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Abstract

A subgraph H of G is singular if the vertices of H either have the same degree in
G or have pairwise distinct degrees in G. The largest number of edges of a graph on n

vertices that does not contain a singular copy of H is denoted by TS(n,H). Caro and
Tuza [Theory and Applications of Graphs, 6 (2019), 1–32] obtained the asymptotics of
TS(n,H) for every graph H, but determined the exact value of this function only in
the case H = K3 and n ≡ 2 (mod 4). We determine TS(n,K3) for all n ≡ 0 (mod 4)
and n ≡ 1 (mod 4), and also TS(n,Kr+1) for large enough n that is divisible by r.

We also explore the connection to the so-called H-WORM colorings (colorings with-
out rainbow or monochromatic copies ofH) and obtain new results regarding the largest
number of edges that a graph with an H-WORM coloring can have.

1 Introduction

Turán’s paper [15] about the maximum number of edges that a graph on n vertices can have
without containing a clique of size k gave birth to extremal graph theory. The Turán number
of a graph G, denoted by ex(n,G) is the maximum number of edges in an n-vertex G-free
graph is a much studied and well understood parameter, if the chromatic number of G is at
least 3, but there are lots of open problems concerning the Turán numbers of bipartite graphs
G (see the survey [10]). Turán numbers were extended to hypergraphs and set systems (see
Chapter 5 and Chapter 7 of [11]), and many variants are known.

Motivated by the work of Albertson [1], recently Caro and Tuza [5] introduced a new
variant, the so-called singular Turán number. A copy of a graph G in H is called singular, if
the vertices v1, v2, . . . , v|V (G)| of the copy either have the same degree in H or have pairwise
different degrees in H . The singular Turán number TS(n,G) is the maximum number of
edges that a graph H on n vertices can have without containing a singular copy of G. Note
that we have ex(n,G) ≤ TS(n,G) for any graph G and integer n.
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Caro and Tuza determined the asymptotics of TS(n,G) for every graph G. The Erdős-
Stone-Simonovits theorem [9] states that, if χ(G) = p+1, then ex(n,G) = (1− 1

p
+ o(1))

(

n
2

)

.

Caro and Tuza showed that if |V (G)| = r + 1, then

TS(n,G) = (1− 1

pr
+ o(1))

(

n

2

)

(and clearly TS(n,G) = 0 if G consists of a single edge). However, there was no exact result
for any graph, except for the triangle in case n = 4k + 2, where the 4-partite Turán graph
is extremal for TS(n,K3) as well. For other congruence classes modulo 4, they proved the
following bounds.

Theorem 1.1 (Caro, Tuza [5]). For k ≥ 1 we have:

(i) 6k2 − 2 ≤ TS(4k,K3) ≤ 6k2 − 1,

(ii) 6k2 + 2k ≤ TS(4k + 1, K3) ≤ 6k2 + 3k − 1,

(iii) 6k2 + 8k + 1 ≤ TS(4k + 3, K3) ≤ 6k2 + 9k + 2.

For the upper bounds, they used their general upper bound (which relies on the fact
that a singular triangle-free graph is K5-free in this case), and Turán’s theorem with the
characterization of its extremal graphs (which shows that the K5-free graphs with the largest
number of edges contain singular triangles unless n ≡ 2 (mod 4)).

For the lower bounds, they used the following constructions. If n = 4k, consider a
complete 4-partite graph with parts of size k − 1, k − 1, k + 1, k + 1. If n = 4k + 1, consider
a complete 4-partite graph with parts each of size k, and join a new vertex to two of the
classes. If n = 4k+3, consider a complete 4-partite graph with parts of size k, k, k+1, k+1,
and connect a new vertex to the 2k vertices in the two smaller parts.

Here we close the gap for two of the residue classes, and reduce it to 2 in the third case,
by improving the upper bounds. In the tight results the constructions above turn out to be
extremal, and it is very likely that the situation is the same also for n ≡ 3 (mod 4).

Theorem 1.2. We have:

(i) TS(4k,K3) = 6k2 − 2 if k ≥ 2, and TS(4, K3) = 5,

(ii) TS(4k + 1, K3) = 6k2 + 2k, and

(iii) 6k2 + 8k + 1 ≤ TS(4k + 3, K3) ≤ 6k2 + 8k + 3.

We then apply some of our techniques to obtain better bounds on TS(n,Kr+1). As Caro
and Tuza observed, a graph without a singular copy of Kr+1 must be Kr2+1-free, as otherwise
in a clique of size r2 + 1 there are r + 1 vertices either of the same degree or of pairwise
distinct degrees. Turán’s result tells us that the graph with the largest number of edges
without a Kr2+1 is a balanced complete r2-partite graph. We denote by t(n, q) the number
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of edges in the balanced complete q-partite graph. Unless r = 2 and n = 4k+2, the balanced
complete r2-partite graph does contain singular copies of Kr+1. Moreover, it is not hard to
see that there exist complete r2-partite graphs without singular copies of Kr+1 if and only
if r divides n and n is at least r2(r + 1)/2. In this case, we denote by t′(n, r2) the largest
number of edges contained in such graphs. With this notation we have the following result.

Theorem 1.3. For any r ≥ 3 the following holds.

(i) If n is large enough and n is divisible by r, then we have

TS(n,Kr+1) = t′(n, r2).

Moreover, any extremal graph is isomorphic to the unique complete r2-partite graph with r
possible part sizes each appearing r times such that the smallest and largest parts differ by
at most r.

(ii) If n = rk +m with 1 ≤ m < r, then

t(n, r2)−m
r − 1

r2
n + Cr ≤ TS(n,Kr+1) ≤ t(n, r2)− n

r2
+
√
n

for some absolute constant Cr.

Even with the theorems above, there was no F 6= K2 for which TS(n, F ) was known for
every n. Now we give an example for this by determining TS(n, P3) for all cases.

Proposition 1.4.

TS(n, P3) =























2 if n = 3,
5 if n = 4,
n2+2n

4
− 2 if n > 4 and n is divisible by 4,

n2+2n−4
4

if n is even, but not divisible by 4,
n2+2n−3

4
if n 6= 3 is odd.

1.1 F -WORM colorings

Given graphs F and G, an F -WORM coloring of G is an assignment of colors to the vertices
of G such that every copy of F in G has more than one, but fewer than |V (F )| colors.
In other words, there are neither monochromatic, nor rainbow copies of F in the coloring
of G (WORM stands for ‘WithOut Rainbow or Monochromatic’). WORM coloring was
introduced by Goddard, Wash and Xu [12].

Most of the research regarding WORM colorings dealt with complexity issues, or the
number of colors used. However, in the same paper [12], Goddard, Wash and Xu introduced
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wex(n, F ), the largest number of edges in a graph on n vertices that has an F -WORM
coloring. They determined wex(n, P3).

Let us describe first how WORM colorings are related to singular graphs. Observe that if
G does not contain a singular F , then coloring the vertices of G by their degrees, we obtain
an F -WORM-coloring. This implies TS(n, F ) ≤ wex(n, F ). Also note that in the proof of
the general upper bounds on TS(n, F ) Caro and Tuza [5] do not use the special properties
of singularity and the proof works for wex as well. Thus we can restate their upper bound
in the following form.

Theorem 1.5 (Caro, Tuza, [5]). (i) wex(n,Kr+1) ≤ ex(n,Kr2+1).

(ii) If F has r + 1 ≥ 3 vertices and chromatic number p + 1 ≥ 2, then wex(n, F ) ≤
ex(n,Kpr+1) + o(n2).

Observe that we have equality in (i). Indeed, consider the r2-partite Turán graph, and
color it with r colors such that each color class consists of r parts. Then each color class is
Kr+1-free, and there is no rainbow Kr+1 as there are fewer than r + 1 colors. Similarly in
(ii) ex(n,Kpr+1) is a lower bound, as we can color the pr-partite Turán graph with r colors
(thus avoiding rainbow F ) such that each color class is p-partite, thus F -free.

Having an asymptotic result does not leave much room for improvement in general, but
we obtain a better result for every bipartite graph.

Proposition 1.6. If F is bipartite and has r+1 ≥ 3 vertices, then wex(n, F ) ≤ ex(n,Kr+1)+
ex(n, F ).

Note that as F is bipartite, the quadratic term remains the same, but we replace the
error term o(n2) with ex(n, F ). Also, the proof remains valid for any graph, but if χ(F ) ≥ 3,
then the upper bound is useless as ex(n,Kr+1) + ex(n, F ) is more than the number of edges
in Kn.

2 Singular Turán numbers

We will use the following theorem of Brouwer [4].

Theorem 2.1. If H is a Kr+1-free graph on n vertices which is not r-partite, then H has
at most t(n, r)− ⌊n/r⌋+ 1 edges, assuming n ≥ 2r + 1.

Hanson and Toft [13] also characterized the extremal graphs (the same result was inde-
pendently obtained in [2, 14]).

The extremal graphs in the result of Hanson and Toft are somewhat similar to the
constructions of Caro and Tuza described in the Introduction. One takes a complete r-
partite graph, and adds a new vertex v, that is connected first to every vertex in all but two
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of the classes (in case of r = 4, so far this construction is the same as the construction of
Caro and Tuza). For the remaining two classes, one picks a vertex u from one of them and
a non-empty set A of vertices from another. We assume that in both classes there remain
at least one unpicked vertex, i.e. one of the classes has more than one, the other has more
than |A| vertices. Now one connects v to u and to the vertices of A, while one deletes the
edges between u and A. It is easy to see that this construction has indeed chromatic number
more than r, but does not contain Kr+1. It does, however, contain a singular triangle in case
r = 4.

Let us mention that part (i) of Theorem 1.2 could be deduced (with some simple case
analysis for k ≤ 2) from the above result of Hanson and Toft, but we give a self-contained
proof. We restate (i) of Theorem 1.2 for convenience.

Theorem 2.2. TS(4k,K3) = 6k2 − 2 if k ≥ 2, and TS(4, K3) = 5.

Proof. We use induction on k, the statement is obvious for k = 1.
Let k > 1 and assume the statement is valid for k − 1. Let G be graph on 4k vertices

that does not contain a singular triangle. Recall that G must be K5-free. If G is K4-free,
we are done by Turán’s theorem. Let A be a set of 4 vertices that induces a K4 and B
be the set of the remaining vertices. Every other vertex has at most 3 neighbors in A,
otherwise they would form a K5. Thus, there are at most 3(4k− 4) edges between A and B
and there are at most 6(k − 1)2 edges inside B by Turán’s theorem, as G is K5-free. This
means we are done, unless at least 12k − 13 edges go between A and B, i.e. all but (at
most) one of the vertices in B are connected to exactly three vertices of A. Let a, b, c, d be
the number of edges from vertices of A to B, i.e. their degree minus three. By the above,
12k−13 ≤ a+b+c+d ≤ 12k−12. If three of the numbers a, b, c, d are the same, or three are
different, the corresponding vertices of A form a singular triangle. Thus, say, a = b 6= c = d.
Then a+ b+ c+ d is even, thus equal to 12k− 12. In this case every vertex of B is incident
to the same number (3) of edges that go outside B, hence the edges inside B cannot contain
a singular triangle. By induction, if k > 2, there are at most 6(k − 1)2 − 2 edges inside B
and we are done.

If k = 2, we are left with the case, when the vertices of A form a K4, and there are 5
edges inside B, so they form form a K4 minus an edge and there are 12 edges between A and
B, so in this case, say, a = b = 4 and c = d = 2. The vertex v ∈ A corresponding to a has
degree of 7 and a vertex w ∈ A corresponding to c has degree of 5 and they are connected.
Easy case analysis shows that either they have a common neighbor of degree 6, or there is a
vertex in B of degree 7. We have a singular triangle in both cases.

We continue with (ii) of Theorem 1.2. We restate it here for convenience.

Theorem 2.3. TS(4k + 1, K3) = 6k2 + 2k.
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Proof. The statement is trivial for k = 1, thus we assume k ≥ 2. Consider a graph G on
4k + 1 vertices without a singular triangle and recall that G is K5-free then. Assume first
χ(G) ≥ 5. We can apply Theorem 2.1, obtaining that G has at most 6k2+3k− k+1 edges.
Moreover, G cannot be the extremal graph in the construction of Hanson and Toft, thus G
has fewer than 6k2 + 3k − k + 1 edges, which is the desired bound.

Assume now G is 4-partite, and let A,B,C and D be the parts. If any of them is empty,
G is 3-partite, thus has at most (4k+1)2/3 edges, finishing the proof as k ≥ 2. Let G′ be the
complement of G with respect to this 4-partition, i.e. uv ∈ E(G′) if u and v are in different
parts and uv 6∈ E(G). We claim that |E(G′)| ≥ min{|A|, |B|, |C|, |D|}.

Assume first |A| = |B| = |C|. If there are vertices a ∈ A, b ∈ B and c ∈ C such that
none of them is incident to an edge of G′, they all have the same degree in G and they form a
triangle in G, a contradiction. To avoid that, for one of the classes all the vertices in it have
to be incident to an edge of G′, which proves the claim. In case |A| < |B| < |C|, the same
argument works. The only remaining case is when two parts have the same size |A| = |B|
and the other two parts have the same size |C| = |D|, but that would mean an even number
of vertices, a contradiction.

It is left to show that the complete 4-partite graph with classes A,B,C,D has at most
6k2 + 2k + min{|A|, |B|, |C|, |D|} edges. Indeed, we can prove this by induction on l =
k − min{|A|, |B|, |C|, |D|}. This is trivial for l = 0, and whenever l increases, we can look
at it as moving a vertex from the smallest class to another class. Each time we do that, the
number of edges decreases by at least 1.

The proof of (iii) of Theorem 1.2 (which we restate below) goes similarly, so we only
give a sketch.

Theorem 2.4. TS(4k + 3, K3) ≤ 6k2 + 8k + 3.

Sketch of proof. If k = 1, 6k2 + 8k + 3 = 17, and the upper bound by Caro and Tuza [5]
is the same number. Thus, we can assume k ≥ 2. Consider a graph G on 4k + 3 vertices
without a singular triangle and recall that G is K5-free then. Assume first χ(G) ≥ 5. We
can apply Theorem 2.1, obtaining that G has at most 6k2 +9k+3− k+1 edges. Moreover,
G cannot be the extremal graph in the construction of Hanson and Toft, thus G has fewer
than 6k2 + 8k + 4 edges, finishing the proof.

Assume now G is 4-partite, and let A,B,C and D be the parts. If any of them is empty,
G is 3-partite, thus has at most ⌊(4k+3)2/3⌋ edges, finishing the proof as k ≥ 2. From here,
the proof is exactly the same as the proof of Theorem 2.3.

Ideas from the proofs above can be applied to obtain bounds on TS(n,Kr+1) for larger
values of r, too. Let us start with introducing some constructions.

We distinguish two cases according whether r divides n or not. Suppose n = rk and let
k = l1 + l2 + · · ·+ lr with li 6= lj for any 1 ≤ i < j ≤ r. Then the complete r2-partite graph
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Ks1,s2,...,sr2
with sir+1 = sir+2 = · · · = s(i+1)r = li+1 for any i = 0, 1, . . . , r−1 does not contain

any singular copy of Kr+1. Indeed, there are r different degrees in Ks1,s2,...,sr2
, and for any

accessible degree d there are r parts such that the vertices of that part have degree d. We say
that a complete r2-partite graph has property R, if there are r possible sizes of parts, each
appearing exactly r times. Observe that the parameter t′(n, r2) defined in the Introduction
is the same as the maximum number of edges in an r2-partite graph on n vertices satisfying
property R. In particular, t′(n, r2) > 0 if and only if r divides n and n ≥ r2(r + 1)/2.
Moreover, for these values of n and r, it is quite simple to determine t′(n, r2). If there exist
i, j with li < lj−2 such that none of li+1 and lj −1 appear among the lh’s, then replacing li
by li +1 and lj by lj − 1 increases the number of edges. This shows that if l1 < l2 < · · · < lr
hold, then we have lr ≤ l1 + r. Moreover, there is exactly one partition of k into l1, l2, . . . , lr
with this property. If n is odd and n ≡ 0 (mod r2), then the li’s are consecutive integers,
while if n ≡ ir (mod r2), then lr−i +2 = lr−i+1. The situation is similar for n even, but then
the gap-free sequence corresponds to n ≡ r2/2 (mod r2). Observe that whenever t′(n, r2) is
defined, then t(n, r2)− t′(n, r2) ≤ r3 holds.

Suppose next n = rk +m with 1 ≤ m ≤ r − 1. Then consider the complete r2-partite
graph Ks1,s2,...,sr2

on rk vertices with property R, that has the largest number, i.e. t′(rk, r2)
edges. Suppose s1 < s2 < · · · < sr. Add m new vertices and join them to each other and
each of them to all the vertices in parts of size s1, s2, . . . , sr−1, to obtain Gn,r2. We claim
that Gn,r2 does not contain any singular copy of Kr+1. Clearly, newly added vertices have
lower degree than any of the old vertices. As we joined the new vertices to those old vertices
that had one of the r − 1 highest degrees, the r − 1 highest degrees increased by m, the
smallest degree remained the same, and we added a new degree. Therefore, there are r + 1
different degrees in Gn,r2. Vertices whose degrees are all different cannot form a Kr+1 as
newly added vertices are not joined to old vertices of the lowest degree. Vertices of the same
degree cannot form a copy of Kr+1 either, as there are fewer than r newly added vertices and
the other degree classes remained the same. Observe that t(n, r2)− e(Gn,r2) ≤ m r−1

r2
n+ Cr

for some absolute constant Cr.
Let us show a better construction that works only if n = rk + m with 1 ≤ m ≤ r − 2.

Let n′ = r(k + 1) and let Gn′ be the complete r2-partite graph Ks1,s2,...,sr2
with property R

having t′(n′, r2) edges. Observe that property R and r ≥ 3 ensures that there exists at least
one si that is odd. Remove one vertex from r −m partite sets S1, S2, . . . , Sr−m of size si to
obtain S ′

1, S
′
2, . . . , S

′
r−m. Then the degree of any vertex in unchanged partite sets decreases

by r −m, while the degree of vertices in ∪r−m
j=1 S

′
j decreases by r −m− 1. Observe that the

size of S ′
j is even, therefore, as r − m ≥ 2, there exists a perfect matching in Gn′[∪r2

j=1S
′
j ].

Let us remove this perfect matching to obtain Gn. Observe that for every vertex v of Gn

we have dG
n′
(v)− dGn

(v) = r −m and thus Gn admits r degrees and the degree classes are
r-partite. Therefore, Gn does not contain a singular copy of Kr+1. Finally, observe that the
number of edges in Gn is t(n, r)− r−m

2r2
n− Cr.
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Proof of Theorem 1.3. The lower bounds are given by the constructions above. To obtain
the upper bounds, let us repeat the observation of Caro and Tuza: if a graph G does not
contain a singular copy of Kr+1, then it is Kr2+1-free. Indeed, among the r2+1 vertices of a
Kr2+1, either r+1 have the same degree or there are r+1 of them of pairwise distinct degrees.
Suppose first that χ(G) > r2+1. Then Theorem 2.1 implies that e(G) ≤ t(n, r2)− n

r2
+1 holds,

and we saw that all extremal graphs contain singular copies of Kr+1, so e(G) ≤ t(n, r2)− n
r2

must hold. Therefore we can assume that G is a subgraph of a complete r2-partite graph
Ks1,s2,...,sr2

(s1 ≤ s2 ≤ · · · ≤ sr2). If Ks1,s2,...,sr2
does not have property R, then Ks1,s2,...,sr2

contains either r+ 1 parts of pairwise different sizes or r+1 parts of the same size. In both
cases, there must exist a part U such that every u ∈ U is adjacent to an edge inKs1,s2,...,sr2

\G.
Indeed, otherwise the untouched vertices would form a singular copy of Kr+1. This shows
that e(G) ≤ e(Ks1,s2,...,sr2

)− s1.
If s1 ≥ n

r2
−√

n, then this implies

e(G) ≤ t(n, r2)− n

r2
+
√
n.

On the other hand if s1 ≤ n
r2

−√
n, then

e(G) ≤ e(Ks1,s2,...,sr2
) ≤ t(n, r2)− n.

This finishes the proof of (ii) because if r does not divide n, then there does not exist a
complete r2-partite graph with property R. The proof of (i) is also done as, by definition,
complete r2-partite graphs with property R have at most t′(n, r2) edges.

We finish this section with the proof of Proposition 1.4, which states the following.

TS(n, P3) =























2 if n = 3,
5 if n = 4,
n2+2n

4
− 2 if n > 4 and n is divisible by 4,

n2+2n−4
4

if n is even, but not divisible by 4,
n2+2n−3

4
if n is odd.

Proof of Proposition 1.4. The cases n = 3 and n = 4 are trivial. For the other cases, as
we have mentioned in the introduction, TS(n, F ) ≤ wex(n, F ). Goddard, Wash and Xu [12]
showed

wex(n, P3) =







n2+2n
4

if n is divisible by 4,
n2+2n−4

4
if n is even, but not divisible by 4,

n2+2n−3
4

if n is odd.

The extremal constructions are K⌊n/2⌋,⌈n/2⌉ supplemented with maximal matchings in both
parts, which avoids singular P3 in case n is odd, hence extremal for TS as well. In case n is
even, but not divisible by four, a further extremal graph for wex isKn/2−1,n/2+1 with maximal
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matchings in both parts. This one avoids singular P3. Thus we are done, except in the case
n = 4k. Our lower bound is given by the graph Kn/2−1,n/2+1 with maximal matchings in
both parts.

To obtain the same upper bound, let G be a singular P3-free graph on n > 4 vertices,
and partition E(G) into two parts: E1 consists of the edges between vertices of the same
degree, while E2 consists of the edges between vertices of different degrees. By definition, E1

is a matching, thus |E1| ≤ n/2. If E2 contained a triangle, those three vertices would have
different degrees, thus we could find a singular P3 among them. Therefore, |E2| ≤ n2/4.
Note that if |E2| ≤ n2/4− 2 or |E1| ≤ n/2− 2, then we are done, as |E(G)| = |E1|+ |E2| ≤
n2/4 + n/2− 2.

If the graph with E2 as its edge set has chromatic number at least 3, then we can use
Theorem 2.1 to obtain |E2| ≤ n2/4 − ⌊n/2⌋ + 1 ≤ n2/4 − 2. Thus E2 defines a bipartite
graph with parts A and B. If |A| ≤ n/2 − 2, then |E2| ≤ n2/4 − 4. If |A| = n/2 − 1, then
we are done, unless E2 consists of all the edges between A and B. In that case every edge of
E1 is inside A or B, which have odd size, thus E1 avoids two vertices, hence |E1| ≤ n/2− 1.
This implies |E(G)| = |E1|+ |E2| ≤ n2/4− 1 + n/2− 1.

Finally, if |A| = n/2 = |B|, observe that we are done, if there are at least two edges
between A and B that are not in E2. Let A′ ⊆ A be the set of vertices connected to each
vertex of B with an edge in E2, and similarly B′ ⊆ B be the set of vertices connected to each
vertex of A with an edge in E2. Then |A′| ≥ n/2 − 1 and |B′| ≥ n/2 − 1, otherwise we are
done. Also, the degrees of the vertices in A′ are different from those in B′, by the definition
of E2. But they are all incident to the same number of edges in E2, thus the difference has
to come from E1. It means every vertex of, say A′ is incident to an edge of E1 and no vertex
of B′ is incident to an edge of E1. But then E1 avoids |B′| ≥ 3 vertices, thus |E1| ≤ n/2− 2,
finishing the proof.

3 WORM-colorings

Let us start with the proof of Proposition 1.6, which states that if a bipartite graph F has
r + 1 ≥ 3 vertices, then wex(n, F ) ≤ ex(n,Kr+1) + ex(n, F ).

Proof of Proposition 1.6. Let us consider a graphG on n vertices with an F -WORM coloring.
Let G1 be the subgraph spanned by the edges that connect vertices of the same color and
G2 be the subgraph spanned by the edges that connect vertices of different colors. Then G1

is F -free, thus has at most ex(n, F ) edges.
Graph G2 is not necessarily F -free, as it can contain a copy of F with two nonadjacent

vertices from the same color class, which is not rainbow. But if G2 contained a copy of Kr+1,
that would necessarily be rainbow, thus contain a rainbow copy of F , a contradiction. This
shows G2 has at most ex(n,Kr+1) edges, finishing the proof.
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Observe that in the above proof, if the F -WORM coloring of G has t colors, then G1

consists of t vertex-disjoint graphs, thus has fewer than ex(n, F ) edges if t > 1 and F is not
a forest. On the other hand, if t < p − 1, then G2 has fewer than ex(n,Kp) edges. This
shows that a careful analysis could improve the above bound.

In case F is a forest, there is a chance the bound given in Proposition 1.6 is sharp. Let
T be a tree on k + 1 vertices. Erdős and Sós [6] conjectured that ex(n, T ) ≤ (k − 1)n/2,
with equality in case k divides n, shown by the vertex-disjoint union of n/k copies of Kk.
This conjecture is known to hold for several classes of trees, including paths due to the
Erdős-Gallai theorem [7], and stars, trivially.

Proposition 3.1. Let T be a tree on k+1 vertices such that the Erdős-Sós conjecture holds
for T . Let n be divisible by k2. Then wex(n, T ) = t(n, k) + (k − 1)n/2.

Proof. For the upper bound, observe that the properly colored edges do not contain Kk+1,
while the monochromatic edges do not contain T .

For the lower bound, consider the balanced complete k-partite graph, let the colors
correspond to the parts, and place n/k2 copies of Kk into every part.

If T = Sk, the star with k leaves and k is odd, then the Erdős-Sós conjecture holds with
equality if n is large enough, as shown by any (k − 1)-regular graph. Therefore, we do not
need the divisibility condition.

Proposition 3.2. Let k be odd and n large enough. Then wex(n, Sk) = t(n, k)+(k−1)n/2.

Proof. The upper bound, again, follows from the fact that the properly colored edges do
not contain Kk+1, while the monochromatic edges do not contain Sk. For the lower bound
we take the Turán graph, let the colors correspond to the parts, and place a (k − 1)-regular
graph into each part.

Let us consider now a general construction. For a graph F with r + 1 vertices, consider
the balanced complete r-partite graph T (n, r) on n vertices, and add into each part A an F -
free graph with ex(|A|, F ) edges. Let T (n, F ) denote an arbitrary one of the graphs obtained
this way. Then T (n, F ) admits an F -WORM coloring, namely the r-coloring according to
the parts of T (n, r).

Recall that Proposition 1.6 shows that for a graph F with r + 1 vertices wex(n, F ) −
ex(n,Kr+1) ≤ ex(n, F ). The next proposition shows that this difference is Θ(ex(n, F )).

Proposition 3.3. If F has r + 1 ≥ 3 vertices and chromatic number p + 1 ≥ 2, then
wex(n, F ) = ex(n,Kr+1) + Θ(ex(n, F )).

Proof. The upper bound follows from Proposition 1.6. The lower bound is given by T (n, F ),
observing that it has at least p · ex(⌊n/p⌋, F ) = Θ(ex(n, F )) edges added to the original
ex(n,Kr+1).
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4 Concluding remarks

Let us return to the connection of singular Turán problems and WORM colorings. The
upper bound given in Proposition 1.6 for wex(n, F ) immediately implies the same upper
bound on TS(n, F ), but the lower bound given by the construction T (n, F ) usually contains
singular copies of F , as the degrees in different parts of T (n, p) can be the same. Moreover,
the additional F -free graphs may make the degrees different.

The first problem we can deal with, the same way as earlier: instead of the balanced
complete r-partite graph T (n, r), we consider T ∗(n, r), which is a complete r-partite graph
that is as balanced as possible, with respect to the condition that any two parts have different
size. In T ∗(n, r) the degrees indeed give the coloring we want. However, this coloring can be
ruined by the graphs we add inside the parts. To avoid this, we will add regular graphs. We
still have to be careful, if we add graphs inside the parts with different regularities, then we
have to avoid the final degrees coinciding in different parts. Still, if we only want to obtain
a result similar to Proposition 3.3, i.e. we are only interested in the order of magnitude, it is
enough to add an F -free regular graph into the smallest part; then only the largest degrees
increase.

This motivates us to initiate the study of regular Turán problems : what is the largest
number rex(n, F ) of edges in an F -free regular graph on n vertices? Note that it is equivalent
to determining the largest regularity that an F -free graph on n vertices can have.

Observe first that rex(n, F ) is not monotone in n. For example rex(6, K3) = 9 as shown
by K3,3, but rex(7, K3) = 7, as a 4-regular triangle-free graph on 7 vertices would have more
edges than the Turán graph, there is no 3-regular graph on 7 vertices, and the 2-regular graph
C7 shows the equality. For larger n, asymptotically large flops also happen. If n = 2k, we
have rex(2k,K3) = k2, as the Turán graph Kk,k is k-regular. If n = 2k+1, a bipartite graph
cannot be regular. A theorem of Andrásfai [3] states that if a triangle-free graph on n vertices
is not bipartite, its minimum degree is at most 2n/5, showing rex(2k+1, K3) ≤ (2k+1)2/5.

We can show a quadratic lower bound for rex(n, F ) for every nonbipartite graph F .

Theorem 4.1. If a nonbipartite graph F has odd girth g, then

rex(n, F ) ≥ n2/(g + 6)−O(n).

Proof. The case of n even is settled by Kn/2,n/2. If n is odd, let us write it in the form
n = (g + 6)q + 2r where 0 ≤ r ≤ g + 5 (and of course q is odd). We construct an F -free
(2q)-regular graph with two connected components. One component is a bipartite graph of
order 4q + 2r, which is obtained from K2q+r,2q+r, removing r mutually edge-disjoint perfect
matchings. The other component is obtained from Cg+2, replacing each of the vertices by
an independent set of size q and each of the edges by a copy of Kq,q.

Problem 4.2. For any non-bipartite graph F , determine lim inf rex(n, F )/n2.
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For any F with chromatic number p+1 ≥ 3, we know that rex(n, F ) = (1+o(1))ex(n, F )
for infinitely many values of n, namely for n divisible by p, as the Turán graph is regular
in that case. If F is a tree with r + 1 vertices, the Erdős-Sós conjecture states ex(n, F ) ≤
(r − 1)n/2. If it holds, it also implies ex(n, F ) = rex(n, F ) for n divisible by r, as shown by
the vertex-disjoint union of n/r copies of Kr. In case F is a forest, this construction might
contain F , but it is easy to see that if F 6= K2, then rex(2k, F ) ≥ k.

However, if F is bipartite and not a forest, we do not know how close ex(n, F ) and
rex(n, F ) can be. In particular, we do not know if lim inf ex(n, F )/rex(n, F ) is bounded by
a constant. What we do know is that there exists a d-regular graph which has girth at least

ℓ + 1 (thus is F -free) on at most 2 (d−1)ℓ−1
d−2

vertices by a result of Erdős and Sachs [8]. This

shows that for infinitely many n we have rex(n, Cl) ≥ cn1+1/ℓ for some constant c. Hence
lim sup ex(n, F )/rex(n, F ) = ∞ holds if and only if F is bipartite and contains a cycle.
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