business forecasting and prediction (Hung and Lin, 2013, 

Moon et al., 2013, Nagar and Malone, 2011), person identification (Bauml et al., 

2013, Langdon et al., 2014) and industrial inspection (Alarcon-Herrera et al., 2014, 

Nikolic et al., 2013). 

In general, pattern recognition aims to provide acceptable answers 

corresponding to all possible sets of input pattern values. Classification is a typical 

example of pattern recognition. It is a process of assigning information, objects, or, 

in general, input patterns into a given set of classes. For example, determines 

whether a tissue sample is "cancerous" or "non-cancerous. Regression is another 

category of pattern recognition, in which a real output value, is assigned to the input 

set (i.e. stock market prediction). Other examples are parsing in which a parse tree is 

assigned to an input sentence and sequence labelling in which a class is assigned to a 

sequence of values (i.e. speech tagging). 

In general, the steps involved in the design of pattern recognition system are 

described in Figure 1.1. Its implementation is explained as follows : 
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Figure 1.1 A general pattern recognition system 

 

1) Sensing and pre-processing - design specification and requirement for this 

stage may vary on different application. For example, sensing equipment for image 

classification is different compared to those required for disease diagnosis. In some 

cases, pre-processing such as noise filtering and image segmentation are required in 

order to improve the data quality and to partition image into meaningful regions 

respectively. 

2) Feature selection – selection of the significant features from the processed 

data using an arbitrary function. The collective combination of these relevant 

features represents the object to be recognized by the system. 

3) Classifier design - the preferred operation of classification or recognition is 

designed and based upon the attributes of the selected features the appropriate output 

class or value is assigned to the input pattern. 

Feature selection, also called variable subset selection or attribute selection, is 

an important component in designing a pattern recognition system. It is related to the 

selection of relevant and significant feature subset from full original feature set in 

designing the classifier. The motivation in implementing feature selection is mainly 

due to the assumption that the original data also contains irrelevant and redundant 

attributes. The benefits of feature selection include improving the classifier 

performance, providing less cost and faster classifier, and better understanding of the 

problem domain (Guyon and Elisseeff, 2003). 

Sensing and pre-
processing 

Feature 
selection 

Classifier 
design 

Input 
pattern 

Decision 
making 
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1.2 Approaches to Pattern Classification Problem 

Numerous techniques have been developed in solving pattern classification problem. 

Among the earliest effort is the statistical based approach, the linear discrimination 

method suggested by Radhakrishna Roa (1948) and Fisher (1936). Another well-

known statistical method for classification is Bayesian rule, proposed by Devijver 

and Kittler (1982). However, Pal and Pal (2001) argued that statistical methods are 

ineffective when dealing with contextual or structural data in patterns. As a solution, 

many works have switched to the theory of formal languages (Hopcroft et al., 2001), 

which made the syntactic approaches for pattern classification become popular. 

Patterns to be classified in syntactic approaches are not in a form of arrays of 

numbers. They are represented by simple sub-elements known as primitives, and 

associated with certain rules known as syntactical rules. However, these approaches 

have disadvantages of being ineffective in dealing with noisy and distorted patterns 

(Pal and Pal, 2001). 

Classification tree (Gelfand et al., 1989, Lawrence et al., 2004) is another 

famous approach for pattern classification. It is a symbolic system that associates 

symbolic decisions to input examples, and is constructed using attributes of the 

examples that are symbolic in nature. A tree-like graph of decisions and their 

possible consequences are used to support the classification process. Nevertheless 

this classifier suffers similar inefficiency as syntactical approach when dealing with 

noisy and distorted environment (Pal and Pal, 2001). 

A different powerful approach to pattern classification is based on artificial 

intelligence tools, or more specifically the computational intelligence models. It is a 

study of adaptive mechanisms to enable or facilitate intelligent behaviour in complex 

and changing environments (Engelbrecht, 2002). The computational intelligence 

models include four paradigms, i.e., Artificial Neural Network (ANN), Evolutionary 
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Computing (EC), Swamp Intelligence (SI) and Fuzzy Logic System (FL). Each of 

the computational intelligence paradigms has its origins in biological systems. ANN 

replicates human biological neural systems, EC models natural evolution of living 

population, SI models the social behaviour of organisms living in swarms or 

colonies, and FL originates from studies of how organisms interact with their 

environment. In fact, these computational models are powerful approaches for 

tackling pattern classification problem as demonstrated by the success in many new 

applications. For example, ANN has been successfully applied in the classification of 

brain tumour (Sridhar and Murali Krishna, 2013), partial discharge pattern in 

fingerprints input system (Abubakar Mas'ud et al., 2014) and bearing faults (Barakat 

et al., 2013). Recently, the SI approach, Ant Colony (ACO) and Particle Swarm 

Optimization (PSO) have been observed in classifying power signal (Biswal et al., 

2011) and autism symptom (Oikonomou and Papageorgiou, 2013) respectively. 

Meanwhile it has also been observed that the EC variation, particularly the Genetic 

Algorithm (GA) has been applied for classification of Electrocardiography (ECG) 

signal (Martis et al., 2014) and subtypes of acute lymphoblastic leukemia (Lin et al., 

2013). 

Recent research trend in artificial intelligence tools for pattern classification 

has directed towards hybridization of computational intelligence models. The hybrid 

computational intelligence models utilize more than one problem-solving technique 

in order to solve a problem. Individual technique such as ANN, FL and GA are 

combined together to form a better intelligent system. This is achieved by exploiting 

the advantages of computational intelligence models involved in combination and 

avoiding its shortcomings as evidence by the success of many previous research 

efforts. Pattern classification approach that involves combination of EC and ANN 

can be observed in Fernandez et al. (2010), Mantzaris et al. (2011), Quteishat et al. 
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(2010) and Yang et al (2012). While in Alcala-Fdez et al.(2011), Aydogan et al. 

(2012) and Martin et al.(2011), the researches involve the combination of EC and 

FL. 

Feature selection is another important approach to be considered in handling 

pattern classification problem. The objective of feature selection is to select a subset 

of features in order to enhance the classification accuracy or to reduce the size and 

complexity size of the classifier without significantly decrease its classification 

performance built using only the selected features (Dash and Liu, 1997). The 

simplest approach is by evaluating each possible feature subset while finding the best 

subset which gives highest classification rate. This approach however, is 

computationally expensive and impractical especially for high dimensional input 

data. Other approaches that use heuristic search methods such as GA and ACO 

attempt to minimize the computational cost and at the same time improve or maintain 

the model’s classification performance. 

 

1.3 Hybrid Genetic Algorithm-Artificial Neural Network 

Since the last decades, numerous algorithms based on hybrid computational 

intelligence model have been developed for tackling pattern classification problems. 

This multidisciplinary research area continues to expand and become popular among 

the artificial intelligence research community. Hybrid computational intelligence 

models are defined as combination of computational intelligence paradigms and 

techniques that theoretically and practically fit as a basis for working in more 

competitive approach compared to single computational intelligence models 

(Corchado et al., 2010). They were developed either by integrating two or more 

computational intelligence paradigms, which preserves the characteristics of each 

technique, or by fusing one computational intelligence paradigm into another or by 


	Improved genetic algorithm multilayer perceptron network for data classification_Fadzil Ahmad_E3_2017_MYMY



