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Triangulations and a discrete

Brunn-Minkowski inequality in the plane

Károly J. Böröczky∗ Máté Matolcsi † Imre Z. Ruzsa‡

Francisco Santos§ Oriol Serra ¶

1 Introduction

In this paper we write A,B to denote finite subsets of Rd, and | · | stands for
their cardinality. We say that A ⊂ R

d is d–dimensional if it is not contained
in any affine hyperplane of Rd. Equivalently, the real affine span of A is Rd.
For objects X1, . . . , Xk in R

2, [X1, . . . , Xk] denotes their convex hull. The
lattice generated by A is the additive subgroup Λ = Λ(A) ⊂ R

d generated by
A−A, and A is called saturated if it satisfies A = [A] ∩ Λ(A).

Our starting point are two classical results. The first one is from the
1950’s, due to Kemperman [10], and popularized by Freiman [4]: if A and B
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are finite nonempty subsets of R, then

|A+B| ≥ |A|+ |B| − 1,

with equality if and only if A and B are arithmetic progressions of the same
difference. The other result, the Brunn-Minkowski inequality, dates back to
the 19th century. It says that if X, Y ⊂ R

d are compact nonempty sets then

λ(X + Y )
1

d ≥ λ(X)
1

d + λ(Y )
1

d

where λ stands for the Lebesgue measure. Moreover, provided that λ(X)λ(Y ) >
0, equality holds if and only if X and Y are convex homothetic sets.

Various discrete analogues of the Brunn-Minkowski inequality have been
established in Bollobás, Leader [1], Gardner, Gronchi [5], Green, Tao [6],
González-Merino, Henze [11], Hernández, Iglesias and Yepes [8], Huicochea
[9] in any dimension, and Grynkiewicz, Serra [7] in the planar case. Most of
these papers use the method of compression, which changes a finite set into a
set better suited for sumset estimates, but does not control the convex hull.

Unfortunately the known analogues are not as simple in their form as
the original Brunn–Minkowski inequality. For instance, a formula due to
Gardner and Gronchi [5] says that, if A is d–dimensional, then

|A+B| ≥ (d!)−
1

d (|A| − d)
1

d + |B| 1d . (1)

Concerning the case A = B, Freiman [4] proved that if the dimension of A
is d, then

|A+ A| ≥ (d+ 1)|A| −
(

d+ 1

2

)

. (2)

Both estimates are optimal. In particular, we can not expect a true dis-
crete analogue of the Brunn–Minkowski inequality if the notion of volume is
replaced by cardinality.

We here conjecture and discuss a more direct version of the Brunn–
Minkowski inequality where the notion of volume is replaced by the number
of full dimensional simplices in a triangulation of the convex hull of the finite
set.

For any finite d–dimensional set A ⊂ R
d we write TA to denote some

triangulation of A, by which we mean a triangulation of [A] using A as the
set of vertices. We denote |TA| the number of d-dimensional simplices in TA.

In dimension two the number |TA| is the same for all triangulations of A,
so we denote it tr(A). More precisely, if ∆A and ΩA denote the number of
points of A in the boundary ∂[A] and in the interior int[A], respectively, then

tr(A) = ∆A + 2ΩA − 2 = 2|A| −∆A − 2. (3)
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Therefore in dimension two we can formulate the following discrete analogue
of the Brunn–Minkowski inequality.

Conjecture 1 If finite A,B ⊂ R
2 in the plane are not collinear, then

tr(A +B)
1

2 ≥ tr(A)
1

2 + tr(B)
1

2 .

One case where Conjecture 1 holds with equality is when A and B are
homothetic saturated sets with respect to the same lattice; namely, A =
Λ∩k ·P and B = Λ∩m ·P for a lattice Λ, polygon P and integers k,m ≥ 1.
This follows from the original Brunn-Minkowski equality, since A + B =
Λ ∩ (k + m) · P and the area of any triangle in a suitable triangulation is
1
2
det Λ.
We also note that Conjecture 1, together with the equality (3) and the

fact that ∆A+B ≥ ∆A+∆B, would imply the following inequality of Gardner
and Gronchi [5, Theorem 7.2] for sets A and B saturated with respect to
the same lattice:

|A+B| ≥ |A|+ |B|+ (2|A| −∆A − 2)1/2(2|B| −∆B − 2)− 1.

Unfortunately we have not been able to prove Conjecture 1 in full gen-
erality. Our main results are the following four cases of it: if [A] = [B]
(Theorem 2), in which case we also determine the conditions for equality
in Conjecture 1; if A and B differ by one element (Theorem 4); if either
|A| = 3 or |B| = 3 (Theorem 7); and if none of A and B have interior points
(Theorem 8). Actually, the last two theorems verify a stronger conjecture
(Conjecture 5) discussed below.

We start with the case [A] = [B], which naturally include the case A = B.

Theorem 2 Let A,B ⊂ R
2 be finite two dimensional sets. If [A] = [B] then

Conjecture 1 holds. Moreover equality holds if and only if A = B, and

(a) either A is a saturated set, or

(b) A = {z1, . . . , zk} for k ≥ 4, where z1, . . . , zk−3 ∈ int[zk−2, zk−1, zk], and
z1, . . . , zk−2 are collinear and equally spaced in this order (see Figure 1).

Let us mention that Theorem 2 (in fact, its particular case A = B) gives
a simple proof of the following structure theorem of Freiman [4] for a planar
set with small doubling. We recall that according to (2), if finite A ⊂ R

2 is
two dimensional, then |A + A| ≥ 3|A| − 3 and, if the dimension of A is at
least 3, then |A+ A| ≥ 4|A| − 6.
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Figure 1: An illustration of case (b) in Theorem 2.

Corollary 3 (Freiman) Let A ⊂ R
2 be a fnite two dimensional set and

ε ∈ (0, 1). If |A| ≥ 48/ε2 and

|A+ A| ≤ (4− ε)|A|,

then there exists a line l such that A is covered by at most

2

ε
· (1 + 32

|A|ε2 )

lines parallel to l.

We note that, for A the grid {1, . . . , k} × {1, . . . , k2} and large k,

|A+ A| ≤ (4− ε) |A|, (4)

with ε = εk = 2
k
and A can not be covered by less than k parallel lines.

Therefore the constant 2 in the numerator of 2
ε
is asymptotically optimal in

Corollary 3.
The next case w address is when A and B differ by one element.

Theorem 4 Let A ⊂ R
2 be a finite two dimensional set. If B = A∪ {b} for

some b 6∈ A then Conjecture 1 holds.

For our next results we need the notion ofmixed subdivision (see De Loera,
Rambau, Santos [3] for details). For finite d–dimensional sets A,B ⊂ R

d and
triangulations TA and TB of [A] and [B], we call a polytopal subdivision M
of [A +B] a mixed subdivision corresponding to TA and TB if
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(i) every k-cell of M is of the form F +G where F is an i-simplex of TA and
G is a j-simplex of TB with i+ j = k;

(i) for any d-simplices F of TA and G of TB, there is a unique b ∈ B and a
unique a ∈ A such that F + b ∈ M and a +G ∈ M .

We write ‖M‖ to denote the weighted number of d-polytopes, where F +G
has weight

(

i+j
i

)

if F is an i-simplex of TA, and G is a j-simplex of TB with
i + j = d. In particular, all vertices of M are in A + B, and the number of
d-simplices is ‖M‖ for any triangulation of M with the same set of vertices
(see e.g. [3, Proposition 6.2.11]).

The main goal of this paper is to investigate the following problem: For
which triangulations TA and TB there exists a corresponding mixed subdivi-
sion M for [A+B] such that

‖M‖ 1

d ≥ |TA|
1

d + |TB|
1

d . (5)

In R
2, we write M11 to denote the set of parallelograms in a mixed sub-

division M . In this case (5) is equivalent to the following stronger version of
Conjecture 1.

Conjecture 5 For every finite two dimensional sets A,B ⊂ R
2 there exist

triangulations TA and TB of [A] and [B] using A and B, respectively, as the
set of vertices, and a corresponding mixed subdivision M of [A+B] such that

|M11| ≥
√

|TA| · |TB|. (6)

Conjecture 5 offers a geometric and algorithmic approach to prove Con-
jecture 1.

The following example shows that one cannot a priori fix the triangula-
tions TA and TB in Conjecture 5:

Proposition 6 Let

A = {(0, 0), (−1,−2), (2, 1)}.
For k ≥ 145, let

B = {p, q, l0, . . . , lk, r0, . . . , rk−1},
where p = (−1, k + 1), q = (k + 1,−1), li = (i, i) for i = 0, . . . , k and
ri = (i, i+ 1) for i = 0, . . . , k − 1.

Let TB be the triangulation of B consisting of the triangles

[p, li, ri], [q, li, ri], i = 0, . . . , k − 1 and [p, li, ri−1], [q, li, ri−1], i = 1, . . . , k.

Then, no mixed subdivision of A + B corresponding to TB and any triangu-
lation TA of A satisfies (5) for d = 2.
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Figure 2: An illustration of the example described in Proposition 6.

Now Conjecture 5 is verified if either A or B has only three elements.

Theorem 7 If |B| = 3, then Conjecture 5 holds for any finite two dimen-
sional set A ⊂ R

2.

Remark It follows that if B is the sum of sets of cardinality three, then
Conjecture 1 holds for any finite two dimensional set A ⊂ R

2. For example,
if m ≥ 1 is an integer, and B = {(t, s) ∈ Z

2 : t, s ≥ 0 and t + s ≤ m}, or
B = {(t, s) ∈ Z

2 : |t|, |s| ≤ m and |t+ s| ≤ m}.

Conjecture 1 was verified by Böröczky, Hoffman [2] if A and B are in
convex position; namely, A ⊂ ∂[A] and B ⊂ ∂[B]. Here we even verify
Conjecture 5 under these conditions.

Theorem 8 Let A,B ⊂ R
2 be finite two dimensional sets. If A ⊂ ∂[A] and

B ⊂ ∂[B] then Conjecture 5 holds.

Part of the reason why we could not verify Conjecture 1 in general is
that, except for Theorem 7, our arguments actually prove the inequality
tr(A + B) ≥ 2(tr(A) + tr(B)), which is stronger than Conjecture 1, but
which does not hold for all pairs with A ⊂ B. For example, if A are the
nonnegative integer points with sum of coordinates at most k and B is the
same with sum of coordinates at most l, we have tr(A + B) = (k + l)2,
tr(A) = k2 and tr(B) = l2. So we have tr(A+B) < 2(tr(A)+tr(B)) if k 6= l.

Turning to higher dimensions, we note that if TA = TB, then a mixed
subdivision satisfying (5) does exist.
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Theorem 9 For a finite d–dimensional set A ⊂ R
d and for any triangulation

TA of [A] using A as the set of vertices there exists a corresponding mixed
subdivision M of [A + A] such that

‖M‖ = 2d|TA|.

Therefore in certain cases, mixed subdivisions point to a higher dimen-
sional generalization of Conjecture 1. This is specially welcome knowing that,
if d ≥ 3, then the order of the number of d-simplices in a triangulation of the
convex hull of a finite A ⊂ R

d spanning R
d might be as low as |A| and as

high as |A|⌊d/2⌋ for the same A. In particular, one can not assign the number
of d-simplices as a natural notion of discrete volume if d ≥ 3.

2 Proof of Theorem 2

We will actually prove that

tr(A +B) ≥ 2tr(A) + 2tr(B), (7)

a stronger inequality than Conjecture 1.
For a finite two dimensional set X ⊂ R

2, we define

fX(z) =

{

1 if z ∈ ∂[X ]

2 if z ∈ int [X ]
,

so that

tr(X) =

(

∑

z∈X
fX(z)

)

− 2.

Lemma 10 Let A,B ⊂ R
2 satisfy [A] = [B]. Then inequality (7) holds.

Moreover, equality in (7) yields A = B.

Proof: Let T be a triangulation of [A] = [B] using the points in A ∩ B as
vertices. One nice thing about inequality (7) is that, since it is linear, it is
additive over the triangles of T . Therefore, it suffices to show that, for each
triangle t of T , if At = A ∩ t and Bt = B ∩ t, then

tr(At +Bt) ≥ 2tr(At) + 2tr(Bt), (8)

and that equality in (8) implies that At = Bt consists of the three vertices of
t alone. Moreover, inequality (8) is equivalent to

∑

p∈At+Bt

fAt+Bt
(p) =

(

∑

p∈At

fAt
(p)

)

+

(

∑

p∈Bt

fBt
(p)

)

− 6. (9)
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Let At ∩ Bt = {v1, v2, v3} be the three vertices of the triangle t = [At] =
[Bt]. We claim that if i, j ∈ {1, 2, 3}, p ∈ (At∪Bt)\{v1, v2, v3} and q ∈ At∪Bt,
then

vi + p = vj + q yields vi = vj and p = q. (10)

We may assume that vi is the origin and, to get a contradiction, vi 6= vj .
Then the line l passing through vj and parallel to the side of t opposite to vj
separates t and vj + t, and intersects t only in vj 6= p. Since vj + q ∈ vj + t,
we get the desired contradiction.

It follows from (10) that the six points vi + vj , 1 ≤ i ≤ j ≤ 3, and the
points of the form vi + p, i = 1, 2, 3 and p ∈ (At ∪ Bt)\{v1, v2, v3} are all
different. Since the six points vi + vj , 1 ≤ i ≤ j ≤ 3, belong to ∂(At + Bt),
we have

(

∑

i,j=1,2,3

fAt+Bt
(vi + vj)

)

=

(

3
∑

i=1

fAt
(vi)

)

+

(

3
∑

j=1

fBt
(vj)

)

= 6. (11)

On the other hand, we claim that, if p ∈ At\{v1, v2, v3} and q ∈ Bt\{v1, v2, v3},
then

∑3

j=1 fAt+Bt
(p+ vj) > 2fAt

(p)
∑3

i=1 fAt+Bt
(vi + q) > 2fBt

(q).
(12)

Indeed, the inequality readily holds if p ∈ ∂[At] and, if p ∈ int [At], then
p+ vj ∈ int [At +Bt] for j = 1, 2, 3, as well, yielding (12).

By combining (11) and (12) we get (9) and in turn (7). Moreover, (12)
shows that if equality holds in (8) then At = Bt and, therefore, if equality
holds in (7), then A = B. ✷

For a finite two dimensional set A ⊂ R
2 and a triangulation T of A we

denote by AT the union of A and the set of midpoints of the edges of T (see
Figure 3).

Lemma 11 Let A ⊂ R
2 be a finite a finite two dimensional set. The equality

tr(A+ A) = 4 · tr(A)

holds if, and only if, for every triangulation T of [A], we have AT = 1
2
(A+A).

Proof: Divide each triangle t of T into four triangles using the vertices of t
and the midpoints of the sides of t. This way we have obtained a triangulation
of [A] = [AT ] using AT as the vertex set. Therefore

tr(A+ A) = tr(1
2
(A+ A)) ≥ tr(AT ) = 4 · tr(A).

8



Figure 3: A triangulation and its midpoints.

Moreover, there is equality if and only if AT = 1
2
(A + A). ✷

We observe that the equation in Lemma 11 is equivalent to Conjecture 1
for the case A = B. Therefore all we have left to prove is that tr(A + A) =
4 · tr(A) if and only if A is of the form either (a) or (b) in Theorem 2. The
if part is simple.

Lemma 12 Suppose that either (a) or (b) in Theorem 2 hold for the finite
set A. Then

AT =
1

2
(A+ A).

Proof: Suppose first that A = [A] ∩ Λ for a lattice Λ. We may assume
Λ = Z

2. Then clearly the midpoints of sides of every triangulation T of [A]
using A as vertex set are precisely the points of 1

2
(A+ A).

Next, if we have property (b), then there is a unique triangulation T of
[A] using A as vertex set. For 1 ≤ i < j ≤ k, [zi, zj ] is an edge of T , unless
j ≤ k − 2, an hence we have AT = 1

2
(A+ A) again. ✷

The next Lemma shows the reverse direction and concludes the proof of
Theorem 2.

Lemma 13 Let A ⊂ R
2 be a finite two dimensional set. If for every trian-

gulation T of A it holds that

AT =
1

2
(A+ A),

then either (a) or (b) from Theorem 2 hold.

9



Proof: We first prove two simple claims. All throughout we assume that
AT = 1

2
(A+ A) for every triangulation T of A.

Claim 14 Let ℓ be a line intersecting A in at least two points and Aℓ = A∩ℓ.
If Aℓ + Aℓ = (A + A) ∩ (ℓ + ℓ) then the points in Aℓ form an arithmetic
progression. In particular, the points on each side of the convex hull of A
form an arithmetic progression.

Proof: There is a triangulation T of A which contains the edges defined by
consecutive points in Aℓ. Since there are |Aℓ| − 1 midpoints of T on Aℓ, by
the hypothesis of the Lemma and of the Claim, we have

|Aℓ + Aℓ| = |(A+ A) ∩ (ℓ+ ℓ)| = |AT ∩ ℓ| = 2|Aℓ| − 1,

which implies that Aℓ consists of an arithmetic progression. ✷

Call a set of four points of A no three of which collinear an empty quad-
rangle of A if their convex hull contains no further points of A.

Claim 15 Let x1, x2, x3, x4 ∈ A form an empty quadrangle of A. If they
are in convex position then the four points form a parallelogram. That is,
assuming they are listed in clockwise order, we have x1 + x3 = x2 + x4.

Proof: There are two triangulations of A containing the edges of the convex
quadrangle, one of them containing the edge x1x3 and the other one con-
taining x2x4. Since AT cannot depend on the triangulation, the midpoints
of these two edges must coincide and therefore x1 + x3 = x2 + x4. ✷

The proof of the Lemma is by induction on k = |A|. The Lemma clearly
holds if k = 3.

Suppose k = 4. If three of the points are collinear then they are on
an edge of the convex hull of A and, by Claim 14, they form an arithmetic
progression. With the fourth one they form a saturated set. If no three of the
points are collinear then the four points form an empty quadrangle. If they
are in convex position then by Claim 15 they form a saturated set, otherwise
case (b) holds.

Let k > 4. Choose a vertex v of the convex hull of A and let A′ = A\{v}.
If all points of A′ are collinear then by Claim 14 they are in a progresion and,
with v, they form a saturated set. Suppose that A′ is not on o a line. For
every triangulation T ′ of A there is a triangulation T of A containing T ′.
The points in 1

2
(A′ + A′) are contained in the convex hull of A′ and, by the

10



condition of the Lemma, coincide with A′
T ′ . By induction either (a) or (b)

hold for A′. We consider the two cases.
Case 1. A′ is a saturated set.
Case 1.1. There is a convex empty quadrangle formed by v and three

points of A′. Then, by Claim 15, v belongs to the lattice generated by A′ as
well. Moreover, since A′ is convex, A is also convex and case (a) holds.

Case 1.2. There is no convex empty quadrangle involving v and three
points of A′. Then it is easily checked that A′ has at most one empty convex
quadrangle.

If there is none in A′ then, up to an affine transformation, A′ consists of
the point (0, 1) or the two points (0,±1), and the remaining points on the
line y = 0. Then either (i) v belongs to the same line y = 0, which satisfies
the condition of Claim 14, and all points on that line in A are in arithmetic
progression, so that A is a saturated set, or (ii) A′ contains only the point
(0, 1) and v is on the line x = 0, in which case Claim 14 yields that the three
points of A on that line are in arithmetic progression and A is a saturated
set again, or (iii) A′ contains only the point (0, 1) and v belongs to none of
the two lines containing A′ and case (b) holds (see Figure 4).

If A′ contains one convex empty quadrangle then, up to affinities, A′

consists of the four points (0, 0), (1, 0), (1, 1), (0, 1) and the remaining ones
are on the line x = y. Moreover v must belong to the latter line as well and
Claim 14 yields that the points on that line are in arithmetic progression and
A is a saturated set (see Figure 4).

v

(i)

v

(i)

v

(ii)

v

(iii) v

Figure 4: An illustration of Case 1.2.

Case 2. A′ is as in (b). We may assume that the progression of points of
A′ lies on the line x = 0. If v is not on this line then it forms a convex empty
quadrangle with two extreme points of the progression and one of the vertices
w of the triangle. By Claim 15, v must be the point w+(±1, 0), which gives
a configuration not satisfying the condition of the Lemma. Therefore v lies
on the line x = 0 which satisfies the condition of Claim 14, so that v belongs
to the progression on that line yielding case (b). ✷

11



3 Proof of Theorem 4

The inequality between the quadratic and arithmetic means gives that, if
a, k > 0, then

(4a+ 2k)
1

2 > a
1

2 + (a+ k)
1

2 .

Therefore to prove Theorem 4, it is sufficient the verify the following: Let
B = A ∪ {b} for b 6∈ A.

(*) If tr(A) = a and tr(B) = a + k, then tr(A+B) ≥ 4a+ 2k.

We fix a triangulation T of A, and let AT be the union of A and the
family of midpoints of the edges of T . It follows by (3) that

∆AT
+ 2ΩAT

− 2 = tr(AT ) = 4a.

To estimate tr(A+B) = tr(1
2
(A+B)), we isolate certain subset V of A in a

way such that
AT ∩ (1

2
(V + {b})) = ∅. (13)

Therefore

tr(A+B) ≥ 4a + 2|1
2
(V + {b}) ∩ int[B]|+

|1
2
(V + {b}) ∩ ∂[B]| + |AT ∩ ∂[A] ∩ int[B]|. (14)

We distinguish two cases depending on how to define V .

Case 1 b 6∈ [A]
We say that x ∈ [A] is visible if [b, x] ∩ [A] = {x}. In this case x ∈ ∂A.

We note that there are exactly two visible points on ∂[B], which are on the
two supporting lines to [A] passing through b (see Figure 5). Let k+1 be the
number of visible points of A, and hence k ≥ 1. Now k − 1 visible points of
A lie in int[B], thus (3) yields that tr(B) = a+ k. Let V be the set of visible
points of A. The condition (13) is satisfied because [A] ∩ (1

2
(V + {b})) = ∅.

We have |1
2
(V + {b})| = k + 1, and 2k − 1 visible points of AT lie in int[B].

In particular, (∗) follows as (14) yields

tr(A+B) ≥ 4a+ 2k − 1 + k + 1 = 4a+ 3k > 4a+ 2k.

Case 2 b ∈ [A]
In this case tr(B) = a+k for k ≤ 2 by (3), and b is contained in a triangle

T = [p, q, r] of T (see Figure 6). We may assume that b is not contained in
the sides [r, p] and [r, q] of T . We take V = {p, q, r}, which satisfies (13).
Since 1

2
(b + q) ∈ intT ⊂ int[A], (14) yields tr(A + B) ≥ 4a + 4. In turn, we

12



b

Figure 5: An illustration of Case 1.

b

Figure 6: An illustration of Case 2.
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conclude Theorem 4.

Remark: The argument does not work if we only asssume that A ⊂ B,
because we may have equality in Conjecture 1 in this case.

4 Proof of Theorem 7

Let A ⊂ R
2 be finite and not contained in any line. By a path σ on A we

mean a piecewise linear simple path whose vertices are in A, and every point
of A in the support of σ is a vertex of the path. We write |σ| to denote the
number of segments forming σ. We allow the case that σ is a point, and in
this case |σ| = 0. We say that σ is transversal to a non-zero vector u if every
line parallel to u intersects σ in at most one point. In this case, the segments
in σ induce a subdivision of σ + [o, u] into |σ| parallelograms if |σ| ≥ 1. For
the proof of Theorem 7 the idea is to find an appropriate set of paths on A
with total length at least

√

|TA|.
First, we explore the possibilities using only one or two paths. We will

see in Remark 16 that one path is not enough, but Proposition 17 shows that
using two paths σ1, σ2 almost does the job.

Observe that for any given non-zero vector w, the length of the longest
path on A transversal to w equals the number of lines parallel to w intersect-
ing A, minus one.

Remark 16 Given pairwise independent vectors w1, . . . , wn let f(w1, . . . , wn, s)
be the minimal number such that, for every finite set A ⊂ R

2 with tr(A) = s,
there is a wi and a path on A transversal to wi of length f(w1, . . . , wn, s).

For n = 2, f(w1, w2, s) ≥
√

s/2, with equality provided that k :=
√

s/2
is an integer. An extremal configuration consists of the points {iw1 + jw2 :
i, j ∈ {0, . . . , k}}.

For n = 3, f(w1, w2, w3, s) ≥
√

2s/3 and equality holds provided that
s = 6k2. Assuming without loss of generality that w1 + w2 + w3 = 0, an
extremal configuration is given by the points of the lattice generated by w1, w2

in the affine regular hexagon [±kw1,±kw2,±kw3].

Let e1 = (1, 0) and e2 = (0, 1), and let σ1, σ2 be piecewise linear paths
whose vertices are among the vertices of A. We say that the ordered pair
(σ1, σ2) is a horizontal-vertical path if

(i’) σi is transversal with respect e3−i (possibly a point), i = 1, 2;

(ii’) the right endpoint a of σ1 is the upper endpoint of σ2

14



(iii’) writing R+ = {t ∈ R : t > 0}, if |σ1|, |σ2| > 0, then

((σ1\{a}) + R+e2) ∩ ((σ2\{a}) + R+e1) = ∅.

We call σ1 the horizontal branch, and σ2 the vertical branch, and a the center.
We observe that if σ′

i is the image of σi by reflection through the line
R(e1 + e2), then the ordered pair (σ′

2, σ
′
1) is also a horizontal-vertical path.

For any polygon P and non-zero vector u, we write F (P, u) to denote the
face of P with exterior normal u. In particular, F (P, u) is either a side or a
vertex.

Proposition 17 For every finite A ⊂ R
2 not contained in a line, and for

every triangulation T of [A] using A as a vertex set, there exists a horizontal-
vertical path (σ1, σ2) whose vertices belong to A, and satisfies

|σ1|+ |σ2| ≥
√

|T |+ 1− 1
2
.

Proof: Let us write

ξ = |F ([A],−e1) ∩ F ([A],−e2)| ≤ 1

∆′
A = |(A ∩ ∂[A])\(F ([A],−e1) ∪ F ([A],−e2))| .

By the invariance with respect to reflection through the line R(e1 + e2),
we may assume that

|F ([A],−e2) ∩ A| ≥ |F ([A],−e1) ∩A|. (15)

We set {〈e1, p〉 : p ∈ A} = {α0, . . . , αk} with α0 < . . . < αk, k ≥ 1. For
i = 0, . . . , k, let Ai = {p ∈ A : 〈e1, p〉 = αi}, let xi = |Ai|, and let ai
be the top most point of Ai; namely, 〈e2, ai〉 is maximal. In particular,
x0 = |F ([A],−e1) ∩ A|. For each i = 1, . . . , k, we consider the horizontal-
vertical path (σ1i, σ2i) where

σ1i = {[a0, a1], . . . , [ai−1, ai]},

and the vertex set of σ2i is Ai. In particular, the total length of the horizontal-
vertical path is (σ1i, σ2i) is

|σ1i|+ |σ2i| = i+ xi − 1.

The average length of these paths for i = 1, . . . , k is

∑k
i=1(|σ1i|+ |σ2i|)

k
=

∑k
i=1(i+ xi − 1)

k
=

|A| − x0

k
+

k

2
− 1

2
.

15



We observe that 2|A| = |T |+∆A + 2, according to (3), and (15) yields

2 + ∆A − 2x0 = 2 +∆′
A + |F ([A],−e2) ∩A| − ξ − x0 ≥ ∆′

A + 1.

Therefore we deduce from the inequality between the arithmetic and geo-
metric mean that

∑k−1

i=1 (|σ1i|+ |σ2i|)
k − 1

=
2|A| − 2x0

2k
+

k

2
− 1

2

≥ 1

2

( |T |+∆′
A + 1

k
+ k

)

− 1

2
(16)

≥
√

|T |+∆′
A + 1− 1

2
. (17)

Therefore there exists some horizontal-vertical path (σ1i, σ2i) satisfying (17).
✷

The estimate of Proposition 17 is close to be optimal according to the
following example.

Example 18 Let k ≥ 2 and t > 0. Let A′ be the saturated set with [A′]
having vertices (0, 0), (0, k), (k − 1, 0) and (k − 1, 1), and let A = A′ ∪ {(k +
t, 0)}. A triangulation of A has k2 + k − 1 triangles and every horizontal–
vertical path (σ1, σ2) on A has total length

|σ1|+ |σ2| ≤ k <
√

|T |+ 2− 1
2
.

✷

We next proceed to the proof of Theorem 7 by a similar strategy using
three paths. Let B = {v1, v2, v3} and, for {i, j, k} = {1, 2, 3} denote by ui the
exterior unit normal to the side [vj, vk] of B. A set of three paths (σ1, σ2, σ3)
meeting at some point a ∈ A and using the edges of a triangulation T of A
is called a proper star if the following conditions hold:

(i) σi is transversal with respect vj − vk (possibly σi = {a});

(ii) σi has an end point bi ∈ ∂[A] such that ui is an exterior unit normal to
[A] at bi, and

〈a, ui〉 = min{〈x, ui〉 : x ∈ σi};

(iii) writing R+ = {t ∈ R : t > 0}, if |σj |, |σk| > 0, then

((σj\{a}) + R+(vk − vi)) ∩ ((σk\{a}) + R+(vj − vi)) = ∅.

16



If the semi-open paths σi\{a}, i = 1, 2, 3, are all non-empty and pairwise
disjoint, then (iii) means that they come around a in the same order as the
orientation of the triangle [v1, v2, v3] (see Figure 7 for an illustration).

a

v3
v1

v2

σ1

σ2

σ3

a

v3
v1

v2

σ1

σ2

σ3

Figure 7: A proper star with respect to v1, v2, v3 centered at a. On the right,
paralellograms based on the proper star

The next Lemma shows how to construct an appropriate mixed subdivi-
sion of A+B using a proper star.

Lemma 19 Given a proper star with rays σ1, σ2, σ3 such that |σ1| + |σ2| +
|σ3| > 0, there exists a mixed subdivision M for A +B satisfying

M11 = |σ1|+ |σ2|+ |σ3|.

Proof: We may assume that |σ1| > 0 and v3 = o. We partition the triangles
of TA into three subsets Σ1,Σ2,Σ3 (some of them might be empty). The
idea is that if the semi-open paths σi\{a}, i = 1, 2, 3, are all non-empty and
pairwise disjoint and {i, j, k} = {1, 2, 3}, then Σi consists of the triangles cut
off by σj ∪ σk.

A triangle τ of TA is in Σ1 if and only if there exists a p ∈ (int τ)\(a+Rv1)
such that

|(p− R+v1) ∩ σ2|+ |(p− R+v1) ∩ σ3|
is finite and odd. Similarly, τ ∈ TA is in Σ2 if and only if there exists a
p ∈ int τ such that

|(p− R+v2) ∩ σ1|+ |(p− R+v2) ∩ σ3|

is finite and odd. The rest of the triangles of TA form Σ3.

17



The triangles of the mixed subdivision M are as follows. If τ ∈ Σi, then
the corresponding triangle inM is τ+vi. In addition, [B]+a is in M . For the
parallelograms, let {i, j, k} = {1, 2, 3}. If e is an edge of σi, then e + [vj , vk]
is in M . ✷

For the rest of the section, we fix finite A ⊂ R
2 and B = {v1, v2, v3} ⊂ R

2

such that both of them spans R
2 affinely, and confirm Conjecture 5 in this

case.
The following statement is a simple consequence of the definition of a

proper star.

Lemma 20 Assuming B = {v1, v2, v3} with v1 = (1, 0) = −u1, v2 = (0, 1) =
−u2 and v3 = (0, 0), and hence u3 = ( 1√

2
, 1√

2
), if (σ1, σ2) is a horizontal-

vertical path for A centered at a ∈ A, then

• there exists a proper star (σ′
1, σ

′
2, σ

′
3) centered at a such that σ1 ⊂ σ′

1,
σ2 ⊂ σ′

2,

• if in addition a 6∈ F ([A], u3), then |σ′
3| ≥ 1.

Proof of Theorem 7 We may assume that B = {v1, v2, v3} with v1 =
(1, 0) = −u1, v2 = (0, 1) = −u2 and v3 = (0, 0), and hence u3 = ( 1√

2
, 1√

2
). In

addition, we may assume that

|F ([A],−u2) ∩ A| ≥ |F ([A],−u1) ∩ A|.

Using the notation of the proof of (16), we set {〈u1, p〉 : p ∈ A} = {α0, . . . , αk}
with α0 < . . . < αk, and ∆′

A = |(A∩ ∂[A])\(F ([A],−u1)∪F ([A],−u2))|. For
i = 0, . . . , k, let Ai = {p ∈ A : 〈u1, p〉 = αi}, let xi = |Ai| and let ai be
the top most point of Ai; namely, 〈u2, ai〉 is maximal. According to (16) and
(17), we have

∑k
i=1(i+ xi − 1)

k
≥ |TA|+∆′

A + 1

2k
+

k

2
− 1

2
≥
√

|TA|+ 1− 1

2
. (18)

Let I be the set of all i ∈ {1, . . . , k} such that

i+ xi − 1 ≥
⌈ |TA|+∆′

A + 1

2k
+

k

2
− 1

2

⌉

= ξ. (19)

Since ξ ≥
√

|TA|+ 1− 1
2
, if strict inequality holds for some i in (19), then we

have a required proper star by Lemma 20. Thus we assume that i+xi−1 = ξ
for i ∈ I.

18



Let θ = |I|. Since i+ xi − 1 ≤ ξ − 1 if i 6∈ I, we have

ξ −
∑k

i=1(i+ xi − 1)

k
≥ k − θ

k
.

We deduce from (18) that if i ∈ I, then

i+ xi − 1 ≥ |TA|+∆′
A + 1

2k
+

k

2
− 1

2
+

k − θ

k
=

|TA|+∆′
A + 1

2k
+

k

2
+

1

2
− θ

k
.

If i ∈ I and ai 6∈ F ([A], u3), then ξ ≥
√

|TA|+ 1 − 1
2
and Lemma 20 yields

the existence of a required proper star. Therefore we may assume that ai ∈
F ([A], u3) for i ∈ I. Since |F ([A], u3) ∩ F ([A],−u2))| ≤ 1, we deduce that

θ ≤ max{∆′
A + 1, k}. (20)

Therefore if i ∈ I, then we conclude using the inequality betwen the aright-
metic and the geometric mean at the last inequality that

i+ xi − 1 ≥ |TA|+ θ

2k
+

k

2
+

1

2
− θ

k
≥ |TA|

2k
+

k

2
+

1

2
− θ

2k
≥
√

|TA|. ✷

5 Proof of Theorem 8

We assume in this section that there are no points of A (resp. B) in the
interior of [A], (resp. [B]).

Recall that ∆X denotes the number of points of X in the boundary of
[X ]. It is easy to check that ∆A+B has at least as many points as ∆A and
∆B together, that is:

∆A+B ≥ ∆A +∆B = tr(A) + tr(B) + 4

As a motivation for the proof, we note that Conjecture 1 follows if the number
ΩA+B of points of A+B in int([A +B]) is at least

tr(A) + tr(B)− 2

2
=

∆A +∆B

2
− 3.

Naturally we aim at the stronger Conjecture 5. Given Theorem 7, Theorem 8
follows if A and B being in convex position and |A|, |B| ≥ 4 yield that there
exists a mixed subdivision of A+B satisfying

|M11| ≥
tr(A) + tr(B)

2
. (21)
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Throughout the proof we assume that [B] has at most as many vertices
as [A] and v denotes a unit vector (which we assume pointing upwards) not
parallel to any side of [A + B]. We denote by a0 and a1 the leftmost and
rightmost vertex of [A] and by b0 and b1 the leftmost and rightmost vertex
of [B].

To prove (21), we say that A and B form a strange pair if [B] is a triangle
and the three exterior normals to [B] are also exterior normals of edges of
[A].

We will use that, for t, s ≥ 1,

ts ≥ t+ s− 1. (22)

Case 1 A and B are not strange pairs.
We choose a unit vector v as above in the following way: if B is a trian-

gle, then the upper arc of ∂[B] is a side such that [A] has no side with same
exterior unit normal; if [B] has at least four sides, then the two supporting
lines of [B] parallel to v touch at non-consecutive vertices of [B]. For the ex-
istence of the latter pair of supporting lines, we note that while continuously
rotating [B], the number of upper - lower vertices changes by either zero or
two units at a time when a side of [B] is parallel to v, and after rotation by π
it changes to its opposite. Hence, at some position that difference is zero or
one which implies, since [B] has at least four vertices, that at that position
there is at least one upper and one lower vertex, as required.

Claim 21 One of the two following statements hold:
∣

∣

∣

(

(A+ b0) ∪ (a1 +B)
)

∩ int[A +B]
∣

∣

∣
≥ ∆A+∆B

2
− 3, or

∣

∣

∣

(

(a0 +B) ∪ (A+ b1)
)

∩ int[A +B]
∣

∣

∣
≥ ∆A+∆B

2
− 3.

(23)

Proof: We may assume that b1 = a0 = o (see Fig. 8). Observe first that the
only repetitions x+ b0 = a1+ y or x+ b1 = a0+ y in these configurations are
the points a1+b0 and a0+b1 (which are interior to [A+B] by our hypothesis).
To prove (23), we verify first that

(i) for every x ∈ A \ {a0, a1} except perhaps two of them, at least one of
x+ b0 or x+ b1 is interior in A+B,

(ii) for every y ∈ B \ {b0, b1} except perhaps two of them, at least one of
a0 + y or a1 + y is interior in A +B.

For (i), we note that if both x + b0 or x + b1 are in ∂[A + B], then they
are the end points of a segment translated from [b0, b1] and only two such
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a0

a1 = b0

b1
b0 + A B + a1

a0

a1 = b0

b1

B + a0

b1 + A

Figure 8: An illustration of the proof of Claim 23.

translations have their end-points in ∂[A + B] because A and B are not a
strange pair. The argument for (ii) is similar.

Now (i) and (ii) say that counting the interior points of (A+b0)∪(a1+B)
and (a0+B)∪ (A+ b1) except a0+ b1 and a1+ b0 we have altogether at least
|∆A|+|∆B|−8 of them. Including the latter we have at least |∆A|+|∆B|−6 of
them and at least half of these in either (A+b0)∪(a1+B) or (a0+B)∪(A+b1),
which yields (23). ✷

Let us construct the suitable mixed triangulation of [A + B]. For every
path σ in ∂A, we assume that every point of A in σ is a vertex of σ. According
to (23), we may assume that

|(A ∪B) ∩ int[A +B]| ≥ ∆A +∆B

2
− 3 (24)

Let aupp (alow) be the neighboring vertex of [A] to o on the upper (lower) arc
of ∂A, and let bupp (blow) be the neighboring vertex of [B] to o on the upper
(lower) arc of ∂B. We write ωA

upp and ωA
low to denote the paths determined

by [o, aupp] and [o, alow] and ωB
upp and ωB

low to denote the paths determined by
[o, bupp] and [o, blow]. Next let σA

upp (σA
low) be the longest path on the upper

(lower) arc of ∂[A] starting from o such that every segment s of σA
upp (σA

low)
satisfies that s+[o, bupp] (s+[o, blow]) is a parallelogram that does not intersect
int[A]. Similarly, let σB

upp (σB
low) be the longest path on the upper (lower) arc

of ∂[B] starting from o such that every segment s of σB
upp (σB

low) satisfies that
s + [o, aupp] (s + [o, alow]) is a parallelogram that does not intersect int[B].
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Since a1 = b0 = o is a common point of σA
upp, σ

A
low, σ

B
upp, σ

B
low, we deduce from

(24) that

1 + (|σA
upp| − 1) + (|σA

low| − 1) + (|σB
upp| − 1) + (|σB

low| − 1) ≥ ∆A +∆B

2
− 3,

equivalently,

|σA
upp|+ |σA

low|+ |σB
upp|+ |σB

low| ≥
∆A +∆B

2
. (25)

We construct the mixed subdivision by considering the subdivisions into
suitable paralleograms of σA

upp + ωB
upp and σB

upp + ωA
upp that have ωA

upp + ωB
upp

in common, and the subdivisions into suitable parallelograms of σA
low + ωB

low

and σB
low + ωA

low that have ωA
low + ωB

low in common (see Figure 9).

a0

a1 = b0

b1
A B

Figure 9: An illustration of the parallelograms of the mixed subdivision in
Case 1.

In particular, |ωA
upp|, |ωB

upp| ≥ 1, (22) and (25) yield that

|M11| ≥ (|σA
upp| − |ωA

upp|)|ωB
upp|+ (|σB

upp| − |ωB
upp|)|ωA

upp|+ |ωA
upp| · |ωB

upp|+
+(|σA

low| − |ωA
low|)|ωB

low|+ (|σB
low| − |ωB

low|)|ωA
low|+ |ωA

low| · |ωB
low|

≥ (|σA
upp| − |ωA

upp|) + (|σB
upp| − |ωB

upp|) + |ωA
upp|+ |ωB

upp| − 1 +

+(|σA
low| − |ωA

low|) + (|σB
low| − |ωB

low|) + |ωA
low|+ |ωB

low| − 1

≥ ∆A +∆B

2
− 2 =

tr(A) + tr(B)

2

proving (21) in Case 1.
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Case 2 A and B form a strange pair with |A|, |B| ≥ 4, and [A] and [B] are
not similar triangles

We write αupp (αlow) to denote the number of segments that the points
of A divide the upper (lower) arc of ∂[A]. We denote by b2 the third vertex
of [B] and by [x0, x1] the side of A with x1 − x0 = t(b1 − b0) for t > 0. For
i = 0, 1, 2, let si be the number of segments that the points of B divide the
side of [B] opposite to bi.

Claim 22 There exists a v such that one of the following holds:

αupp ≥ 2 and αupp + s0 + s1 ≥
1

2
(∆A +∆B), or (26)

αlow, s2 ≥ 2 and αlow + s2 ≥
1

2
(∆A +∆B). (27)

Proof: Since αupp+αlow = ∆A and s0+s1+s2 = ∆B, the claim easily follows
if there is a v such that, for each the sets A and B, both the upper arc and
the lower arc contain a point of the set strictly between the two supporting
lines parallel to v.

Otherwise, choose a v such that the side [b0, b1] of [B] contains at least 3
points of B (this is possible since |B| ≥ 4). Then [x0, x1] has no other point
of A than x0, x1 and the other side of [A] at xi, i = 0, 1 is parallel to [bi, b2].
As [A] and [B] are not similar triangles , [A] has some more sides, which
in turn yields that [bi, b2] ∩ B = {bi, b2} for i = 0, 1. In summary, we have
αupp = s0 = s1 = 1 and αlow, s2 ≥ 2. Since αlow + s2 > αupp + s0 + s1, we
conclude (27). ✷

To prove (21) based on (26) and (27), we introduce some further notation.
After a linear transformation, we may assume that v is an exterior normal
to the side [b0, b1] of [B]. We say that p, q ∈ ∂[A] are opposite if there exists
a unit vector w such that w is an exterior normal at p and −w is an exterior
normal at q. If p, q ∈ ∂[A] are not opposite, then we write pq the arc of ∂[A]
connecting p and q and not containing opposite pair of points.

First we assume that (26) holds and b2 = o. Since [x0, x1] has exterior
normal v and αupp ≥ 2, there exists a ∈ A\{x0, x1} such that v is an exterior
normal to ∂[A] at a. We write lupp and rupp to denote the number of segments
the points of A divide the arcs ax0 and ax1, respectively. To construct a
mixed subdivision, we observe that every exterior normal u to a side of [A]
in ax0 satisfies 〈u, b0〉 > 0, and every exterior normal w to a side of [A] in ax1

satisfies 〈w, b1〉 > 0. We divide ax0+[o, b0] into suitable s1lupp parallelograms,
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and ax1+[o, b1] into suitable s0rupp parallelograms. It follows from (22) that

|M11| = s1lupp + s0rupp ≥ lupp + rupp + s0 + s1 − 2 = αupp + s0 + s1 − 2

≥ 1
2
(∆A +∆B)− 2 = 1

2
(tr(A) + tr(B)).

Secondly we assume that (27) holds. Since s2 ≥ 2, we may assume that
o ∈ ([b0, b1]\{b0, b1}) ∩ B. For i = 0, 1, we write s2i to denote the number
of segments the points of B divide [o, bi]. Let x̃0 and x̃1 be the leftmost
and rightmost points of A such that −v is an exterior normal to ∂[A], where
possibly x̃0 = x̃1. Since [A] has sides parallel to the sides [b2, b0] and [b2, b1] of
[B], we deduce that x̃0 6= x0 and x̃1 6= x1. To construct a mixed subdivision,
we set mlow = 0 if x̃0 = x̃1, and mlow to be the number of segments the points
of A divide x̃0, x̃1 if x̃0 6= x̃1. In addition, we write llow ≥ 1 and rlow ≥ 1 to
denote the number of segments the points of A divide the arcs x̃0x0 and x̃1x1,
respectively. We divide x̃0x0+[o, b0] into suitable llows20 parallelograms, and
x̃1x1 + [o, b1] into suitable rupps21 parallelograms. In addition, if x̃0 6= x̃1,
then we divide [x̃0x̃1] + [o, b2] into suitable mlow parallelograms. It follows
from (22) that

|M11| = llows20 + rlows21 +mlow ≥ llow + rlow +mlow + s20 + s21 − 2

= αlow + s2 − 2 ≥ 1
2
(∆A +∆B)− 2 = 1

2
(tr(A) + tr(B)),

finishing the proof of (21) in Case 2.

Case 3 [A] and [B] are similar triangles and |A|, |B| ≥ 4
We recall that s1, s2 and s3 denote the number of segments the points of B

divide the sides of [B] and let s′1, s
′
2, s

′
3 be the number of segments the points

of A divide the corresponding sides of [A]. We have tr(A) = s′1 + s′2 + s′3 − 2
and tr(B) = s1 + s2 + s3 − 2. We may assume that s1 is the largest among
the six numbers and that s′2 ≥ s′3. Readily

|M11| ≥ max{s1s′2, s′1s2, s′1s3}. (28)

If s′2 ≥ 3, then

|M11| ≥ 3s1 ≥ 1
2
(s1 + s2 + s3 + s′1 + s′2 + s′3) >

1
2
(tr(A) + tr(B)).

If s′2 = 2, then s′3 ≤ 2 and

|M11| ≥ 2s1 ≥ 1
2
(s1 + s2 + s3 + s′1 + s′2 + s′3 − 4) = 1

2
(tr(A) + tr(B)).
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Therefore we assume that s′2 = s′3 = 1. In particular, we may also assume
that s2 ≥ s3. Since s

′
1 ≥ 2 and s2 ≥ 1 we have s′1s2 ≥ s′1+2s2−2. Therefore,

|M11| ≥ max{s1, s′1s2}

≥ 1

2
((s1 + s2 + s3 + s′1 − 2)

≥ 1

2
(s1 + s2 + s3 + s′1 − 2)

=
1

2
(tr(A) + tr(B)),

and we conclude (21) in Case 3, as well. ✷

6 Proof of Theorem 9

Let A = {a1, . . . , an}. Naturally, [A + A] has a triangulation {F + F : F ∈
TA}, which we subdive in order to obtainM . We defineM to be the collection
of the sums of the form

[ai0 , . . . , aim] + [aim , . . . , aik ]

where k ≥ 0, 0 ≤ m ≤ k, ij < il for j < l, and [ai0 , . . . , aik ] ∈ TA.
To show that we obtain a cell decomposition, let

F = [ai0 , . . . , aik ] ∈ TA

be a k-simplex with k > 0 where ij < il for j < l, and hence

F + F =

{

k
∑

i=0

αjaij :

k
∑

i=0

αj = 2 & ∀αj ≥ 0

}

.

We write relintC to denote the relative interior of a compact convex set C.
For some 0 ≤ m ≤ k, α0, . . . , αk ≥ 0 with

∑k
i=0 αj = 2, we have

k
∑

i=0

αjaij ∈ relint ([ai0 , . . . , aim ] + [aim , . . . , aik ]) ⊂ F + F

if and only if
∑

j<m αj < 1 and
∑m

i=0 αj > 1 where we set
∑

j<0 αj = 0. We
conclude that M forms a cell decomposition of [A + A].

For any d-simplex F ∈ TA, and for any m = 0, . . . , d, we have constructed
one d-cell of M that is the sum of an m-simplex and a (d − m)-simplex.
Therefore

‖M‖ = |TA|
d
∑

m=0

(

d

m

)

= 2d|TA|.
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7 Proof of Corollary 3

In this section, let A ⊂ R
2 be finite and not collinear. We prove four aux-

iliary statements about A. The first is an application of the case A = B of
Conjecture 1 (see Theorem 2).

Lemma 23
|A+ A| ≥ 4|A| −∆A − 3

Proof: We have readily ∆A+A ≥ 2∆A. Thus (3) and Theorem 2 yield

|A+A| = 1

2
(tr(A+ A) + ∆A+A + 2) ≥ 2tr(A) +∆A +1 = 4|A| −∆A − 3. ✷

We note that the estimate of Lemma 23 is optimal, the configuration of
Theorem 2 (b) being an extremal set.

Next we provide the well-known elementary estimate for |A+ A| only in
terms of boundary points.

Lemma 24 Let mA denote the maximal number of points of A contained in
a side of [A]. We have,

|A+ A| ≥ ∆2
A

4
− ∆A(mA − 1)

2
.

Proof: We choose a line l not parallel to any side of [A], that we may assume
to be a vertical line, and denote by s1, . . . , sk the sides of [A] on the upper
chain of [A] in left to right order. Let Ai be the set obtained from A ∩ si by
removing its rightmost point. We may assume that

|A1|+ · · ·+ |Ak| ≥
∆A

2
.

We observe that, for 1 ≤ i < j ≤ k, we have

|Ai + Aj | = |Ai| · |Aj| and (Ai + Aj) ∩ (Ai′ ∩ Aj′) = ∅ if {i, j} 6= {i′, j′}.

It follows that

|A+ A| ≥
∑

1≤i<j≤k

|Ai + Aj | =
∑

1≤i<j≤k

|Ai| · |Aj| = (

k
∑

i=1

|Ai|)2 −
k
∑

i=1

|Ai|2

≥
(

∆A

2

)2

− (mA − 1)
∆A

2
. ✷

The following Lemma can be found in Freiman [4].

26



Lemma 25 Let ℓ be a line intersecting [A] in m points of A. If A is covered
by exactly s lines parallel to ℓ, then

|A+ A| ≥ 2|A|+ (s− 1)m− s. (29)

Moreover,

|A+ A| ≥ (4− 2

s
)|A| − (2s− 1). (30)

Proof: We may assume that ℓ is the vertical line through the origin, that
a1, . . . , as are s points of A ordered left to right such that A = ∪s

i=1(A∩(ℓ+ai))
and that |A ∩ (ℓ+ a1)| = m. Let Ai = A ∩ (ai + ℓ). Then,

|A+ A| = |A1 + A|+ |(A \ A1) + As|

≥
s
∑

i=1

(|A1|+ |Ai| − 1) +

s
∑

i=2

(|Ai|+ |As| − 1)

= 2|A|+ (s− 1)(|A1|+ |As|)− (2s− 1),

from which (29) follows. On the other hand,

|A+ A| =
s
∑

i=1

|2Ai|+
s−1
∑

i=1

|Ai + Ai+1|

≥
s
∑

i=1

(2|Ai| − 1) +

s−1
∑

=1

(|Ai|+ |Ai+1| − 1)

= 4|A| − (|A1|+ |As|)− (2s− 1).

If the latter estimate is larger than the former one we obtain (30), otherwise
we get the stronger inequality |A+ A| ≥ (4− 2/s2)|A| − (2s− 1). ✷

Proof of Corollary 3 Let |A + A| ≤ (4 − ε)|A| where ε ∈ (0, 1) and
ε2|A| ≥ 48. To simply formulae, we set ∆ = ∆A and m = mA.

We deduce from Lemma 23 that ∆ ≥ ε|A| − 3. Substituting this into
Lemma 24 yields

(4− ε)|A| ≥ ∆2

4
− ∆(m− 1)

2
≥ ∆(ε|A| − 3)

4
− ∆(m− 1)

2

=
∆

2
· (1

2
ε|A| −m− 1

2
) ≥ ε|A| − 3

2
· (1

2
ε|A| −m− 1

2
).

Therefore

1
2
ε|A| − (m− 1) ≤ 8

ε

(

1− ε

4

)

(

1 +
3

ε|A| − 3

)

+
3

2
<

12

ε
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as ε|A| − 3 ≥ 48
ε
− 3 > 12

ε
. In particular, m− 1 > 1

2
ε|A| − 12

ε
.

Next let l be the line determined by a side of [A] containing m = mA point
of A, and let s be the number of lines parallel to l intersecting A. According
to (29),

(4− ε)|A| ≥ 2|A|+ (s− 1)(m− 1)− 1 > 2|A|+ (s− 1)(1
2
ε|A| − 12

ε
)− 1,

thus first rearranging, and then applying ε2|A| ≥ 48 yield

2|A| > s · (1
2
ε|A| − 12

ε
) ≥ s · 1

4
ε|A|.

Therefore s < 8
ε
.

We deduce from (30) and s < 8
ε
that

(4− ε)|A| > (4− 2
s
)|A| − 2s > (4− 2

s
)|A| − 16

ε
.

Rearranging, and then applying ε2|A| ≥ 48 imply

s <
2

ε

(

1− 16

ε2|A|

)−1

<
2

ε

(

1 +
32

ε2|A|

)

. ✷

8 Proof of Proposition 6

We call the points of A,

a0 = (0, 0), a1 = (−1,−2), a2 = (2, 1).

If k ≥ 2, then we show that every mixed subdivision M corresponding to
TA and TB satisfies

|M11| ≤ 24. (31)

We prove (31) in several steps. First we verify

[a1, a2] + li is not an edge of M for i = 0, . . . , k (32)

[a1, a2] + ri is not an edge of M for i = 0, . . . , k − 1. (33)

For (32), we observe that a1 + li+1 if i ≤ k − 1 or a1 + li−1 if i ≥ 1 is a point
of A + B in [a1, a2] + li different from the endpoints. Similarly, for (33), we
observe that a1 + ri+1 if i ≤ k − 2 or a1 + ri−1 if i ≥ 1 is a point of A+B in
[a1, a2] + ri different from the endpoints.

Next, we have

[a0, a2] + [li, ri] is not a parallelogram of M for i = 0, . . . , k − 1(34)

[a0, a1] + [ri, li+1] is not a parallelogram of M for i = 0, . . . , k − 1(35)
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as li+1 ∈ int [a0, a2] + [li, ri] and li ∈ int [a0, a1] + [ri, li+1].
Let us call the edges of TB of the form either [li, ri] or [ri, li+1] for i =

0, . . . , k − 1 small edges, and the edges of TB of the form either [p, li], [q, li]
for i = 0, . . . , k, or [p, ri], [q, ri] for i = 0, . . . , k − 1 long edges. In other
words, long edges of TB contain either p or q, while small edges of TB contain
neither.

Concerning long edges, we prove that that the number of parallelograms
of M of the form

eA + eB for an edge eA of TA and a long edge eB of TB is at most 12. (36)

If eA is an edge of TA, then there exist at most two cells of M whose side are
p + eA. Since TA has three edges, there are at most six of parallelograms of
M of the form eA + eB where eA is an edge of TA and eB is an edge of TB

with p ∈ eB. Since the same estimate holds if q ∈ eB, we conclude (36).
Finally, we prove that that the number of parallelograms of M of the

form

eA + eB for an edge eA of TA and a small edge eB of TB is at most 12.
(37)

The argument for (37) is based on the claim that if eA+eB is a parallelogram
of M for an edge eA of TA and a small edge eB of TB, then there is a long
edge e′B of TB such that

eA + e′B is a neighboring parallelogram of M . (38)

We have eA 6= [a1, a2] according to (32) and (33). If eA = [a0, a1], then
eB = [li, ri] for some i ∈ {1, . . . , k − 1} according to (35). Now ri + eA
intersects the interior of [A+B] as ri ∈ int [A], thus it is the edge of another
cell of M , as well. This other cell is either a translate of [A], which is
impossible by (32), (33), and as ri 6∈ p+ [A], q + [A], or of the form eA + e′B
for an edge e′B 6= eB of TB containing ri. However, e′B 6= [ri, li+1] by (35),
therefore e′B is a long edge.

On the other hand, if eA = [a0, a2], then eB = [ri, li+1] for some i ∈
{1, . . . , k − 1} according to (34), and (38) follows as above.

Now if eA + e′B is a parallelogram of M for an edge eA of TA and a long
edge e′B of TB, then there is at most one neighboring paralellogram of the
form eA + eB for a small edge eB of TB because eA + eB does not intersect
eA + p and eA + q. In turn, (37) follows from (36) and (38). Moreover, we
conclude (31) from (36) and (37).

Finally, it follows from (31) that if k ≥ 145, then

|M11| ≤ 24 <
√
4k =

√

|TA| · |TB|. ✷
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