ACTIVE-INTEGRATED SELF-OSCILLATING IMAGE REJECT MIXER (IRM)

YEAP KIM HUAT

UNIVERSITI SAINS MALAYSIA 2018

ACTIVE-INTEGRATED SELF-OSCILLATING IMAGE REJECT MIXER (IRM)

by

YEAP KIM HUAT

Thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

March 2018

ACKNOWLEDGEMENT

My friends opine that one needs to be extremely intelligent to pursue a doctorate, but to me, what one needs most is a good supervisor. For this, I am deeply indebted to my supervisor, Professor Dr. Widad Ismail. Prof. has been my mentor ever since my Masters research and I have learnt much from her. I feel great honour to be working under her supervision, as not only has she been providing me with valuable advices and guidance, she is both supportive and motivating as well. Her constructive criticisms have helped me grow technically as well as improve my project management and presentation skills. In fact, she is my role model as I wish to be a successful supervisor like her one day.

I also feel grateful to the School of Electrical and Electronics Engineering, Universiti Sains Malaysia for granting me the opportunity to pursue my doctorate. The facility and services offered by the School have rendered me a conducive and convenient environment to complete my research. In the same way, I am thankful for the scholarship sponsored by myPhD, which has much alleviated my financial load.

Apart from this, I would like to extend my appreciation towards both the communication lab engineers, En. Latip and Pn. Zammira, for providing their assistance and technical support throughout my measurement works.

Most importantly, my heartfelt gratitude goes to my parents, my wife, my brother, and both my daugthers. They have been a constant source of strength and inspiration to me. It is their steadfast and unwavering encouragement that has kept me persistent in pursuit of my goal. Without their patience and understanding, I am certain that I would never be strong enough to face all these challenges.

THANK YOU!

ii

TABLE OF CONTENTS

ii
iii
xi
XV
xxiii
xxix
xxxviii
xli

CHAPTER ONE: INTRODUCTION

1.1	Background	1
1.2	Problem Statements	5
1.3	Research Objectives	7
1.4	Research Scopes	8
1.5	Design Applications	9
1.6	Thesis Organization	11

CHAPTER TWO: LITERATURE REVIEW

2.1	Introduction	14
2.2	Dual-Band Microstrip Patch Antenna	15
	2.2.1 Knowledge and Technology Gap	20
2.3	Reactive-Loaded Dual-Band Microstrip Patch Antenna	20
	2.3.1 Knowledge and Technology Gap	27
2.4	E-Shaped Microstrip Patch Antenna	28
	2.4.1 Knowledge and Technology Gap	31
2.5	Active Integrated Antenna	31
	2.5.1 Knowledge and Technology Gap	39
2.6	Resistive Field Effect Transistor Mixer	40
	2.6.1 Knowledge and Technology Gap	45

2.7	Image Reject Mixer	46
	2.7.1 Knowledge and Technology Gap	52
2.8	Self-Oscillating Mixer	53
	2.8.1 Knowledge and Technology Gap	63
2.9	Previous Works with Embedment of Multiple Architectures	64
	2.9.1 Knowledge and Technology Gap	70
2.10	2.4 GHz ISM Designs with 100 MHz IF	70
2.11	Summary	72

CHAPTER THREE: DESIGN METHODOLOGY

3.1	Introdu	Introduction		
3.2	AISOI	RM Design	78	
	3.2.1	Overall AISOIRM Research Framework	80	
	3.2.2	AISOIRM Design Requirements and Specifications	82	
	3.2.3	E-AISOIRM Design	84	
		3.2.3(a) Operational Flow	84	
		3.2.3(b) Mathematical Analysis	85	
	3.2.4	E-Amp-AISOIRM Design	87	
	3.2.5	F-AISOIRM Design	88	
		3.2.5(a) Operational Flow	89	
		3.2.5(b) Mathematical Analysis	89	
	3.2.6	F-Amp-AISOIRM Design	90	
	3.2.7	AISOIRM Simulation	91	
		3.2.7(a) Ideal Block Design Simulation	91	
		3.2.7(b) Circuit Design Simulation	92	
		3.2.7(c) Circuit-Layout Design Simulation	97	
	3.2.8	AISOIRM Layout Design	98	
		3.2.8(a) E-Topology Layout	98	
		3.2.8(b) F-Topology Layout	100	
	3.2.9	AISOIRM Prototype Assembly	103	
	3.2.10	Test Distance	105	
	3.2.11	Test Parameters for AISOIRM (Direct-Embedded Configuration)	105	
		3.2.11(a) IF Output Power and Image Rejection Ratio	107	

		3.2.11(b) Conversion Loss	107
		3.2.11(c) Pinch-Off Voltage and Low Noise Amplifier Optimum Bias	108
		3.2.11(d) Responses to Transmitted LO and RF Levels	110
	3.2.12	Test Parameters for AISOIRM (Amplifier-Cascaded Configuration)	110
		3.2.12(a) IF Output Power and Image Rejection Ratio	111
		3.2.12(b) Conversion Loss	111
		3.2.12(c) Responses to Transmitted LO and RF Levels	112
		3.2.12(d) Response to Externally Injected LO and RF Levels	112
3.3	Antenn	nas Design	115
	3.3.1	Antennas Research Framework	115
	3.3.2	E-Shaped Antenna Design	117
		3.3.2(a) Cavity Model Analysis of E-Shaped Antenna	118
		3.3.2(b) Circuit Equivalent Model of E-Shaped Antenna	122
		3.3.2(c) Dimensional Computation of E-Shaped Antenna	125
	3.3.3	F-Shaped Antenna Design	128
		3.3.3(a) Dimensional Computation of F-Shaped Antenna	128
	3.3.4	Antennas Simulation	129
		3.3.4(a) Circuit Design Simulation	129
	3.3.5	Test Parameters for Antenna	130
		3.3.5(a) Return Loss and Phase	130
		3.3.5(b) Gain	131
		3.3.5(c) Radiation Pattern	131
3.4	Sub-C	ircuits Design	132
	3.4.1	Sub-Circuits Research Framework	132
	3.4.2	Low Noise Amplifier	133
	3.4.3	Amplifier	133
	3.4.4	Filters	134
		3.4.4(a) Preselector Filters	134
		3.4.4(b) Postselector Filter	137
	3.4.5	Microstrip Lines	138
	3.4.6	Hybrid Couplers and Power Divider	139
		3.4.6(a) Branch-Line Hybrid Couplers	140

		3.4.6(b)	Wilkinson Power Divider	142
	3.4.7	Sub-Circ	cuits Simulation	143
		3.4.7(a)	Circuit Design Simulation	143
3.5	Mixers	s Design		144
	3.5.1	Mixers F	Research Framework	144
	3.5.2	Core Mi	xer Design	146
		3.5.2(a)	Pseudomorphic High Electron Mobility Transistor	146
		3.5.2(b)	Resistive FET Mixer Design	147
	3.5.3	Image R	eject Mixer Design	151
	3.5.4	Self-Osc	illating Mixer Design	152
	3.5.5	Mixers S	Simulation	152
		3.5.5(a)	Circuit Design Simulation	153
		3.5.5(b)	Circuit-Layout Design Simulation	155
	3.5.6	Test Para	ameter for Core Mixer	155
		3.5.6(a)	IF Output Response	155
	3.5.7	Test Para	ameters for IRM	157
		3.5.7(a)	IF Output Power and Image Rejection Ratio	157
		3.5.7(b)	Responses to Externally Injected LO and RF Levels	158
		3.5.7(c)	Isolation	159
		3.5.7(d)	RF and IF Ports Phases	159
	3.5.8	Test Para	ameters for SOM Input Circuit	161
		3.5.8(a)	LO Injection Power, LO Harmonics, Total Harmonics Distortion	162
		3.5.8(b)	Phase Noise	163
3.6	Summ	ary		163
СНАР	TER F	OUR: SI	MULATION RESULTS	

4.1	Introduction	166
4.2	Ideal Block Design Simulation	166
	4.2.1 E-AISOIRM	167
	4.2.2 E-Amp-AISOIRM	168
	4.2.3 F-AISOIRM	169
	4.2.4 F-Amp-AISOIRM	170
	4.2.5 Summary of Ideal Block Design Simulation	171

4.3	Circui	t Design Simulation		172
	4.3.1	Antennas Design: E-Shaped Pate	ch Antenna	172
		4.3.1(a) Simulated and Calculat	ted Dimensions	172
		4.3.1(b) ADS Momentum Design Model Simulations	gn and Circuit Equivalent	174
		4.3.1(c) Parametric Study on In	set Notches	178
		4.3.1(d) Radiation Regions and	Test Distance	183
	4.3.2	Antennas Design: F-Shaped Pate	ch Antenna	184
		4.3.2(a) ADS Momentum Desig	gn	184
		4.3.2(b) Radiation Regions and	Test Distance	187
	4.3.3	Sub-Circuits Design: Low Noise	Amplifier	187
	4.3.4	Sub-Circuits Design: Amplifier		187
	4.3.5	Sub-Circuits Design: Filters		188
		4.3.5(a) RF Low Pass Filter		188
		4.3.5(b) LO High Pass Filter		189
		4.3.5(c) IF Low Pass Filter		191
	4.3.6	Sub-Circuits Design: Microstrip	Lines	193
	4.3.7	Sub-Circuits Design: Hybrid Co	uplers and Power Divider	194
		4.3.7(a) LO Branch-Line Hybri	d Coupler	195
		4.3.7(b) IF Branch-Line Hybrid	l Coupler	197
		4.3.7(c) LO Wilkinson Power I	Divider	199
	4.3.8	Mixers Design: Core Mixer		201
	4.3.9	Mixers Design: E-IRM		203
	4.3.10	Mixers Design: F-IRM		206
	4.3.11	Mixers Design: E-SOM Input Ci	ircuit Design	210
	4.3.12	Mixers Design: F-SOM Input Ci	rcuit Design	211
	4.3.13	AISOIRM Design: E-AISOIRM		212
	4.3.14	AISOIRM Design: E-Amp-AISO	DIRM	215
	4.3.15	AISOIRM Design: F-AISOIRM		221
	4.3.16	AISOIRM Design: F-Amp-AISO	DIRM	224
	4.3.17	Summary of Circuit Design Sim	ulation	228
4.4	Summ	ary		233

CHAPTER FIVE: IMPLEMENTATIONS AND DISCUSSIONS

5.1	Introd	uction		234
5.2	Circui	t-Layout I	Design Simulations and Prototype Characterizations	234
	5.2.1	ADS Mo	mentum Co-Simulations: E-Topology Models	235
	5.2.2	ADS Mo	mentum Co-Simulations: F-Topology Models	235
	5.2.3	Antennas	s Design: E-Shaped Patch Antenna	238
		5.2.3(a)	Return Loss and Phase	238
		5.2.3(b)	Return Loss and Phase (Antenna Cascaded with Amplifiers)	240
		5.2.3(c)	Gain	241
		5.2.3(d)	Radiation Pattern	243
	5.2.4	Antennas	s Design: F-Shaped Patch Antenna	245
		5.2.4(a)	Return Loss and Phase	245
		5.2.4(b)	Return Loss and Phase (Antenna Cascaded with Amplifiers)	245
		5.2.4(c)	Gain	247
		5.2.4(d)	Radiation Pattern	247
	5.2.5	Mixers D	Design: Core Mixer	248
		5.2.5(a)	IF Output Response	249
	5.2.6	Mixers D	Design: E-IRM	251
		5.2.6(a)	IF Output Power and Image Rejection Ratio	251
		5.2.6(b)	Responses to Externally Injected LO and RF Levels	253
		5.2.6(c)	RF and IF Ports Phases	254
		5.2.6(d)	Isolation	256
	5.2.7	Mixers D	Design: F-IRM	258
		5.2.7(a)	IF Output Power and Image Rejection Ratio	258
		5.2.7(b)	Responses to Externally Injected LO and RF Levels	259
		5.2.7(c)	RF and IF Ports Phases	260
		5.2.7(d)	Isolation	262
	5.2.8	Mixers D	Design: E-SOM Input Circuit	262
		5.2.8(a)	LO Injection Power	262
		5.2.8(b)	LO Harmonics and Total Harmonics Distortion	264
		5.2.8(c)	Phase Noise	265
	5.2.9	Mixers D	Design: F-SOM Input Circuit	266

	5.2.9(a) LO Injection Power	266
	5.2.9(b) LO Harmonics and Total Harmonics Distortion	267
	5.2.9(c) Phase Noise	268
	5.2.10 AISOIRM Design: E-AISOIRM	268
	5.2.10(a) IF Output Power and Image Rejection Ratio	269
	5.2.10(b) Conversion Loss	270
	5.2.10(c) Pinch-Off Voltage and LNA Optimum Bias	272
	5.2.10(d) Responses to Transmitted LO and RF Levels	274
	5.2.11 AISOIRM Design: E-Amp-AISOIRM	275
	5.2.11(a) IF Output Power and Image Rejection Ratio	275
	5.2.11(b) Conversion Loss	277
	5.2.11(c) Responses to Transmitted LO and RF Levels	277
	5.2.11(d) Responses to Externally Injected LO and RF Levels	278
	5.2.12 AISOIRM Design: F-AISOIRM	280
	5.2.12(a) IF Output Power and Image Rejection Ratio	281
	5.2.12(b) Conversion Loss	282
	5.2.12(c) Pinch-Off Voltage and LNA Optimum Bias	283
	5.2.12(d) Responses to Transmitted LO and RF Levels	284
	5.2.13 AISOIRM Design: F-Amp-AISOIRM	285
	5.2.13(a) IF Output Power and Image Rejection Ratio	286
	5.2.13(b) Conversion Loss	287
	5.2.13(c) Responses to Transmitted LO and RF Levels	288
	5.2.13(d) Responses to Externally Injected LO and RF Levels	289
	5.2.14 Summary of Circuit-Layout Design Simulations and Prototype Characterizations	290
5.3	Comparison with Previous Works on Multiple Architecture Embedment	298
5.4	Comparison with Previous Works on Image Reject Mixer	301
5.5	Summary	302

CHAPTER SIX: CONCLUSIONS AND FUTURE WORKS

6.1	Conclusions	305
6.2	Future Works	307

REFERENCES

APPENDICES

Appendix A: Transmission line model of microstrip patch antenna
Appendix B: Ideal block design simulation results
Appendix C: Physical test setups
Appendix D: Bill of materials
Appendix E: Measured reflection coefficients for antenna with amplifiers
Appendix F: Radiation pattern results
Appendix G: IRM test results
Appendix H: Pinch-off and LNA bias test results
Appendix I: Output response to transmitted LO and RF levels
Appendix J: Output response to external LO and RF levels

LIST OF PUBLICATIONS

LIST OF TABLES

Page

Table 2.1	Recent works on dual-band microstrip patch antennas	17
Table 2.2	Recent works based on different reactive loading technique	21
Table 2.3	Recent works on E-shaped patch antenna	28
Table 2.4	Different categories of AIA and its recent works	33
Table 2.5	Recent works on resistive FET mixer	41
Table 2.6	Commercial IRMs operating at 2.4 GHz ISM band	48
Table 2.7	Latest works on IRM developments	50
Table 2.8	Recent works on SOM	54
Table 2.9	Summary of previous works that embed multiple architectures	65
Table 2.10	2.4 GHz ISM mixer designs	71
Table 3.1	Design requirements and specifications for AISOIRM	82
Table 3.2	Tools and equipments for direct-embedded AISOIRM characterization	107
Table 3.3	Tools and equipments for amplifier-cascaded AISOIRM IF and IRR test with $Ext. P_{RF}$ variations	114
Table 3.4	E-shaped antenna designs with CAD tools application	119
Table 3.5	Calculated dimensions of E-shaped antenna design (expressed in mm)	128
Table 3.6	Calculated dimensions for LO and IF branch-line couplers	141
Table 3.7	Calculated dimensions for LO Wilkinson power divider	143
Table 3.8	Tools and equipments for core mixer IF output response test	156
Table 3.9	Tools and equipments for IRM IF and IRR test	158
Table 3.10	Tools and equipments for IRM isolation test	160

Table 3.11	Equipment for RL and phase test for IRM	160
Table 3.12	Tools and equipments for SOM characterization	163
Table 3.13	Summary of prototypes and evaluated parameters	165
Table 4.1	Summary of ideal block design simulation results	171
Table 4.2	Summary of ideal block design simulation results with 10° phase distortion of RF signals	171
Table 4.3	Simulated and calculated dimensions of proposed E-shaped patch antenna	174
Table 4.4	Circuit equivalent model parameters for E-shaped patch antenna	175
Table 4.5	Reflection coefficients for E-shaped antenna from ADS Momentum design and circuit model simulations	176
Table 4.6	Q_r and ζ of S_{side} and S_{centre}	178
Table 4.7	Summary of parametric study of W_{notch}	182
Table 4.8	Dimensions of proposed F-shaped patch antenna (expressed in mm)	184
Table 4.9	Reflection coefficients for F-shaped antenna from ADS Momentum design simulation	186
Table 4.10	Comparison between calculated and simulated dimensions for LO branch-line coupler	195
Table 4.11	Comparison between calculated and simulated dimensions for IF branch-line coupler	198
Table 4.12	Comparison between calculated and simulated dimensions for LO Wilkinson power divider	200
Table 4.13	Port-to-port isolations for E-IRM circuit	206
Table 4.14	Port-to-port isolations for F-IRM circuit	209
Table 4.15	Parameters for conversion loss of E-AISOIRM	215
Table 4.16	Parameters for conversion loss of F-AISOIRM	224
Table 4.17	Summary of simulation results for antenna designs	230
Table 4.18	Summary of simulation results for IRM circuit designs	230

Table 4.19	Summary of simulation results for AISOIRM circuit designs	230
Table 5.1	Measured reflection coefficients for E-shaped antenna	239
Table 5.2	Measured reflection coefficients for E-shaped antenna with amplifiers	241
Table 5.3	Simulated and measured gains for E-shaped antenna	242
Table 5.4	Simulated and measured radiation patterns for E-shaped antenna	244
Table 5.5	Measured reflection coefficients for F-shaped antenna	246
Table 5.6	Measured reflection coefficients for F-shaped antenna with amplifiers	247
Table 5.7	Simulated and measured gains for F-shaped antenna	248
Table 5.8	Simulated and measured radiation patterns for F-shaped antenna	249
Table 5.9	Simulated and measured IF output signals for E-IRM	252
Table 5.10	Measured IF output and IRR responses for E-IRM with variations of <i>Ext.</i> P_{LO} and <i>Ext.</i> P_{RF}	253
Table 5.11	Simulated and measured phases at RF and IF ports of E-IRM	255
Table 5.12	Simulated and measured isolations for E-IRM	257
Table 5.13	Simulated and measured IF output signals for F-IRM	259
Table 5.14	Measured IF output and IRR responses for F-IRM with variations of <i>Ext.</i> P_{LO} and <i>Ext.</i> P_{RF}	260
Table 5.15	Simulated and measured phases at RF and IF ports of F-IRM	261
Table 5.16	Simulated and measured isolations for F-IRM	263
Table 5.17	Simulated and measured LO injection power for E-SOM input circuit	264
Table 5.18	Simulated and measured LO injection power for F-SOM input circuit	266
Table 5.19	Simulated and measured IF output signals for E-AISOIRM	270
Table 5.20	Simulated and measured parameters for conversion loss of E-AISOIRM	272

Table 5.21	Measured desired IF and conversion loss responses for E-AISOIRM with variations of $Tx P_{LO}$ and $Tx P_{RF}$	275
Table 5.22	Simulated and measured IF output signals for E-Amp-AISOIRM	276
Table 5.23	Measured desired IF, IRR, and conversion loss responses for E-Amp-AISOIRM with variations of $Tx P_{LO}$ and $Tx P_{RF}$	278
Table 5.24	Measured desired IF and IRR responses for E-Amp-AISOIRM with variations of $Ext. P_{LO}$ and $Ext. P_{RF}$	279
Table 5.25	Simulated and measured IF output signals for F-AISOIRM	281
Table 5.26	Simulated and measured parameters for conversion loss of F-AISOIRM	283
Table 5.27	Measured desired IF and conversion loss responses for F-AISOIRM with variations of $Tx P_{LO}$ and $Tx P_{RF}$	285
Table 5.28	Simulated and measured IF output signals for F-Amp-AISOIRM	286
Table 5.29	Measured desired IF, IRR, and conversion loss responses for F- Amp-AISOIRM with variations of $Tx P_{LO}$ and $Tx P_{RF}$ 284	288
Table 5.30	Measured desired IF and IRR responses for F-Amp-AISOIRM with variations of $Ext. P_{LO}$ and $Ext. P_{RF}$	289
Table 5.31	Summary of measurement results for antenna designs	291
Table 5.32	Summary of measurement results for SOM input circuit designs	291
Table 5.33	Summary of ADS Momentum co-simulation and measurement results for IRM designs	292
Table 5.34	Summary of ADS Momentum co-simulation and measurement results for AISOIRM designs	292
Table 5.35	Comparisons between proposed AISOIRM designs and previous Works involving multiple architecture embedment	299
Table 5.36	Comparisons of proposed AISOIRM designs and previous works on IRM design	302
Table 5.37	Summary of simulated and measured results for AISOIRM	304

LIST OF FIGURES

Page

Figure 1.1	Simplified block diagram of superheterodyne receiver	3
Figure 1.2	IF signal converted from RF and image signals	4
Figure 1.3	Block design of IRM	7
Figure 1.4	Block design of AISOIRM	9
Figure 1.5	Block diagram of Bluetooth receiver (Mikeska, 2009)	10
Figure 2.1	Breakdown of literature reviews for each section	14
Figure 2.2	Microstrip patch antenna (Balanis, 2005)	15
Figure 2.3	Slot loaded square patch antenna (Jaheen et al., 2016)	17
Figure 2.4	Double-inverted F-shaped dual-band antenna (Islam et al., 2014)	18
Figure 2.5	Cavity-backed annular-slotted dual-band antenna (Hsieh <i>et al.</i> , 2012)	19
Figure 2.6	Double L-shaped dual-band antenna (Ullah et al., 2012)	19
Figure 2.7	MIMO antenna with fork stub (Katre and Labade, 2015)	22
Figure 2.8	Notch loaded annular ring antenna (Singh, 2014)	23
Figure 2.9	Circular antenna with inset feed (Jain and Rai, 2014)	23
Figure 2.10	(a) Top and (b) side views of interleaved F-shaped patch with shorting pins (Lal <i>et al.</i> , 2006)	24
Figure 2.11	Stacked square patch antenna with slits and shorting plates (Fujimoto and Fukahori, 2012)	25
Figure 2.12	CPW-fed capacitor loaded antenna (Mitra et al., 2016)	26
Figure 2.13	SIW cavity-backed antenna with dumbbell-shaped slot (Mukherjee <i>et al.</i> , 2015)	27
Figure 2.14	Antenna with modified Sierpinski triangle (Abdulkareem et al., 2014)	27

Figure 2.15	(a) U-slotted patch and (b) E-shaped patch of the stacked antenna (Liu <i>et al.</i> , 2016)	29
Figure 2.16	(a) Patch and (b) ground layer of frequency reconfigurable E-shaped patch antenna (Kumar <i>et al.</i> , 2016)	30
Figure 2.17	Symmetrical four-notched E-shaped antenna (Kaur et al., 2016)	30
Figure 2.18	Self-oscillating AIA with quasi-isotropic radiation (Wu and Ma, 2014)	33
Figure 2.19	Schematic of balanced SOM with antenna array (Yan et al., 2011)	35
Figure 2.20	(a) Schematic of NIC and (b) NIC with PIFA (Alam et al., 2013)	36
Figure 2.21	(a) Top and (b) side views of wearable active antenna for GPS and satellite phone (Dierck <i>et al.</i> , 2013)	37
Figure 2.22	(a) Patch antenna and (b) PA integrated using co-design technique (Dhar <i>et al.</i> , 2015)	38
Figure 2.23	(a) Slotted patch antenna integrated with (b) PA and (c) LNA circuits to perform duplex operation (Sharawi <i>et al.</i> , 2016)	40
Figure 2.24	Block design of all balanced dual-FET SPRM (Bhavsar <i>et al.</i> , 2015)	42
Figure 2.25	Double balanced mixer circuit with Marchand balun (Raj et al., 2015)	43
Figure 2.26	Block design of low duty-cycle resistive mixer (Magnani et al., 2014)	44
Figure 2.27	Schematic of (a) receiver and (b) LO circuits for SiGe HBT based AIA (Zeinolabedinzadeh <i>et al.</i> , 2014)	46
Figure 2.28	Block design of photonic microwave IRM (Tang and Pan, 2016)	50
Figure 2.29	Block design of GaN double balanced IRM (Heijningen et al., 2014)	51
Figure 2.30	Modular receiver with IRM as core block (Yang et al., 2014)	51
Figure 2.31	Broadside coupling using BPF with IF extraction (Lee <i>et al.</i> , 2012)	52
Figure 2.32	Basic configuration of SIW SOM (Zhang et al., 2010)	55
Figure 2.33	SB upconverter SOM (Bourhill et al., 2000)	57

Figure 2.34	Type I configuration of CM SOM	57
Figure 2.35	Schematic of dual-band SOM (Jackson and Saavedra, 2010)	59
Figure 2.36	Type II configuration of CM SOM	59
Figure 2.37	(a) Combining single balanced mixer and cross-coupled oscillator to form (b) third harmonic SOM (Chen and Chu, 2015)	60
Figure 2.38	(a) Modified cross-coupled pair to act as mixer and (b) schematic of double balanced SOM (Ho and Saavedra, 2011)	61
Figure 2.39	Schematic of upconversion SOM (Ghahramani et al., 2011)	63
Figure 2.40	Summary of antennas reviewed and its literatures	73
Figure 2.41	Summary of AIAs reviewed and its literatures	74
Figure 2.42	Summary of the resistive FET mixers, IRMs, SOMs reviewed and its literatures	74
Figure 2.43	AISOIRM – A new 4-in-1 embedment solution for related architecture gap	76
Figure 3.1	Top-down diagram of the AISOIRM design methodology	77
Figure 3.2	Variations of AISOIRM design	79
Figure 3.3	Design flow of AISOIRM	81
Figure 3.4	E-AISOIRM block diagram	84
Figure 3.5	E-Amp-AISOIRM block diagram	88
Figure 3.6	F-AISOIRM block diagram	88
Figure 3.7	F-Amp-AISOIRM block diagram	91
Figure 3.8	Conversion loss versus LO power	94
Figure 3.9	Simulation setup for AISOIRM with direct LO signal injection	95
Figure 3.10	Simulation setup for AISOIRM with direct RF signals injection	96
Figure 3.11	Layout designs for (a) E-shaped antenna and (b) E-IRM	99
Figure 3.12	Layout designs for (a) F-shaped antenna and (b) F-IRM	101
Figure 3.13	(a) Front and (b) back side of E-AISOIRM prototype	103

Figure 3.14	(a) Front and (b) back side of F-AISOIRM prototype	104
Figure 3.15	Prototype of E-Amp-AISOIRM	104
Figure 3.16	Prototype of F-Amp-AISOIRM	104
Figure 3.17	Setup diagram for direct-embedded AISOIRM characterization	106
Figure 3.18	Typical $g(t)$ curve of FET	110
Figure 3.19	Setup diagram for amplifier-cascaded AISOIRM IF and IRR test	111
Figure 3.20	Setup diagram for amplifier-cascaded AISOIRM output response test with <i>Ext.</i> P_{LO} variations	113
Figure 3.21	Setup diagram for amplifier-cascaded AISOIRM output response test with <i>Ext.</i> P_{RF} variations	114
Figure 3.22	Proposed antenna designs in this work	115
Figure 3.23	Design flow of proposed antenna	116
Figure 3.24	(a) Overall structure of the proposed E-shaped patch antenna and (b) bisection due to mirror line	118
Figure 3.25	$S_{dominant}$ in (a) TM ₀₀₂ mode and (b) bisected into two symmetrical halves	120
Figure 3.26	Current distribution of E-shaped antenna (Wong and Hsu, 2000)	121
Figure 3.27	LC circuit model for E-shaped patch antenna (Kadu et al., 2012)	123
Figure 3.28	Circuit equivalent model for E-shaped patch antenna	123
Figure 3.29	Proposed F-shaped active antenna	129
Figure 3.30	Sub-circuits design in this work	132
Figure 3.31	Design flow of sub-circuits	133
Figure 3.32	Three-pole elliptic LPF prototype	136
Figure 3.33	Three-pole elliptic HPF prototype	137
Figure 3.34	Two-pole Butterworth LPF prototype	138
Figure 3.35	Structure of branch-line coupler (Tuktur, 2014)	141
Figure 3.36	Structure of Wilkinson power divider (Tuktur, 2014)	142

Figure 3.37	Mixers design in this work	144
Figure 3.38	Design flow of proposed mixers	145
Figure 3.39	ATF-34143 I/V characteristics (Avago, 2012)	147
Figure 3.40	Basic resistive FET mixer circuit	148
Figure 3.41	(a) LO signal and (b) small-signal equivalent circuit for FET in resistive FET mixer (Maas, 1987)	150
Figure 3.42	Setup diagram for core mixer IF output response test	156
Figure 3.43	Setup diagram for IRM IF and IRR test	158
Figure 3.44	Setup diagram for IRM isolation test	160
Figure 3.45	Setup diagram for IRM phase test	160
Figure 3.46	Setup diagram for SOM characterization	162
Figure 4.1	E-AISOIRM ideal block design	167
Figure 4.2	E-Amp-AISOIRM ideal block design	168
Figure 4.3	F-AISOIRM ideal block design	169
Figure 4.4	F-Amp-AISOIRM ideal block design	170
Figure 4.5	(a) Top and (b) isometric views of ADS Momentum E-shaped antenna design	173
Figure 4.6	Simulated (a) current distribution, (b) current density, and (c) 3D pattern of E-shaped antenna	173
Figure 4.7	Magnitudes of reflection coefficients at all three ports of proposed E-shaped antenna for (a) ADS Momentum design and (b) circuit equivalent model	177
Figure 4.8	(a) S11, (b) S22, and (c) S33 responses to variations of W_{notch}	181
Figure 4.9	Bandwidth response to variations of W_{notch}	183
Figure 4.10	(a) Top and (b) isometric views of ADS Momentum F-shaped antenna	184
Figure 4.11	Simulated (a) current distribution, (b) current density, and (c) 3D pattern of F-shaped antenna	185
Figure 4.12	S21 plot for BGA2003	187

Figure 4.13	Gain response for ZX60-2531M amplifier (Mini-Circuits, 2006)	188
Figure 4.14	RF LPF lump components modeled (a) schematic and (b) S21 response	189
Figure 4.15	RF LPF RF components modeled (a) schematic and (b) S21 response	190
Figure 4.16	LO HPF lump components modeled (a) schematic and (b) S21 response	191
Figure 4.17	LO HPF RF components modeled (a) schematic and (b) S21 response	192
Figure 4.18	IF LPF lump components modeled (a) schematic and (b) S21 response	193
Figure 4.19	IF LPF RF components modeled (a) schematic and (b) S21 response	194
Figure 4.20	ADS (a) RF and (b) LO microstrip lines designs	194
Figure 4.21	ADS LO branch-line coupler design	195
Figure 4.22	LO branch-line coupler simulated (a) S-parameters and (b) phases	196
Figure 4.23	ADS IF branch-line coupler design	197
Figure 4.24	IF branch-line coupler simulated (a) S-parameters and (b) phases	198
Figure 4.25	ADQ22+ output (a) loss and (b) phase response (Mini-Circuits, 2012)	199
Figure 4.26	ADS LO Wilkinson power divider design	200
Figure 4.27	LO Wilkinson power divider simulated (a) S-parameters and (b) phases	201
Figure 4.28	ADS resistive FET mixer circuit design	202
Figure 4.29	Resistive FET mixer IF output signals	202
Figure 4.30	ADS E-IRM circuit design	204
Figure 4.31	Simulated results for (a) desired IF and (b) image-produced IF for E-IRM	205
Figure 4.32	ADS F-IRM circuit design	207

Figure 4.33	Simulated results for (a) desired IF and (b) image-produced IF for F-IRM	208
Figure 4.34	ADS E-SOM input circuit design	210
Figure 4.35	Simulated E-SOM input circuit LO injection power	211
Figure 4.36	ADS F-SOM input circuit design	211
Figure 4.37	Simulated F-SOM input circuit LO injection power	212
Figure 4.38	ADS E-AISOIRM circuit design	213
Figure 4.39	Simulated results for (a) desired IF, (b) image-produced IF, and (c) image signal rejection in time domain representation for E-AISOIRM circuit design	214
Figure 4.40	Simulated result for received power by E-shaped patch antenna	215
Figure 4.41	ADS E-Amp-AISOIRM circuit design	216
Figure 4.42	Simulated results for (a) desired IF, (b) image-produced IF, and (c) image signal rejection in time domain representation for E-Amp-AISOIRM circuit design	217
Figure 4.43	Simulated results for (a) desired IF and (b) image-produced IF for E-Amp-AISOIRM circuit design with externally injected LO signal	219
Figure 4.44	Simulated results for (a) desired IF and (b) image-produced IF for E-Amp-AISOIRM circuit design with externally injected RF signal	220
Figure 4.45	ADS F-AISOIRM circuit design	222
Figure 4.46	Simulated results for (a) desired IF, (b) image-produced IF, and (c) image signal rejection in time domain representation for F-AISOIRM circuit design	223
Figure 4.47	Simulated result for received power by F-shaped antenna	224
Figure 4.48	ADS F-Amp-AISOIRM circuit design	225
Figure 4.49	Simulated results for (a) desired IF, (b) image-produced IF, and (c) image signal rejection in time domain representation for F-Amp-AISOIRM circuit design	226
Figure 4.50	Simulated results for (a) desired IF and (b) image-produced IF for F-Amp-AISOIRM circuit design with externally injected LO signal	228

Figure 4.51	Simulated results for (a) desired IF and (b) image-produced IF for F-Amp-AISOIRM circuit design with externally injected RF signal	229
Figure 5.1	ADS Momentum co-simulation models for (a) E-shaped antenna and (b) E-IRM	236
Figure 5.2	ADS Momentum co-simulation model for (a) F-shaped antenna and (b) F-IRM	237
Figure 5.3	Measured magnitudes of reflection coefficients at all three ports of proposed E-shaped antenna	240
Figure 5.4	Measured resistive FET mixer output response	251
Figure 5.5	Measured harmonic suppression and THD for E-SOM input circuit	264
Figure 5.6	Measured phase noise performance of E-SOM input circuit	265
Figure 5.7	Measured harmonic suppression and THD for F-SOM input circuit	267
Figure 5.8	Measured phase noise performance for F-SOM input circuit	268
Figure 5.9	Measured RF signal received by E-shaped patch antenna	271
Figure 5.10	Simulated and measured RF LPF responses	272
Figure 5.11	E-AISOIRM (a) measured IRR and (b) measured conversion loss responses by varying V_{cc_LNA} and V_{gs}	273
Figure 5.12	Measured conversion loss response with $Ext. P_{LO}$ variations for E-Amp-AISOIRM	280
Figure 5.13	Measured RF signal received by F-shaped patch antenna	282
Figure 5.14	Simulated and measured RF LPF response for F-AISOIRM	283
Figure 5.15	F-AISOIRM (a) measured IRR and (b) measured conversion loss responses by varying $V_{cc_{LNA}}$ and V_{gs}	284
Figure 5.16	Measured conversion loss response with $Ext. P_{LO}$ variations for F-Amp-AISOIRM	290

LIST OF ABBREVIATIONS

2.5D	2.5-dimensional
2D	Two-dimensional
3D	Three-dimensional
ACR	Adjacent channel rejection
ADS	Advanced Design System
AIA	Active-Integrated Antenna
AISOIRM	Active-Integrated Self-Oscillating Image Reject Mixer
AlGaAs	Aluminium Gallium Arsenide
AM	Amplitude modulation
Amp	Amplifier
ANT	Advanced/Adaptive Network Technology
AUT	Antenna under test
BiCMOS	Bipolar complementary metal-oxide semiconductor
BJT	Bipolar junction transistor
BOM	Bill of materials
BPF	Bandpass filter
CAD	Computer-aided design
CL	Conversion loss
СМ	Commutating
CMOS	Complementary metal-oxide semiconductor
CPW	Coplanar waveguide
CRLH	Composite right/left-handed
CST	Computer Simulation Technology