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a b s t r a c t

Let C be a clique covering for E(G) and let v be a vertex of G.
The valency of vertex v (with respect to C), denoted by valC(v),
is the number of cliques in C containing v. The local clique cover
number of G, denoted by lcc(G), is defined as the smallest integer
k, for which there exists a clique covering for E(G) such that
valC(v) is at most k, for every vertex v ∈ V (G). In this paper,
among other results, we prove that if G is a claw-free graph,
then lcc(G) + χ (G) ≤ n + 1.
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1. Introduction

Throughout the paper, all graphs are simple and undirected. By a clique of a graph G, we mean a
subset of mutually adjacent vertices of G as well as its corresponding complete subgraph. The size
of a clique is the number of its vertices. A clique covering for E(G) is defined as a family of cliques
of G such that every edge of G lies in at least one of the cliques comprising this family.

Let C be a clique covering for E(G) and let v be a vertex of G. The valency of vertex v (with
respect to C), denoted by valC(v), is defined to be the number of cliques in C containing v. A number
of different variants of the clique cover number have been investigated in the literature. The local
clique cover number of G, denoted by lcc(G), is defined as the smallest integer k, for which there
exists a clique covering for G such that valC(v) is at most k, for every vertex v ∈ V (G).
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This parameter may be interpreted as a variety of different invariants of the graph and the
problem relates to some well-known problems such as line graphs of hypergraphs, intersection
representation and Kneser representation of graphs. For example, lcc(G) is the minimum integer k
such that G is the line graph of a k-uniform hypergraph. By this interpretation, lcc(G) ≤ 2 if and
only if G is the line graph of a multigraph.

There is a characterization by a list of seven forbidden induced subgraphs and a polynomial-
time algorithm for the recognition that G is the line graph of a multigraph [3,15]. On the other
hand, L. Lovász proved in [16] that there is no characterization by a finite list of forbidden induced
subgraphs for the graphs which are line graphs of some 3-uniform hypergraphs. Moreover, it was
proved that the decision problem whether G is the line graph of a k-uniform hypergraph, for fixed
k ≥ 4, and the problem of recognizing line graphs of 3-uniform hypergraphs without multiple edges
are NP-complete [18].

For a vertex v ∈ V (G), its (open) neighborhood N(v) is the set of all neighbors of v in G, while its
closed neighborhood N[v] is defined as N[v] := N(v)∪{v}. Moreover, let G stand for the complement
of G, and let ∆(G) and δ(G) be the maximum degree and the minimum degree of G, respectively. The
subgraph induced by a set Y ⊂ V (G) will be denoted by G[Y ]. By the notations of α(G), ω(G), and
χ (G) we mean the independence number, clique number, and chromatic number of G, respectively.

In 1956 E. A. Nordhaus and J. W. Gaddum proved the following theorem for the chromatic
number of a graph G and its complement, G.

Theorem 1 ([17]). Let G be a graph on n vertices. Then 2
√
n ≤ χ (G) + χ (G) ≤ n + 1.

Later on, similar results for other graph parameters have been found which are known as
Nordhaus–Gaddum type theorems. In the literature there are several hundred papers considering
inequalities of this type for many other graph invariants. For a survey of Nordhaus–Gaddum type
estimates see [1].

In this paper, we consider the following two conjectures on the local clique cover number
proposed by R. Javadi in 2012.

Conjecture 2. For every graph G on n vertices,

lcc(G) + lcc(G) ≤ n. (1)

Note that Conjecture 2 is a Nordhaus–Gaddum type inequality concerning the local clique cover
number of G. Also, he suggested the following weakening of Conjecture 2.

Conjecture 3. For every graph G on n vertices,

lcc(G) + χ (G) ≤ n + 1. (2)

Let G1 and G2 be graphs with disjoint vertex sets V (G1) and V (G2) and edge sets E(G1) and E(G2).
The disjoint union of G1 and G2, denoted by G1∪̇G2, is the graph with vertex set V (G1) ∪ V (G2) and
edge set E(G1) ∪ E(G2).

Lemma 4. Let G be a family of graphs which is closed under the operation of taking disjoint union
with an isolated vertex. If Conjecture 2 is true for every G ∈ G, then Conjecture 3 is also true for every
G ∈ G.

Proof. Let G ∈ G and consider the disjoint union H = G∪̇{v}. Observe that lcc(G) = lcc(H). Hence,
assuming that each member of G satisfies Conjecture 2, we have lcc(G) + lcc(H) ≤ |V (H)|. Now, fix
an optimal (with respect to lcc) clique covering C for H . Clearly, χ (G) ≤ valC(v) ≤ lcc(H). These
two inequalities together imply lcc(G) = lcc(H) ≤ |V (H)| − lcc(H) ≤ |V (G)| + 1 − χ (G). □

2. Proof of some variants of the conjectures

Let k be an integer and let G be a graph such that k ≤ deg(x) ≤ k+ 1, for every vertex x ∈ V (G).
Then lcc(G) ≤ k+1 and lcc(G) ≤ n−1−k. Thus, inequality (1) holds for G. Also, If G is a triangle-free
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graph, then for a vertex v which has the maximum degree in G, N(v) can be properly colored by
one color. Thus, χ (G) ≤ n + 1 − ∆(G). Since lcc(G) = ∆(G), Conjecture 3 is true for triangle-free
graphs. In what follows we prove that not only (2) but also (1) holds if G is triangle-free.

Theorem 5. Let G be a graph on n vertices. If α(G) = 2, then lcc(G) + lcc(G) ≤ n.

Proof. Clearly, lcc(G) = ∆(G) = n−1− δ(G). It is enough to show that lcc(G) ≤ δ(G)+1. Let v be a
vertex of minimum degree in G, and let K ⊂ V (G) be the set of vertices which are not adjacent to v.
Since α(G) = 2, the induced subgraph on K , G[K ], is a clique in G. Now, for every vertex ui ∈ N(v),
let Ci := (N(ui)∩K )∪{ui} and define Cδ(G)+1 := G[K ]. These cliques along with the collection of those
edges which are not covered by the cliques C1, . . . , Cδ(G)+1 comprise a clique covering for G, say C. It
can be easily checked that valC(v) = δ(G) and valC(x) ≤ δ(G)+ 1, for every vertex x ∈ V (G)− v. □

It is well-known that n
α(G) and ω(G) are lower bounds for χ (G), the chromatic number of G. We

show that, if we replace χ (G) with any of these two general lower bounds in Conjecture 3, then the
inequality holds.

Proposition 6. Let G be a graph with n vertices. Then lcc(G) + ω(G) ≤ n + 1.

Proof. Assume that K ⊂ V (G) is a clique of size ω. For every vertex vi ∈ V (G) − K , 1 ≤ i ≤ n − ω,
define Ci := (N(vi)∩K )∪{vi}, and let Cn−ω+1 := G[K ]. Now, let F be the set of all the edges which are
not covered by the cliques C1, . . . , Cn−ω+1. Clearly, the cliques Ci for 1 ≤ i ≤ n−ω+1 together with
F form a clique covering C for G. If x ∈ K , then valC(x) ≤ 1+n−ω(G), and for vertex vi ∈ V (G)−K ,
valC(vi) ≤ n − ω(G). □

Before proving the other inequality lcc(G)+ n
α(G) ≤ n+1, we verify a stronger statement involving

local parameters. Let αG(v) = α(G[N(v)]) be the maximum number of independent vertices in
the neighborhood of vertex v, and let the local independence number of graph G be defined as
αL(G) = maxv∈V (G) αG(v). Clearly, αG(v) ≤ αL(G) ≤ α(G). Further, αG(v) ≥ 1 holds if and only
if v has at least one neighbor, while αG(v) ≤ 1 is equivalent to that the closed neighborhood
NG[v] = N(v) ∪ {v} induces a clique.

Theorem 7. For every graph G of order n, there exists a clique covering C such that for each non-isolated
vertex v ∈ V (G) the inequality valC(v) +

n
αG(v)

≤ n + 1 holds.

Proof. A clique covering will be called good if it satisfies the requirement given in the theorem.
Since the statement is true for all graphs of order n ≤ 3, we may proceed by induction on n. Let x
and y be two adjacent vertices of G. By the induction hypothesis, there is a good clique covering,
C′, for G′

= G − {x, y}. We introduce the notations N1 := N(x) − N[y], N2 := N(y) − N[x], and
N1,2 := N(x) ∩ N(y). To obtain a good clique covering C of G from C′, we perform the following
steps.

1. To handle vertices whose neighbors are pairwise adjacent, observe that every vertex u from
N1 ∪ N2 ∪ N1,2 with αG(u) = 1 and degG′ (u) ≥ 1 satisfies αG′ (u) = 1 and hence it is covered
by the clique NG′ [u] in the good covering C′. Now, for each such vertex u, NG′ [u] is extended
by x, by y or by both x and y respectively, if u ∈ N1, u ∈ N2 or u ∈ N1,2.

2. If αG(x) = 1 < αG(y), take the clique NG[x]; if αG(y) = 1 < αG(x), take the clique NG[y]; and
if αG(x) = αG(y) = 1, take the clique NG[x] = NG[y] into the covering C (if they were not
included in step (1)).

3. If there still exist some uncovered edges between x and N1, we consider the set N ′

1 = {v ∈

N1 | xv is uncovered} and partition it into some number of adjacent vertex pairs (inducing
independent edges) and at most α(G(N ′

1)) isolated vertices. Then, we extend each of them
with x to a K3 or K2, and insert these cliques into the covering C. This way, we get at most
|N ′

1|−α(G(N ′
1))

2 + α(G(N ′

1)) new cliques. Then, we define N ′

2 and N ′

1,2 analogously, and do the
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corresponding partitioning procedure for N ′

2 and N ′

1,2, extending every part of those partitions
with y or with {x, y}, respectively.

4. If the edge xy remained uncovered, we take it as a clique into the covering C.

It is easy to check that C is a clique covering in G. We prove that it is good.
First note that after performing Step 1, each vertex v ∈ V (G) − {x, y} has the same valency as

in C′. Moreover, if two adjacent vertices, say u and x, have αG(u) = αG(x) = 1, then NG[u] = NG[x]
must hold. Hence, if u ∈ V (G) − {x, y} and αG(u) = 1, then u is incident with only one clique from
C. Thus, valC(u) +

n
αG(u)

= 1 + n. If v is a vertex from V (G) − {x, y} and αG(v) ≥ 2, then the valency
of v might increase in Step 2 or 3, but not in both. Therefore, valC(v) ≤ valC′ (v) + 1, and clearly
αG′ (v) ≤ αG(v). Since C′ is assumed to be good, these facts together imply

valC(v) +
n

αG(v)
≤ valC′ (v) + 1 +

n − 2
αG′ (v)

+
2

αG(v)
≤ n + 1.

Now, consider the vertex x. If αG(x) = 1, it is covered by only one clique (induced by its closed
neighborhood), which was added to C in Step 1 or 2. In this case valC(x) +

n
αG(x)

= n + 1. Also if
αG(x) ≥

n
2 , the trivial bound valC(x) ≤ deg(x) ≤ n − 1 implies the desired inequality. Hence, we

may suppose 2 ≤ αG(x) < n
2 .

Let us denote by s the number of cliques covering x which were added to C in Step 1. Choose
one vertex ui with αG(ui) = 1 from each of these s cliques. The closed neighborhoods N[ui] are
pairwise different cliques. Thus, if S is the set of all ui’s, then S is independent. By the definitions
of N ′

1 and N ′

1,2, there exist no edges between S and N ′

1 ∪ N ′

1,2. Thus, α(G(N ′

1)) ≤ αG(x) − s and
α(G(N ′

1,2)) ≤ αG(x) − s. Also, |N ′

1| + |N ′

1,2| ≤ |N1| + |N1,2| − s = deg(x) − 1 − s follows.

• If N1,2 ̸= ∅ and αG(y) > 1, then

valC(x) ≤
|N ′

1| − α(G(N ′

1))
2

+ α(G(N ′

1))

+
|N ′

1,2| − α(G(N ′

1,2))
2

+ α(G(N ′

1,2)) + s

=
|N ′

1| + |N ′

1,2|

2
+

α(G(N ′

1)) + α(G(N ′

1,2))
2

+ s

≤
deg(x) − 1 − s

2
+

2αG(x) − 2s
2

+ s ≤
n − 2
2

+ αG(x).

On the other hand, our assumption 2 ≤ αG(x) < n
2 implies that αG(x) +

n
αG(x)

≤ 2 +
n
2 . Thus,

valC(x) +
n

αG(x)
≤

n − 2
2

+ αG(x) +
n

αG(x)
≤

n − 2
2

+ 2 +
n
2

= n + 1.

• If N1,2 ̸= ∅ and αG(y) = 1, all edges between N1,2 and x are covered by the clique NG[y], which
was added to C in Step 2 (or maybe earlier, in Step 1). Hence, N ′

1,2 = ∅ and we have

valC(x) ≤
|N ′

1| − α(G(N ′

1))
2

+ α(G(N ′

1)) + 1 + s

=
|N ′

1|

2
+

α(G(N ′

1))
2

+ 1 + s

≤
deg(x) − 1 − s

2
+

αG(x) − s
2

+ 1 + s ≤
n − 2
2

+ αG(x).

Again, we may conclude valC(x) +
n

αG(x)
≤ n + 1.

• If N1,2 = ∅, the clique xy was added to C in Step 4, and the same estimation holds as in the
previous case.

One can show similarly that valC(y) +
n

αG(y)
≤ n + 1. This completes the proof. □

Since for every v ∈ V (G), αG(v) ≤ αL(G) ≤ α(G), we have the following immediate consequences.
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Corollary 8. Let G be a graph of order n. Then

(i) lcc(G) +
n

αL(G)
≤ n + 1;

(ii) lcc(G) +
n

α(G) ≤ n + 1.

On the other hand, valC(v) ≥ αG(v), for every arbitrary clique covering C. Hence, lcc(G) ≥ αL(G).
(But lcc(G) < α(G) may be true.) Also, it is easy to see that lcc(G) ≥

∆(G)
ω−1 . Next we observe that

replacing lcc(G) with α(G) or ∆(G)
ω−1 in Conjecture 3, valid inequalities are obtained.

Proposition 9. If G is a graph on n vertices, then

1. ∆(G)
ω−1 + χ (G) ≤ n + 1, and equality holds if and only if G is the complete graph Kn or the star
K1,n−1;

2. α(G) + χ (G) ≤ n + 1, and equality holds if and only if there exists a vertex v ∈ V (G) such that
N(v) induces a complete graph and V (G) \ N(v) is an independent set.

Proof. To prove (1), first note that it is shown in [10] that there are only two types of graphs G for
which χ (G) + χ (Ḡ) = n + 1,

(a) if V (G) = K ∪ S where K is a clique and S is an independent set, sharing a vertex K ∩ S = {u},
or

(b) G is obtained from (a) by substituting C5, cycle of length 5, into u.

Now, we estimate ∆(G)
ω−1 + χ (G) as follows. We write θ for the clique covering number (minimum

number of complete subgraphs whose union is the entire vertex set, that is the chromatic number
of the complementary graph). Let x be a vertex of degree ∆ = ∆(G). We have

∆

ω − 1
≤ θ (G[N(x)]) ≤ θ (G) ≤ n + 1 − χ (G),

where the last inequality is the Nordhaus–Gaddum theorem (Theorem 1). Thus, in order to have
∆

ω−1 +χ = n+1, it is necessary that G is of type (a) or (b). We shall see that (b) is not good enough,
and (a) yields G = Kn or G = K1,n−1.

Note that equality does not hold for G = C5 (cycle of length 5), therefore in (b) we have
k = |K − V (C5)| > 0. Let |K − u| = k and |S − u| = s in (a). Then after substitution of C5, we
have n = k+ s+5, ∆ ≤ n−1, ω = k+2 (with k > 0), and χ = k+3. Therefore, the most favorable
case is s = 0, because increasing s by 1 makes n + 1 increase by 1, while the left-hand side of the
inequality increases by at most 1/2. Hence, in the best case we have n = k + 5 ≥ 6, and

∆

ω − 1
+ χ =

n − 1
n − 3

+ n − 2 < n + 1.

Now, we consider case (a). Here, again we have k > 0 and ∆ ≤ n− 1, moreover now n = k+ s+ 1,
ω = k + 1, and χ = k + 1. Thus

∆

ω − 1
+ χ ≤

(k + s)
k

+ k + 1 ≤ k + s + 2

with equality if and only if s/k = s, that is k = 1 or s = 0, where for the case k = 1 we also have
to ensure ∆ = s + 1. This completes the proof of (1).

To see (2), consider an independent set A of cardinality α = α(G). A proper (n− α + 1)-coloring
always exists as we can assign color 1 to all vertices from A and the further n − α vertices are
assigned with pairwise different colors. Hence, χ (G) ≤ n − α + 1 holds for every graph. Moreover,
if the graph induced by V (G)\A is not complete, we can color it properly by using fewer than n−α

colors that yields a proper coloring of G with fewer than n−α+1 colors. Therefore, χ (G) = n−α+1
may hold only if V (G)\A induces a complete graph. In this case, G is a split graph. Since split graphs
are chordal and chordal graphs are perfect [8], ω(G) = χ (G) = n− α + 1. Consequently, if (2) holds
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with equality, there exists a vertex v ∈ A which is adjacent to all vertices from V (G) \A. This vertex
fulfills our conditions as N(v) is a clique and V (G) \ N(v) is an independent set.

On the other hand, if a vertex v′ with such a property exists in G, then the graph cannot be
colored with fewer than |N(v′)| + 1 colors. This implies χ = n − α + 1 and completes the proof of
the second statement. □

3. Claw-free graphs

Several related problems (say, perfect graph conjecture, to mention just the most famous one)
are easier for claw-free graphs, i.e. for graphs not containing K1,3 as an induced subgraph, other
problems (say, complexity of finding chromatic number) are not. (For a survey of results on
claw-free graphs see e.g. [9].) Concerning local clique cover number, R. Javadi et al. showed in [12]
that if G is a claw-free graph then lcc(G) ≤ c ∆(G)

log(∆(G)) , for a constant c . In this section, we are going

to prove that Conjecture 3 does hold for claw-free graphs.
To prove the main result of this section, we use the following definition and theorem of Balogh

et al. [2].

Definition 10 ([2]). A graph G is (s, t)-splittable if V (G) can be partitioned into two sets S and T
such that χ (G[S]) ≥ s and χ (G[T ]) ≥ t . For 2 ≤ s ≤ χ (G) − 1, we say that G is s-splittable if G is
(s, χ (G) − s + 1)-splittable.

Theorem 11 ([2]). Let s ≥ 2 be an integer. Let G be a graph with α(G) = 2 and χ (G) > max{ω, s}.
Then G is s-splittable.

Now we prove:

Theorem 12. Let G be a claw-free graph with n vertices. Then lcc(G) + χ (G) ≤ n + 1. Moreover, for
every n ≥ 4, there exist several claw-free graphs with n vertices such that equality holds.

Proof. We prove the theorem by induction on n. For small values of n, it is easy to check that a
claw-free graph with n vertices satisfies the inequality. Also, the assertion is obvious for α(G) = 1.

Let G be a claw-free graph on n vertices. First, we consider the case where α(G) ≥ 3. Let T be
an independent set of size three. By the induction hypothesis, G − T has a clique covering C′ such
that every vertex x ∈ V (G − T ) satisfies

valC′ (x) ≤ (n − 3) + 1 − χ (G − T ) ≤ n − 2 − (χ (G) − 1) = n − 1 − χ (G). (3)

Now, for every vertex u ∈ T , partition N(u) into the χ (G[N(u)]) vertex-disjoint cliques. Then, add
vertex u to each clique to cover all the edges incident to u. These cliques along with cliques in an
optimum clique covering of G − T form a clique covering, say C, for G. Let u ∈ T and x ∈ G − T .
Then we have

valC(u) = χ (G[N(u)]) ≤ χ (G) ≤ n + 1 − χ (G),
valC(x) ≤ valC′ (x) + |NG(x) ∩ T |.

Since G is claw-free, |NG(x) ∩ T | ≤ 2. Thus, by Inequality (3), lcc(G) ≤ n + 1 − χ (G).
Consider now the case α(G) = 2. By Proposition 6 we may assume that χ (G) > ω(G). Moreover,

as the statement clearly holds when χ (G) ≤ 2, we may also suppose that χ (G) ≥ 3. Then
Theorem 11 with s = 2 implies that V (G) can be partitioned into two parts, say A and B, such
that χ (G[A]) ≥ 2 and χ (G[B]) ≥ χ (G)− 1. We assume, without loss of generality, that A = {u1, u2},
where the vertices u1 and u2 are adjacent. Then χ (G − {u1, u2}) ≥ χ (G) − 1.

We will use the notation N1 := N(u1) − N[u2], N2 := N(u2) − N[u1], and N1,2 := N(u1) ∩ N(u2).
Since G is claw-free, Ni ∪ {ui} induces a clique for i = 1, 2. Starting with an optimal clique covering
C′′ for G − {u1, u2}, we will construct a clique covering C for G such that valC(v) ≤ n + 1 − χ (G)
holds for every vertex v.



C. Bujtás, A. Davoodi, E. Győri et al. / European Journal of Combinatorics 88 (2020) 103114 7

If N1,2 = ∅, then C := C′′
∪ {N1 ∪ {u1},N2 ∪ {u2}, {u1, u2}} is a clique covering for G. We observe

that valC(ui) ≤ 2 holds for i = 1, 2 and

valC(v) ≤ valC′′ (v) + 1 ≤ n − 1 − χ (G − {u1, u2}) + 1 ≤ n − χ (G)

for each vertex v from V (G − {u1, u2}). Hence, lcc(G) ≤ n + 1 − χ (G).
Otherwise, if N1,2 ̸= ∅, partition N1,2 into at most χ (G − {u1, u2}) cliques and extend each of

themwith the vertices u1 and u2. These cliques together with N1∪{u1}, N2∪{u2}, and with the cliques
in C′′ form a clique covering of G. We show that this clique covering C satisfies valC(x) ≤ n+1−χ (G)
for every vertex x ∈ V (G). Note that valC(u1) ≤ χ (G − {u1, u2}) + 1, thus the Nordhaus–Gaddum
inequality for the chromatic number implies

valC(u1) ≤ (n − 2) + 1 − χ (G − {u1, u2}) + 1 ≤ n − χ (G − {u1, u2}) ≤ n + 1 − χ (G).

Similarly, we have valC(u2) ≤ n + 1 − χ (G). For v ∈ V (G − {u1, u2}),

valC(v) ≤ valC′′ (v) + 1 ≤ (n − 2) + 1 − χ (G − {u1, u2}) + 1 ≤ n − χ (G) + 1.

Finally, we note that Kn, Kn − K2, and Kn − K1,2 are examples of claw-free graphs with n vertices
such that lcc(G) + χ (G) = n + 1. □

4. A Nordhaus-Gaddum type inequality

A clique partition of the edges of a graph G is a family of cliques such that every edge of G lies
in exactly one member of the family. The sigma clique partition number of G, scp(G), is the smallest
integer k for which there exists a clique partition of E(G) where the sum of the sizes of its cliques
is at most k.

It was conjectured by G. O. H. Katona and T. Tarján, and proved in the papers [4,11,13], that for
every graph G on n vertices, scp(G) ≤ ⌊n2/2⌋ holds, with equality if and only if G is the complete
bipartite graph K⌊n/2⌋,⌈n/2⌉.

Also, this parameter relates to a number of other well-known problems (see [6]). The second
author and R. Javadi proved the following Nordhaus–Gaddum type theorem for scp.

Theorem 13 ([5]). Let G be a graph with n vertices. Then
31
50

n2
+ O(n) ≤ max{scp(G) + scp(G)} ≤

9
10

n2
+ O(n),

12
125

n4
+ O(n3) < max{scp(G) · scp(G)} <

81
400

n4
+ O(n3).

In the following result we improve the upper bounds, from 0.9 to less than 0.77 and from 0.2025
to less than 0.15.

Theorem 14. For every graph G with n vertices,

scp(G) + scp(G) ≤
1203
1568

n2
+ o(n2) < 0.76722 n2

+ o(n2)

and

scp(G) · scp(G) ≤
1447209
9834496

n4
+ o(n4) < 0.1471564 n4

+ o(n4) .

Proof. Substantially improving on earlier estimates, P. Keevash and B. Sudakov [14] proved via a
computer-aided calculation that every edge 2-coloring of Kn contains at least cn2

− o(n2) mutually
edge-disjoint monochromatic triangles,2 where

c =
13
196

+
1
84

−
1

1568
=

365
4704

.

2 In the Abstract of [14] the authors announce the lower bound n2/13, and in their Theorem 1.1 they state n2/12.89
(the rounded form of 9

116 n
2 , but actually on p. 212 they prove the even better lower bound displayed above).
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In our context this means that we can select approximately cn2 triangles which together cover 3cn2

edges in G and G at the cost of 3cn2. The remaining edges will be viewed as copies of K2 in the
clique partition to be constructed; they are counted with weight 2 in scp. In this way we obtain

scp(G) + scp(G) ≤ (1 − 3c) n2
+ o(n2) =

1203
1568

n2
+ o(n2) .

This also implies the upper bound on scp(G) · scp(G). □

Remark 15. The smallest number of cliques in a clique partition of G is called the clique partition
number of G. As a Nordhaus–Gaddum type inequality for parameter cp, D. de Caen et al. proved
in [7] that

cp(G) + cp(G) ≤
13
30

n2
− O(n) ≈ 0.43333 n2

− O(n) ,

cp(G) · cp(G) ≤
169
3600

n4
+ O(n3) ≈ 0.0469444 n2

+ O(n3) .

Note that if it is possible to select some k edge-disjoint complete subgraphs in G and G which
together coverm edges, then cp(G)+cp(G) ≤

(n
2

)
+k−m. As observed within the proof of Theorem 14,

the choices k =
365
4704n

2
− o(n2) and m = 3k are feasible for every G on n vertices, thus

cp(G) + cp(G) ≤

(
1
2

−
365
2352

)
n2

+ o(n2) =
811
2352

n2
+ o(n2)

< 0.344813 n2
+ o(n2) ,

cp(G) · cp(G) ≤
657721

22127616
n4

+ o(n4) < 0.029724 n4
+ o(n4) .

These upper bounds improve the results of [7].
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