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Abstract

A new aerobic alphaproteobacterium, strain SA-279T, was isolated from a water sample of a crater lake. The 16S rRNA
gene sequence analysis revealed that strain SA-279T formed a distinct lineage within the family Ancalomicrobiaceae and
shared the highest pairwise similarity values with Pinisolibacterravus E9T (96.4%) and Ancalomicrobiumadetum NBRC
102456T (94.2%). Cells of strain SA-279T were rod-shaped, motile, oxidase and catalase positive, and capable of forming
rosettes. Its predominant fatty acids were C18 : 1!7c (69.0%) and C16 : 1!7c (22.7%), the major respiratory quinone was Q-10,
and the main polar lipids were phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylcholine,
phosphatidylglycerol, an unidentified aminophospholipid and an unidentified lipid. The G+C content of the genomic DNA of
strain SA-279T was 69.2mol%. On the basis of the phenotypic, chemotaxonomic and molecular data, strain SA-279T is
considered to represent a new genus and species within the family Ancalomicrobiaceae, for which the name Siculibacillus

lacustris gen. nov., sp. nov. is proposed. The type strain is SA-279T (=DSM 29840T=JCM 31761T).

The order Rhizobiales (class Alphaproteobacteria) currently

contains more than 15 families, such as ‘Aurantimonada-

ceae’, Bartonellaceae, Beijerinckiaceae, Bradyrhizobiaceae,

Brucellaceae, Chelatococcaceae, Cohaesibacteraceae, Hypho-

microbiaceae, Methylobacteriaceae, Methylocystaceae,

Notoacmeibacteraceae, Phyllobacteriaceae, Rhizobiaceae,

Rhodobiaceae and Xanthobacteraceae [1–3]. Although

many well-known genera from this order are pathogenic to

humans and animals (e.g. Bartonella, Brucella), associated

with plants (e.g. Phyllobacterium, Rhizobium) or inhabitants

of soil (e.g. Nitrobacter) and wastewater-treating bioreactors

(e.g. Chelatococcus) [2], yet-not-cultivated members of Rhi-

zobiales could be important members of bacterioplankton

in some aquatic environments (e.g. some lakes and special

oceanic habitats [4–6]). In our recent study [7], we gave the

description of a new Rhizobium species isolated from a

water sample collected from a crater lake. In this paper,

another new strain, SA-279T, was characterized in detail,

which was isolated from the same locality. Based on the
obtained results, this strain is supposed to represent a novel
genus for which the name Siculibacillus lacustris gen. nov.,

sp. nov. is proposed. The new genus is the member of the
recently described new family, Ancalomicrobiaceae, which

currently contains only two other genera, Pinisolibacter and
Ancalomicrobium [8].

Strain SA-279T was isolated from a freshwater crater lake,
Lake St. Ana (46

�

07¢ 34.7† N 25
�

53¢ 15.8† E; located in Cio-
mad Mountains, Harghita County, Romania; in Romanian:
Lacul Sfânta Ana) in August 2012. A detailed site descrip-
tion including the physical and chemical characteristics of
the lake water is given by Felföldi et al. [9]. For isolation,
plates containing only lake water solidified with 20 g l�1

agar were used. The standard dilution plating technique
(spread plate method) was applied to obtain isolates by
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incubation at room temperature (20–22
�

C). Subsequently,
strain SA-279T was maintained on a modified Reasoner’s
2A agar medium (mR2A, pH 5.5), which contained only a
half amount of the carbon sources as given in the original
description (DSMZ medium 830, www.dsmz.de; 0.25 g l�1

yeast extract, 0.25 g l�1 proteose peptone, 0.25 g l�1 casa-
mino acids, 0.25 g l�1 glucose, 0.25 g l�1 soluble starch,
0.15 g l�1 sodium pyruvate, 0.3 g l�1 K2HPO4, 0.05 g l�1

MgSO4�7H2O). Later, strain SA-279T was grown on mR2A
or R2A agar medium at room temperature (~22

�

C). For
side-by-side analyses, strains Pleomorphomonas oryzae
DSM 16300T and Phreatobacter oligotrophus DSM 25521T

were also maintained on R2A agar.

Temperature and pH optima as well as salt tolerance were
determined based on the observed growth intensity at 4, 10,
15, 20, 25, 28, 37, 45, 55 and 65

�

C, at pH from 4 to 11 (with
intervals of 0.5), and from 0 to 5% (w/v) NaCl concentra-
tion (with intervals of 0.5 %), as described previously [10].
Colony morphology of strain SA-279T was tested by direct
observation of single colonies. Cell morphology was studied
with Gram staining according to Claus [11], with phase
contrast microscopy and with electron microscopy as
described by Tóth et al. [12]. The presence of flagella was
checked also as described by Heimbrook et al. [13], while
motility was also inferred based on the spreading growth in
semisolid agar [14] using mR2A medium containing 4 g l�1

agar. Oxidase activity was determined as described by
Tarrand and Gröschel [15], while catalase reaction was
examined according to Cowan and Steel [14]. Metabolic
tests were performed with API 50 CH, API 20 NE and API
ZYM (bioM�erieux) systems according to instructions of the
manufacturer, while chemotaxonomic analyses (determina-
tion of isoprenoid quinones using HPLC, cellular fatty acids
using GC and polar lipids using two-dimensional TLC)
were performed as described in detail previously [16].

The 16S rRNA gene sequence of strain SA-279T was ampli-
fied using the protocol described by Felföldi et al. [17], and
sequenced by the Biomi Ltd. (Gödöllo}, Hungary). Closest
related species represented by the type strains were identi-
fied by EzBioCloud’s online Identify service [3], 16S rRNA
gene sequences were retrieved from GenBank, and sequence
alignment was performed with the ARB-SINA Alignment Ser-
vice [18]. Phylogenetic analysis (including the search for the
best-fit model parameters) was conducted with the MEGA7
software [19].

For the whole genome project of strain SA-279T, genomic
DNA was extracted with the DNeasy PowerLyzer Microbial
Kit (Qiagen) including an RNase A treatment at 37

�

C for
20min. Illumina sequencing was performed by the Geno-
mics Facility RTSF, Michigan State University (USA) with
the following main steps: library preparation using the
SMARTer ThruPLEX DNA-Seq kit (Takara); quality con-
trol using a combination of Qubit dsDNA HS assay
(Thermo Fisher Scientific), 4200 TapeStation High Sensitiv-
ity DNA 1000 assay (Agilent) and the Illumina Library
Quantification qPCR kit (Kapa Biosystems); sequencing

which was performed in a 2�250 bp paired-end format
using a MiSeq Standard v2 flow cell and a MiSeq 500 cycle
v2 reagent cartridge (Illumina). Base calling was performed
by Illumina Real Time Analysis (RTA) version 1.18.54 and
output of RTA was demultiplexed and converted to FastQ
format with Illumina Bcl2fastq version 2.19.1. Sequence
read quality was checked with FastQC [20]. De novo assem-
bly of sequence reads was performed using A5-miseq [21],
which resulted 99 contigs (all contigs were longer than 500
nt) with N50 value of 120 665 nt and 85.9� genome cover-
age. The ContEst16S software [22] was used to check possi-
ble contamination.

Sequencing the 16S rRNA gene of strain SA-279T resulted
in a stretch of 1403 nucleotides. The closest type strains of
bacterial species were identified as Pinisolibacter ravus E9T

with 96.4%, Ancalomicrobium adetum NBRC 102456T with
94.2% (both strains are members of family Ancalomicrobia-
ceae), Prosthecomicrobium hirschii 16T with 93.5% (unclas-
sified), Kaistia algarum LYH11T with 92.8% (family
Rhizobiaceae), Chthonobacter albigriseus ED7T with 92.8%,
Pleomorphomonas oryzae DSM 16300T and Oharaeibacter
diazotrophicus SM30T both with 92.7% (the former three
strains, family Methylocystaceae), and Phreatobacter oligo-
trophus PI_21T (=DSM 25521T) (unclassified) with 92.6%
sequence similarity values. Other species shared
<92.3% pairwise similarity values [other related type strains
belonged to genera Ancylobacter (family Xanthobactera-
ceae), Ochrobactrum (family Brucellaceae) and Pannoni-
bacter (family Rhodobacteraceae)]. Although the closest
related type strain showed slightly higher value than thresh-
old value (95%) suggested for the genus-level by Tindall
et al. [23], in the case of a related genus, similar values could
be found, since Chthonobacter albigriseus ED7T shows
96.7% 16S rRNA gene sequence similarity value to Mongol-
iimonas terrestris MIMtkB18T and 96.4% to Oharaeibacter
diazotrophicus SM30T. The phylogenetic analysis based on
the 16S rRNA gene (Figs 1 and S1, available in the online
version of this article) supported that the new strain is the
member of family Ancalomicrobiaceae, since it formed a
cluster with Pinisolibacter and Ancalomicrobium with high
bootstrap support (99–100); on the other hand, moderate
bootstrap values (78–88) supported that strain SA-279T rep-
resents a separate genus from Pinisolibacter.

The assembled genome of strain SA-279T had a total length
of 5.0Mb. The G+C content of the genomic DNA of strain
SA-279T was 69.2mol%. The full-length 16S rRNA gene
sequence of strain SA-279T obtained by Sanger method was
compared with the extracted 16S rRNA gene sequence from
the genome assembly and showed 100% similarity. Base
composition of genomic DNA was determined also by
reversed-phase HPLC as described in detail previously [16],
which resulted in the same value.

Cells of strain SA-279T were rod-shaped, Gram-stain-nega-
tive, motile by a subpolar flagellum, capable to form rosettes
(Figs S2 and S3), aerobic and mesophilic with a characteris-
tic heterotrophic metabolism (Table S1). Some
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distinguishing characters (e.g. motility, negative aesculin
hydrolysis and trypsine enzyme activity and capability to
use malate as a sole carbon source) which could be used for
the discrimination of the new genus from related genera are
given in Table 1.

The isoprenoid quinones of strain SA-279T were Q-10 and
Q-9 in the ratio 94 : 4. The fatty acid pattern of strain SA-
279T was predominated by C18 : 1!7c (69.0%) and C16 : 1!7c
(22.7%), while C16 : 0 (6.4%) was also present in a notable
amount (Table S2). The dominance of fatty acid C18 : 1!7c
and ubiquinone Q-10 is a characteristic chemotaxonomic
trait in the case of other related members of Rhizobiales
(Table 1, Table S2). The polar lipid profile of strain SA-279T

was dominated by phosphatidylethanolamine (PE), phos-
phatidylmonomethylethanolamine (PME), phosphatidyl-
choline (PC), phosphatidylglycerol (PG) and an
unidentified aminophospholipid (AL), while an unidentified
lipid (L) was also detected (Fig. S4). The lack of diphospha-
tidylglycerol (DPG) distinguishes the new strain from the
members of closest related genera, Pinisolibacter and Anca-
lomicrobium (Table 1).

In conclusion, based on the data discussed above, strain SA-
279T is considered to represent a novel genus and a novel
species within family Ancalomicrobiaceae, for which the
name Siculibacillus lacustris gen. nov., sp. nov. is proposed.

DESCRIPTION OF SICULIBACILLUS GEN. NOV.

Siculibacillus [Si.cu.li.ba.cil¢lus, M.L. masc. pl. n. Siculi
Sz�ekely, referring to people living in Terra Siculorum (i.e.
Transylvania, Romania) from where the type strain was iso-
lated, L. masc. n. bacillus a rod and also a bacterial generic
name); N.L. masc. n. Siculibacillus, Sz�ekely bacillus)].

Cells are Gram-negative, motile rods and capable to form
rosettes. Aerobic and mesophilic. Oxidase- and catalase-
positive. The major respiratory quinone is Q-10. Major cel-
lular fatty acids are C18 : 1!7c and C16 : 1!7c. Polar lipids are
dominated by PE, PME, PC, PG, APL and L.

The type species is Siculibacillus lacustris.

DESCRIPTION OF SICULIBACILLUS LACUSTRIS

SP. NOV.

Siculibacillus lacustris (la.cus¢tris. N.L. masc. adj. lacustris of
a lake)

Cells are rod-shaped (0.6–0.8�1.3–2.5 µm) and motile. Col-
onies on mR2A medium are greyish-white in colour, circu-
lar and raised with a diameter of 1–2mm. Growth occurs at
15–37

�

C (with an optimum between 20–28
�

C) and pH 5.0–
7.5 (optimum, pH 5.0–6.0). Positive for acid phosphatase
(weak), alkaline phosphatase, esterase (C4), esterase lipase
(C8), naphthol-AS-BI-phosphohydrolase and urease
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Fig. 1. Phylogenetic position of SA-279T and related type strains based on the 16S rRNA gene. The phylogenetic tree has been recon-
structed based on 1372 positions using the maximum likelihood method and the Tamura three-parameter nucleotide substitution
model. Bootstrap values >70% are shown at the nodes. GenBank accession numbers are given in parentheses. Bar, 0.02 substitutions
per nucleotide.
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enzyme activities; assimilation of D-arabinose, L-arabinose,
citrate, D-fructose, L-fucose, gluconate (weak), D-glucose, D-
lyxose, D-mannitol (weak), D-mannose, malate, maltose
(weak), L-rhamnose, D-ribose (weak) and D-xylose. Negative
for a-chymotrypsine, cystine arylamidase, a-fucosidase, a-
galactosidase, b-galactosidase, gelatinase, a-glucosidase, b-
glucosidase, b-glucuronidase, leucine arylamidase, lipase
(C14), a-mannosidase, N-acetyl-b-glucosaminidase and
trypsine enzyme activities; assimilation of adipate, D-adoni-
tol, aesculin, amygdalin, D-arabitol, L-arabitol, L-arginine,
arbutin, capric acid, cellobiose, dulcitol, erythritol, D-fucose,
D-galactose, gentiobiose, glycerol, glycogen, inositol, inulin,
2-ketogluconate, 5-ketogluconate, lactose, melezitose, meli-
biose, methyl a-D-glucopyranoside, methyl a-D-mannopyr-
anoside, methyl b-D-xylopyranoside, N-acetylglucosamine,
phenylacetic acid, raffinose, salicin, D-sorbitol, L-sorbose,
starch, sucrose, D-tagatose, trehalose, turanose, xylitol and
L-xylose.

The G+C content of the genomic DNA is 69.2mol%.

The type strain is SA-279T (=DSM 29840T=JCM 31761T),
which was isolated from lake water.

The GenBank accession numbers for the 16S rRNA gene
and the genome sequence of strain SA-279T are KM083137
and SJFN00000000, respectively.

EMENDED DESCRIPTION OF THE FAMILY

ANCALOMICROBIACEAE DAHAL ET AL. 2018

The description of family the Ancalomicrobiaceae is as given
by Dahal et al. [8], with the following amendments. Cells
are motile or non-motile. The major polar lipids are PE, PC,
PME, PG and DPG.
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