
Learning to Generate Ambiguous Sequences

David Iclanzan and László Szilágyi

Sapientia University, Târgu-Mureş, Romania
david.iclanzan@gmail.com

Abstract. In this paper, we experiment with methods for obtaining
binary sequences with a random probability mass function and with low
autocorrelation and use it to generate ambiguous outcomes.
Outputs from a neural network are mixed and shuffled, resulting in bi-
nary sequences whose probability mass function is non-convergent, con-
stantly moving and changing.
Empirical comparison with algorithms that generate ambiguity shows
that the sequences generated by the proposed method have a significantly
lower serial dependence. Therefore, the method is useful in scenarios
where observes can see and record the outcome of each draw sequentially,
by hindering the ability to make useful statistical inferences.

Keywords: neural networks · generative adversarial networks · objec-
tive ambiguity · Knightian uncertainty

1 Introduction

Many real world processes involve a high degree of uncertainty and modelling
them is an important and challenging aspect of the analysis of complex systems.
Typically it is assumed that uncertainty should be modelled in the form of risk,
where the uncertainty can be described with a probability distribution. However,
uncertainty is a complex concept that goes beyond risk; there are also unpre-
dictable events where probabilities cannot be assigned to the possible outcomes.
[9] explicitly distinguishes risk from so called Knightian uncertainty, on the basis
of whether (objectively or subjectively derived) probabilistic information about
the possible outcomes is present or not.

For example, if urn A contains n red and blue balls in equal proportion while
urn B contains n total red and blue balls but the number of each is unknown: (i)
the probability of drawing a red ball from urn A is 1/2; (ii) no such probability
can be assigned in the case of urn B.

Looking at the sources of unpredictability, we can distinguish between igno-
rance, where probabilistic information about the external events that affect the
outcomes are withheld or hidden; and true ambiguity, where there is a lack of
any quantifiable knowledge about the possible occurrences [6].

Typically, experiments that need to convey uncertainty[3] have chosen to
achieve this by withholding information; here an objective probability exists,
but the subjects are placed in a state of unawareness, they lack the sufficient
information to infer a probabilistic.

2 D. Iclanzan, L. Szilágyi

Withholding information can become difficult in experiments involving rep-
etition as experience can reduce subjects ignorance. Therefore, there are also
efforts to generate so called objective ambiguity in the laboratory [13] where
true probabilities are incognizable to the subjects, even with arbitrarily large
numbers of repetitions. In the devised process, even the experimenter, with full
knowledge of the operations involved does not have a way to assess the proba-
bility distribution of the outcomes.

Extensive evidence corroborate that subjects behave differently under Knigh-
tian uncertainty and risk. Specifically, most subjects are ambiguity averse, as
exemplified in the Ellsberg Paradox [3]. Other results show that Knightian un-
certainty can be used in games strategically to gain an advantage [11], given that
the other players are ambiguity averse.

Ambiguity averse behaviour can be explained by the maxmin expected utility
model [4], where one maximizes the minimum utility across different probability
distributions. Here, players focus on worst-case scenarios to determine their op-
timal decisions. However, even if ambiguity aversion may usually prevail among
players, there are also other behaviours and choices that occur in situations that
feature ambiguity [12,8]. Focusing exclusively on worst-case scenarios may place
an excessive and unrealistic limitation on the domain of admissible individual
preferences in the presence of ambiguity[7]. This is especially true in the case of
objective ambiguity devices, whose properties can be freely studied. In the case
of these devices, a subject could learn form experience, that the setup is not
adversarial, and assuming the worst case scenario is not the most appropriate.

If subjects are not averted by the fact that the precise probability of out-
comes stay unknown, there still remains quantifiable and exploitable knowledge
about the possible occurrences. By definition, if the outcomes do not follow the
uniform probability distribution, the entropy is not maximal, there might be
useful information that could be used to gain an advantage. For example, in
the objective ambiguity generation process described in [13] there is a strong
serial dependence between realizations. In experiments where one can observe
each realization as it is made, a savvy agent could infer which outcomes have a
higher probability than others; that is an exploitable edge even if the true exact
probabilities remain unknowable.

In order to induce ambiguity aversion in a larger spectrum of subjects, data
coming from an objective ambiguity generation processes should (i) have a di-
vergent cumulative distribution function; (ii) be non-predictable not just in the
sense that the exact probability of outcomes are impossible to known taking
into account past data, but also in a stronger sense, where it is hard to identify
outcomes more likely to occur in the short term than the others.

To achieve the above desiderates, in this paper we fuse a neural network’s
outputs for ambiguity generation. We train a neural network as generative model,
to transform noise into binary sequences with low autocorrelation. The outputs of
the network are combined to obtain binary sequences with a divergent cumulative
distribution function and low serial dependence.

Learning to Generate Ambiguous Sequences 3

2 Background

2.1 Compound lotteries

The simplest way to induce ambiguity, is to generate a distributions of balls
in an Ellsberg-type urn using a uniform distribution over possible ratios of the
balls [1]. For example, if rand() is a function to generate a number according
to a uniform distribution, then an ambguous bit can be generated with the
b = rand()<rand() expression.

This method is suitable just for one-shot experiments. It is not suitable for
repeated outcomes as the cumulative distribution function of the generated series
is not divergent.

2.2 Objective ambiguity

[13] introduces a data generating process in which the cumulative distribution
function is divergent, and for which it is not possible to infer any quantile or
moment of the underlying distribution.

The method is centred around three building blocks:

1. A process with a unit root, that leads to divergence as the number of draws
becomes large.

2. A Cauchy distribution for individual draws, , which is a distribution without
any integer moments.

3. Controlling the scale of the Cauchy distribution, to prevent the process from
diverging too quickly.

The Cauchy distribution is defined as

F (x) =
1

π
arctan(

x− x0

γ
) +

1

2
(1)

where x0 is called the location of the distribution, and γ is the scale.

The parametrized distribution is denoted by C[x0, γ].

The trick is that the realized draws are used to shift the location and scale
of the distribution, making the process non-stationary (giving the process a unit
root). When γ is small the location is usually shifted slowly, but large draws also
materialize, that induce a larger jumps.

Let capital letters denote random variables, lower case letters realizations
and φ, ψ ∈ (0, 1) two parameters, both small. Formally, the procedure described
in [13] works as follows:

1. Draw Z0 ∼ C[0, 1]

2. Draw Z1 ∼ C[z0, 1]

3. For t ≥ 2 draw Zt ∼ C[zt−1,φ|zt−1|+ ψ]

4 D. Iclanzan, L. Szilágyi

Binary outcomes are generated, by checking if the greatest integer no larger
than zt is even or odd: bt = ⌊zt⌋ mod 2.

The procedure alternates between stable and volatile phases. When γ is small,
the generated values tend to stay close together (stable period). When an ex-
treme realization arrives that is far from x0, it is embedded into the scale pa-
rameter two draws later. This increases the chance that subsequent draws are
also far from the location, causing the process to shift to an unstable period,
until a draw with a small absolute value arrives again, causing the scale to be
reduced again. The period lengths are unpredictable.

The cumulative sums of some sample runs, containing 10e4 binary outcomes
generated according to the above described process, are shown in fig. 1. Zero
values have been replaced with -1 to make the ratio of the two possible outcomes
more easily assessable visually. The 0X axis is depicted with a red line. We can
observe that the cumulative sums do not converge and the stable and extreme
periods alternate randomly.

We can also observe that the data is serially dependent, there are long periods
when the process only generates one kind of output. Fig. 2 shows the sample
autocorrelation function (ACF) of the runs, with lag k = 20. Autocorrelation is
very high, close to 1 for all lags, in almost every run.

-2.5

-2

-1.5

-1

-0.5

0
10

4

-2

-1

0

1

2

3
10

4

-1

0

1

2

3
10

4

-2

-1

0

1

2

3

4
10

4

-2

-1.5

-1

-0.5

0

0.5

1
10

4

-5000

0

5000

10000

15000

-2

-1.5

-1

-0.5

0

0.5

1

10
4

-4000

-2000

0

2000

4000

-2

-1

0

1

2

3
10

4

-2000

0

2000

4000

6000

8000

10000

-6

-4

-2

0

2
10

4

-3

-2

-1

0

1

2
10

4

-1

0

1

2

3
10

4

-2

0

2

4

6

8

10
10

4

-5

-4

-3

-2

-1

0

1
10

4

-2

-1.5

-1

-0.5

0

0.5

1
10

4

-4

-3

-2

-1

0

1

2
10

4

-1

0

1

2

3

4

5
10

4

-2.5

-2

-1.5

-1

-0.5

0
10

4

-5000

0

5000

10000

0 2 4 6 8 10

10
4

-2

-1

0

1

2
10

4

0 2 4 6 8 10

10
4

0

0.5

1

1.5

2

2.5

3
10

4

0 2 4 6 8 10

10
4

-1

-0.5

0

0.5

1

1.5

2
10

4

0 2 4 6 8 10

10
4

-2

0

2

4

6

8
10

4

0 2 4 6 8 10

10
4

-0.5

0

0.5

1

1.5

2

2.5
10

4

Fig. 1. Cumulative sums of sample runs. Stable and extreme periods alternate ran-
domly.

To hinder the ability to exploit the serial dependence, resulting from whether
the process is in a calm or unstable period, the authors in [13] propose to reme-
dies.

The first one requires to randomly permute the original sequence, and present
the data in the randomly garbled order. While this approach destroys the au-
tocorrelation it also introduces a look ahead bias as depicted in fig. 3. With

Learning to Generate Ambiguous Sequences 5

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Lag

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

Lag

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

Lag

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

Lag

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

Lag

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

Lag

Fig. 2. Sample ACF of the example runs from fig. 1. Values are close to 1 for all lags,
in almost every run.

the random shuffle the amount of divergence at time-step t is “smoothed out”,
resulting in mostly monotone increasing or decreasing cumulative sums.

If the sequence is long enough, a random permutation makes it extremely
unlikely to have mean reversals of the cumulative sums. Therefore, a subject
observing the first outcomes could figure out quickly which outcome is more
probable; by computing the slope of the cumulative sum it could also reasonably
estimate the probabilities.

The second approach, proposes the generation from a path of ambiguous
length, and shuffled in an ambiguously defined way. These sequences still suffer
from a very high autocorrelation.

3 Material and methods

To provide reduced serial dependence and also strong divergence, we propose
a method where the basic building-blocks are the binary outputs of a neural
network.

3.1 Generative Adversarial Networks

Recently, generative adversarial networks (GAN) [5] have gained a lot of atten-
tion due to their capability to generate complex data without explicitly modelling
the probability density function. GAN models proved their power and flexibil-
ity by achieving state-of-the-art performance in multiple hard generation tasks,
like plausible sample generation for datasets [15], realistic photograph generation
[2], text-to-image synthesis [14], image-to-image translation [16], super-resolution
[10] and many more.

6 D. Iclanzan, L. Szilágyi

-6000

-4000

-2000

0

-4

-3

-2

-1

0
10

4

-4

-3

-2

-1

0
10

4

-6

-4

-2

0
10

4

0

5000

10000

0

1000

2000

3000

4000

-4

-3

-2

-1

0
10

4

-2

-1.5

-1

-0.5

0
10

4

-10000

-5000

0

0

1000

2000

3000

-3

-2

-1

0
10

4

0

0.5

1

1.5

2
10

4

-4

-3

-2

-1

0
10

4

0

1

2

3
10

4

-10000

-5000

0

-4

-3

-2

-1

0
10

4

0

5000

10000

0

1

2

3

4
10

4

-3

-2

-1

0
10

4

-4

-3

-2

-1

0
10

4

0 5 10

10
4

0

2000

4000

6000

0 5 10

10
4

0

500

1000

1500

0 5 10

10
4

0

5000

10000

0 5 10

10
4

0

5000

10000

15000

0 5 10

10
4

0

5

10
10

4

Fig. 3. Cumulative sums of the randomly shuffled sample runs from fig. 1.

Gz
~p(z)

xg

~pg(x)

D
xr
~pr(x)

y1

real or generated

Fig. 4. GAN schematic view. Generator G transforms a sample z from p(z) into a gen-
erated sample xg. DiscriminatorD is a binary classifier that differentiates the generated
and real samples formed by xg and xr respectively.

Learning to Generate Ambiguous Sequences 7

As depicted in fig. 4, in the GAN model two networks are trained simultane-
ously, the generator G focused on data generation from pure noise z and network
D centered on discrimination. The output of the generator G, xg is expected to
be similar to the samples xr. D is a simple binary classifier; it takes as input a
real or a generated sample and outputs y1, the probability of the input being
real. G receives a feedback signal from D, by the back propagated gradient in-
formation. G adapts its weights in order to produce samples that can pass the
discriminator.

3.2 Model setup

The generator G takes as input a 128 element vector of Gaussian noise and
outputs a 32x32 (=1024) element matrix with values in [-1, 1]. G has a dense
layer with 128x8x8 (=8192) nodes followed by two transposed convolution layers
with a kernel size of 4x4 and stride of 2x2. For activation function we choose the
leaky version of a Rectified Linear Unit with 0.2 for the slope value. Coming last
is a 2D convolution layer with 8x8 kernel size and hyperbolic tangent activation
function. The output is binarized by applying the sign function.

The discriminatorD has two convolutional layers with 64 filters each, a kernel
size of 4x4 and stride 2x2. There are no pooling layers. The output is a single node
with the sigmoid activation function to predict whether the input sample is real
or fake. D is trained to minimize the binary cross entropy loss function with the
Adam stochastic gradient descent, with a learning rate of 0.0001, momentum
set to 0.5. The model is trained for 1000 epochs with batch size of 256. The
real samples are 1024 bits of data with very low autocorrelation and random
probability mass.

3.3 Using the output

After training, the network output can be used to obtain 1 KB of data with
low autocorrelation. However, we found that the probability distribution stays
close to uniform. Therefore, to obtain one sample we combine a number of m
networks outputs by randomly applying binary and or or, where m is randomly
chosen natural number between 8 and 16, as seen in listing 1.1. nn() denotes
the call that generates 1024 binary outcomes with the help of the trained neural
network.

Listing 1.1. Combining multiple network outputs

1 f u n c t i o n b = bseq ()
2 b = nn () ;
3 f o r i = 2:8+ round (rand ∗8)
4 i f rand < 0 .5
5 b = and (b , nn ()) ;
6 e l s e
7 b = or (b , nn ()) ;
8 end

8 D. Iclanzan, L. Szilágyi

Now, to obtain a sequence of desired length, one just have to concatenate
outputs until the length threshold is reached. The disadvantage of this basic
concatenation procedure is that the series has a fixed period, after every 1024
outcomes is given that the distribution changes.

3.4 Mixing and overlapping

To avoid the hardcoded period and further reduce autocorrelation, we devise
a sequence generating protocol based on mixing and overlapping the outputs
obtained from the network.

In our experiments, at each step we use two binary samples b1 and b2, each
obtained by combining multiple network outputs as detailed in the previous
section. The samples are mixed, then a randomly chosen fraction of the result is
overlapped and mixed again with the sequence’s end.

The mixing function is outlined in listing 1.2. It takes two binary vectors of
length n, b1, b2 and produces a third one b, where the ith element of b is set to
either b1[i], b2[i] or the two values combined with either and or the or operator.
All four possible outcomes have the same probability to be chosen.

Listing 1.2. Function for mixing two binary vectors

1 f u n c t i o n b = mix (b1 , b2 , n)
2 f o r i = 1 : n
3 r = f l o o r (1+ rand () ∗4) ;
4 sw i t c h r
5 ca se 1
6 v = b1 [i] ;
7 ca se 2
8 v = b2 [i] ;
9 ca se 3

10 v = b1 [i] and b2 [i] ;
11 ca se 4
12 v = b1 [i] o r b2 [i] ;
13 end
14 b [i] = v ;
15 end

To break up the fixed period resulting from simple concatenations of bseq()
calls, the described sequence generation admits random overlaps between out-
puts. The entire generation process is presented in listing 1.3.

The sequence is initialized with the mixed result of two bseq() calls. Then,
inside a loop a new mixed sequence b is generated. In line 4 it is randomly
decided what is the maximum percentage (25%, 50%, 75% or 100%) of the
last 1024 outcomes that will potentially overlap and mix with b. In line 5 the
overlap index is randomly chosen, and line 6 and 7 perform the overlap, mix and
concatenation. The loop repeats until the desired sequence length is achieved.

Learning to Generate Ambiguous Sequences 9

Listing 1.3. Mixing and overlapping

1 s = mix (bseq () , bseq () , 1024) ;
2 wh i l e l e n g t h (s) < l i m i t
3 b = mix (bseq () , bseq () , 1024) ;
4 max ove r l ap = f l o o r (1+ rand () ∗4) ;
5 o v e r l a p = f l o o r (rand () ∗1024/ max ove r l ap) ;
6 b [1 : o v e r l a p] = mix (b [1 : o v e r l a p] , s [end−o v e r l a p +1: end] ,

1024) ;
7 s = conca t ena t e (s [1 : end−o v e r l a p] , b [1 : end]) ;
8 end

4 Results

Fig. 5 presents the cumulative sums of some sample sequences obtained a) by just
simply concatenating the outputs of the network; b) also applying the proposed
mix and overlap steps. The runs obtained in b) show a more pronounced zigzag
patterns. Again, the zeros have been replaced by -1 for better visualization of
the proportion of the two outputs.

a) b)

-10000

-8000

-6000

-4000

-2000

0

pm=0.45342

-4000

-2000

0

2000
pm=0.51061

-5000

0

5000
pm=0.47766

0

2000

4000

6000

8000

10000
pm=0.50935

-2000

0

2000

4000
pm=0.4945

-5000

0

5000
pm=0.48025

0

1000

2000

3000

4000

pm=0.50665

0

2000

4000

6000

8000

10000

pm=0.55502

-1000

0

1000

2000

3000

4000
pm=0.49817

0

1000

2000

3000

4000

5000

pm=0.52865

0

5000

10000

pm=0.56039

-10000

-8000

-6000

-4000

-2000

0
pm=0.45521

0 2 4 6 8 10
104

-10000

-5000

0

5000
pm=0.45109

0 2 4 6 8 10
104

-5000

-4000

-3000

-2000

-1000

0
pm=0.48978

0 2 4 6 8 10
104

0

2000

4000

6000

8000

10000

pm=0.55848

0 2 4 6 8 10
104

-2000

0

2000

4000
pm=0.511

0

2000

4000

6000

pm=0.51276

-4000

-2000

0

2000
pm=0.49308

-5000

-4000

-3000

-2000

-1000

0
pm=0.48708

-4000

-3000

-2000

-1000

0
pm=0.49265

-2000

-1500

-1000

-500

0

pm=0.49909

0

1000

2000

3000

4000
pm=0.51131

-2000

0

2000

4000
pm=0.51308

-2000

0

2000

4000
pm=0.51639

-4000

-2000

0

2000
pm=0.48805

-2000

-1000

0

1000

2000
pm=0.50002

-1000

0

1000

2000

3000

4000

pm=0.52247

-2000

0

2000

4000
pm=0.5184

0 2 4 6 8 10
104

-10000

-8000

-6000

-4000

-2000

0
pm=0.46291

0 2 4 6 8 10
104

-2000

0

2000

4000
pm=0.5067

0 2 4 6 8 10
104

-6000

-4000

-2000

0

pm=0.46931

0 2 4 6 8 10
104

0

2000

4000

6000
pm=0.5326

Fig. 5. Cumulative sum of sample runs obtained a) simple concatenation of network
outputs; b) outputs obtained by also applying the mix and overlap steps.

Analyzing the autocorrelation of the runs, presented in 6, we can observe
that in case of simple concatenation, the coefficients are around 0.4; applying
the mix and overlap steps more than half this value, reducing it to bellow 0.2. We
can observe that with the reduced autocorrelation, it seems that the divergence
of the cumulative sum from 0 also decreases.

To statistically analyze the properties of the proposed methods, we gener-
ated 1000 sequences, each of length 10e4 for both the simple concatenation and
mix and overlap. For comparison, we consider the objective ambiguity method

10 D. Iclanzan, L. Szilágyi

a) b)

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
Lag

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
Lag

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
Lag

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
Lag

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
Lag

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
Lag

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
Lag

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
Lag

Fig. 6. Autocorrelation coefficients of the runs from fig. 5

presented in [13] as the baseline. We used the implementation1 of the ambiguity
generator provided by the authors to obtain 1000 samples of length 10e4.

Fig. 7 depicts the average of the autocorrelation coefficients at each lag index
over the 1000 runs, for the 3 methods. The results confirm that the mix and
overlap steps are highly beneficial in reducing the autocorrelation to 0.17.

Fig. 7. Comparison of the autocorrelation coefficients for the tree methods.

We analyzed the divergence of the methods by measuring how far is the
cumulative sum from 0 at the end of sequences.The results are presented in fig.
8.

1 https://github.com/HaskellAmbiguity/AmbiguityGenerator

https://github.com/HaskellAmbiguity/AmbiguityGenerator

Learning to Generate Ambiguous Sequences 11

We can observe in fig. 8 a) too the baseline method presents many outliers,
with some of the values very close to the length of the sequence, meaning that
that in these runs mostly the output was all ones or all zeros.

As the proposed methods shorten these monotone runs, in order to decrease
the autocorrelation, the degree of divergence in the examined timeframe also
decreases, the deviation of the cumulative sums will stay closer to zero. However,
as seen in the histogram in fig. 8 b), these values are still quite far away from
zero, providing a good compromise between low autocorrelation and divergence.

a)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

D
ev

ia
tio

n

105

Ba
se

lin
e

C
on

ca
te

na
tio

n

M
ix

 a
nd

 o
ve

rla
p

b)

Fig. 8. Cumulative sums at the end of sequences for the three methods: a) boxplot; b)
histogram.

5 Conclusions

The paper introduced a generative adversarial network model for generating
data with low serial dependence. The model is used to build ambiguous binary
sequences, by randomly and repeatedly combining and mixing the outputs of
the network. The method is useful in setups where observes can see and record
the outcome of each realization sequentially.

Empirical analysis revealed that the method provides sequences with low
autocorrelation whose cumulative distribution function is non-convergent. In the
long run, the method is also less likely to produce extreme departures from the
half-half ratio of zeros and ones.

The study also revealed that the proposed neural network approach is not an
efficient building-block for generating ambiguous sequences. In order to obtain
satisfactory results, many network outputs must be combined and mixed, making
the method needlessly computationally expensive.

Future work will consider the development of more efficient methods to obtain
sequences with the same characteristics. We will also study how the length of
the building-block binary samples influences the sequence’s degree of divergence.

12 D. Iclanzan, L. Szilágyi

Acknowledgments

This research was partially supported by Sapientia Foundation Institute for
Scientific Research (KPI). L. Szilágyi is János Bolyai Fellow of the Hungarian
Academy of Sciences.

References

1. Arló-Costa, H., Helzner, J.: Iterated random selection as intermediate between
risk and uncertainty. In: Manuscript, Carnegie Mellon University and Columbia
University. In the electronic proceedings of the 6th International Symposium on
Imprecise Probability: Theories and Applications. Citeseer (2009)

2. Brock, A., Donahue, J., Simonyan, K.: Large scale gan training for high fidelity
natural image synthesis. arXiv preprint arXiv:1809.11096 (2018)

3. Ellsberg, D.: Risk, ambiguity, and the savage axioms. The quarterly journal of
economics pp. 643–669 (1961)

4. Gilboa, I., Schmeidler, D.: Maxmin expected utility with non-unique prior. In:
Uncertainty in Economic Theory, pp. 141–151. Routledge (2004)

5. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in neural
information processing systems. pp. 2672–2680 (2014)

6. Guidolin, M., Rinaldi, F.: Ambiguity in asset pricing and portfolio choice: A review
of the literature. Theory and Decision 74(2), 183–217 (2013)

7. Kast, R., Lapied, A., Roubaud, D.: Modelling under ambiguity with dynamically
consistent choquet random walks and choquet–brownian motions. Economic Mod-
elling 38, 495–503 (2014)

8. Kim, K., Kwak, M., Choi, U.J.: Investment under ambiguity and regime-switching
environment. Available at SSRN 1424604 (2009)

9. Knight, F.: Risk, uncertainty and profit, kelley and millman. Inc., New York, NY
(1921)

10. Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Aitken,
A., Tejani, A., Totz, J., Wang, Z., et al.: Photo-realistic single image super-
resolution using a generative adversarial network. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. pp. 4681–4690 (2017)

11. Riedel, F., Sass, L.: Ellsberg games. Theory and Decision 76(4), 469–509 (2014)
12. Schröder, D.: Investment under ambiguity with the best and worst in mind. Math-

ematics and Financial Economics 4(2), 107–133 (2011)
13. Stecher, J., Shields, T., Dickhaut, J.: Generating ambiguity in the laboratory. Man-

agement Science 57(4), 705–712 (2011)
14. Xu, T., Zhang, P., Huang, Q., Zhang, H., Gan, Z., Huang, X., He, X.: Attngan:

Fine-grained text to image generation with attentional generative adversarial net-
works. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 1316–1324 (2018)

15. Yu, Y., Gong, Z., Zhong, P., Shan, J.: Unsupervised representation learning with
deep convolutional neural network for remote sensing images. In: International
Conference on Image and Graphics. pp. 97–108. Springer (2017)

16. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation
using cycle-consistent adversarial networks. In: Proceedings of the IEEE interna-
tional conference on computer vision. pp. 2223–2232 (2017)

