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Abstract. The development of brain tumor segmentation techniques
based on multi-spectral MR image data has relevant impact on the clin-
ical practice via better diagnosis, radiotherapy planning and follow-up
studies. This task is also very challenging due to the great variety of
tumor appearances, the presence of several noise effects, and the differ-
ences in scanner sensitivity. This paper proposes an automatic procedure
trained to distinguish gliomas from normal brain tissues in multi-spectral
MRI data. The procedure is based on a random forest (RF) classifier,
which uses 80 computed features beside the four observed ones, including
morphological ones, gradients, and Gabor wavelet features. The inter-
mediary segmentation outcome provided by the RF is fed to a twofold
post-processing, which regularizes the shape of detected tumors and en-
hances the segmentation accuracy. The performance of the procedure was
evaluated using the 274 records of the BraTS 2015 train data set. The
achieved overall Dice scores between 85-86% represent highly accurate
segmentation.

Keywords: magnetic resonance imaging, brain tumor detection, tumor
segmentation, random forest.

1 Introduction

Gliomas represent a common malignant brain tumor with low survival rate and
short life expectancy. Patients with so-called high-grade (HG) gliomas live fifteen
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months in average after the diagnosis, while those with low-grade (LG) gliomas
can live for several years. In the current clinical practice, most of the times brain
tumors are segmented manually, which is time consuming and error prone [1].
With the quickly increasing number of MRI devices deployed in hospitals and
the high costs of training human experts, a strong need arising for automatic
and reliable tumor detection and segmentation methods. Such algorithms could
process the huge amount of acquired MRI data and select those patients which
are suspected of having focal lesions in the brain, and consequently assist the
medical experts in focusing on serious cases.

Multi-spectral MRI is the most frequently used and preferred medical imag-
ing modality in brain tumor detection and segmentation, due to its fine con-
trast and the multiple data channels that offer complementary information. The
Brain Tumor Segmentation (BraTS) Challenges organized jointly with the MIC-
CAI conference, have provided the research community a continuously growing
multi-spectral MRI data set of high quality and great challenges [2, 3].

Earlier solutions to the challenge called brain tumor segmentation based
on MRI data were summarized by Gordillo et al [4]. Recent solutions usually
combine advanced (mostly unsupervised) image segmentation algorithms with
semi-supervised supervised classification algorithms that cover the whole arsenal
of machine learning techniques, namely: graph cut segmentation algorithm [5],
superpixels combined with non-parametric classifiers [6], feature fusion combined
with joint label fusion [7], texture feature and kernel sparse coding [8], Gaussian
mixture models [9], fuzzy c-means clustering in semi-supervised context [10],
fuzzy c-means clustering combined with region growing [11], AdaBoost classifier
[12], extremely random trees [13] combined with superpixel level features [14],
random forests [15, 16] and ensemble of random forests [17], support vector ma-
chines [18], expert systems [19], convolutional neural network [20], deep neural
networks [21], generative adversarial networks [22], and tumor growth model
[23].

This paper proposes a random forest based brain tumor segmentation proce-
dure, including adequate preprocessing and post-processing tasks designed to en-
hance the accuracy of segmentation. Preprocessing eliminates noises and handles
the spectral differences between various MRI records. Post-processing regularizes
the shape of detected tumors and handles the cases with multiple detected le-
sions. The MICCAI BraTS 2015 train data set [2, 3] is employed both for training
and evaluation purposes.

The rest of the paper is structured as follows: section 2 presents the details
of the proposed automatic segmentation procedure, dedicating a subsection to
every processing phase. Section 3 evaluates the accuracy of the proposed method,
while section 4 concludes the study.

2 Materials and Methods

The proposed procedure has the structure shown in Figure 1. It starts with a
multiple purpose preprocessing, which is equally applied to all MRI data records.
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Fig. 1. The proposed segmentation algorithm.

This is followed by splitting the MRI records to train and test data records from
test data records. Train records are fed to the random forest training process.
Trained forests are employed to produce an intermediary label for all test pixels,
which is then reevaluated by a two-step post-processing. Finally, the segmenta-
tion accuracy is measured using statistical indicators.

2.1 Data

The BraTS 2015 train data set [2, 3], upon which this study relies, contains
NLG = 54 low-grade and NHG = 220 high-grade glioma volumes, each consisting
of 4 observed MRI channels (T1, T2, T1C, FLAIR), and human expert made
labeling that can be used as ground truth. An automatic registration algorithm
was used to align all data channels with the T1 data. Each volumes has a 155×
240 × 240 pixel resolution, where pixels represent the tissues from a one cubic
millimeter region. According to the average size of the adult human brain, these
records contain around 1.5 million brain pixels. All other tissues were eliminated.
The size of the glioma within these records ranges between 10 and 330 thousand
pixels.

2.2 Pre-processing

Pre-processing has the role to provide the input data a scenario where a success-
ful segmentation is possible. It has to handle three problems:

– Intensity non-uniformity (INU) is a low-frequency noise with possibly high
magnitude [24–26], which we suppress with the method of Tustison et al [27].

– Absolute pixel intensities values in MRI data have no meaning by themselves,
they have to be interpreted together with their context. The pre-processing
uses a context dependent linear transform to treat MRI volumes and each
of their data channels separately. Intensity values are mapped onto the [0, 1]
interval such a way, that the 25-percentile becomes 0.4 and the 75-percentile
becomes 0.6, and all transformed values that fall out of the target interval
are attached to the closest boundary values.
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– MRI records hold much more information than the individual pixel intensi-
ties found in the 4 observed data channels. The correlation between neighbor
pixels and the imperfection of data channel alignment method motivated us
to generate 100 computed features for each pixels, 25 from each data channel:
minima, maxima and average values from spatial neighborhood, average and
median values from planar neighborhoods of various sizes, together with gra-
dient and Gabor wavelet features. A complete description of the computed
features can be found in our previous work [28].

2.3 Decision making

The Nρ ∈ {NLG, NHG} records are randomly divided to two equal subsets, which
interchangeably serve as train and test data for the deployed RF classifier. Train
records are used to establish a decision making ensemble that can separate lesion
pixels from normal ones. The optimal number of trees was determined empirically
and finally set to nT = 150. The RF was trained using a set of feature vectors
that contained the same number (nF ) of randomly selected feature vectors from
each train record. For LG glioma volumes, nF was ranging between 25k and 800k.
Memory limitations determined the upper limit of nF in case of HG records at
200k. The maximum depth for the RF trees was set to nD = 18, which is also a
value tuned empirically during the evaluation of the procedure.

The trained RF is employed to give a prediction for each pixel of the test
volumes. The decision of the RF is crisp, each pixel is fully assigned either to
negatives (normal tissues) or positives (lesions), but this label is intermediary.
These labels represent the input for the post-processing.

2.4 Post-processing

Post-processing (PP) intends to regularize the shape of detected lesions, which is
likely to cause enhancement to the segmentation accuracy of the segmentation.
PP has two components: a morphological phase, which is followed by a structural
phase. The morphological criterion works in a cubic 11× 11× 11 neighborhood:
it extracts the number of valid brain pixels (nτ ) and the number of pixels with
positive intermediary label (nπ), and sets the current pixel’s label to positive if
and only if nπ/nτ > 1/3.

The structural phase may discard some of the positive labels but never makes
changes in the other direction. First it identifies all contiguous regions formed
by lesion pixels and then it decides whether to keep the labels for whole regions
or discard them. As a first criterion, any contiguous lesion formed by less than
100 pixels is reverted, because they are too small to be reliably called tumor.
Further on, principal component analysis (PCA) is applied to the coordinates of
pixels belonging to a contiguous region, to establish the size of the lesion along
its main spatial axis. Whenever the shortest axis indicates a radius shorter than
two pixels, the lesion is discarded. All contiguous regions which remain with
positive label are finally declared gliomas, and are labelled accordingly.
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2.5 Evaluation criteria

Let us denote by Γ
(π)
i the set of positive pixels and by Γ

(ν)
i the set of negative

pixels of volume i, according to the ground truth, for any i = 1 . . . Nρ. Further

on, let Λ
(π)
i and Λ

(ν)
i stand for the set of pixels of volume i that were labeled

positive and negative, respectively. If we denote by |X| the cardinality of set X,
the main accuracy indicators extracted from volume i are defined as:

1. Sensitivity and specificity, also known as true positive rate (TPR) and true
negative rate (TNR), respectively, are defined as:

TPRi =
|Γ (π)
i ∩ Λ(π)

i |
|Γ (π)
i |

and TNRi =
|Γ (ν)
i ∩ Λ(ν)

i |
|Γ (ν)
i |

. (1)

2. Dice score (DS) is defined as:

DSi =
2× |Γ (π)

i ∩ Λ(π)
i |

|Γ (π)
i |+ |Λ

(π)
i |

. (2)

3. The accuracy can also be defined as the rate of correct decisions, which is
given by the formula:

ACCi =
|Γ (π)
i ∩ Λ(π)

i |+ |Γ
(ν)
i ∩ Λ(ν)

i |
|Γ (π)
i |+ |Γ

(ν)
i |

. (3)

All the above accuracy indicators are defined in the [0, 1] interval. In case
of perfect segmentation, all indicators have the maximum value of 1. For any
accuracy indicator X ∈ {TPR,TNR,DS,ACC}, we will call its average and we
will denote by X the value given by the formula

X =
1

nV

nV∑
i=1

Xi . (4)

The overall Dice score is denoted by D̃S and is extracted with the formula:

D̃S =

2×
∣∣∣∣nV⋃
i=1

Γ
(π)
i ∩

nV⋃
i=1

Λ
(π)
i

∣∣∣∣∣∣∣∣nV⋃
i=1

Γ
(π)
i

∣∣∣∣+

∣∣∣∣nV⋃
i=1

Λ
(π)
i

∣∣∣∣ . (5)

The overall values of the other accuracy indicators, denoted by T̃PR, T̃NR,

and ÃCC, whose formulas can be expressed analogously to Eq. (5).
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3 Results and Discussion

The proposed algorithm underwent two separate evaluation processes, involving
the 54 LG glioma records and the 220 HG glioma records of the BraTS 2015
data set, respectively. Several different values of the train data size parameter nF
were deployed, and other parameters of the RF were set as presented in Section
2.3. Detailed results are presented in the following figures and tables.

Table 1 presents the global performance indicators of the proposed segmen-
tation procedure, average and overall values. The train data size does not have
large impact on the segmentation accuracy: rising parameter nF above 100k does
not bring any benefit, neither for LG nor for HG glioma records. Average Dice
scores obtained for LG data are slightly above 85%, while those for HG data
are in the proximity of 82.5%. This difference can be justified by the quality
of image data in the two data sets. However, the overall Dice scores are much
closer to each other. The difference between average and overall sensitivity is
only relevant in case of HG data. The average and overall values of specificity
and correct decision rate (accuracy) hardly show any differences.

Figure 2 exhibits the Dice scores achieved for individual HG glioma volumes.
Figure 2(a) plots Dice scores against the size of the tumor (according to the
ground truth). Each cross (×) represents the outcome of one MRI record. The
dashed line indicates the linear trend identified by linear regression. The linear
trend indicates that accuracy if better for larger gliomas, but even for small ones
the Dice score is almost 80%. Figure 2(b) plots the individual value of all four
accuracy indicators obtained for HG data, in increasing order. These graphs
clarify the distribution of these values and reveals that their median value is
higher than the average. Similarly, Fig. 3 gives the same representations for the
segmentation outcome of LG glioma records. The shape of the graphs are quite
similar to the ones obtained for HG data. The biggest difference is in the linear
trend against tumor size: Dice scores hardly change with the glioma size, but
even small gliomas are segmented with high accuracy characterized by a Dice
score over 85%. The accuracy indicator values presented in Figs. 2 and 3 were
achieved with train data size nF = 100k.

Specificity values around 99% are very important, as the number of negative
pixels is very high. Lower values in specificity would mean the presence of a lot
of false positives in the segmentation outcome. Correct decision rates are in the
proximity of 98%, meaning that only one pixel out of fifty is misclassified.

Figure 4 shows some examples of segmented brains. One selected slice from
six different HG volumes are presented, the four observed data channels, namely
T1, T2, T1C and FLAIR, followed by the segmentation outcome drawn in colors.
Colors represent the following: true positives are drawn in green, false positives
in blue, false negatives in red, and true negatives in gray. Mistaken pixels are
either red or blue.

The proposed segmentation procedure was implemented in Python 3 pro-
gramming language. The segmentation of a single MRI record, including all
steps according to Fig. 1, requires approximately two minutes without using any
parallel computation.
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Table 1. Main global accuracy indicators

BraTS Train Dice score Sensitivity Specificity Accuracy

volumes data size DS D̃S TPR T̃PR TNR T̃NR ACC ÃCC

LG

25k 0.8484 0.8591 0.8248 0.8257 0.9923 0.9926 0.9806 0.9808
50k 0.8486 0.8582 0.8296 0.8287 0.9918 0.9922 0.9804 0.9806
100k 0.8502 0.8598 0.8349 0.8346 0.9915 0.9918 0.9805 0.9807
200k 0.8500 0.8593 0.8364 0.8353 0.9914 0.9917 0.9804 0.9806
400k 0.8502 0.8589 0.8389 0.8366 0.9914 0.9915 0.9803 0.9805
800k 0.8500 0.8586 0.8392 0.8367 0.9911 0.9914 0.9802 0.9804

HG

25k 0.8248 0.8543 0.8111 0.8477 0.9891 0.9892 0.9789 0.9789
50k 0.8248 0.8539 0.8118 0.8477 0.9890 0.9891 0.9789 0.9789
100k 0.8254 0.8536 0.8146 0.8500 0.9887 0.9888 0.9788 0.9787
200k 0.8253 0.8537 0.8131 0.8486 0.9889 0.9890 0.9788 0.9788
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Fig. 2. Accuracy indicators obtained for individual HG records: (a) Dice scores plotted
against the true size of the glioma; (b) Individual DS, TPR, TNR and ACC values
plotted in increasing order.
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Fig. 3. Accuracy indicators obtained for individual LG records: (a) Dice scores plotted
against the true size of the glioma; (b) Individual DS, TPR, TNR and ACC values
plotted in increasing order.

Fig. 4. One slice from six different HG tumor volumes, the four observed data channels
and the segmentation result. The first four columns present the T1, T2, T1C and
FLAIR channel data of the chosen slices. The last column shows the segmented slice,
representing true positives (|Γ (π)

i ∩Λ(π)
i |) in green, false negatives (|Γ (π)

i ∩Λ(ν)
i |) in red,

false positives (|Γ (ν)
i ∩ Λ(π)

i |) in blue, and true negatives (|Γ (ν)
i ∩ Λ(ν)

i |) in gray, where
i is the index of the current MRI record.
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Table 2. Comparison with state-of-the-art methods

Method Year Classifier Data Dice scores

Tustison et al [17] 2015 RF, MRF BraTS 2013 DS = 0.87

Pereira et al [20] 2016 CNN BraTS 2013 DS = 0.88

Pinto et al [13] 2018 ERT BraTS 2013 DS = 0.85

Pereira et al [20] 2016 CNN BraTS 2015 DS = 0.78

Zhao et al [21] 2018 CNN, CRF BraTS 2015 DS = 0.84

Pei et al [7] 2020 RF, boosting BraTS 2015 DS = 0.850

Proposed method RF BraTS 2015
DS = 0.85, D̃S = 0.86 (LG)

DS = 0.826, D̃S = 0.854 (HG)

MRF - Markov random field, CRF - conditional random field
ERT - extremely randomized trees

4 Conclusions

This paper proposed a random forest based procedure for fully automatic seg-
mentation of brain tumors from multi-spectral MRI data. The segmentation
was accomplished in three main steps. Preprocessing was aimed at image data
enhancement and feature generation. The random forest was trained to sep-
arate normal pixels from positive ones, based on which it performed an initial
classification of test pixels, providing them intermediary labels. Finally, the post-
processing reevaluated the intermediary labels and produced regularized shapes
to the detected tumors. The procedure was trained and evaluated using the
BraTS 2015 train records. The achieved segmentation accuracy is characterized
by an overall Dice score between 85-86%, both in case of LG and HG glioma
records, which is competitive with respect to state-of-the-art methods, as indi-
cated in Table 2.
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