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Inflammasomes link vascular disease with
neuroinflammation and brain disorders
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Abstract

The role of inflammation in neurological disorders is increasingly recognised. Inflammatory processes are associated with

the aetiology and clinical progression of migraine, psychiatric conditions, epilepsy, cerebrovascular diseases, dementia and

neurodegeneration, such as seen in Alzheimer’s or Parkinson’s disease. Both central and systemic inflammatory actions

have been linked with the development of brain diseases, suggesting that complex neuro-immune interactions could

contribute to pathological changes in the brain across multiple temporal and spatial scales. However, the mechanisms

through which inflammation impacts on neurological disease are improperly defined. To develop effective therapeutic

approaches, it is imperative to understand how detrimental inflammatory processes could be blocked selectively, or

controlled for prolonged periods, without compromising essential immune defence mechanisms. Increasing evidence

indicates that common risk factors for brain disorders, such as atherosclerosis, diabetes, hypertension, obesity or

infection involve the activation of NLRP3, NLRP1, NLRC4 or AIM2 inflammasomes, which are also associated with

various neurological diseases. This review focuses on the mechanisms whereby inflammasomes, which integrate diverse

inflammatory signals in response to pathogen-driven stimuli, tissue injury or metabolic alterations in multiple cell types

and different organs of the body, could functionally link vascular- and neurological diseases and hence represent a

promising therapeutic target.
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Introduction

The role of innate immune and vascular inflamma-
tory mechanisms in common neurological disorders

Induction of inflammation in any organ or tissue
includes rapid vascular changes in parallel with the acti-
vation of innate immune cells that sense pathogens or
tissue injury via pattern recognition receptors (PRRs).
Recognition of pathogen-derived molecules, and those
released by the compromised cells and tissues of the
host (which induce sterile inflammation), triggers an
inflammatory response that initially includes the activa-
tion of largely overlapping immune cell populations
in different organs, such as monocytes, macrophages,
dendritic cells or granulocytes. These cells express mul-
tiple PRRs, and some PRRs recognise both host- and
pathogen-derived molecules. As an example, Toll-like
receptor 4 (TLR4) is activated by both bacterial
lipopolysaccharide (LPS) and high mobility group
box protein 1 (HMGB1), which is released from injured

cells and acts as an endogenous danger molecule.1,2

In this way, monocytes, neutrophils or tissue macro-
phages can react rapidly to harmful stimuli of different
origin and mount an inflammatory response that
has several common features, which are not stimulus-
specific. Injured tissues contribute to sterile inflamma-
tion via releasing danger signals and alarmins such as
ATP, interleukin-a (IL-1a), HMGB1 and many other
cytoplasmic proteins as well as nuclear or mitochon-
drial DNA. Following the development of the appro-
priate immune response, and when the harmful
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stimulus is no longer present, resolution of inflamma-
tion takes place and tissue regeneration is initiated.3,4

The normal inflammatory response to injury or infec-
tion commonly involves systemic changes including
increases in circulating inflammatory cytokine and
acute phase protein levels, activation of the HPA axis
and the autonomic nervous system, which resolve soon
after tissue regeneration or clearance of infection.
In contrast, non-resolving infection, impaired wound
healing or lasting metabolic alterations such as high
blood glucose, uric acid or triglyceride levels are asso-
ciated with chronic inflammation. Excessive or uncon-
trolled inflammation can result in tissue injury and is
often associated with systemic inflammatory changes.
These include prolonged upregulation of circulating
cytokines, acute phase proteins and inflammation in
different vascular beds of the body. Systemic inflamma-
tion is also associated with vascular changes and acti-
vation of glial cells in the nervous system and perhaps
not surprisingly, diabetes, hyperlipidaemia, atheroscler-
osis, hypertension, obesity and infection are risk factors
for cerebrovascular and neurodegenerative diseases.
Preceding systemic inflammation also leads to worse
clinical outcome in acute cerebrovascular diseases.5–9

Evidence indicates that systemic inflammation is asso-
ciated with inflammatory changes in the brain before
neurological symptoms develop. For example, patients
with multiple risk factors for stroke and chronically
elevated C-reactive protein (CRP), but without history
of a previous cerebrovascular event and in the absence
of any obvious brain pathology as assessed by neuror-
adiologists on MR scans, show microglial activation in
the brain. This also occurs in mice or rats with chronic
vascular disease.10 Vascular and microglial activation
and lipid deposition in the brain are also seen in mice
fed an atherogenic diet.10,11 Acute or chronic inflamma-
tion in the CNS could also be induced by local signals.
ATP, IL-1a, HMGB1 and DNA are released from
injured neurons or glia, whereas amyloid-beta (Ab)
oligomers, tau and aggregated a-synuclein are potent
inducers of glial activation and inflammatory cytokine
production.12–17 Emerging data indicate that blockade
of inflammation is protective in common neurological
diseases. Interestingly, non-steroidal anti-inflammatory
drugs (NSAIDs) and statins, which have diverse anti-
inflammatory actions, appear to be protective in
Alzheimer’s (AD) and Parkinson’s disease (PD).18–25

IL-1 and IL-18: Mediators of inflammation,
vascular disease and brain injury

One of the main inflammatory mediators that contrib-
utes to a wide range of vascular, metabolic and neuro-
logical diseases is IL-1. IL-1 family cytokines are key

mediators of inflammation, and the proinflammatory
forms IL-1a and IL-1b are involved in both central
and systemic inflammatory mechanisms.3,8,9,16,17,21,22,26

Blockade of IL-1 actions is markedly protective against
brain injury in animal models.27,28 IL-18 is another
inflammatory cytokine whose involvement in acute
and chronic inflammatory conditions and common
brain diseases has been documented.29 In particular,
IL-18 is elevated in the brain and/or the circulation
of patients with AD, schizophrenia, multiple
sclerosis (MS), depression or cerebral ischaemia.30,31

Both IL-1b and IL-18 production are regulated by cas-
pase-1 activation. Patients with mutations in the
NLRP3 gene, which controls the activity of caspase-1,
have been found to secrete more IL-1b and IL-18 and
suffer from systemic inflammatory disease. This is asso-
ciated with high circulating concentrations of IL-6,
serum amyloid A and CRP.32 Recent research has
revealed that the molecular machinery regulating IL-1b
and IL-18 production in response to signalling via mul-
tiple PRRs includes the formation of inflammasomes.

Structure and activation of inflammasomes

Inflammasomes are large multi-molecular protein
complexes that form in response to inflammatory stimuli
and that are responsible for the processing of the inactive
precursors of IL-1b and IL-18.33 Inflammasomes
are composed of a sensor molecule, adaptor proteins
and pro-inflammatory caspases. The sensor molecule
is a PRR that senses pathogen (PAMPs), or damage
associated molecular patterns (DAMPs), which are mar-
kers of infection or cell stress/injury, respectively.
Inflammasomes are defined by the PRR, and although
several have been described,33 those that have been asso-
ciated with brain injury are NLRP1,34–36 NLRP3,37–39

NLRC440 and AIM2.40,41 The endogenous ligand for
NLRP1 (NLR family pyrin domain containing 1) is
unknown. NLRP3 (NLR family pyrin domain contain-
ing 3) senses a diverse array of both PAMP and DAMP
stimuli.33 NLRC4 (NLR family CARD domain contain-
ing 4) senses bacterial ligands through co-receptors
called NAIP proteins (NLR family apoptosis inhibitory
protein),42,43 and AIM2 (absent in melanoma 2) directly
binds to double stranded DNA.44,45 Upon PAMP or
DAMP sensing NLRP3 nucleates the ASC (apoptosis-
associated speck-like protein containing a caspase
recruitment domain) adaptor molecule to oligomerise
and form a large inflammasome speck within the cell
based on a prion like aggregation.46,47 Pro-caspase-1 is
also recruited to this complex where it becomes acti-
vated. Active caspase-1 then processes pro-IL-1b and
pro-IL-18 to mature forms that are rapidly secreted
from the cell.48 Once formed these inflammasome
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specks can also become extracellular and propagate
further inflammatory responses.49,50 The mechanism of
IL-1b release after inflammasome activation has
been poorly understood but is now known to require
cleavage of the cytoplasmic protein gasdermin D
(Gsdmd).51,52 Gsdmd is cleaved by caspase-1 and
results in a destabilisation of the plasma membrane
facilitating release of IL-1b.51–53 Similar to the effects
of knocking out Gsdmd, we have recently reported that
membrane stabilising agents such as the complex poly-
phenol punicalagin are able to inhibit the release of
IL-1b specifically without affecting inflammasome acti-
vation.54 Interestingly, punicalagin has also been shown
to be neuroprotective in rodent models of stroke.55,56

Emerging role for inflammasomes in vascular
disease, neuroinflammation and brain injury

Recent studies suggest that inflammasomes are
involved in a wide range of pathophysiological pro-
cesses in the brain and in chronic diseases that are
risk factors for neurodegenerative or cerebrovascular
disease. IL-1b and/or NLRP3 polymorphisms and
changes in gene expression are associated with depres-
sion, migraine, MS, AD, PD and ischaemic stroke in
patients.28,57–63 Similarly, NLRP3 polymorphisms are
associated with risk of hypertension and age-related
increase of blood pressure, type 2 diabetes, coronary
heart disease and acute vascular events.64–67 Increased
caspase-1 activation is seen in the brain of AD patients
and the NLRP3 inflammasome was found to contribute
to disease progression and changes in cognitive func-
tion in rodents.21,68 The NLRP3 inflammasome is also
involved in the pathogenesis of CNS demyelination and
prion disease in animal models69–72 and contributes
to amyotrophic lateral sclerosis (ALS).73 Acute brain
injury following cerebral ischaemia and traumatic brain
injury (TBI) as well as spinal cord injury involve ASC-
dependent mechanisms mediated by the NLRP1, AIM2
or NLRC4 inflammasomes.34–36,40 Since IL-1- and
inflammasome-mediated actions contribute to inflam-
mation and injury in both the periphery and the
brain, it is important to understand the cellular mech-
anisms involved in order to develop effective thera-
peutic strategies for CNS disease.

Cell type-specific activation of inflammasomes
links systemic inflammation and brain disease

Inflammasome research has largely focused on mono-
cytes and macrophages, since these cells not only
respond rapidly to a diverse array of DAMPs and
PAMPs, but are also considered to be key inducers of
inflammation via IL-1 and IL-18 in different tissues.

However, recent research has revealed that endothelial
cells, granulocytes, neurons and astrocytes (and other
cells) also express functional inflammasomes that con-
tribute to both systemic inflammation and pathophysio-
logical processes in the CNS (Figure 1). Because of the
extensive literature available, this section focuses on
inflammasome-mediated actions in different cell types
in the context of neuroinflammation and risk factors
for brain disease. Inflammasome signalling in monocytes
and macrophages are not discussed in detail here but are
reviewed extensively elsewhere.3,33,74,75

Microglia. Similarly to other organs, injury in the CNS
causes the release of DAMPs leading to microglial acti-
vation and IL-1 production. Although a comprehensive
comparison of microglial inflammasome signalling with
that of monocytes and macrophages has not been per-
formed, the available evidence indicates that common
PAMPs and DAMPs activate microglial inflamma-
somes. For example, LPS, HMGB1 and the acute
phase protein serum amyloid A act as a priming stimu-
lus for microglia, whereas classical DAMPs such ATP
and monosodium ureate (MSU) crystals induce the
activation of the NLRP3 inflammasome, leading to
the release of mature IL-1b.76–79

Aggregated amyloid-b can activate the NLRP3
inflammasome in microglia, which release IL-1b upon
stimulation following LPS priming. This is associated
with lysosomal damage and release of cathepsin B.78,80

In turn, caspase-1 expression is observed in the human
brain in patients with mild cognitive impairment and
AD, whereas NLRP3- or caspase-1-deficient mice car-
rying mutations associated with familial AD are largely
protected from loss of spatial memory.68 Deposition of
a-synuclein is one of the main pathological changes
seen in the brain in PD. Both monomeric and fibrillar
forms of a-synuclein were found to induce the synthesis
of IL-1b through TLR2, whereas fibrillar a-synuclein
induced IL-1b secretion via NLRP3 in microglia.12 In
another study, stimulation of microglia with a-synu-
clein was sufficient to induce a modest priming effect,
but did not result in the release of active IL-1b.78

a-synuclein added to THP1 cells (a human monocyte
cell line) induces activation of TLR2 and the NLRP3
inflammasome leading to IL-1b secretion.81,82 Prion
protein fibrils induce the activation of NLRP3 inflam-
masome and IL-1b production from microglia via lyso-
some destabilisation, ultimately leading to the release
neurotoxic mediators and neuronal death.83 In brain tis-
sues from patients with Rasmussen’s encephalitis (an
inflammatory encephalopathy of unknown cause defined
by seizures with progressive neurological disabilities),
increased expression inflammasome-associated
genes (IL-1b, IL-18, NLRP1, NLRP3 and CASP1)
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was found. IL-1b and caspase-1 expression was asso-
ciated with white matter myeloid cells.84

Neurons and astrocytes. Neurons express inflammasome
components both in vivo and in vitro and neuronal
inflammasome activation occurs in response to acute
injury, brain trauma, stress and in animal models of

neuroinflammation and neurodegeneration. For exam-
ple, NLRP1, NLRC4, AIM2, caspase-1 and ASC
mRNAs are present in cultured neurons, and treatment
with the NLRP1 agonist muramyl dipeptide (MDP),
the AIM2 agonist poly-(dA:dT) or the NLRC4 agonist
recombinant flagellin, induces activation of caspase-1
and caspase-6.85 NLRP1 immunopositive neurons are

Figure 1. Inflammasome signalling in different cell types involved in brain inflammation and injury. Because of the extensive literature

data available, inflammasome signalling in monocytes and macrophages is not discussed in detail only pathways confirmed in the case of

microglia. See detailed explanation in the text. Please note that triggers, pathways and downstream events of inflammasome activation

were depicted in the figure only if experimental evidence is available for the given cell type.
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increased 25- to 30-fold in AD brains compared with
non-AD brains.85 Neuronal NLRP1 levels are also
upregulated in APPswe/PS1dE9 transgenic mice, and
NLRP1-mediated pyroptosis (a caspase-1 dependent,
inflammatory form of cell death86) is induced in cul-
tured cortical neurons in response to amyloid-b.87

The NLRP1 inflammasome is also activated in patients
with medial temporal lobe epilepsy, and NLRP1
inflammasome activation contributes to neuronal pyr-
optosis in the amygdala kindling-induced rat model.88

Traumatic brain injury induces expression of
caspase-1, caspase-11, ASC and NLRP1 in cortical
neurons, which is associated with production of
mature IL-1b. Activation of the AIM2 inflammasome
is also seen in the human brain after traumatic brain
injury and neurons stimulated with synthetic double-
stranded DNA (poly-(dA:dT)) undergo AIM2 inflam-
masome-dependent pyroptosis, which is prevented by
inhibition of pannexin-1.41 Systemic metabolic and/or
inflammatory changes could also exert direct impact on
neuronal inflammasomes. For example, high glucose
levels induce the release of mature IL-1b and IL-18
from cultured neurons, whereas increased expression
of NLRP1, ASC and caspase-1 is found in neurons
both in vitro and in vivo in the cerebral cortex of strep-
tozocin (STZ)-induced diabetic rats.89

Astrocytes are capable of producing IL-1b both
in vitro and in vivo and express NLRP3, AIM2,
NLRP1 and NLRC4 inflammasomes.90–92 Expression
of the NLRP2 inflammasome by astrocytes has also
been suggested.93 A growing body of literature suggests
that inflammasome activation in astrocytes could con-
tribute to brain inflammation after acute injury and
in neurodegenerative diseases. High extracellular potas-
sium levels open pannexin 1 channels leading to
caspase-1 activation and IL-1b and IL-18 release from
primary neurons and astrocytes.94 Astrocytes play an
important role in protection against oxidative stress
in the brain and this is linked with inflammasome acti-
vation. Lack of uncoupling protein 2 (UCP2), which
regulates ROS production, leads to the aggravation
of inflammation via activating the NLRP3 inflamma-
some and at the same time increased endoplas-
mic reticulum stress in astrocytes. UCP2 knockout
mice show exacerbated dopaminergic neuron loss in
the 1,2,3,6-methyl-phenyl-tetrahydropyridine (MPTP)
murine model of PD, which is accompanied by
increased astrocyte activation.95 Ethanol also induces
NLRP3 activation and cell death in cultured astrocytes,
which is blocked by a mitochondrial ROS scavenger.96

Increased expression of both NLRP1 and NLRP3 is
seen in hippocampal neurons and astrocytes in post
mortem alcoholic human brain, and inhibition of
neurogenesis by ethanol is reversed by a neutralising
antibody to IL-1b, or blockade of the IL-1b receptor

with IL-1R antagonist in organotypic slice cultures.97

Expression levels of NLRC4 and ASC are significantly
elevated in a subgroup of sporadic AD patients, and
palmitate (saturated fatty acid, a major component of
high fat diet) induces the activation of NLRC4 and
production of mature IL-1b in cultured astrocytes.98

In post mortem tissues from patients with amyotrophic
lateral sclerosis, increased NLRP3, ASC, caspase-1 and
IL-18 levels are found compared with control tissues,
and NLRP3 is expressed in spinal cord astrocytes
of male SOD1(G93A) mice carrying a mutant human
superoxide dismutase 1 (SOD1) variant. In these mice,
NLRP3 expression and production of IL-1b were
already detectable at a pre-symptomatic stage of the
disease.90 Interestingly, another study failed to find sub-
stantial IL-1b or IL-18 release from astrocytes after
inflammasome activation.78 Thus, it is important to
note that some of the neuroprotective effects of inflam-
masome inhibition could be due to direct actions on
neurons or astrocytes and not necessarily to blockade
of microglia- or macrophage-dependent mechanisms in
different models of brain injury.

Endothelial cells. Human cerebral endothelial cells
express various NOD-like receptors (e.g. NOD1,
NOD2, NLRC4, NLRC5, NLRP1 and NLRP3) and
release IL-1b in a caspase-1-dependent manner upon
LPS priming and stimulation with muramyl dipeptide.99

Importantly, inflammasomes in endothelial cells contrib-
ute to chronic inflammation and altered vascular responses
in different vascular beds. Hypercholesterolemia and
oxidative stress result in NLRP3 inflammasome activa-
tion in endothelial cells, leading to inhibition of endo-
thelial nitric oxide synthase (eNOS) and coronary
endothelial dysfunction.100,101 Adipokines such as visfa-
tin activate the NLRP3 inflammasome in endothelial
cells, leading to enhanced neointima formation.102

Similarly, uraemic sera from patients with chronic
kidney disease induces NLRP3 activation, caspase-1
activation and ROS production in cultured endothelial
cells.103 Palmitate in vitro and high-fat diet in vivo result
in NLRP3 inflammasome activation in endothelial cells
via thioredoxin-interacting protein (TXNIP)-mediated
actions.104 It has also been postulated that the NLRP1
inflammasome is involved endothelial activation as
human aortic endothelial cells exposed to sera from
patients with peripheral arterial disease show signifi-
cantly higher expression of NLRP1 than those exposed
to sera from healthy individuals.105 Inflammasome acti-
vation may lead to aberrant vasculogenesis. In auto-
immune diseases like systemic lupus erythematosus
(SLE), IL-18 inhibits the differentiation of endothelial
progenitor cells and circulating angiogenic cells into
mature endothelial cells, which is reversed by antibody
neutralisation of IL-18.106 Hemorrhagic shock leads to
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the activation of the NLRP3 inflammasome in lung endo-
thelial cells in response to HMGB1 stimulation of TLR4,
leading to secretion of IL-1b.107 Although the contribution
of endothelial inflammasomes to neuroinflammation is
presently unclear, circulating DAMPs and PAMPs are
known to induce inflammatory changes in multiple
organs, including the brain, via direct endothelial signal-
ling mediated by TLRs.108–111

Granulocytes. Granulocytes are key drivers of inflamma-
tion and tissue injury in both the periphery and the
injured brain. IL-1 is a potent inducer of granulocyte
migration to inflamed tissues and granulocytes undergo
profound functional changes after transendothelial
migration. In the brain, transmigrated neutrophils
release proteases and decondensed DNA contributing
to neurotoxicity, which can be transferred by neutro-
phil-conditioned medium in vitro.20,112,113 Interestingly,
IL-1 is a key mediator driving the recruitment of neu-
trophils in the mouse brain but is dispensable in extra-
cerebral tissues including the lung and peritoneum.114

Human and mouse neutrophils also express key inflam-
masome components and release IL-1b and IL-18.
Purified human neutrophils were found to have func-
tional NLRP3 and AIM2 inflammasomes.115 However,
unlike macrophages, neutrophils appear to be resistant
to pyroptotosis and sustained IL-1b production is not
associated with reduced neutrophil viability.116

Pneumolysin (a pore-forming toxin of Streptococcus
pneumoniae) induces IL-1b processing in neutrophils
through NLRP3 and ASC, a process that takes place
independently of pyroptotic cell death or lysosomal
destabilisation.117 Similarly, Salmonella infection trig-
gers the activation of the neutrophil NLRC4 inflamma-
some, which selectively promotes IL-1b maturation
without pyroptosis.116 Inflammasomes in neutrophils
are also involved in the pathophysiology of non-
infectious diseases, such as asthma.118 Interestingly,
acute phase proteins can directly induce inflammasome
activation in neutrophils. In neutrophils isolated from
healthy donors, the acute phase protein serum amyloid
A (which also induces microglial priming, see above)
promotes the expression of pro-IL-1b, followed by the
activation of the NLRP3 inflammasome and caspase-1,
leading to the secretion of mature IL-1b.119 Recruitment
of granulocytes into the cerebral ventricles as well as
microglial and vascular activation in response to diet
induced atherosclerosis in mice is also dependent on
IL-1b.11 Thus, inflammasome activation in endothelial
cells, microglia and granulocytes could link systemic
inflammatory actions with diverse neuropathological
processes in the brain.

Platelets. Platelets are a major source for IL-1a, IL-1b
and IL-18 and contribute to circulating levels of

these cytokines. The role of platelet-derived IL-1 in sys-
temic and cerebrovascular inflammation has also been
demonstrated.120–123 Blockade of platelet-mediated
actions and IL-1 signalling has been found to protect
against brain injury after cerebral ischaemia in both
naive mice and under systemic inflammatory condi-
tions, when stroke is preceded by Streptococcus pneu-
moniae infection.124,125 Platelets constitutively express
the inflammasome components NLRP3 and ASC and
have functional inflammasomes, enabling caspase-1
activation and IL-1b processing.126 Similarly to
nucleated cells, platelets can be primed by TLR2- and
TLR4-mediated signals, but caspase-1-dependent IL-1b
processing does not require a second stimulus. Platelet
IL-1b mRNA is induced by thrombin or fibrinogen and
also released through platelet microparticles.127

Although the functional role of platelet inflammasomes
in disease remains to be investigated in detail, inter-
actions between platelets, circulating immune cells and
the vasculature in response to various inflammasome
activating stimuli is expected to occur in a wide range
of diseases.

Inflammasomes in comorbidities and risk factors
for brain disease

Diabetes. High glucose levels are associated with the
activation of the NLRP3 inflammasome (Table 1),
and type 2 diabetes is accompanied by elevated circu-
lating IL-1b.128,129 Increases in NLRP3, ASC and
IL-1b mRNA and protein levels have also been
shown ex vivo in monocyte-derived macrophage
(MDMs) cultures from newly diagnosed drug-naive
type 2 diabetes patients. Exposure of MDMs to ATP,
HMGB1, FFAs (free fatty acids), IAPP (islet amyloid
polypeptide) or MSU crystals increased production of
IL-1b and IL-18.128 The gain-of-function single nucleo-
tide polymorphism (SNP) rs35829419 in the NLRP3
gene (p.Gln705Lys) is associated with increased pro-
duction of IL-1b and increased risk for macrovascular
complications (mainly myocardial infarction) in type 2
diabetes patients.65 In turn, Nlrp3�/� mice show
improved glucose tolerance and insulin sensitivity.141

Atherosclerosis. Atherosclerosis is a progressive artery dis-
ease which involves inflammation of the vessel walls and
the deposition of lipid-rich plaques. One major compo-
nent of atherosclerotic lesions is cholesterol. Cholesterol
crystals can induce inflammation via activating the
NLRP3 inflammasome in vitro and in vivo, a process
associated with phagolysosomal damage. It has been
demonstrated that NLRP3 is overexpressed in the
aorta of patients with atherosclerosis or hypertension.132

LDLR�/� mice fed a high cholesterol diet show mark-
edly decreased early atherosclerosis in parallel with
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reduction in IL-1b and IL-18 levels after transplantation
with NLRP3�/�, ASC�/� or IL-1a/b�/� deficient bone-
marrow, whereas mice lacking NLRP3 or IL-1 are resist-
ant to diet-induced atherosclerosis.133 It has been shown
that cholesterol crystals could function as both a priming
stimulus, and a stimulus to induce IL-1b release.
Cholesterol crystals also trigger formation of neutrophil
extracellular traps (NETs), which prime macrophages to
release cytokines, further amplifying the immune cell
recruitment in atherosclerotic lesions.142 Selective block-
ade of the NLRP3 inflammasome in ApoE2.Ki mice
results in the reduction of IL-1b production in peritoneal
macrophages and reduced serum lipid (total cholesterol
and triglyceride) levels are observed with a shift of
macrophage polarisation from M1 to M2 state, which
is associated with fewer atherosclerotic lesions.143 The
purinergic receptor, P2X7 is coexpressed with NLRP3
in atherosclerotic plaques of ApoE�/� mice and plays a
significant role in atherosclerosis by activating the
NLRP3 inflammasome via facilitating the phosphoryl-
ation of protein kinase R (PKR).144

Hyperlipidaemia and obesity. The NLRP3 inflammasome
contributes to obesity-induced inflammation and
insulin resistance.135 NLRP3 activation is seen in the
subcutaneous adipose tissue of dyslipidaemic, diabetic
and obese patients and is associated with the severity
of coronary atherosclerosis.145–147 Blockade of
the NLRP3 inflammasome resulted in the amelioration
of serum markers of diet-induced obesity and hyperlip-
idaemia and enhanced insulin signalling in parallel with
a reduction of inflammation in the adipose tissue and
the liver.135,148 Acute hypercholesterolemia increased
the expression of caspase-1, NLRP3 and HMGB1 in

the coronary arteries and decreased endothelium-
dependent vasodilatation was observed in NLRP3þ/þ

mice compared with NLRP3�/� mice. Treatment with
either a caspase-1 or a HMGB1 inhibitor restored the
vasodilation response in NLRP3þ/þ mice.101 Obesity is
associated with vascular dysfunction (reduced aortic
relaxation, macrophage accumulation and intimal
thickening) in rats via activation of the NLRP3 inflam-
masome and mitochondrial dysfunction.149 Saturated
fatty acids (SFAs), like palmitic acid, are known
priming signals of NLRP3 inflammasome activation
and IL-1b production via TLR4, leading to impaired
insulin signalling, in contrast to unsaturated fatty
acids (UFAs), which exert anti-inflammatory actions
through inhibition of IL-1b processing.131,150,151

NLRP1 is also implicated in obesity, and similar to
IL-18 deficient mice, NLRP1�/� mice are resistant to
diet-induced metabolic dysfunctions and have reduced
adiposity.134,152

Hypertension. There is an association between the
NLRP3 SNP rs7512998 and blood pressure in patients,64

and circulating IL-1b levels are strongly linked with the
development of hypertension.153 Expression of NLRP3,
caspase-1 and production of IL-1b and IL-18 were
confirmed in pulmonary hypertension in rodents.136,154

Mice lacking ASC show substantially reduced pulmon-
ary hypertension and right ventricular remodelling,155

whereas reduced renal inflammation and better outcome
are observed in a salt-induced hypertension model.137

High-salt-induced hypertension is associated with
increases in NLRP3, caspase-1 and IL-1b levels in the
paraventricular nucleus of the hypothalamus, which
could be attenuated by inhibition of IL-1b or NF-kB
activation suggesting the possible involvement of central
inflammasome signalling in hypertension.138,156

Gout and arthritis. Rheumatic disease is associated with
higher risk of cerebrovascular disease. For example,
according to recent meta-analyses, the risk of stroke
is higher among rheaumatoid arthritis patients under
50 years. Moreover, inflammatory arthropathies
involve higher risk than non-inflammatory diseases
and affect long-term disability after stroke.157,158

Gout also represents a risk factor for both ischaemic
and haemorrhagic stroke in younger and older age as
well.159,160 Interestingly, stroke itself can also increase
the susceptibility for gouty arthritis in patients.161

Hyperuricemia contributes to chronic inflammation in
gout. Monosodium urate (MSU) and calcium pyro-
phosphate dihydrate (CPPD) crystals activate the
NLRP3 inflammasome, and macrophages derived
from caspase-1, ASC or NLRP3 deficient mice have
defective IL-1b production in response to MSU.140

Treatment either with IL-1R antagonist or IL-1 trap

Table 1. Inflammasomes in vascular diseases and risk factors

for brain disease.

Comorbidity

Inflammasome

activated Trigger

Type 2 diabetes NLRP3128,129 Hyperglyceamia,130 ATP,

HMGB1, FFAs, IAPP,

MSU,128 SFAs131

Atherosclerosis NLRP3132,133 Cholesterol crystals133

Hyperlipidaemia

and obesity

NLRP3 Cholesterol crystals101

NLRP1134,a Ceramide135

Hypertension NLRP3 Hypoxia, high

salt levels136–138

Gout and

arthritis

NLRP3,

NLRC4139
MSU, CPPD crystals140

Inflammasomes involved in different conditions and triggers identified

were listed. See explanation in the text.
aInflammasome activation is associated with a protective phenotype.
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is an effective gout therapy.162,163 NLRP3-inflamma-
some activation has been demonstrated in rheaumatoid
arthritis and NLRP3 polymorphisms are linked with
the susceptibility to arthritis and the response to anti-
TNF treatment.164 ASC has also been implicated to
rheaumatoid arthritis. ASC�/� mice showed decreased
infiltration of inflammatory cells and cartilage/bone
destruction in a collagen-induced arthritis model.165

In an Ag-induced arthritis (AIA) model, ASC�/� mice
have decreased synovial IL-1b and serum amyloid
A levels. In contrast, NLRP3�/�, NLRC4�/� or cas-
pase-1�/� mice do not show any alteration of joint
inflammation compared with controls indicating that
the effect of ASC is independent of NLRP3 or
NLRC4 inflammasomes.139

Infection. Infection is an established risk factor for CNS
disease, for which there is a wealth of literature.7,9

Infectious burden significantly correlates with the risk
of ischaemic stroke in patients and there is a strong
positive association between bacterial infection and
AD.166,167 The role of inflammasomes in infectious dis-
eases that manifest in the CNS is also well-established.
For example, meningitis caused by Streptococcus pneu-
moniae is associated with the activation of NLRP3 via
the pore-forming complex pneumolysin.168 NLRP3�/�

and ASC�/� mice with pneumococcal meningitis show
decreased inflammatory response, which is more pro-
nounced in ASC�/� mice.169 Pertussis toxin induces the
formation of a pyrin-dependent inflammasome that
cleaves pro-IL-1b into its active form, promoting IL-6
production that facilitates neutrophil intravascular
crawling in cerebral capillaries and promotes experi-
mental autoimmune encephalomyelitis (EAE).170

Since recognition of diverse bacterial, fungal or viral
PAMPs by different PRRs induces inflammasome acti-
vation, infections that manifest in either the periphery
or in the brain could potentially contribute to neuroin-
flammation and brain injury via inflammasome activa-
tion in brain cells, circulating leukocytes or different
vascular beds in the body. Blockade of inflamma-
some-mediated actions could have therapeutic benefit
in brain diseases. Supporting this, studies from mouse
models suggest that inflammasomes are in general
dispensable for infectious disease, their absence
merely delaying the induction of an adaptive immune
response.171

Inflammasome activation is linked with diverse brain diseases in

humans and experimental animals

Cerebral aneurysms and intracerebral/subarachnoid

haemorrhage. NLRP3, ASC and caspase-1 expres-
sion are increased in ruptured aneurysms of patients
(Table 2) compared with unruptured ones.172

A significant correlation has also been observed
between the NLRP3 SNP rs35829419 and plasma
IL-1b levels among patients with abdominal aortic
anurysm.173 In animal models, NLRP3 silencing in
microglia significantly improved neurological outcome,
reduced brain oedema in vivo, and attenuated inflam-
mation both in vivo and in vitro.187 NLRP3 is
activated in a collagenase-induced rat model of intra-
cerebral haemorrhage. Silencing the P2X7 receptor
with siRNA or selectively inhibiting it with a non-
competitive antagonist, Brilliant blue G, reduced
expression of NLRP3, IL-1b and IL-18, which resulted
in reduced brain oedema, neutrophil infiltration
and better neurological outcome. Levels of Nox2
(gp91phox), iNOS and their cytotoxic product, peroxini-
trite (ONOO�) were also decreased.174 Mitochondrial
dysfunction and ROS production are suggested to acti-
vate the NLRP3 inflammasome after subarachnoid
haemorrhage in rats.174,188 The inhibition of ROS
production either with a mitochondrial permeability
transition pore (mPTP) inhibitor (TRO-19622), or a
mitochondrial ROS scavenger (Mito-TEMPO), signifi-
cantly decreases expression of NLRP3, IL-1b and the
activation of caspase-1, which is accompanied by
reduced neutrophil recruitment after intracerebral
haemorrhage in mice.175

Table 2. Inflammasomes in neurological diseases.

CNS disorder

Inflammasome

activated Trigger

Cerebral aneurysms

and intracerebral/

subarachnoid

haemorrhage

NLRP3172,173 ROS174,175

Ischemic brain injury NLRP338,39 Drop in

extracellular pH176

NLRP137,94 Decrease in

cytosolic ATP177

NLRC440 Intracellular

Kþ efflux178,179

AIM240 Pannexin 194

Traumatic

brain injury

NLRP134,180,181,

NLRP3182

Infection (CNS) NLRP3169 Flagellin184

NLRC4

AIM2183

Alzheimer’s and

Parkinson’s disease

NLRP368,80,87,185

NLRP1185,199

NLRC498

Inflammasomes involved in different conditions and triggers identified

were listed. See details regarding the mechanisms in the text.
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Ischaemic brain injury. A number of intracellular changes
that occur after ischaemia have been proposed to
induce inflammasome activation. These include mito-
chondrial damage, production of ROS, lysosomal
destabilisation, pore formation in the cell membrane,
changes in cell volume and increases in intracellular
Ca2þ concentration, which eventually activates the
NLRP3 inflammasome.178,189,190 In macrophages,
ATP-induced release of mitochondrial DNA (particu-
larly its oxidised form) into the cytosol contributes
to activation of caspase-1 and IL-18/IL-1b secretion
via NLRP3.191,192 DNA also activates the AIM2
inflammasome.45 Acidic extracellular pH, which is typ-
ical at sites of ischaemia and inflammation activates the
NLRP3 inflammasome, while alkaline pH exerts an
inhibitory effect on inflammasome activation.176

HMGB1, an endogenous DAMP released by cellular
stress and pathogenic insults, could also potentiate
the neuroinflammatory response via NLRP3 activation
in microglia in a redox state-dependent manner.193

Ischaemia also causes anoxic depolarisation in neurons,
which results in excessive glutamate and ATP release
leading to excitotoxicity. The ionotropic P2X7 receptor
and the pannexin 1 (Panx1) channel are overactivated
by high extracellular ATP and NMDA receptor activa-
tion, and blockade of these channels is protective in
cerebral ischaemia.189,194,195 ROS are thought to be
key mediators of NLRP3 activation, as blocking
NOX-dependent ROS production, or scavenging by
N-acetylcysteine (NAC), in macrophages inhibits
NLRP3 inflammasome activation by interfering the
priming step required for the induction of NLRP3
expression.196 It has also been shown that NLRP3 acti-
vating DAMPs stimulate an inflammatory response in
glia that contributes to brain inflammation after ischae-
mia.77 High extracellular Kþ and reduced intracellular
ATP, or increased AMP levels could trigger the activa-
tion of NLRP1 during hypoxia or after stroke.177,189

Although many of the processes described above
occur after cerebral ischaemia, it is still unclear to
what extent ischaemic brain injury is influenced by dif-
ferent inflammasomes in vivo. NLRP3 has been identi-
fied as a contributor to brain injury after focal cerebral
ischaemia using NLRP3�/� mice.39 Bruton’s tyrosine
kinase has also been suggested to physically interact
with ASC and NLRP3, to play a role in NLRP3 inflam-
masome activation and to contribute to ischaemic brain
injury.38 However, other studies found that NLRP3 is
dispensable for neuronal injury in neonatal197 or
adult40 mice after ischaemia. Antibody neutralisation
of NLRP1 eliminated the assembly of the NLRP1
inflammasome in neurons and astrocytes and protected
against brain injury.37,94 Neutralising antibodies
against NLRP1 also reduces the inflammatory response
after thromboembolic stroke in mice.35 Our recent

studies identified the NLRC4 and AIM2 inflamma-
somes as major contributors to ischaemic brain injury
via ASC-dependent mechanisms. Because of the diver-
sity of the signals involved in inflammasome activation
after cerebral ischaemia, it is likely that blockade of the
ASC adaptor protein, common for several inflamma-
somes, could have great therapeutic potential. It is also
essential to assess to what extent systemic inflammatory
actions contribute to brain injury in certain models of
cerebral ischaemia, which could in part explain the dif-
ferences observed regarding the role of given inflamma-
somes in stroke outcome. As detailed above, the
NLRP3 inflammasome plays a role in diverse systemic
inflammatory actions; therefore, its role in experimental
models of stroke combined with comorbidities requires
further investigation.

Traumatic brain injury. NLRP1 is expressed in cortical
neurons and CSF levels of ASC, caspase-1 and
NLRP1 are increased in patients after traumatic brain
injury.34,180 NLRP3 expression has also been found in
the cerebral cortex after TBI in rats.182 Neutralisation
of ASC or NLRP1 reduces inflammation and improves
outcome in rats after traumatic brain injury.34 Recent
data show that NLRP1 inflammasome components are
associated with exosomes, which were isolated from the
CSF of TBI or spinal cord injured patients.181

AD and PD. IL-1b and IL-18 are increased in the brains
of patients with AD and PD and microglia are recruited
to senile plaques where they produce IL-1b.31,198

This process includes the phagocytosis of Ab and sub-
sequent lysosomal damage, NLRP3 inflammasome
activation and release of cathepsin B.80

APP/PS1 transgenic mice lacking either the NLRP3
or caspase-1 have decreased plaque deposition,
increased Ab clearance, reduced levels of IL-1b and
better memory.68 The NLRP1 inflammasome is also
implicated in AD.185 Nonsynonymous polymorphisms
in the NLRP1 gene are associated with the susceptibil-
ity of AD in humans.186 In APP/PS1 transgenic mice,
NLRP1 levels are upregulated in cortical neurons, and
cultured neurons undergo caspase-1-dependent pyrop-
tosis in response to Ab, which is reduced by silencing
either the NLRP1 or the caspase-1 gene with si-RNA.87

NLRC4 and ASC are upregulated in post-mortem
brain tissues in a subgroup of sporadic AD patients.
Addition of conditioned medium derived from
NLRC4-silenced astrocytes to primary neurons, signifi-
cantly reduces the production of IL-1b and generation
of Ab1-42 by neurons.98 It is currently unclear how
inflammasome-mediated signals and cellular stress
interact to cause neuronal injury. For example, chronic
overexpression of IL-1b in itself promotes brain inflam-
mation without overt neurodegeneration199 and could
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decrease the amount of amyloid plaques while increas-
ing tau hyperphosphorylation in 3xTgAD/IL-1bXAT
mice.200

The fibrillar form of a-synuclein is recognised by
TLR2 and also activates the NLRP3 inflammasome
leading to the release of IL-1b from human mono-
cytes,12 as opposed to the monomer form which does
not.82 The activation of NLRP3 is triggered by lysoso-
mal rupture induced by the phagocytosis of a-synuclein
fibrils both in isolated monocytes and in monocytic and
neuronal cell lines.12,81 The activation of NLRP3 in
dopaminergic neurons in the substantia nigra of
MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-
induced or transgenic mouse models of PD depends
largely on Cdk5, as inhibition or deletion of Cdk5 effi-
ciently blocks NLRP3 and neuroinflammation in these
models.201 Thus, inflammasome-mediated actions
are linked with several major pathological changes in
neurodegenerative diseases and hence represent a pro-
mising therapeutic target.

Local and systemic inflammatory signals interact
in brain disease

Complex interactions between peripheral and central
inflammasome-mediated pathways, involving diverse
stimuli such as the microbiota, tissue injury and meta-
bolic alterations, could contribute to neuroinflamma-
tion and neurodegenerative diseases. Understanding
these mechanisms will be instrumental to support
both diagnosis and treatment. For example, type 2 dia-
betes is identified as a risk factor for AD and for cere-
brovascular disease in general.5,202,203 Amyloid deposits
(misfolded proteins rich in cross-b-sheet structure,
which accumulate in various tissues in the form of pla-
ques) are a hallmark of AD, but they are also typical
in type 2 diabetes as islet amyloid polypeptide (IAPP)
in the pancreas. Bacteria also produce amyloids as a
component of their extracellular matrix during biofilm
formation. Curli fibres produced by Salmonella enterica
serovar Typhimurium and Escherichia coli activate
the NLRP3 inflammasome, leading to the production
of IL-1b via caspase-1 activation.204 As discussed
above, amyloid b activates the NLRP3 inflammasome
in microglia, as does IAPP in the pancreas, leading
to IL-1b production.205 Furthermore, amyloid b,
serum amyloid A (SAA) and IAPP are all recognised
by TLR2 leading to IL-1b secretion in response to
NLRP3 activation.77,204,206

Microparticles are released from virtually all cell
types and their role in inflammatory processes is
widely recognised. It is likely that circulating, neuronal-
or glial-derived microparticles could induce activation
of inflammatory cells in the periphery, whereas periph-
eral-derived microparticles could stimulate the brain

vasculature. It has been shown that microparticles
derived from monocytes activate endothelial cells in an
IL-1-dependent manner, which leads to increased expres-
sion of cell adhesion molecules such as intercellular
adhesion molecule-1 (ICAM-1), vascular cell adhesion
molecule-1 (VCAM-1) and E-selectin. This effect is
reduced by knockdown of NLRP3 in monocytes.207

The gut microbiota are involved in brain injury that
occurs after stroke208 and acute brain injury leads
to changes in the gut microbiota in part via altered
autonomic activity.209 Bacterial translocation from
the gut to the circulation has been documented after
acute brain injury,210 which could induce inflamma-
some activation via a wide array of PAMPs in different
tissues. In fact, we have shown that NLRC4-deficient
mice are protected against brain injury, which could
either be due to inflammasome activation induced by
flagellin of bacteria, or a currently unrecognised
endogenous ligand of NLRC4.40 As discussed above,
changes in intracellular Kþ concentrations after ischae-
mia trigger NLRP3 activation. Bacterial toxins can also
cause Kþ efflux, leading to the activation of the NLRP3
inflammasome.178 It needs to be investigated in detail
to what extent neuronal and glial inflammasomes may
be primed or activated by circulating (or local) bacterial,
fungal and viral PAMPs or acute phase proteins in differ-
ent experimental models. Examples also exist of altered
peripheral inflammasome signalling in risk factors for
brain disease in humans. For example, upregulation of
inflammasome activity and increased gut permeability
are associated with obesity in children and adoles-
cents.146 Recent data show that genetic deficiency of
caspase-1 decreased depressive- and anxiety-like behav-
iours and increased locomotor activity in mice, which
paralleled changes in the faecal microbiome.211

Aging is an another important factor to consider
in the context of systemic inflammation and brain dis-
ease. Interestingly, hippocampal lysates from aged
rats showed significantly higher levels of NLRP1,
ASC, caspase-1, caspase-11, the purinergic receptor
P2X7, pannexin-1 and X-linked inhibitor of apoptosis
(XIAP) than lysates from younger animals, which was
associated with cognitive decline.212 It has been postu-
lated that NLRP3 inflammasome activation links sys-
temic low-grade inflammation to functional decline in
aging as it promotes age-related degenerative changes,
whereas deficient NLRP3 inflammasome-mediated
caspase-1 activity improved glyceamic control and atte-
nuated bone loss and thymic demise.213 It is likely that
results from rodent models underestimate the impact of
aging and comorbidities on pathological changes in the
brain compared with humans, where a high proportion
of aged individuals present with multiple chronic dis-
eases and are exposed to an array of medications for
several years or decades.
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Therapeutic strategies to inhibit inflammasome
activation

Drugs targeting the IL-1 pathway downstream of
the inflammasome pathway do exist. Biologicals that
target IL-1, like IL-1Ra (anakinra) and specific mono-
clonal antibodies such as canakinumab, are used for
the clinical management of several auto-inflammatory
disorders and are in trials for others. For example,
anakinra has shown efficacy in preclinical models
of acute brain disease and is undergoing clinical evalu-
ation.214 However, biologicals such as anakinra may
not easily access the brain during brain disease
where there is limited disruption of the blood brain
barrier. Given their role in vascular disease and asso-
ciated co-morbidities, and their seemingly dispensible
role in infection,171 inflammasomes are an attractive
therapeutic target. In fact, in vivo data suggest that
knocking out inflammasomes merely delays the reso-
lution of an infection. The exact reason for this
is unclear, but it has been suggested that animals main-
tained inflammasomes over evolution not to defend
against vertebrate-adapted pathogens but instead
to counteract infection by a plethora of undiscovered
opportunistic pathogens residing in the environment.171

Supporting this, increased risk of infection was
not observed after experimental stroke in response
to inflammasome inhibition or treatment with
IL-1Ra34,40,215 and IL-1Ra treatment was not asso-
ciated with more infections or other major adverse
events in patients with myocardial infarction,216

traumatic brain injury217 or stroke.9,218 Furthermore,
strategies that specifically target NLRP3 will not
compromise the role of pathogen sensing inflamma-
somes such as AIM2 or NLRC4. Thus, the avail-
able data suggest that targeting inflammasomes will
be safe. The best characterised inflammasome is
NLRP3 and a number of small molecules are being
developed and investigated as potential NLRP3 inhibi-
tors (reviewed extensively in Baldwin et al.219). To-date,
the most advanced NLRP3 inhibitor is MCC950,
which is protective in the rodent EAE model.220 Small
molecule inhibitors of the NLRP1 inflammasome
are also being developed.219 In addition to the develop-
ment of novel inflammasome inhibitors, efforts are
underway to repurpose existing drugs. For example,
nucleoside reverse transcriptase inhibitors effective
as an anti-HIV therapy also inhibit the NLRP3
inflammasome independently of reverse transcript-
ase inhibition.221 Repurposing drugs like this may
accelerate the translation of inflammasome targeting
strategies clinically. Thus, the development of small
molecule inflammasome inhibitors may offer an alter-
native or an adjunct therapy to existing IL-1 blocking
strategies.

Conclusions

In conclusion, inflammasome-mediated actions link
systemic and central inflammatory mechanisms and
could contribute to major human disorders, including
common brain diseases. The association of diverse
neurological diseases with inflammasome polymorph-
isms, the activation of inflammasomes in post mortem
brain tissues of patients with common brain diseases
and the pivotal role of inflammasomes in major risk
factors for brain diseases suggest that inflammasomes
could be a promising therapeutic target. This is
strengthened by comprehensive preclinical studies sug-
gesting that blockade of inflammasome signalling is
effective in a number of conditions and appears to
have minor side effects with respect to changing suscep-
tibility to infection or infectious burden. Understanding
the molecular mechanisms that contribute to brain dis-
eases and the development of novel inflammasome
inhibitors could have a profound impact on the clinical
management of common human diseases.
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