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a b s t r a c t

Working with machine learning models has become an everyday task not only for software engineers,
but for a much wider spectrum of researchers and professionals. Training such models involves finding
the best learning methods and their best hyper-parameters for a specific task, keeping track of the
achieved performance measures, comparing the results visually, etc. If we add feature extraction
methods – that precede the learning phase and depend on many hyper-parameters themselves – into
the mixture, like source code embedding that is quite common in the field of software analysis, the
task cries out for supporting tools.

We propose a framework called Deep-Water that works similarly to a configuration management
tool in the area of software engineering. It supports defining arbitrary feature extraction and learning
methods for an input dataset and helps in executing all the training tasks with different hyper-
parameters in a distributed manner. The framework stores all circumstances, parameters and results of
training, which can be filtered and visualized later. We successfully used the tool in several software
analysis based prediction tasks, like vulnerability or bug prediction, but it is general enough to be
applicable in other areas as well, e.g. NLP, image processing, or even other non-IT fields.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Machine learning based prediction models (or Artificial Intelli-
gence by its marketing term as adopted by the wide public) play
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an important role in many of today’s software engineering and
research tasks. There is an abundance of problems, like image
recognition, natural language processing, recommendation sys-
tems, just to name a few, which can be effectively solved with
machine learning models (e.g. deep learning). Therefore, many
software engineering and research tasks nowadays involve steps
like finding the best learning methods and their best hyper-
parameters for a specific task, keeping track of the parameters
used and achieved performance measures, comparing the results
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visually, etc. Feature engineering, be it manual or automatic, adds
another dimension to this already complex problem space. This
brings in a whole new set of activities and artifacts that software
engineers and researchers need to manage in their everyday
work.

In this paper, we propose an open-source tool called Deep-
Water Framework (DWF)1 that aims to help researchers and
practitioners, who experiment/work with machine learning mod-
els. DWF works similarly to a configuration management tool in
the area of software engineering. It supports defining arbitrary
feature extraction and learning methods for an input dataset and
helps run all the training tasks with different hyper-parameters
in a distributed manner. Its server component is responsible for
scheduling the feature extraction and learning tasks and storing
all the parameters and results of the training, while an arbitrary
number of worker nodes execute the assigned tasks and report
back the results. DWF supports filtering and searching the ob-
tained data and even visualization with customizable dashboards.

We designed the tool to help our software analysis based
research work, like predicting vulnerabilities or software bugs
based on features extracted from the source code (e.g. source
code metrics or source code embeddings). However, its architec-
ture has been designed with extensibility in mind, so the tool
should be easy to extend with new feature extraction mecha-
nisms or learning methods and adapt it to other (possibly even
non-IT) research fields or the industry.

The benefits of using DWF are:

• It supports scaling the hyper-parameter search of machine
learning models by running the different configurations on
separate working nodes from which an arbitrary number of
instances can be registered.

• It integrates data pre-processing (e.g. standardization or re-
sampling) and feature extraction with the model training,
therefore, manages a whole experiment in one place.

• It automatically collects and stores all the relevant informa-
tion during model training (e.g. learning parameters, 10-fold
cross-validation results, hardware setup of the worker ma-
chine, or training times), which ensures full reproducibility.

• It automatically eliminates unnecessary model training, thus
reduces learning times, by searching for already existing
configurations in the database.

• It aids result comparison and evaluation through advanced
filtering, searching and data visualization features.

• It is suitable for non-technical users2 as well (e.g., default
learning parameters or hyper-parameter search space is
suggested by the tool).

Several existing tools [1–6] solve a similar issue as our pro-
posed framework, which clearly shows the significance of the
problem domain. However, most of them aid the configuration
management of machine learning models at a very technical, low
level (for a detailed comparison, see Section 2). We intended to
provide a framework that supports researchers and practitioners
to get involved in (e.g. software analysis based) machine learning
experimentation with minimal effort and self-education, still ob-
taining professional results in a wide range (though admittedly
not all) of standard learning tasks.

2. Related work

There exist a number of similar tools to the one proposed in
this paper [1–8]. Some common properties of such tools are that

1 https://github.com/sed-inf-u-szeged/DeepWaterFramework.
2 Can mean IT professionals or researchers with limited machine learning

background, but also non-IT people willing to use machine learning models.

they (i) focus mainly on deep learning frameworks, like PyTorch,
Tensorflow, Keras; and (ii) assume that their users program their
own neural networks using these frameworks. Typically, the aim
of these tools is to find the best neural network model structure
and settings for a given problem.

Some solutions, like DVC [9], focus on version controlling
artifacts, provide a public benchmark, and support code sharing
to make it easier to adapt a solution in different areas [10], or
allow people to re-run others’ experiments [11]. However, it is
generally true that these tools are best suited for researchers with
deep technical knowledge in machine learning, who use deep
learning as their primary method for model building. Nonethe-
less, researchers who are not machine learning experts or not
even from the IT field may also want to use machine learning
techniques. DWF provides an out-of-the-box solution to apply
for common prediction tasks with the option of easy extensi-
bility. Therefore, DWF targets a wider range of possible users
than already established tools, who need not know what are
the typical hyper-parameter values to search for, have limited
technical knowledge in creating their own DNN models, or just
want to use standard machine learning algorithms like regression,
decision trees, etc.

Another distinction between DWF and the other tools is the
way it supports distributed training. Usually, the existing tools
that provide such feature at all, achieve it via (payed) services in
the cloud (e.g., Amazon or Google). DWF allows the users to build
their own worker clusters from existing hardware (utilizing GPUs
for instance) in their premises, which might be a better, cheaper,
and faster option for many use-cases. Additionally, DWF supports
end-to-end model training as it integrates data pre-processing
and feature extraction into the whole learning process, which is
also a unique feature compared to other solutions.

Table 1 highlights the main properties of the various frame-
works mentioned above. The table shows that most of the frame-
works share some common features (e.g. result data versioning,
graphical dashboards), while there are also some differences in
the functionality they provide (e.g. model versioning, ML work-
flow support). In addition, the licenses of these frameworks also
vary, which affects their adoption by a wide range of users.

Therefore, we argue that DWF has its own benefits regard-
ing a set of features, which makes it a viable choice in many
scenarios. Most notably, only Azure ML Studio supports training
models out-of-the-box, without having to write a single line of
code. However, it is a very expensive, heavy-weight proprietary
solution (together with Amazon SageMaker) not every user can or
is willing to afford. Furthermore, DWF is not meant to compete
with such complex proprietary solutions, but instead offer a free
and open-source alternative to the widest possible set of users.

From the open-source alternatives, however, DWF provides
the easiest, quickest adoption of ML experimentation with no
costs and no need to master any ML framework to create a model
to train. Additionally, to better support users with limited ML
skills and/or having constraints in finding optimal parameters of
models, DWF provides pre-defined hyper parameter profiles to
automatically search for parameters using grid-search. Despite
the fact that most of the frameworks support hyper-parameter
optimization in one way or another, most of them still require
the users to input the list or range of the parameters they want
to test. This is of course something an experienced user might
want to apply, but pre-defined profiles help less knowledgeable
users to quickly start experimenting.

3. Design of the Deep-Water Framework

3.1. Architecture and communication

The framework relies on a loosely coupled cluster architecture
(see Fig. 1). On the one hand, there is a master node (running

https://github.com/sed-inf-u-szeged/DeepWaterFramework
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Table 1
Comparison of ML frameworks.
Tool Supported ML frameworks Coding-less model training Integration type Distributed execution Results dashboard

DWF Tensorflow, scikit-learna Yes Manual Self-hosted Yes

Polyaxon All popular No Wrapping Cloud or self-hosted Yes
Studio.ml Any Python ML framework No Wrapping Cloud or self-hosted Yes
Azure ML Studio Azure ML Yes Independent Cloud Yes
Mlflow Any No Manual Self-hostedb Yes
Sacred Any Python ML framework No Manual No 3rd party
Comet All popular No Wrappingc Cloud Yes
Amazon SageMaker SageMaker SDKd No Independent Cloud Jupyter Notebook
Weights & Biases Any Python ML framework No Manual Cloud or self-hosted Yes
DeepDIVA PyTorch No Wrapping No 3rd party
CodaLab Any No Wrapping Cloud or self-hosted Yes
DVC Any No N/Ae Cloud Terminal only

Tool Data versioning Model versioning Workflow support Hyperparameter search support License

DWF Yes No Fixed List, range, pre-defined profiles Apache 2

Polyaxon Yes Yes Code Range, search strategies Apache 2/proprietary
Studio.ml Yes No Code List Apache 2
Azure ML Studio Yes Yes Visual List, range Proprietary
Mlflow Yes Yes Code List, range Apache 2
Sacred Yes No Code List MIT
Comet Yes Yes Code List, range, search strategies Proprietary
Amazon SageMaker Yes Yes Code AutoML Proprietary
Weights & Biases Yes No Code List, range, search strategies Proprietary
DeepDIVA Yes Yes Code Range, SigOptf LGPL 3
CodaLab Yes Yes Code List Apache 2
DVC Yes Yes CLI pipeline N/A Apache 2

aModels from any Python ML framework can be added, but one needs to extract metrics to be uploaded.
bRequires a distributed environment, like Apache Spark, Databricks, etc.
cMinimal manual code addition is required in the code.
dPossibility to integrate with other frameworks, like Tensorflow.
eNo real code integration takes place, but the user can configure what produced metric files they want to track.
fhttps://sigopt.com/.

the DWF-server module), which is responsible for scheduling the
tasks and storing their results to elasticsearch.3 It also provides
a Web-based user interface to supervise these information, while
Kibana4 is used to create customizable dashboards for result data
visualization. On the other hand, there are several worker nodes
(running the DWF-client module). These nodes are working on
specific tasks given by their master node. The framework uses
a common storage space to share files among workers and the
master, which is currently a Samba share, but it could be changed
easily to an other solution (e.g., HDFS).

The communication works through a request–response model
from the workers to the master node using a REST API. When a
worker connects to the master for the first time, it sends its own
parameters (e.g. operating system, software version, hardware
information, see 3.3) in a HTTP request and receives a unique
client ID for later identification. After the first connection, the
worker nodes send a ping request every 30 s to the master
node, so it knows that the workers are still alive. The master can
respond with a task (i.e., a specific feature extraction or learning
with appropriate parameters) to these ping requests, which the
workers can execute. After a task is completed on a worker node,
its result is sent back to the master, which stores it into the
database.

The DWF-client executes the tasks using two modules:

• FeatureAssembler — a special module that can extract fea-
tures from the underlying information source (program
source code in our cases, but can be natural language texts,
images or other), which will form the input data table for the
model training. Some typical features widely used in learn-
ing tasks with various inputs are word2vec [12] embeddings

3 https://www.elastic.co.
4 https://www.elastic.co/products/kibana.

for natural language text, source code metrics for program
code, pixel values for images, etc. Currently, this module
supports an AST-based source code embedding algorithm
and a simple CSV based file input, but it is designed to be
easily extensible with new feature extraction algorithms.
To add a new feature assembler, users need to implement
the appropriate interfaces and create a plug-in following
the tool documentation to assemble a CSV with the desired
features for learning.

• DeepBugHunter — the machine learning module [13] that
can apply many well-known machine learning algorithms
to the input data in order to build prediction models. It
wraps scikit-learn5 and Tensorflow [14] to provide the fol-
lowing learning methods: Naive Bayes; Support Vector Ma-
chine; K-nearest Neighbors; Logistic Regression; Linear Re-
gression; Decision Tree; Random Forest; Simple Deep Neural
Network; Custom Deep Neural Network; ZeroR.

3.2. Design decisions

The server components (DWF-server, elasticsearch and Kibana)
on the manager node are running in a docker stack. This makes
it easier to distribute, deploy, and manage all the services. In
contrast, workers run on bare metal. The rationale for this is
that learning might require GPU access and special CPU features,
which would be hard to provide in a virtualized environment.
Nonetheless, scaling is still possible by running multiple DWF-
clients on the same worker node. The DWF-server is implemented
in Python, using the Flask web-framework.6

As for the data storage, we selected elasticsearch because it is
great at indexing and searching the data. Moreover, elasticsearch

5 http://scikit-learn.org/stable/.
6 https://www.fullstackpython.com/flask.html.

https://sigopt.com/
https://www.elastic.co
https://www.elastic.co/products/kibana
http://scikit-learn.org/stable/
https://www.fullstackpython.com/flask.html
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Fig. 1. Architecture of the Deep-Water Framework.

Fig. 2. Experiment list screen.

is a document based NoSQL database, which makes it really
convenient to integrate with the existing JSON data we had.
Additionally, Kibana is tightly coupled with elasticsearch, which
provides a great way to define dashboards on top of the data
without the need for programming.

To have a common storage space that we can use to share large
data files (csv data files created by feature extractors and used by
learning algorithms, saved model files, etc.) among the worker
nodes and the master node, we use a Samba share for the time
being. However, as a final solution, we plan to set up a distributed
file system for this purpose.

3.3. Recorded data

The framework records data that can be categorized into three
groups: task related data, architecture related data, and environ-
mental data.

Task related data covers information about the task: input
parameters, the used algorithms, status information, and results.

Results may vary based on the executed task, but mostly these
are performance measures, such as accuracy, precision, recall,
F-measure, completeness, confusion matrix, etc.

Architecture related data incorporate information related to
the client–server components and their communication: the
client (i.e., worker node) hardware information, execution logs,
package versions, API endpoints, etc.

Lastly, the environmental data stored by the framework are
settings that are essential for the reproducibility of the experi-
ments. These are, for instance, environmental variables, random
seeds or timestamps.

4. Usage and showcases of the framework

4.1. Starting and running the framework

To start the server component first time, one needs to build
the docker image, then start the whole server stack described in
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Fig. 3. Add new learning configuration form.

the docker-compose.yml file. Starting scripts that execute the nec-
essary sequence of actions in Windows and Linux environments
are provided.

To run the client, first the required packages (listed in require-
ments.txt) need to be installed. Then, the related configuration
files (client_params.json, config.json) should be modified to fit the
local environment. Finally, the client can be run by executing the
client.py Python file. For more technical details, please refer to the
README.md file provided in the GitHub repository.

4.2. The Deep-Water Web interface

DWF groups the learning tasks into so-called ‘‘experiments’’.
One experiment contains various learning settings belonging to
the same research task (e.g., bug prediction of Java classes). The

Fig. 5. Task details screen.

main page of the application (see Fig. 2) lists existing experi-
ments, where the users can track their overall progress (i.e., the
number of running and completed tasks). When a user selects
an experiment from the list or creates a new one, the frame-
work navigates to the particular experiment’s screen (see Fig. 4)
that works as a configuration panel until the tasks are gener-
ated. In configuration mode, the users can add various feature
extraction methods and learning algorithms with specific data
pre-processing steps and hyper-parameters to the experiment.
Feature extraction algorithms produce the data table for learning
methods (e.g. applying source code embedding), which means
that the result of the extraction must be a table of numbers in
CSV format (i.e. the features of the instances and their class label).
The framework allows the users to extend feature extraction
algorithms by implementing a simple interface.

Adding a new learning configuration (see Fig. 3) consists
of three steps. At the top of the page one can find data pre-
processing parameters. Re-sampling upwards means that in case
of binary classification, a specified percent of the less populated
class’ instances are being duplicated, making the distribution
of the two classes more even. Re-sampling downwards means

Fig. 4. Experiment configuration screen.
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Fig. 6. Experiment summary screen.

Fig. 7. Kibana dashboard of the results.

the opposite, some of the more populated class’ instances are
being deleted for the same reason. The user can add an extra
pre-processing step to the extracted numeric feature or label
columns; the available options are binarize, standardize, and nor-
malize. The second step is the selection of the learning algorithm.
After that, the user can define parameters by hand, or can select
from predefined configurations (a set of hyper-parameters for the
learning algorithm). The numeric values can be added by range,
making it easier to generate grid-search for the parameters.

Now that feature extracting and learning configurations are
defined, the next step is the generation of tasks. Tasks are simply
the combination of exactly one feature extraction and a learning
step. Users can add/delete/modify configurations until the exe-
cutable tasks are generated. After the generation step, all the tasks
become runnable and can be executed individually or all at once.
The framework then sends the parameters of the tasks to the
active worker nodes for execution. The tasks consisting of already
executed configurations will not be run unless the user explicitly
initiates it (see Fig. 4). Clicking on the name of a task, the user
can get details of it (see Fig. 5), like execution progress or task
results.

The results of the tasks within one experiment can be com-
pared through the summary view (see Fig. 6). The summary view
is a table of results, where one row contains the result of one
task. In every column, the background of the best value is green.

Clicking on the name of a task navigates the user to the above
mentioned task details screen (see Fig. 5).

The ‘‘Results Dashboard’’ menu redirects to the detailed results
Kibana dashboard (see Fig. 7). This dashboard is defined by us, but
it can be easily modified, extended or replaced using the Kibana
web interface.

For further details, see the tutorial7 contained in the DWF
repository, demonstrating how to apply the framework on a pub-
lic sample data from the UCI Machine Learning Repository [15].

4.3. Showcases of the framework

Showcase 1. Vulnerability prediction of javascript functions. We
successfully used the framework to find the best data pre-
processing method and machine learning algorithm for predicting
vulnerable JavaScript functions [16]. We ran an extensive hyper-
parameter search on a dataset mined from public vulnerability
entries with a fixed set of static source code metrics as predictor
features. In this case, we fixed the feature extraction mechanism
and used a static CSV file as the input for the learning. DWF
helped in recording and comparing all the different results to
find out that K-nearest Neighbors with a 25% down-sampling

7 https://github.com/sed-inf-u-szeged/DeepWaterFramework/blob/master/
GUIDE.md.

https://github.com/sed-inf-u-szeged/DeepWaterFramework/blob/master/GUIDE.md
https://github.com/sed-inf-u-szeged/DeepWaterFramework/blob/master/GUIDE.md
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works best in terms of F-measure to predict vulnerable JavaScript
functions.

Showcase 2. Bug prediction of java classes. Since there is a signif-
icant correlation among software metrics and faults in the source
code, many bug prediction techniques are based on these met-
rics. However, there are more and more solutions where other
automatic feature extractions (i.e., embeddings) from the source
code are investigated. The framework provides an opportunity
to compare embeddings produced in different ways with the
same learning parameters. In our ongoing research we compare
learning efficiency of different embeddings on the unified Java
Bug Database [17] using the framework.

5. Conclusions and future work

In this paper, we presented a tool called Deep-Water Frame-
work, which supports researchers and practitioners working with
machine learning algorithms and creating models. We have only
validated the tool ‘‘in-house’’, but feedback so far is quite positive.

Based on user responses, the main benefits of the tool is the
single interface for experiment setup from data pre-processing
through feature extraction to model training and hyper-parameter
search. Not having to save and search results in excel sheets is
also a very big plus, not to mention that the tool does not run the
same configuration twice, eliminating unnecessary work. Scala-
bility with a worker node cluster that runs the model training is
also very helpful.

The tool received a warm response from the users who already
tried it. Despite the fact that the current version of the framework
is fully operational, we continue its development and will extend
it in many ways. We plan to add a more complex and customiz-
able dashboard to overview learning results, support recommen-
dations about which training algorithm one should use based
on the input data characteristics, improve the task scheduling
algorithm, extend the available feature extraction methods and
learning algorithms, visualize the model training process, sup-
port Hadoop for storing shared assets, add new hyper-parameter
search strategies, etc.
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