
Utilizing Source Code Embeddings to Identify
Correct Patches

Viktor Csuvik∗, Dániel Horváth†, Ferenc Horváth∗, László Vidács∗†

∗ Department of Software Engineering
†MTA-SZTE Research Group on Artificial Intelligence

University of Szeged, Szeged, Hungary

{csuvikv,skyzip,hferenc,lac}@inf.u-szeged.hu

Abstract—The so called Generate-and-Validate approach of
Automatic Program Repair consists of two main activities, the
generate activity, which produces candidate solutions to the prob-
lem, and the validate activity, which checks the correctness of the
generated solutions. The latter however might not give a reliable
result, since most of the techniques establish the correctness of
the solutions by (re-)running the available test cases. A program
is marked as a possible fix, if it passes all the available test cases.
Although tests can be run automatically, in real life applications
the problem of over- and underfitting often occurs, resulting
in inadequate patches. At this point manual investigation of
repair candidates is needed although they passed the tests. Our
goal is to investigate ways to predict correct patches. The core
idea is to exploit textual and structural similarity between the
original (buggy) program and the generated patches. To do so
we apply Doc2vec and Bert embedding methods on source code.
So far APR tools generate mostly one-line fixes, leaving most
of the original source code intact. Our observation was, that
patches which bring in new variables, make larger changes in
the code are usually the incorrect ones. The proposed approach
was evaluated on the QuixBugs dataset consisting of 40 bugs and
fixes belonging to them. Our approach successfully filtered out
45% of the incorrect patches.

Index Terms—automatic program repair, apr, code embed-
dings, doc2vec, bert

I. INTRODUCTION

Recently, a large number of Automatic Program Repair
(APR) tools have been proposed [1]–[7] and many of these
follow the Generate-and-Validate (G&V) approach. This ap-
proach first localizes the bug in the source code, typically with
testing and ranking instructions based on how "suspicious"
they are. The intuition is that if the suspicious parts are
repaired, the program will work correctly. After localization
(usually by search-based methods), patch candidates are gen-
erated and then validated, typically by (re-)running the tests.
A program is marked as a possible fix, if it passes all the
available test cases. This latter condition gives no assurance
that the program is correct, since over- and underfitting [8]
often occurs, resulting in inadequate patches. For programs
that pass most tests, the tools are as likely to break tests as to
fix them [9].

To overcome these limitations several approaches were
introduced lately [10]–[13]. Although our work is related to
these, it is a bit different. Let us consider a software system

Generation of
candidate patches

Original program

Potentially repaired
program

Potentially repaired
program

Potentially repaired
program

Potentially repaired
program

Reliability of correctness

Fig. 1. A high level illustration of the patch validation process

with a bug in it. With current state-of-the APR tools one could
generate candidate patches, and get one or more potentially
fixed programs. Since overly abundant recommendations can
diminish the usefulness of the information itself, we try to
define an ordering between candidate patches, as seen in
Figure 1, while keeping the technique as simple as possible.

Thus, our main motivation is to give developers a hint,
which repair candidate to check first. To do so, textual
and structural similarity was measured between the original
(buggy) program and the generated patches. Our assumption
was that the correct program is more similar to the original
one, than other candidates. It comes from the perception that
the current techniques mostly create one-line code modifica-
tions, thus leaving most of the original source code intact.
Since both correct and incorrect patches by APRs have this
property about one-line code modification, this reasoning is
still possibly not convincing enough. However when repairing
a program, it is preferable to construct patches which are
simple and readable. This is because responsible software
maintainers would review and inspect a patch carefully before

accepting it [14] – which occurs only if they judge that the
patch is correct and safe [15]. Although textual and structural
similarity does not imply, that the constructed patch is simple
for human software developers, we found that, in some way,
similarity indicates understandability and if a patch is more
understandable, its chance of being correct is higher. To the
best of our knowledge, most of the existing automatic repair
tools do not explicitly take into account of the simplicity of a
patch, however, there are exceptions such as DirectFix [15].

The source code similarities are measured using docu-
ment/sentence embeddings, specifically with two state of the
art techniques borrowed from the natural language processing
domain: Doc2vec [16] and Bert [17]. Deciding the correct-
ness of a candidate patch [18], [19] is one of the current
challenges in automatic program repair, and today considered
as an open question [20]. To our best knowledge this is the
first study tackling the problem using embedding methods.
However, there are other state-of-the-art repair patch ranking
techniques [10], [13], [21], [22], which does not make use of
source code embeddings.

In this paper we provide experimental results measured
on the QuickBugs dataset [23]. We found that in principle
similarity-based techniques can identify incorrect patches, in
our dataset 45% of them were filtered out.

The paper is organized as follows. In the next section we
introduce our research questions. Next high-level overview
of our research is presented in Section III by depicting
the proposed approach to order candidate repairs by their
reliability. Next, we introduce the examined database and its
representations upon which the experiments were carried out.
Evaluation and analysis are presented in Section IV. Related
work is discussed in Section V, and we conclude the paper in
the last section.

II. RESEARCH OBJECTIVES

To investigate the benefits of the document/sentence embed-
ding approach we organize our experiment along the following
research questions:
RQ1: What are the main differences of the similarities pro-
duced by the assessed embedding techniques?
RQ2: How embeddings learned on various source code rep-
resentations perform compared to each other?
RQ3: Can similarity-based patch validation filter out incorrect
patches?

III. METHODS

To measure the reliability of different patches, and to define
an ordering between them, two different source code em-
bedding methods were employed. These embedding methods,
namely Doc2vec and Bert, operated on three different source
code representations: SRC, AST and IDENT. In this section
we describe the applied procedure.

Figure 2 shows the comprehensive approach we propose.
First, from the original program the candidate patches are
generated using external APR tools. From the original program
and from the generated potentially fixed programs, we extract

the three representations. For every representation we train the
Doc2vec model separately, thus each built model is different.
In case of Bert no training is required, since we used a pre-
trained version of it. Regardless of the embedding method, for
a code snippet an N dimensional vector is created on which
one can measure similarity. These vectors contain information
about the meaning, environment, and context of a word or
document. The basic assumption is that the correct patches are
more similar to the original program than the incorrect ones.
Finally, from the learned similarities a ranked list is created:
the first patch in this list is the most similar to the original
program, thus by our assumption it is the most reliable.

A. Data Collection

We designed our approach to be applicable to projects
written in Java, but in general the featured technique is
independent of programming languages, since it only leans on
the source code (text files). Even so the programming language
is arbitrary, data collection proved to be a difficult task. Firstly,
a publicly available database of bugs (and their fixes) was
required, on the other hand, these patches should be revised by
humans, to determine if they are correct or not. The QuixBugs
benchmark [23] is a database having the purpose to objectively
compare the currently most popular software repair tools. The
database contains 40 single-line bugs for Python and Java, for
which patches have been generated with the following tools:
Arja, Cardumen, JGenprog, JKali, Nopol, RsRepair, NPEfix,
Tibra and Mutation. Out of these 40 bugs, the listed tools
managed to generate a total of 64 candidate patches for 14
distinct bugs. This means that there is an average of 4.5 patches
per bug, each one requiring manual validation. In the database
the generated patches are marked based on their correctness.

Source CodeJava

SRC AST IDENT

Patch__
generation__

Ranked List of
Repair Patches

?

Extraction of different representations:

Doc2vec

Measuring similarities

Potential fixes

1.
2.

3.
4.
5.

Candidate1 Candidate2 Candidaten…

Bert

Original program

Candidate2

Candidate1

Candidaten

…

?

?

x
x
…

y
y
…

z
z
…

Treshold

Fig. 2. Illustration of the different embedding approaches

B. Code Representations

For each program in the database, we obtained three differ-
ent textual representations to measure similarity. We already
described these representations in more detail in our previous
works [24], [25]. Similar representations are widely used in
other research experiments, such as [2], [26]. Here we present
a brief summary of these representations:

1) SRC: For a given granularity we consider a source code
fragment as a sentence. This sentence is split [27], [28] into
bag of words representation along special characters (e.g.: "(",
"[", "." etc.) and compound words by the camel case rule.

2) AST: Initially an Abstract Syntax Tree (AST) is con-
structed on which the node types are printed in a pre-order
fashion.

3) IDENT: As before, an AST is constructed, but now for
every node we consider its sub-tree and print the values of the
leaf (terminal) nodes. Thereafter for a given sentence, constant
values (literals) are replaced with placeholders, corresponding
to their types.

The publicly available JavaParser1 was used to generate
the representations. It is a lightweight tool made for the
analysis of Java code. The AST and IDENT representations
were generated separately using only the source code of the
examined projects.

C. Learning Document Embeddings

First, from every program its representations (SRC, AST
and IDENT) is extracted. The experiments were conducted on
class level granularity (in case of Java it’s usually the same
as file level), so the original program and the fixed program
is compared in class level. Consider the original (buggy)
programs and the potentially fixed programs as documents
on which the measurements are conducted. Document embed-
dings (N dimensional vectors) are learned for each represen-
tation, on which similarities are computed. These embeddings
are produced with two different techniques: Doc2vec and Bert.

Doc2vec: is a fully connected neural network, which uses
a single hidden layer to learn document embeddings. We
feed the input documents to this neural network for each
representation and it computes the embedding vectors, on
which conceptual similarity can be measured. On the obtained
embeddings (vectors containing real numbers) similarity is
measured with the COS3MUL metric, proposed in [29]. Ac-
cording to the authors positive words still contribute positively
towards the similarity, negative words negatively, but with less
susceptibility to one large distance dominating the calculation.
The metric is applicable to document level, because the
Doc2vec model is very similar to Word2vec: instead of using
just surrounding words to predict the next word, it also adds
another feature vector, which is unique for every sentence. This
way a single word can have different embeddings in different
sentences.

1https://github.com/javaparser/javaparser

Bert: is a language representation model which – unlike
Doc2vec – is designed to train a deep, bidirectional neural
network. It is designed in a way, so that it is able to capture
the meaning of a word based on its context. Moreover, it
can also identify different meanings of the same word. For
our experiment we used a pre-trained BERT model 2, which
was trained on a large corpus (Wikipedia + BookCorpus) by
researchers at Google. In our experiment we used the bert-as-
service API 3, mainly due to its easy installation and usage.
After starting the service, only a few lines of code is enough
the get the encoded representation of a given source code. The
service itself consists of two distinct parts, the server and the
client. To start the server one should specify its parameters,
among which there is one called max_seq_len. According to
the documentation, it sets the maximum length of a sequence,
meaning longer sequences will be trimmed on the right side.
We experimented with this value, and found that if it is too
low, the result is an over-trimmed program, contrary if it is too
high, the program will be padded. With this in mind, we chose
max_seq_len to the average length of the input text. For the
SRC, AST and IDENT representations it was 360, 140, 160
respectively.

IV. RESULTS AND DISCUSSION

In this section, we evaluate and discuss the featured text-
based models and source code representations. First we present
our patch recommendation system. Next, to further examine
the featured techniques, we used the obtained embeddings to
create a classifier for the patches.

A. Patch Recommendation

Table I shows the ranked lists of patches obtained using
different source code representations. Due to space limitations
and to stick to the results that seem more important we do not
display every bug in the database, the reader can study these in
the original publication [23]. Thus we picked three bugs and
examined the four most similar generated patches for these,
but want to highlight that this choice is arbitrary. In the table
headers one can find the signatures of the code representations
and the short name of the bugs. The rows correspond to the
ordering - the element in the first cell is the most similar to the
original program, while the element in the last cell is the most
varied. The values in the cells indicate the name of the repair
tool and the pN notation denotes the N-th generated patch of
this tool.

Let us compare the two tables. The first obvious differ-
ence is, that in case of Bert the cells in case of the AST
representation are empty. This is due to the fact, that in these
cases we couldn’t define an ordering, because every similarity
value was practically 1.0. High similarity values were typical
throughout the experiment, but the difference between them
was distinguishable. Therefore, we cannot really compare the
two techniques in case of AST representation. Although the

2https://storage.googleapis.com/bert_models/2018_10_18/cased_L-12_H-
768_A-12.zip

3https://github.com/hanxiao/bert-as-service

TABLE I
RESULTS FEATURING THE CORPUS BUILT FROM DIFFERENT REPRESENTATIONS OF THE SOURCE CODE,

SIMILARITIES OBTAINED WITH DOC2VEC AND BERT

DOC2VEC

SRC AST IDENT
quicksort lis shortest_p quicksort lis shortest_p quicksort lis shortest_p

1 arja p5 rsrepair p5 jgenprog p1 mutation p1 rsrepair p5 jgenprog p1 mutation p1 rsrepair p5 jgenprog p1
2 rsrepair p1 statement p1 arja p4 arja p1 statement p1 arja p4 tibra p2 statement p1 arja p4
3 mutation p1 tibra p1 arja p5 nopol p1 tibra p1 arja p2 arja p5 tibra p1 arja p2
4 arja p1 arja p2 arja p2 arja p3 arja p2 arja p5 rsrepair p1 arja p2 rsrepair p1
5 ...

BERT

1 rsrepair p1 rsrepair p5 jgenprog p1 - - - mutation p1 tibra p1 jgenprog p1
2 arja p5 tibra p1 arja p4 - - - tibra p1 statement p1 rsrepair p4
3 arja p1 statement p1 arja p5 - - - arja p5 rsrepair p5 arja p4
4 jkali p1 rsrepair p2 arja p2 - - - rsrepair p1 rsrepair p2 rsrepair p1
5 ...

quantitative evaluation of these similarity lists is not self-
evident, we used the well-known Jaccard similarity [30], also
known as Intersection over Union, to quantify the results. We
examined the top5 items of each list, treated these as sets and
measured Jaccard similarity on them. Afterwards these metric
values were averaged and gave the cumulative similarity value
of 0.72. Since the maximum value of the Jaccard similarity is
1.0, this value is quite high. If we consider the results obtained
from the IDENT representation of the source code, it can be
seen, that in case of problems quicksort and shortest_p the
overlap between the similarity lists is considerable. However
the lists of lis seems to be different for the first sight, after
further investigation we can come to that conclusion, that they
differ only in one element. However the IDENT representation
in some cases behaves differently, the SRC results are very
much alike. For example in case of the bug called lis, both
Doc2vec and Bert placed the rsrepair_p5 patch to the first
place of the similarity list. Also note, that if we would switch
the placement of the second and third cells in any of the two
tables (for this bug), we would get the similarity list of the
other table. Based on these observations, we can answer our
first research question.

Answer to RQ1: According to the data shown in Table I,
Doc2Vec and Bert produces similar results, thus cannot say
that one is better than the other. We note that the comparison
is not fair, since Bert is a pre-trained model trained on natural
language text, while Doc2vec is trained on source code.
The simplicity of patches may be another reason why the
complexity of the Bert model did not pay off. We expect that in
the future, where APR methods can produce complex patches
instead of one-liners, the language understanding nature of
Bert may be advantageous.

Due to the small number of bugs in the database, these
results cannot be generalized in every case. However we would
like to emphasize, that after further examinations (for every
bug, not just the three shown) of the two similarity lists

we didn’t find a significant difference. Comparing document
embeddings is unclear to this day, also giving systematic
approach to compare the performance of the two techniques
isn’t possible in case of ranking, only by manual inspection -
that we had no opportunity to do so. Because our observations
are based on very limited data, in the future we would
like to repeat the experiments with a larger database with
more patches. Another topic of research might be to fine-
tune the Bert model on source code and not on natural
language corpus. However variable namings in Java are usually
expressive, teaching on source code have benefits, such as
domain specific vocabulary or the interpretation of special
programming characters [31].

In this experiment we decided to continue with the Doc2vec
embedding method. The major decisive factor was, that using
it, we could get meaningful results even for the AST repre-
sentation. Also note, that we couldn’t quantify the usefulness
of the obtained similarity lists. This is due to the fact, that the
current state-of-the art APR tools repair bugs correctly with
similar behavior. In our case this means that for a bug the
repair tools either created only correct patches or incorrect
ones. We did not see such a bug, where both correct and
incorrect patches were present. For this reason, we decided to
use the obtained similarity list as a classifier, where evaluation
is given.

B. Classification of Correct Patches

To use the similarity list as a classifier - which decides
whether a patch is correct or not - the only modification has
to be done is to define a threshold, and we consider a program
to be correct if it is above this number, otherwise as incorrect.
To evaluate our method, we used the well-known metrics
of statistics: Negative Predictive Value (Equation 1), Positive
Predictive Value or precision (Equation 2), recall (Equation 3)
and F1 metric (Equation 4). In the formulas True Positive
(TP) and True Negative (TN) values can be interpreted as the
following: the former when the algorithm tells from a correct

program that it is correct, while the latter when it tells from an
incorrect one that it is faulty. Obviously a good classifier has
high TP and TN values, but notice that maximizing the TN
value is more interesting, because it means that an incorrect
program has been filtered out. The FP value in our case means
that the algorithm classifies a program as a correct one, but
in reality it is incorrect. This behavior is not very significant,
since the original APR tool also classified this output as a
correct one - so for this particular patch we haven’t been
able to make a good decision. However, we are not so lenient
about FN, which means that our algorithm tells from a correct
program that it is incorrect. This is obviously a serious error,
as an APR tool has been working on generating this patch,
which will be mistakenly filtered out.

NPV =
TN

TN + FN
(1) PPV =

TP

TP + FP
(2)

recall =
TP

TP + FN
(3) F1 =

PPV ∗ recall
PPV + recall

(4)

We would like to emphasize, that the goal of this experiment
is to examine whether threshold T exists, which classifies the
patches. However finding this threshold automatically might
be a difficult task and its solution is out of the scope of this
paper. The T value in this work is obtained from empirical
observations only, we did not searched for a method, which
defines the threshold.

The obtained results for Doc2vec can be found in Figure 3.
The upper left corner of the squares corresponds to TP, the
lower left to TN, the upper right to FP and the lower left to
FN. One can observe that the FN value is the lowest in the
case of SRC representation, thus it can be considered as the
most effective representation (also note, that the value of the
F1 metric reached its peak here).

Answer to RQ2: The SRC representation seems to be
prevalent in correct patch identification, while others proved
to be much less effective.

One can argue, that this is due to the fact, that fixes are
often limited to a single line, and in some cases only a single
character is affected (eg. > instead of < in an if structure).
Such small modifications cannot be detected by the IDENT
or AST representations, since they work at a higher level of
abstraction. This is especially true for AST, since it only works
with types of the abstract syntax tree. Although the IDENT
representation works on identifiers of the tree, this does not
include such fine modifications (e.g. in the former case, the
smaller symbol will be an internal vertex of the abstract syntax
tree, so it won’t appear at all in the IDENT representation).

Interpreting the results, we found that 16 of the wrong
patches have been filtered out. A total of 62 patches were
generated for the 14 bugs, of which 27 were correct (since
an APR device can generate multiple patches, and several
such devices were executed for the same buggy program).This
means that 32 incorrect patches have been generated, of which
exactly half have been detected correctly.

22 16

5 19

IDENT

CORRECT PATCH INCORRECT PATCH

CORRECT
PATCH

INCORRECT
PATCH

MANUAL CHECK

D
O
C
2
V
EC

C
H
EC
K 26 19

1 16

SRC

CORRECT PATCH INCORRECT PATCH

CORRECT
PATCH

INCORRECT
PATCH

MANUAL CHECK

D
O
C
2
V
EC

C
H
EC
K

20 14

7 21

AST

CORRECT PATCH INCORRECT PATCH

CORRECT
PATCH

INCORRECT
PATCH

MANUAL CHECK

D
O
C
2
V
EC

C
H
EC
K

F1 ≈ 0,68 F1 ≈ 0,73

F1 ≈ 0,67

Fig. 3. Evaluative metric values obtained from the similarities measured with
the Doc2vec model for the three representations

Answer to RQ3: Based on our data we conclude that
similarity-based patch validation can filter out incorrect
patches.

The NPV metric value is 0.94, so for an incorrect patch, the
algorithm is so likely to say that it is indeed incorrect. The
PPV value is 0.57, which means that the algorithm classifies
about every second program correctly, if it belongs to the class
of correct patches.

It is clear from the figure, that a single patch has been
misclassified. Let us examine this case in greater detail, as the
evaluation database is relatively small. One can observe this
patch on Figure 4. The patch was generated by the Cardumen
tool for a bug called MergeSort. The manual patch replaced
the original == 0 with <= 1. After a brief consideration one
can conclude, that the resulting fix is correct, but less readable
(to humans). This is a recurring problem in G&A approaches:
is it important that the generated patch be readable to humans
when it is working [15], [32]? As many of the potentially
improved programs still prove to be defective, human review
is inevitable. Thus, readability seems to be an important aspect.
Based on these, it is up to the Reader to decide whether
labeling the patch below as incorrect was in fact a mistake.

@@ -20,11 +20,17 @@

public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) {

- if ((arr.size()) == 0) {

+ if (((arr.size()) / 2) == 0) {

return arr;

} else {

int middle = arr.size() / 2;

// ...

return merge(left, right);

}

}

Fig. 4. A repair patch generated by Cardumen

V. RELATED WORK

To generate repair patches as simple as possible, has already
mentioned in many works [11], [15], [33]. This makes the
repaired programs more understandable to humans. Such codes
that are generated by APR tools without any effort to make
them readable are called "alien code" [34]. Although, their
subsequent maintenance may be costly, according to a recent
study [12] 25.4% (45/177) of the correct patches generated
by APR techniques are syntactically different from developer-
provided ones.

In previous works [9], it has pointed out that overfitting in
the APR domain often occurs. It is also known that there are
bugs that do not occur under "lab conditions" [35]. Test cases
are very important in the APR domain, since in some cases
even patching is based on these [9], [22]. Other approaches
also exists, which generate patches by learning human-written
program codes [36], [37]. While such approaches have shown
promising results, they have recently been the subject of
several criticisms [32].

Automatic program repair is in its infancy, with many
challenges [38], maybe one of the most important is deciding
the correctness of a candidate patch [18], [19]. In a recent
study [20] authors highlighted this issue as an open question.
To the best of our knowledge, we are the first who employed
embedding methods to tackle with this problem.

Recommendation systems are not new to software engi-
neering [39]–[41], presenting a prioritized list of most likely
solutions seems to be a more resilient approach even in
traceability research [24], [25], [42].

During the recent years of natural language processing,
word2vec [43] has become a very popular approach of cal-
culating semantic similarities between various textual holders
of information [2], [16], [26], [44]–[48]. In these works,
initially word embeddings are obtained and then the authors
propagate these to larger text body (e.g.: sentences, doc-
uments). Although Doc2vec [49] not enjoys the immense
popularity of word2vec, it is still well-known to the scientific
community [24], [25], [50]–[53], although they are much less
prevalent in the field of software engineering. Similarly to
Doc2vec, the use of Bert [17] in this specific domain is not
very widespread.

Related research also focuses on artifacts written in natural
language and use NLP techniques for various purposes and
some even employ word embeddings. In [45], the authors
propose an architecture where word embeddings are trained
and aggregated in order to estimate semantic similarities
between documents which they used for bug localization
purposes. Document embeddings can be used to find similarity
between sentences/paragraphs/documents [26]. In the software
engineering domain, this can also be useful in clone detection.

So far not many authors have dealt with patch validation
in the research community. In a recent study [10] authors
assessed reliability of author and automated annotations on
patch correctness assessment. They first constructed a gold
set of correctness labels for 189 patches through a user study

and then compared labels generated by author and automated
annotations with this gold set to assess reliability. They found
that although independent test suite alone should not be
used to evaluate the effectiveness of APR, it can be used to
augment author annotation. Although this study shows some
resemblance to our paper, the work of Xiong et al. [13] is
the closest to ours. Their goal is to reduce the number of
incorrect patches generated in the APR domain. Their core
idea is to exploit the behavior similarity of test case executions.
The passing tests on original and patched programs are likely
to behave similarly while the failing tests on original and
patched programs are likely to behave differently. Based on
these observations, they generate new test inputs to enhance
the test suites and use their behavior similarity to determine
patch correctness. With this approach they successfully 56.3%
of the incorrect patches to be generated. Our current approach
differs from these in many aspects. First, our approach does
not prevent patches to be generated, because it works after
the patch generation process, though it can be integrated
in an APR tool. Next, they measured the similarity of test
case executions, while we did not make any assumptions on
these, worked purely on the source code. Also our approach
uses document embedding methods, not syntactic or semantic
metrics like Cosine similarity or Output coverage [54]. Other
Syntactic and semantic distances can also be applied, like
in the tool named Qlose [21]. These metrics have several
limitations, like maximal lines of code to handle or that
they need manual adjustment. On the other hand, the use of
document embeddings offers a flexible alternative. Opad [22]
(Overfitted PAtch Detection) is another tool, which aims to
filter out incorrect patches. However their approach is totally
different from ours, we briefly summarize their work. Opad
uses fuzz testing to generate new test cases, and employs
two test oracles to enhance validity checking of automatically-
generated patches. Anti-pattern based correction check is also
a possible approach [55].

VI. CONCLUSIONS

Natural language processing methods are widely applied in
software engineering research, even in the APR domain. In
this paper, we employ document/sentence embedding meth-
ods on source code to qualify the reliability of candidate
patches. Since these methods are intended for natural language
texts, we first experimented with various representations of
the source code. We found, that plain source code is the
most appropriate for this task, probably because it preserves
the most information of the original program. Finally, using
the obtained similarity lists, we showed that similarity-based
techniques can identify incorrect patches. With their help,
45% (16/35) of the incorrect patches were filtered out, thus
presenting a valuable alternative for patch-filtering methods.
While this study is limited in its data size, we note that today
we cope with mostly one liner patches. As APR methods ad-
vance, we expect that a more complex language understanding
models, like Bert, would be advantageous in deciding patch
correctness.

ACKNOWLEDGEMENT

This work was supported in part by the ÚNKP-19-2-
SZTE and ÚNKP-19-4-SZTE New National Excellence Pro-
grams of the Ministry for Innovation and Technology, by the
European Social Fund (EFOP-3.6.3-VEKOP-16-2017-00002),
by the Hungarian Government and the European Regional
Development Fund under the grant number GINOP-2.3.2-15-
2016-00037 (”Internet of Living Things”). This research was
partially supported by grant TUDFO/47138-1/2019-ITM of
the Ministry for Innovation and Technology, Hungary. László
Vidács was also funded by the János Bolyai Scholarship of
the Hungarian Academy of Sciences.

REFERENCES

[1] M. M. Matias Martinez, “Writer questions the inevitability of FPs’
declining role in inpatient care.” cs.SE, vol. 29, no. 6, pp. 382–383, oct
1997. [Online]. Available: https://arxiv.org/abs/1410.6651

[2] “Deep learning similarities from different representations of source
code,” Proceedings of the 15th International Conference on Mining
Software Repositories - MSR ’18, vol. 18, pp. 542–553, 2018.

[3] S. Mahajan, A. Alameer, P. McMinn, and W. G. Halfond, “Automated
Repair of Internationalization Presentation Failures in Web Pages Using
Style Similarity Clustering and Search-Based Techniques,” Tech. Rep.,
2018. [Online]. Available: https://www.dmv.ca.gov

[4] M. Martinez, T. Durieux, R. Sommerard, J. Xuan, and M. Monperrus,
“Automatic repair of real bugs in java: a large-scale experiment on the
defects4j dataset,” Empirical Software Engineering, vol. 22, no. 4, pp.
1936–1964, aug 2017. [Online]. Available: http://link.springer.com/10.
1007/s10664-016-9470-4

[5] R. Gupta, S. Pal, A. Kanade, and S. Shevade, “DeepFix : Fixing
Common Programming Errors by Deep Learning,” Tech. Rep. Traver,
2016. [Online]. Available: https://www.aaai.org/ocs/index.php/AAAI/
AAAI17/paper/viewFile/14603/13921

[6] J. Xuan, M. Martinez, F. DeMarco, M. Clement, S. L. Marcote,
T. Durieux, D. Le Berre, and M. Monperrus, “Nopol: Automatic Repair
of Conditional Statement Bugs in Java Programs,” IEEE Transactions
on Software Engineering, vol. 43, no. 1, pp. 34–55, 2017. [Online].
Available: https://hal.archives-ouvertes.fr/hal-01285008v2

[7] Z. Qi, F. Long, S. Achour, and M. Rinard, “An analysis of patch
plausibility and correctness for generate-and-validate patch generation
systems,” in Proceedings of the 2015 International Symposium on
Software Testing and Analysis - ISSTA 2015. New York, New
York, USA: ACM Press, 2015, pp. 24–36. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2771783.2771791

[8] X. B. D. Le, F. Thung, D. Lo, and C. L. Goues, “Overfitting in semantics-
based automated program repair,” Empirical Software Engineering,
vol. 23, no. 5, pp. 3007–3033, oct 2018.

[9] E. K. Smith, E. T. Barr, C. Le Goues, and Y. Brun, “Is the cure
worse than the disease? overfitting in automated program repair,”
in Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering - ESEC/FSE 2015. New York, New
York, USA: ACM Press, 2015, pp. 532–543. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2786805.2786825

[10] D. X. B. Le, L. Bao, D. Lo, X. Xia, S. Li, and C. Pasareanu, “On Relia-
bility of Patch Correctness Assessment,” in Proceedings - International
Conference on Software Engineering, vol. 2019-May. IEEE Computer
Society, may 2019, pp. 524–535.

[11] M. Tufano, J. Pantiuchina, C. Watson, G. Bavota, and D. Poshyvanyk,
“On Learning Meaningful Code Changes Via Neural Machine
Translation,” Proceedings - International Conference on Software
Engineering, vol. 2019-May, pp. 25–36, jan 2019. [Online]. Available:
http://arxiv.org/abs/1901.09102

[12] S. Wang, M. Wen, L. Chen, X. Yi, and X. Mao, “How Different
Is It between Machine-Generated and Developer-Provided Patches? :
An Empirical Study on the Correct Patches Generated by Automated
Program Repair Techniques,” in International Symposium on Empirical
Software Engineering and Measurement, vol. 2019-Septe. IEEE
Computer Society, sep 2019.

[13] Y. Xiong, X. Liu, M. Zeng, L. Zhang, and G. Huang, “Identifying patch
correctness in test-based program repair,” in Proceedings - International
Conference on Software Engineering. IEEE Computer Society, may
2018, pp. 789–799.

[14] W. Scacchi, J. Feller, B. Fitzgerald, S. Hissam, and K. Lakhani, “Un-
derstanding free/open source software development processes,” Software
Process Improvement and Practice, vol. 11, no. 2, pp. 95–105, mar 2006.

[15] S. Mechtaev, J. Yi, and A. Roychoudhury, “DirectFix: Looking for
Simple Program Repairs,” in 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering. IEEE, may 2015, pp. 448–458.
[Online]. Available: http://ieeexplore.ieee.org/document/7194596/

[16] Q. V. Le and T. Mikolov, “Distributed Representations of Sentences and
Documents,” Tech. Rep., 2014.

[17] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding,” oct
2018. [Online]. Available: http://arxiv.org/abs/1810.04805

[18] F. Y. Assiri and J. M. Bieman, “Fault localization for automated program
repair: effectiveness, performance, repair correctness,” Software Quality
Journal, vol. 25, no. 1, pp. 171–199, mar 2017. [Online]. Available:
http://link.springer.com/10.1007/s11219-016-9312-z

[19] L. Gazzola, D. Micucci, and L. Mariani, “Automatic software repair: A
survey,” Proceedings of the 40th International Conference on Software
Engineering - ICSE ’18, pp. 1219–1219, 2018. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=3180155.3182526

[20] M. L. Gazzola Luca, Micucci Daniela, “Automatic Software Repair: A
Survey,” IEEE Transactions on Software Engineering, vol. 45, no. 1,
pp. 34–67, jan 2019.

[21] L. D’Antoni, R. Samanta, and R. Singh, “QLOSE: Program repair with
quantitative objectives,” Tech. Rep., 2016.

[22] J. Yang, A. Zhikhartsev, Y. Liu, and L. Tan, “Better test cases
for better automated program repair,” Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering -
ESEC/FSE 2017, pp. 831–841, 2017. [Online]. Available: http:
//dl.acm.org/citation.cfm?doid=3106237.3106274

[23] H. Ye, M. Martinez, T. Durieux, and M. Monperrus, “A Comprehensive
Study of Automatic Program Repair on the QuixBugs Benchmark,”
IBF 2019 - 2019 IEEE 1st International Workshop on Intelligent Bug
Fixing, pp. 1–10, may 2019. [Online]. Available: http://arxiv.org/abs/
1805.03454http://dx.doi.org/10.1109/IBF.2019.8665475

[24] V. Csuvik, A. Kicsi, and L. Vidacs, “Source code level word embed-
dings in aiding semantic test-to-code traceability,” in Proceedings -
2019 IEEE/ACM 10th International Workshop on Software and Systems
Traceability, SST 2019. Institute of Electrical and Electronics Engineers
(IEEE), sep 2019, pp. 29–36.

[25] V. Csuvik, A. Kicsi, and L. Vidács, “Evaluation of Textual Similarity
Techniques in Code Level Traceability,” in Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 11622 LNCS. Springer Verlag,
2019, pp. 529–543.

[26] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep learning
code fragments for code clone detection,” Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineer-
ing - ASE 2016, pp. 87–98, 2016.

[27] E. Hill, D. Binkley, D. Lawrie, L. Pollock, and K. Vijay-Shanker, “An
empirical study of identifier splitting techniques,” Empirical Software
Engineering, vol. 19, no. 6, pp. 1754–1780, dec 2014.

[28] “Can better identifier splitting techniques help feature location?” in IEEE
International Conference on Program Comprehension. IEEE, jun 2011,
pp. 11–20.

[29] “Linguistic Regularities in Sparse and Explicit Word Representations,”
Tech. Rep., 2014.

[30] S. Niwattanakul, J. Singthongchai, E. Naenudorn, and S. Wanapu, Using
of jaccard coefficient for keywords similarity, 2013, vol. 2202. [Online].
Available: https://www.researchgate.net/publication/317248581

[31] A. Kanade, P. Maniatis, G. Balakrishnan, and K. Shi, “Pre-trained
Contextual Embedding of Source Code,” 2019. [Online]. Available:
http://arxiv.org/abs/2001.00059

[32] M. Monperrus and Martin, “A critical review of "automatic
patch generation learned from human-written patches": essay on
the problem statement and the evaluation of automatic software
repair,” in Proceedings of the 36th International Conference on
Software Engineering - ICSE 2014. New York, New York,
USA: ACM Press, 2014, pp. 234–242. [Online]. Available: http:
//dl.acm.org/citation.cfm?doid=2568225.2568324

[33] M. White, M. Tufano, M. Martinez, M. Monperrus, and D. Poshyvanyk,
“Sorting and Transforming Program Repair Ingredients via Deep
Learning Code Similarities,” Tech. Rep., 2017. [Online]. Available:
http://arxiv.org/abs/1707.04742

[34] M. Monperrus, “Automatic Software Repair: a Bibliography,” vol. 51,
pp. 1–24, 2018. [Online]. Available: http://arxiv.org/abs/1807.00515{\%
}0Ahttp://dx.doi.org/10.1145/3105906

[35] P. Hooimeijer and W. Weimer, Modeling bug report quality. New
York, New York, USA: ACM Press, 2007. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1321631.1321639

[36] X. B. D. Le, D. Lo, and C. L. Goues, “History Driven Program Repair,”
in 2016 IEEE 23rd International Conference on Software Analysis,
Evolution, and Reengineering (SANER). IEEE, mar 2016, pp. 213–224.
[Online]. Available: http://ieeexplore.ieee.org/document/7476644/

[37] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation
learned from human-written patches,” in Proceedings - International
Conference on Software Engineering. IEEE, may 2013, pp. 802–811.
[Online]. Available: http://ieeexplore.ieee.org/document/6606626/

[38] C. Le Goues, S. Forrest, and W. Weimer, “Current challenges in
automatic software repair,” Software Quality Journal, vol. 21, no. 3,
pp. 421–443, sep 2013. [Online]. Available: http://link.springer.com/10.
1007/s11219-013-9208-0

[39] P. S. Kochhar, X. Xia, D. Lo, and S. Li, “Practitioners’ expectations on
automated fault localization,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis - ISSTA 2016. New York,
New York, USA: ACM Press, 2016, pp. 165–176.

[40] M. Robillard, R. Walker, and T. Zimmermann, “Recommendation Sys-
tems for Software Engineering,” IEEE Software, vol. 27, no. 4, pp. 80–
86, jul 2010.

[41] M. P. Robillard, W. Maalej, R. J. Walker, and T. Zimmermann, Rec-
ommendation Systems in Software Engineering. Springer Publishing
Company, Incorporated, 2014.

[42] A. Kicsi, L. Tóth, and L. Vidács, “Exploring the benefits of utilizing
conceptual information in test-to-code traceability,” Proceedings of the
6th International Workshop on Realizing Artificial Intelligence Synergies
in Software Engineering, pp. 8–14, 2018.

[43] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Dis-
tributed representations of words and phrases and their composition-
ality,” NIPS’13 Proceedings of the 26th International Conference on
Neural Information Processing Systems, vol. 2, pp. 3111–3119, dec
2013.

[44] N. Mathieu and A. Hamou-Lhadj, “Word embeddings for the software
[53] R. A. DeFronzo, A. Lewin, S. Patel, D. Liu, R. Kaste, H. J. Woerle, and

U. C. Broedl, “Combination of empagliflozin and linagliptin as second-

engineering domain,” Proceedings of the 15th International Conference
on Mining Software Repositories - MSR ’18, pp. 38–41, 2018.

[45] X. Ye, H. Shen, X. Ma, R. Bunescu, and C. Liu, “From word embeddings
to document similarities for improved information retrieval in software
engineering,” in Proceedings of the 38th International Conference on
Software Engineering - ICSE ’16. New York, New York, USA: ACM
Press, 2016, pp. 404–415.

[46] J. Guo, J. Cheng, and J. Cleland-Huang, “Semantically Enhanced
Software Traceability Using Deep Learning Techniques,” in Proceedings
- 2017 IEEE/ACM 39th International Conference on Software Engineer-
ing, ICSE 2017. IEEE, may 2017, pp. 3–14.

[47] X. Yang, D. Lo, X. Xia, L. Bao, and J. Sun, “Combining Word
Embedding with Information Retrieval to Recommend Similar Bug Re-
ports,” in Proceedings - International Symposium on Software Reliability
Engineering, ISSRE. IEEE, oct 2016, pp. 127–137.

[48] T. D. Nguyen, A. T. Nguyen, H. D. Phan, and T. N. Nguyen, “Exploring
API embedding for API usages and applications,” in Proceedings - 2017
IEEE/ACM 39th International Conference on Software Engineering,
ICSE 2017. IEEE, may 2017, pp. 438–449.

[49] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed
Representations of Words and Phrases and their Compositionality,” Tech.
Rep., 2013.

[50] Z. Zhu and J. Hu, “Context Aware Document Embedding,” jul 2017.
[51] A. M. Dai, C. Olah, and Q. V. Le, “Document Embedding with

Paragraph Vectors,” jul 2015.
[52] S. Wang, J. Tang, C. Aggarwal, and H. Liu, “Linked Document Embed-

ding for Classification,” in Proceedings of the 25th ACM International
on Conference on Information and Knowledge Management - CIKM ’16.
New York, New York, USA: ACM Press, 2016, pp. 115–124.
line therapy in subjects with type 2 diabetes inadequately controlled on
metformin,” Diabetes Care, vol. 38, no. 3, pp. 384–393, jul 2015.

[54] X. B. D. Le, D. H. Chu, D. Lo, C. Le Goues, and W. Visser,
“S3: Syntax- and semantic-guided repair synthesis via programming
by examples,” Proceedings of the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, vol. Part F130154, pp. 593–604,
2017. [Online]. Available: https://doi.org/10.1145/3106237.3106309

[55] S. H. Tan, H. Yoshida, M. R. Prasad, and A. Roychoudhury,
“Anti-patterns in search-based program repair,” in Proceedings
of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering - FSE 2016. New York, New
York, USA: ACM Press, 2016, pp. 727–738. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2950290.2950295

