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A B S T R A C T

Nowadays, the sorbates are the third largest group of antimicrobial preservatives in food and pharmaceutical
industries, following the parabens and benzoates whose safety is questioned by recent publications. A dis-
advantage of sorbates is their pH dependence, as their antimicrobial effect is greatly reduced in alkaline en-
vironment. The main, widely used sorbate derivatives are sorbic acid and potassium sorbate, no sorbic acid
esters are involved in current industrial application. We aimed to test whether the esters of sorbic acid are
capable to extend the antimicrobial spectrum of the original molecule while maintaining its advantageous
biocompatibility profile. A comparative biocompatibility study of different derivatives (sorbic acid, potassium
sorbate, isopropyl sorbate and ethyl sorbate) was carried out. In vitro cell viability assays of MTT (2-(4,5-
dimethyl-2-thiazolyl)-3,5-diphenyl-2H-tetrazolium bromide), Neutral Red (3-amino-7-dimethylamino-2-me-
thylphenazine hydrochloride) and flow cytometry with propidium iodide and annexin were performed on Caco-
2 cells. In case of in vivo toxicity study, G. mellonella larvae were injected with different concentrations of the test
compounds. Time-kill tests were executed on reference strains of C. albicans, E. coli, and S. aureus. According to
the MTT-assay, the IC50 values were the following: ethyl sorbate, sorbic acid <0.045% w/w, isopropyl sorbate
0.32% w/w, potassium sorbate >0.75% w/w, while Neutral Red values were >0.75% w/w for the esters and
potassium sorbate and 0.66% w/w for sorbic acid. Flow cytometry results indicated the higher cell damage in
case of isopropyl sorbate. However, the cytotoxic results of isopropyl sorbate, in vivo toxicity study on G.
mellonella larvae did not show significant mortality. It was found, that the antimicrobial properties of isopropyl
sorbate were outstanding compared to sorbic acid and potassium sorbate. These results indicate, that the use of
sorbate esters can be advantageous, hence, further toxicity studies are needed to prove their safety.

1. Introduction

Many commonly used excipients are presented in pharmaceutical
and food industries. One such jointly used group of compounds are the
antimicrobial preservatives. As both liquid, oral pharmaceutical pre-
parations and certain beverages and drinks can be opened and closed

multiple times until their expiration date, every interaction with the
outer environment risks the contamination of the product. The alkyl
esters of 4-hydroxybenzoic acid, the parabens are the most commonly
used group of pharmaceutical preservatives. However, recent studies
indicated that they could actively promote the proliferation of estrogen
dependent cell lines (Roszak et al., 2017). Their interaction with human
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endocrine system was also described (Nishihama et al., 2016). These
results question their safe use and numerous governments limit the
utilization of these materials (European Commission Regulation (EU)
No 1004/2014). Accordingly, preservatives performing favourable
biocompatibility profiles combined with reliable antimicrobial activity
may replace parabens in food, pharmaceutical and cosmetics industry.

2,4-Hexadienoic acid, better known as sorbic acid and its potassium
salt are alternatives of parabens. They are already widespread
throughout the food and pharmaceutical industries, their application is
well-established. Originally extracted from rowanberry, sorbic acid can
also be found in various other plants (Shabir et al., 2011; Esquivel-
Ferriño et al., 2012), although nowadays it is synthetically produced for
commercial purposes. Aqueous solutions, o/w emulsions, suspensions,
gels or any other product with high water content in pharmaceutical or
food industries can be preserved by these compounds considering the
chemical or physical interactions. Sorbic acid can be applied in more
lipophilic environment such as ointments as well. Nowadays, potassium
sorbate and sorbic acid with the sole purpose of antimicrobial pre-
servation in concentration range of 0.1–0.2% are widely used in phar-
maceutical industry (Rowe et al., 2009). Generally, they are accepted to
be safe for human use, although toxicity and biocompatibility data
profiles are incomplete and fragmentary. Rats, fed by the ten times of
acceptable daily intake (ADI) for 60 days developed medium levels of
toxicity (Abo-EL-Sooud et al., 2018), while the liver tissue of mice, fed
with lower concentrations of potassium sorbate, than ADI showed no
elevation in inflammatory genes (Raposa et al., 2016). Other publica-
tions revealed low ciliary toxicity in rabbits (Wang et al., 2012) and
improved growth performance in swine through the increase of IGF-I
(Lou et al., 2011). Also, the inhibition of gastrointestinal en-
doproteinases was reported (Esimbekova et al., 2017). Cell line in-
vestigations include low toxicity on HL7702 hepatocyte cells and high
toxicity in acidic conditions on D. tertiocleta(Chen et al., 2017), and no
toxicity on human primary nasal ciliary epithelial cells compared to
benzalkonium-chloride (Jiao et al., 2014; Ho et al., 2008) and low
genotoxicity on human lymphocytes (Mamur et al., 2010). These var-
ious data show, that sorbates do not express serious toxicity and if the
regulatory concentrations are not exceeded, the human health risk is
minimal (Mpountoukas et al., 2008). Acceptable human daily intake of
sorbates (sorbic acid and potassium sorbate) is a maximum of 25 mg/kg
but the official regulations vary in different countries (Dehghan et al.,
2018).

The antimicrobial action of sorbates is not well understood, yet it is
considered to be basically based on the intracellular acidification of
microbes (Bagar et al., 2009; Plumridge et al., 2004). After penetrating
the cell membrane, at the pH level of the cytosol, as a weak carboxylic
acid, it releases a proton, which acidifies the cytosol, thus leading to the
disruption of catabolic pathways (Mira et al., 2010). One possible re-
sistance mechanism is the preventive acidification of cytosol and the
adaption to it, in order to decrease the uptake of sorbic acid
(Stratford et al., 2014). Another method is the decarboxylation of sorbic

acid to 1,3-pentadiene (Plumridge et al., 2008, 2010). It was also
proved, that with the increase of extracellular pH, the antimicrobial
action of sorbates decreases, as only the nonionized form can enter the
cells (Wang et al., 2018). Also, there are signaling pathways, that sense
the intracellular presence of sorbate ion and upregulates certain specific
defense mechanisms (Kim et al., 2019) and these mechanisms does not
provide general resistance against all weak acids (Creamer et al., 2017).
Sorbates can also effectively reduce bacterial biofilm formation (Al-
Ahmad et al., 2008; Arzweiler et al., 2008;). Cellular stress caused by
sorbates can also result in increased toxin production (Fodil et al.,
2018). In theory the antimicrobial effect is increased, if a more lipo-
philic compound enters the cell more easily. In this case, the ester de-
rivatives of sorbic acid act as a prodrug, as further enzymatic activation
is needed, to release the carboxylic group (Larsen et Johnson, 2019).

Based on these previous studies, our aim was to test the alkyl esters
of sorbic acid compared to potassium sorbate and sorbic acid.
Antimicrobial properties of the tested substances (Fig. 1.) were studied
on frequent pathogens, C. albicans, S. aureus and E. coli with time-kill
method.

Meanwhile, cytocompatibility was assessed by MTT (2-(4,5-di-
methyl-2-thiazolyl)-3,5-diphenyl-2H-tetrazolium bromide) and Neutral
Red (3-amino-7-dimethylamino-2-methylphenazine hydrochloride) as-
says on Caco-2 human colon adenocarcinoma cell line and G. mellonella
larve survivability tests. Caco-2 cells can model the susceptibility of the
gastrointestinal tract as they morphologically represent the intestinal
epithelium (Mao et al., 2016; Medrano-Padial et al., 2019). MTT and
Neutral Red assays are rapid cytotoxicity methods which complement
each other, because their mechanisms of action are different (Fotakis et
Timbrell 2006). G. mellonella larvae is a recent, emerging method for in
vivo toxicity testing. (Maguire et al., 2016)

2. Materials and methods

2.1. Materials

Ph. Eur. 9. quality sorbic acid was purchased from Hungaropharma
(Budapest, Hungary). Potassium sorbate and Neutral Red (3-amino-7-
dimethylamino-2-methylphenazine hydrochloride) was obtained from
Alfa Aesar (Karlsruhe, Germany) and ethyl-sorbate from TCI
(Zwijndrecht, Belgium). The MTT (2-(4,5-dimethyl-2-thiazolyl)-3,5-di-
phenyl-2H-tetrazolium bromide)) dye, Dulbecco's Modified Eagle's
Medium with high glucose and L-glutamin (DMEM), phosphate buffered
saline (PBS), trypsin from porcine, ethylene-diamine-tetra-acetic acid
(EDTA), heat-inactivated fetal bovine serum (FBS), Roswell Park
Memorial Institute-1640 (RPMI-1640) and Mueller-Hinton broth, sorbic
chloride and propidium iodide were purchased from Sigma-Aldrich
(Budapest, Hungary). Non-essential amino acids solution and penicillin-
streptomycin mix, GlutaMax™ supplement, cell culture flasks and
Annexin V, Alexa Fluor™ 647 conjugate were obtained from Thermo-
Fisher (Darmstadt, Germany). Propan-2-ol, pyridine, dichloromethane

Fig. 1. Substances involved in our experiments.
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were purchased from Molar Chemicals (Halásztelek, Hungary).

2.2. Cell culture

Caco-2 (COlon adenoCArcinoma) cell line was obtained from the
European Collection of Cell Cultures (ECACC, No. 86010202). Cells
were grown in Nunc™ EasyFlask™ (Thermo-Fisher, Darmstadt,
Germany) surface-treated plastic cell culture flasks in Dulbecco's
Modified Eagle's Medium, supplemented with 3,7 g/l NaHCO3, 10%
(v/v) heat-inactivated fetal bovine serum (FBS), 1% (v/v) non-essential
amino acids solution, 0.584 g/ L-glutamine, 4.5 g/L D-glucose, 100 IU/
mL penicillin, and 100 µg/mL streptomycin at 37 °C in an atmosphere
of 5% CO2. The cells were routinely maintained by regular passaging
and glutamine was supplemented by GlutaMax™. The cells used for
cytotoxic experiments were between passage numbers 20 and 40.

2.3. Cell viability tests

The cytotoxic effects of the various solutions were evaluated using
the MTT and Neutral Red methods. Caco-2 cells in complete medium
were seeded on 96-well plates at a final density of 10.000 cells/well.
After 7 days, the medium was removed, and the cells were incubated for
30 min with the test solutions. In case of MTT-assay, the samples were
removed, and a 5 mg/mL MTT solution (MTT salt solved in PBS) was
added to each well. The plates were incubated for 3 h, then the MTT
solution was removed and 0.1 mL of a solution of isopropanol – 1 M
hydrochloride acid (25:1) was added to each well to dissolve the
formed formazan crystals. In case of Netural Red assay, the test solu-
tions were removed and a 33,3 mg/mL NR solution (NR solved in cell
culture medium) was added to each well. The cells were incubated for
2 h then, the NR solution was removed and 0.1 mL of a solution of
isopropanol – 1 M hydrochloride acid (25:1) was added to each well to
dissolve the cells. The absorbance compounds were measured at
565 nm for MTT-assay and 540 nm for NR-assay. We used empty wells
of the plate as reference and all the measurements were carried out with
a Thermo-Fisher Multiskan Go (Thermo-Fisher, USA) microplate
reader. Cell viability was expressed as a percent of the cell viability of
the untreated control cells, which were incubated with PBS for 30 min.

2.4. G. mellonella larvae survivability tests

Larvae of the sixth developmental stage of G. mellonella were ob-
tained from Bugs World Inc. (Budapest, Hungary). Larvae were at 10 °C
and in a dark environment prior to use. Larvae size was between 2 and
3 cm and they showed no sign of melanization. For each treatment, 20
healthy larvae were placed in sterile vented Petri dishes. The test
compounds were dissolved in PBS 20 μl of each sample was injected
into the G. mellonella haemocoel through the last pro-leg using a 29 G
needle. The injected larvae were incubated at 30 °C for 96 h in dark
environment. For the assessment of larval viability, larvae were gently
probed with a blunt-ended needle and if no response was observed, the
larvae were considered to be dead. Viability was observed at 24 h, 48 h,
72 h, and 96 h.

2.5. In vitro time-kill antimicrobial tests

In killing studies, we tested E. coli (American Type Culture
Collection® 25,922™), S. aureus (ATCC® 43,300™) and C. albicans
(ATCC® 10,231™) reference strains. The activity of sorbates was de-
termined against C. albicans and bacterium strains in RPMI-1640 and
Mueller-Hinton broth at 0.045%, 0.09%, 0.18%, 0.375%, 0.75% w/w
concentrations using a starting inoculum of 1 × 105 cells/mL and
1 × 106–107 cells/mL, respectively, in a final volume of 5 mL, pH set to
7 (Nagy et al., 2019). In case of C. albicans, aliquots of 100 µl were
removed after 0, 4, 8, 12 and 24 h of incubation, tenfold serial dilutions
were prepared, and samples of dilutions (4 × 30 µl) were plated onto a

single Sabouraud dextrose agar plate and incubated at 35 °C for 48 h. In
case of E. coli and S. aureus, aliquots of 100 µl were removed after 0, 2,
4, 6, 8, 10, 12 and 24 h of incubation, tenfold serial dilutions were
prepared, and samples of dilutions (4 × 30 µl) were plated onto a single
Mueller–Hinton plate and incubated at 35 °C for 48 h. Tests were car-
ried out in duplicates and mean values were presented. In any give
concentration, were results differed from each other more than 5%, a
third experiment was carried out.

2.6. Synthesis of isopropyl sorbate

Isopropyl sorbate was synthetized in situ for our experiments. To a
stirred solution of isopropyl alcohol (11.7 mL, 0.15 mmol) in dry di-
chloromethane (100 mL) under inert argon atmosphere and cooled to
0 °C, 2.0 equivalent (24.2 mL, 0.3 mmol) of dry pyridine and 1.0
equivalent (20 mL, 0.15 mmol) of sorbic chloride was added. The re-
action was stirred at room temperature overnight. After completion,
2 mL of water was added, and the reaction mixture was stirred for 1 h.
Then, the reaction mixture was diluted with dichloromethane (300 mL)
and was washed with saturated solution of NaHSO4 twice, and Na2CO3

twice as well. The organic layer was then separated, dried over MgSO4,
filtered and distilled under vacuum to give isopropyl sorbate (9 g,
40%), yellow, fruity smell liquid.

2.7. Flow cytometry measurements

For the flow cytometry measurements, a BD FACSArray (BD
Biosciences, Germany) flow cytometer were used. 5 × 3 million Caco-2
cells were harvested from cell culture flasks with trypsin-EDTA solution
and were treated with 0.75% w/w solutions of the tested compounds,
dissolved in cell culture media. After 30 min, the cells were centrifuged,
the culture media was removed and the cells were gently washed with
cold PBS and centrifuged again. Supernatant was removed and with
annexin-binding puffer, 1 × 106 cells/mL cell suspension was created.
100 µl of this suspension was treated with 5 µl of Alexa Fluror™ 647 and
1 µl of 100 µg/mL propidium iodide solution. The cell suspension was
stained for 15 min on ice then immediately analyzed with the flow
cytometer. The propidium iodide were excited with the 532 nm laser
line and detected between 564–606 (yellow parameter). The Alexa
Fluor™ 647 were excited with the 635 nm laser line and detected be-
tween 653–669 nm (red parameter). The evaluation was made with FCS
Express 6 (De Novo Software, USA). On the FSC SSC scatterplot the non-
cellular events were excluded. On FSC-A-FSC-W scatterplot the duplets
were excluded. The remaining events (8000–10.000) were analysed on
a propidium iodide-Alexa Fluor 647 scatterplot, the quadrant gates
were determined on non-labeled samples. The double positive cells
regarded as necrotic/late apoptotic cells. The annexin V positive po-
pulation was regarded as early apoptotic, the double negative popula-
tion regarded as viable cells.

2.8. Statistical analysis

All data were analysed using GraphPad Prism (version 6; GrapPad
Software, San Diego, California, USA). In case of MTT-assay and NR-
assay results, the data was presented as means ± SEM. Each cell
viability value represents the mean of twelve independent, parallel
wells, with the highest and lowest absorbance values were excluded
when calculating the mean. After that, at each concentration, the means
of different solutions where compared with Kruskal–Wallis test fol-
lowed by Dunn's test when all solutions were compared to each other.
Previously, all data groups were analysed with Shapiro–Wilk test for
Gaussian distribution and Bartlett's test for equal variances. In each case
we used significance level p < 0.05. In vivo survival curves of G. mel-
lonella larvae were plotted according to the Kaplan-Meier analysis, the
survival curves were compared with Mantel-Cox log-rank test,
GraphPad's Logrank test for trend and Gehan–Breslow–Wilcoxon test.
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Table 1. shows the statistical analysis of the results of the MTT and NR
assays. Flow cytometry tests were carried out as triplicates.

3. Results

3.1. Cell viability tests

Preservatives have high concentrations in the pharmaceutical pro-
duct, to ensure the absolute inhibition of microbial growth. However,
they are diluted in the stomach and later parts of the gastrointestinal
tract. In order to compare both the antimicrobial and the biocompat-
ibility tests, all compounds were tested in a wide range, setting 0.75%
w/w as maximum value and halving the concentration of every further
solution. According to the regulation of Hungarian pharmaceutical
compounding formulation, the maximum applied dose of sorbic acid
(only slightly soluble in water, but moderately in hot water) and po-
tassium sorbate is 1% w/w. and tolerable according to Hungarian reg-
ulations. Also, according to the European regulations, sorbic acid and
potassium sorbate as food additives can be used from 0.02% (200 ppm)
to 0.5% (5000 ppm) (Commission Regulation (EU) No 1129/2011). We
aimed to investigate the biocompatibility and antimicrobial properties
of the tested compounds above this approved range in order to get a
more detailed view of such properties. Therefore, our concentrations
were 0.045%, 0.09%, 0.18%, 0.375% and 0.75% w/w which cover the
whole range of application. All of the sorbates for cytotoxicity tests
were all diluted in PBS.

MTT assay (Fig. 2.) showed a dose-dependent toxicity of sorbates,
where potassium sorbate was the least toxic compound, followed by
isopropyl sorbate and ethyl sorbate, while sorbic acid had the lowest
cell viability results. However, at the highest concentration, isopropyl
sorbate, ethyl sorbate and the sorbic acid caused nearly total cell death.
Calculated IC50 values are <0.045% w/w for ethyl sorbate and sorbic
acid, 0.32% w/w for isopropyl sorbate and >0.75% w/w for potassium
sorbate.

The lower concentrations of sorbates had only a minor impact on
the viability of Caco-2 cells measured by Neutral Red assay (Fig. 3.).
Meanwhile, 0.375% and 0.75% drastically increased the toxicity of the
test substances. Compared to the results of MTT assay, sorbic acid was

Table 1
Results of Dunn's multiple comparison test generated by the data of MTT and
NR assay. * = p < 0.05; ** =p < 0.01; *** = p < 0.001; **** = p < 0.0001.

Compared data sets Level of significance
MTT assay0.045%

Sorbic acid vs. Potassium sorbate ****
Sorbic acid vs. Ethyl sorbate ns
Sorbic acid vs. Isopropyl sorbate ***
Potassium sorbate vs. Ethyl sorbate ***
Potassium sorbate vs. Isopropyl sorbate **
Ethyl sorbate vs. Isopropyl sorbate **
0.09%
Sorbic acid vs. Potassium sorbate ****
Sorbic acid vs. Ethyl sorbate ns
Sorbic acid vs. Isopropyl sorbate ***
Potassium sorbate vs. Ethyl sorbate ***
Potassium sorbate vs. Isopropyl sorbate **
Ethyl sorbate vs. Isopropyl sorbate **
0.18%
Sorbic acid vs. Potassium sorbate ****
Sorbic acid vs. Ethyl sorbate ns
Sorbic acid vs. Isopropyl sorbate ***
Potassium sorbate vs. Ethyl sorbate ****
Potassium sorbate vs. Isopropyl sorbate **
Ethyl sorbate vs. Isopropyl sorbate **
0.375%
Sorbic acid vs. Potassium sorbate ****
Sorbic acid vs. Ethyl sorbate ns
Sorbic acid vs. Isopropyl sorbate **
Potassium sorbate vs. Ethyl sorbate ****
Potassium sorbate vs. Isopropyl sorbate **
Ethyl sorbate vs. Isopropyl sorbate **
0.75%
Sorbic acid vs. Potassium sorbate ***
Sorbic acid vs. Ethyl sorbate ns
Sorbic acid vs. Isopropyl sorbate ns
Potassium sorbate vs. Ethyl sorbate **
Potassium sorbate vs. Isopropyl sorbate ****
Ethyl sorbate vs. Isopropyl sorbate ns
NR assay
0.045%
Sorbic acid vs. Potassium sorbate ns
Sorbic acid vs. Ethyl sorbate ns
Sorbic acid vs. Isopropyl sorbate ns
Potassium sorbate vs. Ethyl sorbate ns
Potassium sorbate vs. Isopropyl sorbate ns
Ethyl sorbate vs. Isopropyl sorbate ns
0.09%
Sorbic acid vs. Potassium sorbate ns
Sorbic acid vs. Ethyl sorbate ns
Sorbic acid vs. Isopropyl sorbate *
Potassium sorbate vs. Ethyl sorbate *
Potassium sorbate vs. Isopropyl sorbate *
Ethyl sorbate vs. Isopropyl sorbate ns
0.18%
Sorbic acid vs. Potassium sorbate ns
Sorbic acid vs. Ethyl sorbate ns
Sorbic acid vs. Isopropyl sorbate *
Potassium sorbate vs. Ethyl sorbate *
Potassium sorbate vs. Isopropyl sorbate *
Ethyl sorbate vs. Isopropyl sorbate ns
0.375%
Sorbic acid vs. Potassium sorbate ****
Sorbic acid vs. Ethyl sorbate ns
Sorbic acid vs. Isopropyl sorbate ns
Potassium sorbate vs. Ethyl sorbate ***
Potassium sorbate vs. Isopropyl sorbate **
Ethyl sorbate vs. Isopropyl sorbate ns
0.75%
Sorbic acid vs. Potassium sorbate ****
Sorbic acid vs. Ethyl sorbate ***
Sorbic acid vs. Isopropyl sorbate **
Potassium sorbate vs. Ethyl sorbate ****
Potassium sorbate vs. Isopropyl sorbate ****
Ethyl sorbate vs. Isopropyl sorbate ns

Fig. 2. Cytotoxicity of sorbates measured by MTT assay. Cell viability expressed
as the percentage of the absorbance of the untreated control cells. Data ex-
pressed as mean ± SEM, n = 12.
Cell viability of the test samples at 0.045%, 0.09%, 0.18%, 0.375% and 0.75%
(w/w)%:
Sorbic acid: 3.6% ± 0.18%; 4.3% ± 0.1%; 3.8% ± 0.1%; 5.1% ± 0.3%;
4.0%±0.3%.
Potassium sorbate: 99.8% ± 1.5%; 96.6% ± 2.1%; 91.9% ± 2%;
89.3% ± 2%; 54.7% ± 2.2%.
Ethyl sorbate: 17.0% ± 2.2%; 22.6% ± 3.3%; 19.9% ± 4.3%;
10.7% ± 4.3%; 4.8% ± 1.2%.
Isopropyl sorbate: 59.1% ± 1.7%; 62.1% ± 3.7%; 57.4% ± 3.5%;
47.2% ± 2.6%; 3.8% ± 1.6%.
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the most toxic compound in this experiment too. Calculated IC50 values
are above 0.75% w/w for the esters and potassium sorbate and 0.66%
w/w for sorbic acid.

3.2. In vivo toxicity tests

G. mellonella larvae were injected with 20 µl of the four test sub-
stances, dissolved in PBS. Throughout the 4 days of the experiment,
their viability was observed every 24 h. Two concentrations of sorbates
were used, 0.18% and 0.018% w/w. Each group consisted of 20 healthy
larvae. Only a minor number of specimens died during the experiment
and overall, the larvae showed no sign of melanisation or increased
mortality (Fig. 4.). According to the statistical analysis, no curves were
significantly different from PBS control and from each other.

3.3. In vitro antimicrobial time-kill experiments

Time-kill tests were carried out, in order to study the antimicrobial

effect of sorbates. C. albicans, E. coli and S. aureus were inoculated in
RPMI-1640 or Mueller-Hinton broth at 0.045%, 0.09%, 0.18%, 0.375%,
0.75% w/w concentrations of the different compounds. At given time-
points, 100 µl of aliquots were plated on agar plates and counted.
Killing activity was determined by a threshold of 99.9% (log10
CFU = 2.24) extermination of initial CFU.

In case of the lowest concentration, C. albicans (Fig. 5A–D) was
resistant to every tested compound. At 0.09% w/w concentration iso-
propyl sorbate (Fig. 5D) had a slight fungistatic effect, inhibiting the
further growth of fungal cells. At 0.18% w/w, isopropyl sorbate termi-
nated all pathogens after 12 h. No other tested substance had any effect
on C. albicans at these concentrations. Potassium sorbate (Fig. 5B) had
fungistatic effect at 0.375% w/w and above, while sorbic acid (Fig. 5A)
and ethyl sorbate (Fig. 5C) could prevent the germination only at the
highest tested concentration. Meanwhile, isopropyl sorbate had an in-
creased killing effect above 0.18% w/w, as both higher concentrations
identically eliminated all cells after 8 h.

S. aureus was totally resistant to potassium sorbate, ethyl sorbate
and sorbic acid (Fig. 6. A–C) as the inoculum size increased with time in
case of every concentration. As such, S. aureus was the least sensitive
organism in our experiment. Isopropyl sorbate (Fig. 6D) had a bacter-
iostatic effect at 0.375% w/w concentration and above.

The growth of E. coli was heavily affected by isopropyl sorbate
(Fig. 7D), as after twelve hours, no antimicrobial activity could be de-
tected at 0.375% w/w concentration and above. 0.18% w/w concentra-
tion of isopropyl sorbate was bacteriostatic. Sorbic acid and potassium
sorbate (Fig. 7A and B) were totally ineffective against this species.
Meanwhile the results of ethyl sorbate (Fig. 7C) are contradictory, as
0.375% w/w had a stable static effect, while 0.75% w/w proved to be
ineffective.

3.4. Flow cytometry measurements

Caco-2 cells were treated with 0.75% w/w solutions of the tested
substances for 30 min and stained with propidium iodide and annexin
V. Figs. 8A–E shows the results the distribution of the gated cells. The
double positive cells regarded as necrotic/late apoptotic cells, the an-
nexin V positive population was regarded as early apoptotic, the double
negative population regarded as viable cells. Propidium iodide negative
and annexin positive cells were negligible. Isopropyl sorbate had in-
creased cytotoxic effect, compared to the other compounds which had
increased dead cell percentage than the untreated control.

4. Discussion

2,4-hexadienoic acid, as known as sorbic acid, is widely used as an
antimicrobial preservative for food, cosmetic and pharmaceutical in-
dustry. Its mechanism of action is stated to be based on the diffusion
through the cell membrane and intracellular acidification of the tar-
geted microbe (Stratford et al., 2013). As the sorbates can only enter the
cell in unionized form, low pH greatly enhances their action, as they
can be mostly found in that state at such conditions (Bayan, 2010). If
the pH of a given product cannot be adjusted to acidic range, due to its
stability, the effect of sorbates is reduced (Wang et al., 2018). The alkyl
esters or sorbic acid might be the solution for the pH-dependency issue.
Thus, ethyl and isopropyl sorbates were involved in our study.

Tzatzarakis et al. (2000) and Charvalos et al. (2001) previously
formulated different polyvinylpyrrolidone based polymers, to which
sorbic acid was covalently bonded, and tested it against several fungi
species. The inhibitory concentrations were promising, yet, no toxicity
data is available, connected to the newly formed compounds. Moreover,
they were not tested against bacterial strains either. Narasimhan et al.
synthesized 42 different sorbic acid esters and analysed their anti-
microbial potential (Narasimhan et al., 2007). This publication sug-
gested, that the increase of lipophilicity enhances the antibacterial and
antifungal actions of the given compound. However, a disadvantage of

Fig. 3. Cytotoxicity of sorbates measured by Neutral Red assay. Cell viability
expressed as the percentage of the absorbance of the untreated control cells.
Data expressed as mean ± SEM, n = 12.
Cell viability of the test samples at 0.045%, 0.09%, 0.18%, 0.375% and 0.75%
(w/w)%:
Sorbic acid: 100% ± 1%; 100% ± 1.4%; 100% ± 1.6%; 79.7% ± 2.9%;
40.8%±3.4%.
Potassium sorbate: 100% ± 1.1%; 100% ± 1.6%; 100% ± 1.9%;
100% ± 0.5%; 98.2% ± 2%.
Ethyl sorbate: 99.6% ± 0.4%; 94.9% ± 0.7%; 91.7% ± 0.9%;
89.9% ± 0.9%; 59.8% ± 3.3%.
Isopropyl sorbate: 96.7% ± 2.1%; 95.5% ± 2%; 93% ± 1%; 91.6% ± 1%;
55.4% ± 2.5%.

Fig. 4. Survival curve of G. mellonella larvae. Larvae were injected with 20 µl of
test samples, each group had 20 larvae in it.
Death events of the experiment:
24 h: 0.
48 h: 0.
72 h: 1–0.18% isopropyl sorbate; 1–0.018% isopropyl sorbate.
96 h: 2–0.018% sorbic acid; 1–0.018% ethyl sorbate; 2–0.18% isopropyl sor-
bate; 2–0.018% isopropyl sorbate.
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these derivatives was the poor water solubility which limits their ap-
plication in water-based systems. Our test substances were two esters
with short alkyl chains, performing moderate water solubility.

The literature revealed, that all tested compounds are generally well
tolerated. Qu et al. (2019) reported, that potassium sorbate had an IC50

value of 1.25 g/L after 24 h of incubation on HepG2 human liver cell
line measured by MTT, while HUVEC cell line showed an 659.96 µM
IC50 value of after 24 h of incubation measured by MTT
(Mohammadzadeh-Agdash et al., 2018). These results match our find-
ings (Fig. 2.), as after 30 min of incubation, 0.18% potassium sorbate
concentration lowered the cell viability to 91.9%. The cell viability
difference between potassium sorbate and sorbic acid might be ex-
plained by the acidifying nature of the latter.

Smith et al. measured the cytotoxicity of potassium sorbate on Balb/
C 3T3 clone A31 embryonic mouse cells with Neutral Red and found
that it was toxic only in extremely high concentrations, far over the
generally applied concentrations (Smith et al., 2005). Our results
(Fig. 3.) well correlates with this, as only the highest concentrations
decreased cell viability. The high correlation of Neutral Red and MTT

cytotoxitcy tests was reported (Fotakis et Timbrell 2006). However, the
differences between the assays in our experiments, were based on the
acidification of the cytosol of Caco-2 cells. As the change of intracellular
pH disrupted the metabolism of the cell, the enzymatic conversion of
MTT is highly decreased (Berridge et al., 2005), but the lysosomal
staining by Neutral Red was not inhibited (Elliott et Auersperg, 1993).
Another possible explanation of the cytotoxicity profile differences of
sorbates is their binding to proteins, as it was proved that relatively
similar molecules as carboxylic acids have various binding sites
(Mohammadzadeh-Agdash, Akbari, Esazadeh and Dolatabadi, 2019).

Flow cytometry measurements revealed that compared to the con-
trol, potassium sorbate, sorbic acid and ethyl sorbate could increase the
amount of propidium iodide and annexin positive cells with 10%.
However, isopropyl sorbate was significantly more cytotoxic (68%
compared to the 28% of other tested substances), than any other deri-
vatives. We suspected that this can be explained by the non-pH de-
pendent mechanism of action and the higher membrane permeability of
the isopropyl sorbate, which greatly exceeds the less lipophilic ethyl
sorbate. MTT and NR assays did not certify that difference, as both

Fig. 5. A-D Antimicrobial effect of sorbates on C. albicans.

Fig. 6. A-D Antimicrobial effect of sorbates on S. aureus.
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substances showed similar cytotoxic effects. However, it was proved
that the minimum change in the length of alkyl chain greatly modifies
the biological activity and membrane passage in the case of salicylic
acid derivatives (Li et al., 2019). Further investigation is needed to
explain particularly the modification of sorbate esters membrane per-
meability with different lengths of alkyl chains.

The use of G. mellonella larvae as a biocompatibility model organism

is relatively new. However, Maguire et al. found that the correlation
between LD50 values observed on this species and the results of pre-
vious rat feeding toxicity and cytotoxicity results was linear
(Maguire et al., 2016). Several recent publications concluded, that the
use of G. mellonellae larvae not just complemented to cell culture studies
in toxicity experiments, (Allegra et al., 2018; Bombarda et al., 2019)
might be a good substitute of rodent model systems (Ignasiak et

Fig. 7. A-D Antimicrobial effect of sorbates on E. coli.

Fig. 8. A-D. Flow cytometric measurement of Caco-2 cells, treated with 0.75% w/w solutions of the test compounds, stained with propidium iodide (PI) and annexin
(A). Data is represented as mean of triplicates. Mean percentage distribution of cells between the upper left (PI+, A-), upper right (PI+, A+), lower left (PI-, A-) and
lower right (PI-, A+) quadrant, ± SEM:
control: 1.4% ± 0.1%, 18.1% ± 1.2%, 80.3% ± 1.3%, 0.3% ± 0.0%.
sorbic acid: 1.9% ± 0.1%, 29.3% ± 0.4%, 68.2% ± 0.4%, 0.5% ± 0.0%.
potassium sorbate: 4% ± 0.2%, 27.9% ± 2.1%, 67.5% ± 2.2%, 0.5% ± 0.1%.
ethyl sorbate: 6.5% ± 0.1%, 28.5% ± 0.3%, 64.3% ± 0.5%, 0.6% ± 0.0%.
isopropyl sorbate: 1.9% ± 0.1%, 67.8% ± 0.4%, 27.3% ± 0.4%, 3% ± 0.1%.
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Maxwell, 2017), thus the prediction of human toxicity of tested com-
pounds can be greatly enhanced. In our experiments, there was no
significant difference between the mortality of different treated groups
(Fig. 4), the larvae showed no sign of toxicity. As the injectable liquid
volume is limited and 0.18% is a higher concentration, than sorbates
are generally used at, we found that the further increase of the dose in
not necessary.

Our results match the findings of Narasimhan et al. who reported,
that isopropyl sorbate was significantly more active against S. aureus, E.
coli and C. albicans, than ethyl sorbate, which exceeded the original
molecule only against E. coli and C. albicans (Narasimhan et al., 2007).
In our experiment, MIC value was reached neither in the case of sorbic
acid, nor with potassium sorbate (Figs. 5–7A and B) against the tested
microbes. In many previous publications, it was found, that, the efficacy
of sorbic acid and potassium sorbate decreases with the elevation of pH
(Lues et Theron, 2012; Hwang et al., 2015). Wang et al. found, that
potassium sorbate had a MIC value of 0.4 w/w% against E. coli and S.
aureus at pH 5, but 1.6 and 3.2 w/w% if the pH was adjusted to 7
(Wang et al., 2018). Isopropyl sorbate could actively kill E. coli (Fig. 7D)
and C. albicans (Fig. 5D) cells and inhibit the growth of S. aureus
(Fig. 6D) at pH 7, which is a remarkable feat compared to other sor-
bates. Lipophilicity and long-term acidification of the cytosol are cri-
tical in the antimicrobial mechanism of weak acids (Ullah et al., 2012)
and we suspect, that isopropyl sorbate could more effectively pass
through the cell membranes without the need of specific proteins
(Piper, 2011), than the other tested compounds. Bacterial esterases are
known to be part of antibiotic resistance in several species and thus
(Egorov et al., 2018), they could possibly cleave the sorbate esters, as
known in the case of parabens (Valkova et al., 2003).

Two generally accepted and applied preservatives, sorbic acid and
potassium sorbate and two lipophilic sorbate derivates were tested on
human colorectal cells, G. mellonella larvae and various pathogens in
order to test their biocompatibility and antimicrobial properties.
Further studies are needed, to specifically describe, the mechanism of
action of sorbate esters, whether they have antimicrobial action on
their own, or they act as prodrugs and can only be effective after en-
zymatic conversion to sorbic acid. While ethyl sorbate had no sig-
nificant inhibitory activity against the tested bacteria and fungi, iso-
propyl sorbate demonstrated a significant bactericide and fungicide
potential. As there is only one methyl group difference between the
ethyl sorbate, which had limited effect against the tested microbes
based on our experiments, an antimicrobial study with more sorbate
esters would be able to clarify the lipophilicity-antimicrobial action
correlations. Our results indicate, that the more lipophilic sorbate de-
rivates could be promising antimicrobial preservatives, but their low
water solubility can limit their application. In order to properly assess
the safety biocompatibility profiles of these compounds, beside our
study, different in vitro and in vivo genotoxicity and toxicity studies are
also required including vertebrates and human cell lines.
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