ELSEVIER

Clique coverings and claw-free graphs

Csilla Bujtás ${ }^{\mathrm{a}, \mathrm{b}}$, Akbar Davoodi ${ }^{\text {c }}$, Ervin Győri ${ }^{\text {d,1 }, ~ Z s o l t ~ T u z a ~}{ }^{\text {a,b }}$
${ }^{\text {a }}$ Department of Computer Science and Systems Technology, University of Pannonia, Veszprém, Hungary
${ }^{\mathrm{b}}$ MTA Rényi Institute, Budapest, Hungary
${ }^{\text {c }}$ School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box:
19395-5746, Tehran, Iran
${ }^{\mathrm{d}}$ MTA Rényi Institute and Central European University, Budapest, Hungary

ARTICLE INFO

Article history:
Available online 23 March 2020

Abstract

Let \mathcal{C} be a clique covering for $E(G)$ and let v be a vertex of G. The valency of vertex v (with respect to \mathcal{C}), denoted by $v a l_{\mathcal{C}}(v)$, is the number of cliques in \mathcal{C} containing v. The local clique cover number of G, denoted by $\operatorname{lcc}(G)$, is defined as the smallest integer k, for which there exists a clique covering for $E(G)$ such that $\operatorname{val}_{\mathcal{C}}(v)$ is at most k, for every vertex $v \in V(G)$. In this paper, among other results, we prove that if G is a claw-free graph, then $\operatorname{lcc}(G)+\chi(G) \leq n+1$.

© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Throughout the paper, all graphs are simple and undirected. By a clique of a graph G, we mean a subset of mutually adjacent vertices of G as well as its corresponding complete subgraph. The size of a clique is the number of its vertices. A clique covering for $E(G)$ is defined as a family of cliques of G such that every edge of G lies in at least one of the cliques comprising this family.

Let \mathcal{C} be a clique covering for $E(G)$ and let v be a vertex of G. The valency of vertex v (with respect to \mathcal{C}), denoted by $v \operatorname{va}_{\mathcal{C}}(v)$, is defined to be the number of cliques in \mathcal{C} containing v. A number of different variants of the clique cover number have been investigated in the literature. The local clique cover number of G, denoted by $\operatorname{lcc}(G)$, is defined as the smallest integer k, for which there exists a clique covering for G such that $v a l_{\mathcal{C}}(v)$ is at most k, for every vertex $v \in V(G)$.

[^0]This parameter may be interpreted as a variety of different invariants of the graph and the problem relates to some well-known problems such as line graphs of hypergraphs, intersection representation and Kneser representation of graphs. For example, $\operatorname{lcc}(G)$ is the minimum integer k such that G is the line graph of a k-uniform hypergraph. By this interpretation, $\operatorname{lcc}(G) \leq 2$ if and only if G is the line graph of a multigraph.

There is a characterization by a list of seven forbidden induced subgraphs and a polynomialtime algorithm for the recognition that G is the line graph of a multigraph $[3,15]$. On the other hand, L. Lovász proved in [16] that there is no characterization by a finite list of forbidden induced subgraphs for the graphs which are line graphs of some 3 -uniform hypergraphs. Moreover, it was proved that the decision problem whether G is the line graph of a k-uniform hypergraph, for fixed $k \geq 4$, and the problem of recognizing line graphs of 3-uniform hypergraphs without multiple edges are NP-complete [18].

For a vertex $v \in V(G)$, its (open) neighborhood $N(v)$ is the set of all neighbors of v in G, while its closed neighborhood $N[v]$ is defined as $N[v]:=N(v) \cup\{v\}$. Moreover, let \bar{G} stand for the complement of G, and let $\Delta(G)$ and $\delta(G)$ be the maximum degree and the minimum degree of G, respectively. The subgraph induced by a set $Y \subset V(G)$ will be denoted by $G[Y]$. By the notations of $\alpha(G), \omega(G)$, and $\chi(G)$ we mean the independence number, clique number, and chromatic number of G, respectively.

In 1956 E. A. Nordhaus and J. W. Gaddum proved the following theorem for the chromatic number of a graph G and its complement, \bar{G}.

Theorem 1 ([17]). Let G be a graph on n vertices. Then $2 \sqrt{n} \leq \chi(G)+\chi(\bar{G}) \leq n+1$.
Later on, similar results for other graph parameters have been found which are known as Nordhaus-Gaddum type theorems. In the literature there are several hundred papers considering inequalities of this type for many other graph invariants. For a survey of Nordhaus-Gaddum type estimates see [1].

In this paper, we consider the following two conjectures on the local clique cover number proposed by R. Javadi in 2012.

Conjecture 2. For every graph G on n vertices,

$$
\begin{equation*}
\operatorname{lcc}(G)+\operatorname{lcc}(\bar{G}) \leq n . \tag{1}
\end{equation*}
$$

Note that Conjecture 2 is a Nordhaus-Gaddum type inequality concerning the local clique cover number of G. Also, he suggested the following weakening of Conjecture 2.

Conjecture 3. For every graph G on n vertices,

$$
\begin{equation*}
\operatorname{lcc}(G)+\chi(G) \leq n+1 . \tag{2}
\end{equation*}
$$

Let G_{1} and G_{2} be graphs with disjoint vertex sets $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$ and edge sets $E\left(G_{1}\right)$ and $E\left(G_{2}\right)$. The disjoint union of G_{1} and G_{2}, denoted by $G_{1} \cup G_{2}$, is the graph with vertex set $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set $E\left(G_{1}\right) \cup E\left(G_{2}\right)$.

Lemma 4. Let \mathcal{G} be a family of graphs which is closed under the operation of taking disjoint union with an isolated vertex. If Conjecture 2 is true for every $G \in \mathcal{G}$, then Conjecture 3 is also true for every $G \in \mathcal{G}$.

Proof. Let $G \in \mathcal{G}$ and consider the disjoint union $H=G \dot{\cup}\{v\}$. Observe that $\operatorname{lcc}(G)=\operatorname{lcc}(H)$. Hence, assuming that each member of \mathcal{G} satisfies Conjecture 2, we have $\operatorname{lcc}(G)+\operatorname{lcc}(\bar{H}) \leq|V(H)|$. Now, fix an optimal (with respect to lcc) clique covering \mathcal{C} for \bar{H}. Clearly, $\chi(G) \leq \operatorname{val}_{\mathcal{C}}(v) \leq \operatorname{lcc}(\bar{H})$. These two inequalities together imply $\operatorname{lcc}(G)=\operatorname{lcc}(H) \leq|V(H)|-\operatorname{lcc}(\bar{H}) \leq|V(G)|+1-\chi(G)$.

2. Proof of some variants of the conjectures

Let k be an integer and let G be a graph such that $k \leq \operatorname{deg}(x) \leq k+1$, for every vertex $x \in V(G)$. Then $\operatorname{lcc}(G) \leq k+1$ and $\operatorname{lcc}(\bar{G}) \leq n-1-k$. Thus, inequality (1) holds for G. Also, If G is a triangle-free
graph, then for a vertex v which has the maximum degree in $G, N(v)$ can be properly colored by one color. Thus, $\chi(G) \leq n+1-\Delta(G)$. Since $\operatorname{lcc}(G)=\Delta(G)$, Conjecture 3 is true for triangle-free graphs. In what follows we prove that not only (2) but also (1) holds if \bar{G} is triangle-free.

Theorem 5. Let G be a graph on n vertices. If $\alpha(G)=2$, then $\operatorname{lcc}(G)+\operatorname{lcc}(\bar{G}) \leq n$.
Proof. Clearly, $\operatorname{lcc}(\bar{G})=\Delta(\bar{G})=n-1-\delta(G)$. It is enough to show that $\operatorname{lcc}(G) \leq \delta(G)+1$. Let v be a vertex of minimum degree in G, and let $K \subset V(G)$ be the set of vertices which are not adjacent to v. Since $\alpha(G)=2$, the induced subgraph on $K, G[K]$, is a clique in G. Now, for every vertex $u_{i} \in N(v)$, let $C_{i}:=\left(N\left(u_{i}\right) \cap K\right) \cup\left\{u_{i}\right\}$ and define $C_{\delta(G)+1}:=G[K]$. These cliques along with the collection of those edges which are not covered by the cliques $C_{1}, \ldots, C_{\delta(G)+1}$ comprise a clique covering for G, say \mathcal{C}. It can be easily checked that $v a l_{\mathcal{C}}(v)=\delta(G)$ and $v a l_{\mathcal{C}}(x) \leq \delta(G)+1$, for every vertex $x \in V(G)-v$.

It is well-known that $\frac{n}{\alpha(G)}$ and $\omega(G)$ are lower bounds for $\chi(G)$, the chromatic number of G. We show that, if we replace $\chi(G)$ with any of these two general lower bounds in Conjecture 3, then the inequality holds.

Proposition 6. Let G be a graph with n vertices. Then $\operatorname{lcc}(G)+\omega(G) \leq n+1$.
Proof. Assume that $K \subset V(G)$ is a clique of size ω. For every vertex $v_{i} \in V(G)-K, 1 \leq i \leq n-\omega$, define $C_{i}:=\left(N\left(v_{i}\right) \cap K\right) \cup\left\{v_{i}\right\}$, and let $C_{n-\omega+1}:=G[K]$. Now, let F be the set of all the edges which are not covered by the cliques $C_{1}, \ldots, C_{n-\omega+1}$. Clearly, the cliques C_{i} for $1 \leq i \leq n-\omega+1$ together with F form a clique covering \mathcal{C} for G. If $x \in K$, then $\operatorname{val}_{\mathcal{C}}(x) \leq 1+n-\omega(G)$, and for vertex $v_{i} \in V(G)-K$, $\operatorname{val}_{\mathcal{C}}\left(v_{i}\right) \leq n-\omega(G)$.

Before proving the other inequality $\operatorname{lcc}(G)+\frac{n}{\alpha(G)} \leq n+1$, we verify a stronger statement involving local parameters. Let $\alpha_{G}(v)=\alpha(G[N(v)])$ be the maximum number of independent vertices in the neighborhood of vertex v, and let the local independence number of graph G be defined as $\alpha_{L}(G)=\max _{v \in V(G)} \alpha_{G}(v)$. Clearly, $\alpha_{G}(v) \leq \alpha_{L}(G) \leq \alpha(G)$. Further, $\alpha_{G}(v) \geq 1$ holds if and only if v has at least one neighbor, while $\alpha_{G}(v) \leq 1$ is equivalent to that the closed neighborhood $N_{G}[v]=N(v) \cup\{v\}$ induces a clique.

Theorem 7. For every graph G of order n, there exists a clique covering \mathcal{C} such that for each non-isolated vertex $v \in V(G)$ the inequality val ${ }_{\mathcal{C}}(v)+\frac{n}{\alpha_{G}(v)} \leq n+1$ holds.

Proof. A clique covering will be called good if it satisfies the requirement given in the theorem. Since the statement is true for all graphs of order $n \leq 3$, we may proceed by induction on n. Let x and y be two adjacent vertices of G. By the induction hypothesis, there is a good clique covering, \mathcal{C}^{\prime}, for $G^{\prime}=G-\{x, y\}$. We introduce the notations $N_{1}:=N(x)-N[y], N_{2}:=N(y)-N[x]$, and $N_{1,2}:=N(x) \cap N(y)$. To obtain a good clique covering \mathcal{C} of G from \mathcal{C}^{\prime}, we perform the following steps.

1. To handle vertices whose neighbors are pairwise adjacent, observe that every vertex u from $N_{1} \cup N_{2} \cup N_{1,2}$ with $\alpha_{G}(u)=1$ and $\operatorname{deg}_{G^{\prime}}(u) \geq 1$ satisfies $\alpha_{G^{\prime}}(u)=1$ and hence it is covered by the clique $N_{G^{\prime}}[u]$ in the good covering \mathcal{C}^{\prime}. Now, for each such vertex $u, N_{G^{\prime}}[u]$ is extended by x, by y or by both x and y respectively, if $u \in N_{1}, u \in N_{2}$ or $u \in N_{1,2}$.
2. If $\alpha_{G}(x)=1<\alpha_{G}(y)$, take the clique $N_{G}[x]$; if $\alpha_{G}(y)=1<\alpha_{G}(x)$, take the clique $N_{G}[y]$; and if $\alpha_{G}(x)=\alpha_{G}(y)=1$, take the clique $N_{G}[x]=N_{G}[y]$ into the covering \mathcal{C} (if they were not included in step (1)).
3. If there still exist some uncovered edges between x and N_{1}, we consider the set $N_{1}^{\prime}=\{v \in$ $N_{1} \mid x v$ is uncovered\} and partition it into some number of adjacent vertex pairs (inducing independent edges) and at most $\alpha\left(G\left(N_{1}^{\prime}\right)\right)$ isolated vertices. Then, we extend each of them with x to a K_{3} or K_{2}, and insert these cliques into the covering \mathcal{C}. This way, we get at most $\frac{\left|N_{1}^{\prime}\right|-\alpha\left(G\left(N_{1}^{\prime}\right)\right)}{2}+\alpha\left(G\left(N_{1}^{\prime}\right)\right)$ new cliques. Then, we define N_{2}^{\prime} and $N_{1,2}^{\prime}$ analogously, and do the
corresponding partitioning procedure for N_{2}^{\prime} and $N_{1,2}^{\prime}$, extending every part of those partitions with y or with $\{x, y\}$, respectively.
4. If the edge $x y$ remained uncovered, we take it as a clique into the covering \mathcal{C}.

It is easy to check that \mathcal{C} is a clique covering in G. We prove that it is good.
First note that after performing Step 1, each vertex $v \in V(G)-\{x, y\}$ has the same valency as in \mathcal{C}^{\prime}. Moreover, if two adjacent vertices, say u and x, have $\alpha_{G}(u)=\alpha_{G}(x)=1$, then $N_{G}[u]=N_{G}[x]$ must hold. Hence, if $u \in V(G)-\{x, y\}$ and $\alpha_{G}(u)=1$, then u is incident with only one clique from \mathcal{C}. Thus, $v a l_{\mathcal{C}}(u)+\frac{n}{\alpha_{G}(u)}=1+n$. If v is a vertex from $V(G)-\{x, y\}$ and $\alpha_{G}(v) \geq 2$, then the valency of v might increase in Step 2 or 3, but not in both. Therefore, $v a l_{\mathcal{C}}(v) \leq v a l_{\mathcal{C}^{\prime}}(v)+1$, and clearly $\alpha_{G^{\prime}}(v) \leq \alpha_{G}(v)$. Since \mathcal{C}^{\prime} is assumed to be good, these facts together imply

$$
\operatorname{val}_{\mathcal{C}}(v)+\frac{n}{\alpha_{G}(v)} \leq \operatorname{val}_{\mathcal{C}^{\prime}}(v)+1+\frac{n-2}{\alpha_{G^{\prime}}(v)}+\frac{2}{\alpha_{G}(v)} \leq n+1 .
$$

Now, consider the vertex x. If $\alpha_{G}(x)=1$, it is covered by only one clique (induced by its closed neighborhood), which was added to \mathcal{C} in Step 1 or 2 . In this case $\operatorname{val}_{\mathcal{C}}(x)+\frac{n}{\alpha_{G}(x)}=n+1$. Also if $\alpha_{G}(x) \geq \frac{n}{2}$, the trivial bound $\operatorname{val}_{\mathcal{C}}(x) \leq \operatorname{deg}(x) \leq n-1$ implies the desired inequality. Hence, we may suppose $2 \leq \alpha_{G}(x)<\frac{n}{2}$.

Let us denote by s the number of cliques covering x which were added to \mathcal{C} in Step 1. Choose one vertex u_{i} with $\alpha_{G}\left(u_{i}\right)=1$ from each of these s cliques. The closed neighborhoods $N\left[u_{i}\right]$ are pairwise different cliques. Thus, if S is the set of all u_{i} 's, then S is independent. By the definitions of N_{1}^{\prime} and $N_{1,2}^{\prime}$, there exist no edges between S and $N_{1}^{\prime} \cup N_{1,2}^{\prime}$. Thus, $\alpha\left(G\left(N_{1}^{\prime}\right)\right) \leq \alpha_{G}(x)-s$ and $\alpha\left(G\left(N_{1,2}^{\prime}\right)\right) \leq \alpha_{G}(x)-s$. Also, $\left|N_{1}^{\prime}\right|+\left|N_{1,2}^{\prime}\right| \leq\left|N_{1}\right|+\left|N_{1,2}\right|-s=\operatorname{deg}(x)-1-s$ follows.

- If $N_{1,2} \neq \emptyset$ and $\alpha_{G}(y)>1$, then

$$
\begin{aligned}
\operatorname{val}_{\mathcal{C}}(x) \leq & \frac{\left|N_{1}^{\prime}\right|-\alpha\left(G\left(N_{1}^{\prime}\right)\right)}{2}+\alpha\left(G\left(N_{1}^{\prime}\right)\right) \\
& +\frac{\left|N_{1,2}^{\prime}\right|-\alpha\left(G\left(N_{1,2}^{\prime}\right)\right)}{2}+\alpha\left(G\left(N_{1,2}^{\prime}\right)\right)+s \\
= & \frac{\left|N_{1}^{\prime}\right|+\left|N_{1,2}^{\prime}\right|}{2}+\frac{\alpha\left(G\left(N_{1}^{\prime}\right)\right)+\alpha\left(G\left(N_{1,2}^{\prime}\right)\right)}{2}+s \\
\leq & \frac{\operatorname{deg}(x)-1-s}{2}+\frac{2 \alpha_{G}(x)-2 s}{2}+s \leq \frac{n-2}{2}+\alpha_{G}(x) .
\end{aligned}
$$

On the other hand, our assumption $2 \leq \alpha_{G}(x)<\frac{n}{2}$ implies that $\alpha_{G}(x)+\frac{n}{\alpha_{G}(x)} \leq 2+\frac{n}{2}$. Thus,

$$
\operatorname{val}_{\mathcal{C}}(x)+\frac{n}{\alpha_{G}(x)} \leq \frac{n-2}{2}+\alpha_{G}(x)+\frac{n}{\alpha_{G}(x)} \leq \frac{n-2}{2}+2+\frac{n}{2}=n+1 .
$$

- If $N_{1,2} \neq \emptyset$ and $\alpha_{G}(y)=1$, all edges between $N_{1,2}$ and x are covered by the clique $N_{G}[y]$, which was added to \mathcal{C} in Step 2 (or maybe earlier, in Step 1). Hence, $N_{1,2}^{\prime}=\emptyset$ and we have

$$
\begin{aligned}
\operatorname{val}_{\mathcal{C}}(x) & \leq \frac{\left|N_{1}^{\prime}\right|-\alpha\left(G\left(N_{1}^{\prime}\right)\right)}{2}+\alpha\left(G\left(N_{1}^{\prime}\right)\right)+1+s \\
& =\frac{\left|N_{1}^{\prime}\right|}{2}+\frac{\alpha\left(G\left(N_{1}^{\prime}\right)\right)}{2}+1+s \\
& \leq \frac{\operatorname{deg}(x)-1-s}{2}+\frac{\alpha_{G}(x)-s}{2}+1+s \leq \frac{n-2}{2}+\alpha_{G}(x) .
\end{aligned}
$$

Again, we may conclude $\operatorname{val}_{\mathcal{C}}(x)+\frac{n}{\alpha_{G}(x)} \leq n+1$.

- If $N_{1,2}=\emptyset$, the clique $x y$ was added to \mathcal{C} in Step 4 , and the same estimation holds as in the previous case.

One can show similarly that $\operatorname{val}_{\mathcal{C}}(y)+\frac{n}{\alpha_{G}(y)} \leq n+1$. This completes the proof.
Since for every $v \in V(G), \alpha_{G}(v) \leq \alpha_{L}(G) \leq \alpha(G)$, we have the following immediate consequences.

Corollary 8. Let G be a graph of order n. Then
(i) $\operatorname{lcc}(G)+\frac{n}{\alpha_{L}(G)} \leq n+1$;
(ii) $\operatorname{lcc}(G)+\frac{n}{\alpha(G)} \leq n+1$.

On the other hand, $\operatorname{val}_{\mathcal{C}}(v) \geq \alpha_{G}(v)$, for every arbitrary clique covering \mathcal{C}. Hence, $\operatorname{lcc}(G) \geq \alpha_{L}(G)$. (But $\operatorname{lcc}(G)<\alpha(G)$ may be true.) Also, it is easy to see that $\operatorname{lcc}(G) \geq \frac{\Delta(G)}{\omega-1}$. Next we observe that replacing $\operatorname{lcc}(G)$ with $\alpha(G)$ or $\frac{\Delta(G)}{\omega-1}$ in Conjecture 3, valid inequalities are obtained.

Proposition 9. If G is a graph on n vertices, then

1. $\frac{\Delta(G)}{\omega-1}+\chi(G) \leq n+1$, and equality holds if and only if G is the complete graph K_{n} or the star $K_{1, n-1}$;
2. $\alpha(G)+\chi(G) \leq n+1$, and equality holds if and only if there exists a vertex $v \in V(G)$ such that $N(v)$ induces a complete graph and $V(G) \backslash N(v)$ is an independent set.

Proof. To prove (1), first note that it is shown in [10] that there are only two types of graphs G for which $\chi(G)+\chi(\bar{G})=n+1$,
(a) if $V(G)=K \cup S$ where K is a clique and S is an independent set, sharing a vertex $K \cap S=\{u\}$, or
(b) G is obtained from (a) by substituting C_{5}, cycle of length 5 , into u.

Now, we estimate $\frac{\Delta(G)}{\omega-1}+\chi(G)$ as follows. We write θ for the clique covering number (minimum number of complete subgraphs whose union is the entire vertex set, that is the chromatic number of the complementary graph). Let x be a vertex of degree $\Delta=\Delta(G)$. We have

$$
\frac{\Delta}{\omega-1} \leq \theta(G[N(x)]) \leq \theta(G) \leq n+1-\chi(G),
$$

where the last inequality is the Nordhaus-Gaddum theorem (Theorem 1). Thus, in order to have $\frac{\Delta}{\omega-1}+\chi=n+1$, it is necessary that G is of type (a) or (b). We shall see that (b) is not good enough, and (a) yields $G=K_{n}$ or $G=K_{1, n-1}$.

Note that equality does not hold for $G=C_{5}$ (cycle of length 5), therefore in (b) we have $k=\left|K-V\left(C_{5}\right)\right|>0$. Let $|K-u|=k$ and $|S-u|=s$ in (a). Then after substitution of C_{5}, we have $n=k+s+5, \Delta \leq n-1, \omega=k+2$ (with $k>0$), and $\chi=k+3$. Therefore, the most favorable case is $s=0$, because increasing s by 1 makes $n+1$ increase by 1 , while the left-hand side of the inequality increases by at most $1 / 2$. Hence, in the best case we have $n=k+5 \geq 6$, and

$$
\frac{\Delta}{\omega-1}+\chi=\frac{n-1}{n-3}+n-2<n+1 .
$$

Now, we consider case (a). Here, again we have $k>0$ and $\Delta \leq n-1$, moreover now $n=k+s+1$, $\omega=k+1$, and $\chi=k+1$. Thus

$$
\frac{\Delta}{\omega-1}+\chi \leq \frac{(k+s)}{k}+k+1 \leq k+s+2
$$

with equality if and only if $s / k=s$, that is $k=1$ or $s=0$, where for the case $k=1$ we also have to ensure $\Delta=s+1$. This completes the proof of (1).

To see (2), consider an independent set A of cardinality $\alpha=\alpha(G)$. A proper ($n-\alpha+1$)-coloring always exists as we can assign color 1 to all vertices from A and the further $n-\alpha$ vertices are assigned with pairwise different colors. Hence, $\chi(G) \leq n-\alpha+1$ holds for every graph. Moreover, if the graph induced by $V(G) \backslash A$ is not complete, we can color it properly by using fewer than $n-\alpha$ colors that yields a proper coloring of G with fewer than $n-\alpha+1$ colors. Therefore, $\chi(G)=n-\alpha+1$ may hold only if $V(G) \backslash A$ induces a complete graph. In this case, G is a split graph. Since split graphs are chordal and chordal graphs are perfect [8], $\omega(G)=\chi(G)=n-\alpha+1$. Consequently, if (2) holds
with equality, there exists a vertex $v \in A$ which is adjacent to all vertices from $V(G) \backslash A$. This vertex fulfills our conditions as $N(v)$ is a clique and $V(G) \backslash N(v)$ is an independent set.

On the other hand, if a vertex v^{\prime} with such a property exists in G, then the graph cannot be colored with fewer than $\left|N\left(v^{\prime}\right)\right|+1$ colors. This implies $\chi=n-\alpha+1$ and completes the proof of the second statement.

3. Claw-free graphs

Several related problems (say, perfect graph conjecture, to mention just the most famous one) are easier for claw-free graphs, i.e. for graphs not containing $K_{1,3}$ as an induced subgraph, other problems (say, complexity of finding chromatic number) are not. (For a survey of results on claw-free graphs see e.g. [9].) Concerning local clique cover number, R. Javadi et al. showed in [12] that if G is a claw-free graph then $\operatorname{lcc}(G) \leq c \frac{\Delta(G)}{\log (\Delta(G))}$, for a constant c. In this section, we are going to prove that Conjecture 3 does hold for claw-free graphs.

To prove the main result of this section, we use the following definition and theorem of Balogh et al. [2].

Definition 10 ([2]). A graph G is (s, t)-splittable if $V(G)$ can be partitioned into two sets S and T such that $\chi(G[S]) \geq s$ and $\chi(G[T]) \geq t$. For $2 \leq s \leq \chi(G)-1$, we say that G is s-splittable if G is ($s, \chi(G)-s+1$)-splittable.

Theorem 11 ([2]). Let $s \geq 2$ be an integer. Let G be a graph with $\alpha(G)=2$ and $\chi(G)>\max \{\omega, s\}$. Then G is s-splittable.

Now we prove:
Theorem 12. Let G be a claw-free graph with n vertices. Then $\operatorname{lcc}(G)+\chi(G) \leq n+1$. Moreover, for every $n \geq 4$, there exist several claw-free graphs with n vertices such that equality holds.

Proof. We prove the theorem by induction on n. For small values of n, it is easy to check that a claw-free graph with n vertices satisfies the inequality. Also, the assertion is obvious for $\alpha(G)=1$.

Let G be a claw-free graph on n vertices. First, we consider the case where $\alpha(G) \geq 3$. Let T be an independent set of size three. By the induction hypothesis, $G-T$ has a clique covering \mathcal{C}^{\prime} such that every vertex $x \in V(G-T)$ satisfies

$$
\begin{equation*}
\operatorname{val}_{\mathcal{C}^{\prime}}(x) \leq(n-3)+1-\chi(G-T) \leq n-2-(\chi(G)-1)=n-1-\chi(G) . \tag{3}
\end{equation*}
$$

Now, for every vertex $u \in T$, partition $N(u)$ into the $\chi(\overline{G[N(u)]})$ vertex-disjoint cliques. Then, add vertex u to each clique to cover all the edges incident to u. These cliques along with cliques in an optimum clique covering of $G-T$ form a clique covering, say \mathcal{C}, for G. Let $u \in T$ and $x \in G-T$. Then we have

$$
\begin{aligned}
& \operatorname{val}_{\mathcal{C}}(u)=\chi(\overline{G[N(u)]}) \leq \chi(\bar{G}) \leq n+1-\chi(G), \\
& \operatorname{val}_{\mathcal{C}}(x) \leq \operatorname{val}_{\mathcal{C}^{\prime}}(x)+\left|N_{G}(x) \cap T\right| .
\end{aligned}
$$

Since G is claw-free, $\left|N_{G}(x) \cap T\right| \leq 2$. Thus, by Inequality (3), $\operatorname{lcc}(G) \leq n+1-\chi(G)$.
Consider now the case $\alpha(G)=2$. By Proposition 6 we may assume that $\chi(G)>\omega(G)$. Moreover, as the statement clearly holds when $\chi(G) \leq 2$, we may also suppose that $\chi(G) \geq 3$. Then Theorem 11 with $s=2$ implies that $V(G)$ can be partitioned into two parts, say A and B, such that $\chi(G[A]) \geq 2$ and $\chi(G[B]) \geq \chi(G)-1$. We assume, without loss of generality, that $A=\left\{u_{1}, u_{2}\right\}$, where the vertices u_{1} and u_{2} are adjacent. Then $\chi\left(G-\left\{u_{1}, u_{2}\right\}\right) \geq \chi(G)-1$.

We will use the notation $N_{1}:=N\left(u_{1}\right)-N\left[u_{2}\right], N_{2}:=N\left(u_{2}\right)-N\left[u_{1}\right]$, and $N_{1,2}:=N\left(u_{1}\right) \cap N\left(u_{2}\right)$. Since G is claw-free, $N_{i} \cup\left\{u_{i}\right\}$ induces a clique for $i=1$, 2. Starting with an optimal clique covering $\mathcal{C}^{\prime \prime}$ for $G-\left\{u_{1}, u_{2}\right\}$, we will construct a clique covering \mathcal{C} for G such that $v a l_{\mathcal{C}}(v) \leq n+1-\chi(G)$ holds for every vertex v.

If $N_{1,2}=\emptyset$, then $\mathcal{C}:=\mathcal{C}^{\prime \prime} \cup\left\{N_{1} \cup\left\{u_{1}\right\}, N_{2} \cup\left\{u_{2}\right\},\left\{u_{1}, u_{2}\right\}\right\}$ is a clique covering for G. We observe that $\operatorname{val}_{\mathcal{C}}\left(u_{i}\right) \leq 2$ holds for $i=1,2$ and

$$
\operatorname{val}_{\mathcal{C}}(v) \leq \operatorname{val}_{\mathcal{C}^{\prime \prime}}(v)+1 \leq n-1-\chi\left(G-\left\{u_{1}, u_{2}\right\}\right)+1 \leq n-\chi(G)
$$

for each vertex v from $V\left(G-\left\{u_{1}, u_{2}\right\}\right)$. Hence, $\operatorname{lcc}(G) \leq n+1-\chi(G)$.
Otherwise, if $N_{1,2} \neq \emptyset$, partition $N_{1,2}$ into at most $\chi\left(\overline{G-\left\{u_{1}, u_{2}\right\}}\right)$ cliques and extend each of them with the vertices u_{1} and u_{2}. These cliques together with $N_{1} \cup\left\{u_{1}\right\}, N_{2} \cup\left\{u_{2}\right\}$, and with the cliques in $\mathcal{C}^{\prime \prime}$ form a clique covering of G. We show that this clique covering \mathcal{C} satisfies $\operatorname{val}_{\mathcal{C}}(x) \leq n+1-\chi(G)$ for every vertex $x \in V(G)$. Note that $\operatorname{val}_{\mathcal{C}}\left(u_{1}\right) \leq \chi\left(\overline{G-\left\{u_{1}, u_{2}\right\}}\right)+1$, thus the Nordhaus-Gaddum inequality for the chromatic number implies

$$
\operatorname{val}_{\mathcal{C}}\left(u_{1}\right) \leq(n-2)+1-\chi\left(G-\left\{u_{1}, u_{2}\right\}\right)+1 \leq n-\chi\left(G-\left\{u_{1}, u_{2}\right\}\right) \leq n+1-\chi(G)
$$

Similarly, we have $\operatorname{val}_{\mathcal{C}}\left(u_{2}\right) \leq n+1-\chi(G)$. For $v \in V\left(G-\left\{u_{1}, u_{2}\right\}\right)$,

$$
\operatorname{val}_{\mathcal{C}}(v) \leq \operatorname{val}_{\mathcal{C}^{\prime \prime}}(v)+1 \leq(n-2)+1-\chi\left(G-\left\{u_{1}, u_{2}\right\}\right)+1 \leq n-\chi(G)+1
$$

Finally, we note that $K_{n}, K_{n}-K_{2}$, and $K_{n}-K_{1,2}$ are examples of claw-free graphs with n vertices such that $\operatorname{lcc}(G)+\chi(G)=n+1$.

4. A Nordhaus-Gaddum type inequality

A clique partition of the edges of a graph G is a family of cliques such that every edge of G lies in exactly one member of the family. The sigma clique partition number of $G, \operatorname{scp}(G)$, is the smallest integer k for which there exists a clique partition of $E(G)$ where the sum of the sizes of its cliques is at most k.

It was conjectured by G. O. H. Katona and T. Tarján, and proved in the papers [4,11,13], that for every graph G on n vertices, $\operatorname{scp}(G) \leq\left\lfloor n^{2} / 2\right\rfloor$ holds, with equality if and only if G is the complete bipartite graph $K_{\lfloor n / 2\rfloor,\lceil n / 2\rceil}$.

Also, this parameter relates to a number of other well-known problems (see [6]). The second author and R. Javadi proved the following Nordhaus-Gaddum type theorem for scp.

Theorem 13 ([5]). Let G be a graph with n vertices. Then

$$
\begin{aligned}
& \frac{31}{50} n^{2}+O(n) \leq \max \{\operatorname{scp}(G)+\operatorname{scp}(\bar{G})\} \leq \frac{9}{10} n^{2}+O(n) \\
& \frac{12}{125} n^{4}+O\left(n^{3}\right)<\max \{\operatorname{scp}(G) \cdot \operatorname{scp}(\bar{G})\}<\frac{81}{400} n^{4}+O\left(n^{3}\right)
\end{aligned}
$$

In the following result we improve the upper bounds, from 0.9 to less than 0.77 and from 0.2025 to less than 0.15 .

Theorem 14. For every graph G with n vertices,

$$
\operatorname{scp}(G)+\operatorname{scp}(\bar{G}) \leq \frac{1203}{1568} n^{2}+o\left(n^{2}\right)<0.76722 n^{2}+o\left(n^{2}\right)
$$

and

$$
\operatorname{scp}(G) \cdot \operatorname{scp}(\bar{G}) \leq \frac{1447209}{9834496} n^{4}+o\left(n^{4}\right)<0.1471564 n^{4}+o\left(n^{4}\right)
$$

Proof. Substantially improving on earlier estimates, P. Keevash and B. Sudakov [14] proved via a computer-aided calculation that every edge 2 -coloring of K_{n} contains at least $\mathrm{cn}^{2}-o\left(n^{2}\right)$ mutually edge-disjoint monochromatic triangles, ${ }^{2}$ where

$$
c=\frac{13}{196}+\frac{1}{84}-\frac{1}{1568}=\frac{365}{4704}
$$

[^1]In our context this means that we can select approximately cn^{2} triangles which together cover $3 \mathrm{cn}^{2}$ edges in G and \bar{G} at the cost of $3 \mathrm{cn}^{2}$. The remaining edges will be viewed as copies of K_{2} in the clique partition to be constructed; they are counted with weight 2 in scp . In this way we obtain

$$
\operatorname{scp}(G)+\operatorname{scp}(\bar{G}) \leq(1-3 c) n^{2}+o\left(n^{2}\right)=\frac{1203}{1568} n^{2}+o\left(n^{2}\right) .
$$

This also implies the upper bound on $\operatorname{scp}(G) \cdot \operatorname{scp}(\bar{G})$.
Remark 15. The smallest number of cliques in a clique partition of G is called the clique partition number of G. As a Nordhaus-Gaddum type inequality for parameter cp, D. de Caen et al. proved in [7] that

$$
\begin{aligned}
\operatorname{cp}(G)+\operatorname{cp}(\bar{G}) & \leq \frac{13}{30} n^{2}-O(n) \approx 0.43333 n^{2}-O(n) \\
\operatorname{cp}(G) \cdot \operatorname{cp}(\bar{G}) & \leq \frac{169}{3600} n^{4}+O\left(n^{3}\right) \approx 0.0469444 n^{2}+O\left(n^{3}\right)
\end{aligned}
$$

Note that if it is possible to select some k edge-disjoint complete subgraphs in G and \bar{G} which together cover m edges, then $\operatorname{cp}(G)+\operatorname{cp}(\bar{G}) \leq\binom{ n}{2}+k-m$. As observed within the proof of Theorem 14, the choices $k=\frac{365}{4704} n^{2}-o\left(n^{2}\right)$ and $m=3 k$ are feasible for every G on n vertices, thus

$$
\begin{aligned}
\operatorname{cp}(G)+\operatorname{cp}(\bar{G}) \leq\left(\frac{1}{2}-\frac{365}{2352}\right) n^{2}+o\left(n^{2}\right) & =\frac{811}{2352} n^{2}+o\left(n^{2}\right) \\
& <0.344813 n^{2}+o\left(n^{2}\right), \\
\operatorname{cp}(G) \cdot \operatorname{cp}(\bar{G}) \leq \frac{657721}{22127616} n^{4}+o\left(n^{4}\right)< & 0.029724 n^{4}+o\left(n^{4}\right) .
\end{aligned}
$$

These upper bounds improve the results of [7].

Acknowledgment

The second author's research was supported by a grant from IPM, Iran.

References

[1] M. Aouchiche, P. Hansen, A survey of Nordhaus-Gaddum type relations, Discrete Appl. Math. 161 (4-5) (2013) 466-546.
[2] J. Balogh, A. Kostochka, N. Prince, M. Stiebitz, The Erdős-Lovász Tihany conjecture for quasi-line graphs, Discrete Math. 309 (2009) 3985-3991.
[3] J.C. Bermond, J.C. Meyer, Graphe représentatif des arêtes d'un multigraphe, J. Math. Pures Appl. 52 (3) (1973) 299-308.
[4] F.R.K. Chung, On the decomposition of graphs, SIAM J. Algebr. Discrete Methods 2 (1) (1981) 1-12.
[5] A. Davoodi, R. Javadi, Nordhaus-Gaddum inequalities for sigma clique partition number of graphs, in: The 45th Annual Iranian Mathematics Conference, Semnan University, 2014.
[6] A. Davoodi, R. Javadi, B. Omoomi, Pairwise balanced designs and sigma clique partitions, Discrete Math. 339 (2016) 1450-1458.
[7] D. de Caen, P. Erdős, N.J. Pullmann, N.C. Wormald, Extremal clique coverings of complementary graphs, Combinatorica 6 (4) (1986) 309-314.
[8] G.A. Dirac, On rigid circuit graphs, Abh. Math. Semin. Univ. Hambg. 25 (1) (1961) 71-76.
[9] R. Faudree, E. Flandrin, Z. Ryjáček, Claw-free graphs - A survey, Discrete Math. 164 (1-3) (1997) 87-147.
[10] H.J. Finck, On the chromatic numbers of a graph and its complement, Theory Graphs (1968) 99-113.
[11] E. Győri, A.V. Kostochka, On a problem of G. O. H. Katona and T. Tarján, Acta Math. Acad. Sci. Hung. 34 (3-4) (1979) 321-327.
[12] R. Javadi, Z. Maleki, B. Omoomi, Local clique covering of claw-free graphs, J. Graph Theory 81 (1) (2016) 92-104.
[13] J. Kahn, Proof of a conjecture of Katona and Tarján, Period. Math. Hung. 12 (1) (1981) 81-82.
[14] P. Keevash, B. Sudakov, Packing triangles in a graph and its complement, J. Graph Theory 47 (2004) 203-216.
[15] P.G.H. Lehot, An optimal algorithm to detect a line graph and output its root graph, J. Assoc. Comput. Mach. 21 (4) (1974) 569-575.
[16] L. Lovász, Problem 9: Beiträge zur graphentheorie und deren anwendungen, in: Technische Hochschule Ilmenau, in: International Colloquium held in Oberhof, 1977.
[17] E.A. Nordhaus, J.W. Gaddum, On complementary graphs, Amer. Math. Monthly 63 (1956) 175-177.
[18] S. Poljak, V. Rödl, D. Turzík, Complexity of representation of graphs by set systems, Discrete Appl. Math. 3 (4) (1981) 301-312.

[^0]: E-mail addresses: bujtas@dcs.uni-pannon.hu (C. Bujtás), davoodi@ipm.ir (A. Davoodi), gyori.ervin@renyi.mta.hu (E. Györi), tuza@dcs.uni-pannon.hu (Z. Tuza).

 1 Research partially supported by the NKFIH, Hungary Grant 116769.

[^1]: 2 In the Abstract of [14] the authors announce the lower bound $n^{2} / 13$, and in their Theorem 1.1 they state $n^{2} / 12.89$ (the rounded form of $\frac{9}{116} n^{2}$, but actually on p. 212 they prove the even better lower bound displayed above).

