
Serbia & Montenegro, Belgrade, November 22-24, 2005

Intelligent Classification of Sketch Strokes

Shengfeng Qin, Member, IEEE

Abstract - This paper presents an intelligent method for
classifying pen strokes in an on-line sketching system. The
method, based on adaptive threshold and fuzzy knowledge
with respect to curve's linearity and convexity, can identify
sketch strokes (curves) into lines, circles, arcs, ellipses,
elliptical arcs, loop lines, spring lines and free-form B-spline
curves. The proposed method has proven to be fast, suitable
for real-time classification and identification.

Keywords - Fuzzy knowledge, sketch recognition, curve
classification, curve fitting.

I. INTRODUCTION

THE current CAD systems, operated by icons, tool-bars
and menus, have not brought CAD close enough to

product conceptual design stages in which designers use
various sketches with vague and imprecise geometry to
rapidly express their creative ideas.

This paper presents a sketch based interface in a CAD
system to assist designers during conceptual design stages
by attempting to capture the designers' intention and
interpret sketches into more geometrically exact 2D vision
and further into 3D models. The paper focused on the
intelligent stroke classification.
The role on-line classification of sketch strokes is to

convert the original digitized pen strokes in sketch into the
intended 2D geometric objects and group them together it
necessary. Rubine [3] investigated statistical pattern
recognition techniques to specify gestures by examples.
Jenkins and Martin [4] used a fit-and-test method to
classify sketches. This system excluded ellipses and
elliptical arcs. Chen and Xie [6] applied a fuzzy logic
concept to approximate pen strokes. Yu [2] used mean
shift to recognise freehand sketches. All the above method
has their merits and flaws such as scalability.

In our research, the system gets a sequence of 2D input
data from mouse button and movement events. From this
data, information about the speed, acceleration, direction,
angle, and accumulative chord length is extracted. This
information is used to infer the user drawing intention, and
then unintentional and redundant points are filtered. The
filtered sketches are then segmented into several sub-
curves if any (Qin et al, 2001). Finally, each of curve
segments is classified and recognised. This paper presents
details of classification and identification.

S. F. Qin is with the School of Engineering and Design, Brunel
University, Middlesex, Uxbridge, UB8 3PH, UK; (e-mail:

; phone:+44-1895-266335; fax: +44-1895-
269763).

II. CLASSIFICATION

In order to find suitable 2D primitives for fitting a
segment of sketches, it is very important to be able to
correctly classify a sub-curve as a line, a conic curve or a
free form curve. A curve classification follows a four-step
procedure (Figure 1).

Classification

Detect if the segment is a straight
line by its linearity

Detect if it is a free-form curve by
finding inflection points or changes
of convexitv

Determine if it is a spiral line
(freeform curve) by checking self-
intersection points

Classify it into a circle, an ellipse,
or arcs by a conic least-square

fitting

Figure 1. Curve classification procedure

A. Classification of lines
A curve was classified according to three preference

orders: linearity (or straightness), convexity, and
complexity of shape, not only by complexity, as in [4,6].
We considered the curve classification as an ill-condition
problem, depending on applications. For example, a curve
shown in Figure 2 (a) represents a straight line. But, if it is
viewed at a fine scale, changes of convexity will be seen.
Theoretically speaking, a curve with some changes of
convexity cannot be a straight line or any conic section. To
avoid this scale problem and quickly classify a curve as a
straight line, we firstly computed the curve's linearity, and
then used it to classify the curve. The linearity of a sketch
segment is a value of the distance between two end points
divided by its accumulative chord length between them.
For example, the linearity for a strict straight line segment
should be 1. So, before a sub-curve is interpreted, its
linearity is used to evaluate the possibility to be a straight
line. For instance, if a value of linearity is 0.95, it means
that the corresponding curve has a 95% possibility to be
treated as a line. In our system, if a curve's linearity is
greater than a threshold of 0.98, the curve will be
identified as a straight line. This threshold can be selected
by users according to their drawing skills. In contrast to
least squares line fitting and testing, computing linearity is
easier. This linearity threshold can be computed by an

1-4244-0049-X/05/$20.00 c 2005 IEEE

1374

EUROCON 2005

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/334426?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

adaptive threshold function of average drawing speed. If
users draw the sketch very fast or roughly, the lower
threshold is expected. If they draw the sketch carefully and
slowly, the higher threshold should be exploited. This is
because slow drawing implies that the users are paying
more attention to each point, and hence, each point has a
more accurate geometric meaning. Furthermore, the better
the drawing skills, the lower the threshold.

Pi

APi+l
,_I

(a) (b)

Figure 2. Linearity and convexity

B. Classification offree-form curves
Secondly, if a curve is not a straight line, we check

whether it has changes of its convexity from convex to
concave or vice versa by detecting inflection points and
changes in the drawing directions. If the curve has some
inflection points, it will be classified as a free-form curve.
Sometimes, the system may fail to find inflection points; In
this case, the system will further detect changes of
convexity by the following steps (Figure 2 (b)):

(1) Sub-divide the curve by its arc length. Stepping
length could be 5-10% of the total of its
accumulative chord length. This step length could be
selected by users in accordance with precision
requirement and scales.

(2) Compute a convexity vector as a cross product of two
vectors: Ki = Vi, i-l X Vi+1, i where

Vi,i-1 = Pi Pi_,, Vi+1,i = Pi+, - Pi. From the
vector Ki , the drawing direction and convexity of the
shape can be received. If all Ki > 0, they point out of
the screen (or paper), which means the drawing
direction is anti-clockwise along with a left-hand
bend. If all Ki < 0, the drawing direction is
clockwise along with a right-hand bend. If Ki =0, the
drawing direction is along a straight-line. At change
points of convexity, the two adjacent Ki should
change their signs, which means the convexity of the
curve changes from convex to concave, or vice versa.

(3) Use the dot product of Ki and Ki+lto detect
changes of convexity, if the product is negative;

(4) Classify a curve as a free-form curve if it has some
changes of convexity.

Thirdly, if there are no inflection points in a curve and
no changes in its convexity, but some self-intersection

points exist, the curve would be identified as a free form
curve representing a loop curve. If any of the arc lengths,
which are out of the closed segment, is greater than 20% of
the total arc length, the curve should be a free-form curve.
Figure 3 (a) shows a normal over-drawn case, in which the
two arcs lengths, out of closed segment, are less than the
threshold. Figure 3(b), 3(c), and 3(d) give examples of
loop curves, in which at least one arc length is greater than
the threshold on one side and on two sides.

(n) j(b) (c) (d)

Figure 3. Classification of conic sections and freeform
curves.

In order to find if a curve has self-intersections, a simple
procedure with two nested loops is adopted. For the outer
loop, let the variable i go from the start point to the end
point with a step of 1. For the inner loop, let the other
variable j go from i+2 and increments by 1, until the end
point is reached. Within the inner loop, we first find the
intersection point between line segments (Pi, Pi+,) and (Pj,
PM+1). If the intersection point is on either of the two line
segments, a self-intersection point is found. Then we
record the intersection position at points i and j, and assign
i=j+2 to break the inner loop and continue in the outer
loop. Finally, all self-intersection points are extracted. This
procedure is quite simple and practical.

C. Classification of conics
Finally, if a curve is not a freeform curve, it will be

fitted with a general conic equation (see details in Section
3). It can then be further classified as a free form curve, an
ellipse (including a circle), an arc, and a hyperbola, or a
parabola. This step mixes the fitting and classification.

III. IDENTIFICATION OF CONIC AND B-SPLINE CURVES
After the classification, each curve should be fitted with

a meaningful 2D primitive or a B-spline curve to represent
its corresponding sketching points. In general, let the
number of sketch points be n.

A. Conic curves
After a sketched segment is considered as a conic

curve, the problem remaining is to fit a conic section to a
set of sketching points {Sj, j=l,..., n}. A general conic
section can be described by the following equation:

Q(x, y) = ax2 + 2hxy + by2+ 2gx + 2fy + c = 0.
Many parameter estimation techniques [7] in vision

community are developed for finding the coefficients of
this equation. In this paper, we investigated the weighted
Least squares fitting based on algebraic distances, because

1375

geometric distances are difficult to evaluate. Thus, the
fitting problem is to minimize a function,

n

E = wi(ax 2+ 2hxy + byi2+ 2gx± + 2fy± + 1)2

Where wiis a weight for point (xi, Yi). We assume that

Wi is positive. It is relatively large for low speed drawing,

and relatively small for high speed drawing because human
intention represented at each point, in terms of speed, is
different. Normally, the higher the drawing speed, the less
the contribution of the intention is. To obtain the minimum
value of E, its five partial derivatives with respect to
parameters: a, h, b, g, andf are set to 0. We then obtain
five simultaneous linear equations (the symbol E implies
summation for i from 1 to n):

(E wx 4)a + (E wix3yi)h + (E wx 2y 2)b

+(Ewix3)g+(Ewixiy)f+(Ewix) =0,
(E wix3y)a + (E wixiy2)h + (E wix y3)b

+(wiXiyi)g +(Ewix y)f+(wixYi) 0,°

(wxiy2)a+(wxi y3)h+(Zwyi)b
+(wx y2i)g + (E wy3X)f +(E Wiy2)= 0,

(E wix3)a + (E wixiy)h + (E wix yi)b

+(wi)g+(wxi Yi) +()0i
(y wix'yi)a + (w ix y2)h+ (wiy)b

+(Zwixi yi)g + (EWiy2i)f + (E wjYi) =0.

By solving the above equations, the coefficients (a, h, b,
g, and f) can be obtained. Once these coefficients are
found, we use the equation for computing the LS fitting
error. If the mean fitting error over n points is greater than
a threshold value of 0.001 (obtained from tests), the sub-
curve will be classified as a free-form curve. If not,
categorising a given conic (1) into one of the three possible
forms, can be carried out using the following three
invariants (Bowyer and Woodwark, 1983):

A\=a(bc- f2) h(hc gf)+g(hf -gb),
,S = ab -h2 2,
s = a +b

If A = 0, then the conic degenerates into a line(s), or a
point (which may not always exist), otherwise:
if 3< 0, the conic is a hyperbola;
if 3= 0, the conic is a parabola;
if 3> 0 and As < 0, the conic is an ellipse.

The five parameters of a general ellipse: the central
point (Xr,sns), the two radii (Ra,Ri) and the directional
anglefof its major axis, can be received as follows:

xac (bgh)I(hc2_ ab),

Y (af -gh)h -ab-

0= - arctg (2h
2 a-b

Ra (-c'Ia')1/ 2
Rb (-c'/b')1/2

where
a'= acos 2 0+bsin20+ 2hsinOcosO
b'= asin20+bcos20-2hsincos9

c'= ax 2 + byc2 +2hxcy + 2gxc +2fc + cc
C C

If the ratio of RaIRb 1, we classify the ellipse as a

circle, and simply take the centre of the ellipse as its
centre. The average of Ra and R is then the circle radius.

B. Freeform curves
For freeform curves, a B-spline curve is usually used to

fit a set of points, it has flexible local control properties.
There are two main ways for curve fitting: interpolation
and approximation. In general, the interpolation is easier
than the approximation. When interpolating, the number of
control points is automatically determined by a chosen
degree and the number of data items. The corresponding
knot vector can be obtained in advance. Also, there is no
curve error to be checked. When approximating, we don't
know in advance how many control points are required to
obtain the desired accuracy £; the value of £ is usually not
known, and hence the approximation methods are
generally iterative (Piegl, 1995). For real-time application,
interpolation approaches are more suitable.

For a given set of sketch points [Sj], we intent to
interpolate several key points fDi], i = 0, 1,., m of fSj]
with apth degree B-spline curve, that is

C(u) = Ni,p(u) I-
i=O

where Pi are the m+l unknown control points. N. (u) is
pth-degree B-spline basis function.

If we give a parameter value ik for each key point Dk,
and select an appropriate knot vector U={uo, ul....
um+p+l 1, we can build up (m+1) x (m+1) system of linear
equations

m

Dk = C(Nk)Z Nip (ukF I (l)
i=O

In our system, we chose cubic B-spline fitting, that is,
p=3. For the key points, we prefer to use as few as
possible, in order to fit the sketched curve with respect to
the computational efficiency. Each curve between two
adjacent inflection points (including two end points and
change points in convexity) is sub-divided into SEG
segments with an equal arc length. Consequently, two end
points and all (SEG-1) sub-dividing points are considered
as key points. Clearly, for each sub-curve, there are
(SEG+1) key points. Thus, the number of key points for a
whole curve, m, can be determined by the number of sub-
curves. The default value for SEG is 8, but it can be
selected by the user.

To solve equation (1), a knot vector must be
determined in advance. We assume that the parameters in
the knot vector lie in the range [0, 1]. In this system, we

1376

use a chord length based method with average technique,
recommended by [7], to construct the knot vector. First Ufk
is computed by

fU0 = 0,U = 1

Uk Uk-l + 1k-I 1d,k = 1,2,..., m -1, (2)

Where d is the total chord length, and 1k is accumulative
chord length at point k. Then the following technique of
averaging is adopted

UO = ul... =up = 0U *- Um+p+l 1,
I j+p+l 3Ujp= yfj, jj= 1,2,...,m p. (3)+P i=j

Finally, The equations (1), (2) and (3) are combined to
determine the control points and fitted cubic B-spline.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

This simple and robust classification approach has been
implemented in a sketch-based conceptual design system.
Figure 4a is employed to demonstrate identification of
lines, arcs, circles, ellipses and elliptical arcs (sketches to
the left and fitted curves to the right). The top sketches
show examples of straight lines and a whole circle. The
next two sketches illustrate the application of the approach
for general conics fitting and classification of arcs and
elliptical arcs. The last one gives an over-drawn case of an
ellipse with an open gap between starting part and ending
part. The system classify it a close curve by computing its
starting and ending angles properly. Figure 4b gives
examples of loop curve classifications by using self-
intersection points. The top sketch is with short arc
lengths, out of the closed section, it is treated as a normal
over-drawn case, and classified as an ellipse. The next is
with a long arc length, out of the closed section, it is
regarded as a free form curve. The middle one
demonstrates loop curve fitting with multiple self-
intersections. The bottom sketch is without any inflection
or self-intersection point, and would be fitted with a LS
ellipse, but the error of this fitting is greater than a given
threshold 0.001, thus, it is finally fitted with a B-spline
curve. The sketch just above the bottom one, is with some
inflection points or changes of convexity, and is identified
as a free-form curve with a B-spline fitting.

(a) Primitives (b) Loop curves

Figure 4. Curve classifications

Figure 5a. Fast sketching Figure 5b. Slow sketching

Figure 5a and Figure 5b are used to show the effects of
the drawing speed. The two sketches look like arc shapes
with similar curvatures. However, the first sketch was
drawn very fast, which usually means that users pay
relatively little attention to it. The weighting for it was a
lower value and finally, it was classified as a straight line.
The second sketch was produced slowly, which means that
users intended to draw an arc. Thus, bigger weightings
were applied to it, and it hence was fitted with an arc. In
this way, the system can intelligently interpret the users'
intention.

V. CONCLUSION

This classification method employs some heuristic
knowledge in terms of linearity and existence of inflection
points, or changes of convexity, in order to quickly classify
straight lines and free form curves, and then let only conics
alone. The results show that it is very practical. Adaptive
weighting and threshold scheme for linearity add a useful
feature for capturing user intent. Thus, the system can
intelligently classify curves.

Furthermore, the proposed method can distinguish real
free form curves from various over-drawn cases of conics,
by checking self-intersection conditions. This allows users
to draw in a more natural way in terms of various over-
drawn sketching. In the published work of [6], [4], It
seems that no attention was given to over-drawn cases.

The examples show that for real-time sketches, the
system can give proper classification and curve fitting in
variety of 2D shapes: straight lines, circles, arcs, ellipses,
elliptical arcs, spring and loop lines and free-form curves.
This technique is therefore suitable for dealing with vague
and imprecise information from sketching.

References
[1] A. Bowyer, J. Woodwark, A programmer's geometry, Butterworths.

England, 1983.
[2] B. Yu Recognition of freehand sketch using mean shift. IUI'03,

204-210, 2003.
[3] D. Rubine Specifying gestures by examples. Computer Graphics,

25(4): pp. 329-337, 1991,
[4] D.L. Jenkins, R.R. Martin, Applying constraints to enforce users'

intention in freehand 2-D sketches. J. Intelligent Systems Eng., Vol
1, pp. 31-49, 1992.

[5] L. Piegl, The NURBS book, Springer-Verlag, New York. 1995,
[6] P. Chen, S. Xie, Freehand drawing system using a fuzzy logic

concept. J. CAD. 28, pp.77-89, 1996.
[7] P.L. Rosin, A note on the least squares fitting of ellipses. J. Pattern

Recognition Lett. 14, pp.799-808, 1993.
[8] S.F. Qin, D.K. Wright, I.N. Jordanov, Online segmentation of

freehand sketches by knowledge-based nonlinear thresholding
operations. J. Pattern Recognition. 34, pp. 1885-1893, 2001.

1377

