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Tiling a Circular Disc with Congruent
Pieces

Árpád Kurusa , Lángi Zsolt and Viktor Vı́gh

Abstract. In this note, we prove that any monohedral tiling of the closed
circular unit disc with k ≤ 3 topological discs as tiles has a k-fold rota-
tional symmetry. This result yields the first nontrivial estimate about
the minimum number of tiles in a monohedral tiling of the circular
disc in which not all tiles contain the center, and the first step towards
answering a question of Stein appearing in the problem book of Croft,
Falconer, and Guy in 1994.
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1. Introduction

A tiling of a convex body K in Euclidean d-space R
d is a finite family of

compact sets in R
d with mutually disjoint interiors, called tiles, whose union

is K. A tiling is monohedral if all tiles are congruent.
In this paper, we deal with the monohedral tilings of the closed circular

unit disc B2 with center O, in which the tiles are Jordan regions, i.e., are
homeomorphic to a closed circular disc. The easiest way to generate such
tilings, which we call rotationally generated tilings, is to rotate around O a
simple curve connecting O to a point on the boundary S1 of B2, where by
a curve we mean a continuous map of the interval [0, 1] to the Euclidean
plane. The following question, based on the observation that any tile of such
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a monohedral tiling of B2 contains O, seems to arise regularly in recreational
mathematical circles [13].

Question 1. Are there monohedral tilings of B2 in which not all of the tiles
contain O?

The answer to Question 1 is affirmative; the usual examples to show
this are the first two configurations in Fig. 1. The following harder variant
is attributed to Stein by Croft, Falconer and Guy in [2, last paragraph on
p. 87].

Question 2 (Stein). Are there monohedral tilings of B2 in which O is in the
interior of a tile?

A systematic investigation of monohedral tilings of B2 was started in
[7] by Haddley and Worsley. In their paper, they called a monohedral tiling
radially generated, if every tile is radially generated, meaning that its bound-
ary is a simple curve consisting of three parts: a circular arc of length α and
two other curves one of which is the rotation of the other one about their
common point by angle α ∈ (0, 2π). Furthermore, they called a monohedral
tiling a subtiling if it is obtained by replacing the tiles by monohedral tilings.
The following ambitious conjecture appears in [7, Conjecture 6.1; for more
details see conjectures 6.2 and 6.3 too].

Conjecture 1 (Haddley and Worsley). Every monohedral tiling is a subtiling
of a radially generated tiling.

It is worth noting that while every rotationally generated tiling is radi-
ally generated, the converse does not necessarily hold, see Fig. 1.

A similar problem was investigated in [6] by Goncharov, who, for any O-
symmetric convex body in R

d, determined the smallest number of congruent
copies of a subset of the body that cover the body. In the spirit of this
approach, we raise the following variant of Question 1:

Question 3. What is the minimum cardinality n(B2) of a monohedral tiling
of B2 in which not all of the tiles contain O?

As the configurations in Fig. 1 show, we have n(B2) ≤ 12. On the other
hand, the lower bound n(B2) ≥ 3 is also relatively easy to prove: it was posed
as a problem in 2000 on the Russian Mathematical Olympiads [3]. Presently,
to the authors’ knowledge, the best bounds on n(B2) are still the trivial ones:
3 ≤ n(B2) ≤ 12.

Our main result is the following.

Theorem 1.1. Any monohedral tiling of B2 with at most three topological discs
is rotationally generated.

This result implies Conjecture 1 for tilings with at most 3 tiles, yields
the first nontrivial lower bound for n(B2), and, in particular, proves that the
answer for Question 2 is refuting for tilings with at most three tiles.

Corollary 1.2. We have n(B2) ≥ 4.
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Figure 1. A non-radially (It may be worth noting that this
configuration also appears regularly in various places: this
was chosen, for example, as the logo of the MASS program
at Penn State University, it appears on the front page of
five issues of the Hungarian problem-solving mathematical
journal Középiskolai Matematikai Lapok [16], and it can be
found also in the book [2, Figure C8].), a radially, and a
rotationally generated monohedral tiling of B2. In contrast
to these three, the rightmost, radially generated monohedral
tiling is not rotationally invariant

Corollary 1.3. There is no monohedral tiling of B2 with at most three topo-
logical discs as tiles, such that the center of B2 is contained in exactly one of
them.

In Sect. 2, we introduce the notions used in the paper, investigate the
basic properties of monohedral tilings of B2, and prove a series of lemmas
that we use in the proof of Theorem 1.1. In Sect. 3, we prove Theorem 1.1.

Finally, in Sect. 4, we collect our additional remarks and propose some
open problems.

2. Notations and Preliminaries

Throughout the proof, we denote by B2 the closed unit circular disc with
the origin O = (0, 0) as its center, and its boundary by S1 = ∂ B2. We say
that two points P,Q ∈ S1 are antipodal if d(P,Q) = 2, where d(·, ·) denotes
Euclidean distance. For points P,Q ∈ R

2, the closed segment with endpoints
P,Q is denoted by PQ.

For any P,Q ∈ R
2 with d(P,Q) ≤ 2r, the r-spindle �r

P,Q of two points
P,Q is by definition (see [1] or [4]) the intersection of all Euclidean discs
of radius r > 0 that contain P and Q. In other words, �r

P,Q is the region
bounded by the two circular arcs of radius r > 0 that connect P and Q and
are not longer than a half-circle.

A set homeomorphic to B2 is called a topological disc. The boundary of
a topological disc is a simple, closed curve, called Jordan curve.

If the boundary ∂ D of a topological disc D contains a unit circular arc
C, then for every relative interior point P of C, there is some ε > 0, such that
the open neighborhood of P of radius ε intersects ∂ D only in points of C.
Such a neighborhood is divided into two open components by C exactly one
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of which belongs to D. If the component belonging to D is the one contained
in the interior of the unit circle containing C in its boundary, then clearly
independently from the choice of P , we say that C is a convex circular arc of
D, and in the opposite case that it is a concave circular arc of D.

The Jordan–Schoenflies theorem [17] yields that every Jordan curve
is the boundary of a topological disc. We remark that since all topologi-
cal discs are compact, they are Lebesgue measurable; we denote their mea-
sure by area(·). Nevertheless, there are topological discs (see, e.g., the Koch
snowflake, or for more examples [15]) whose boundary is not rectifiable. Our
next lemma, which we use in the proof, holds for these topological discs, as
well.

Lemma 2.1. Let Γ be a Jordan curve and C be a simple curve. Then, Γ con-
tains only finitely many congruent copies of C that are mutually disjoint,
apart from possibly their endpoints.

Proof. Assume for contradiction that Γ contains infinitely many congruent
copies Cn (n = 1, 2, . . .) of C which are mutually disjoint, apart from possibly
their endpoints. Let Pn and Qn denote the endpoints of Cn. Since Γ is com-
pact, we may assume that limn→∞ Pn = P and limn→∞ Qn = Q for some
P,Q ∈ Γ. By the properties of congruence, P �= Q. On the other hand, since
Γ is homeomorphic to S1, the congruent copies of C correspond to mutu-
ally non-overlapping circular arcs on S1. Clearly, this implies that P = Q, a
contradiction. �
Lemma 2.2. Let D = D1 ∪D2, where D,D1 and D2 are topological discs, and
intD1∩ int D2 = ∅. Then, S1 = D1∩∂ D, S2 = D2∩∂ D, and S = ∂ D1∩∂ D2

are simple curves.

Proof. As D is a topological disc, we have a homeomorphism χ, such that
χ(D) = B2. Since the statement of the lemma is topologically invariant,
it is sufficient to prove it in the case D = B2. Thus, we may assume that
Si = S1 ∩ Di for i = 1, 2, where we observe that since Di and S1 are closed,
so is Si.

First, we show that S1 and S2 are connected. Assume, for example, that
some X1, Y1 ∈ S1 cannot be connected by an arc in S1. Then, there are some
points X2, Y2 /∈ S1 that separate X1 and Y1 in S1. Clearly, we have X2, Y2 ∈
S2. For any i = 1, 2, since Di is a topological disc, there is a simple curve
γi with endpoints Xi, Yi, such that apart from these points, γi is contained
in intSi. By continuity, γ1 ∩ γ2 �= ∅, implying that intD1 ∩ int D2 �= ∅, a
contradiction. Thus, S1 and S2 are connected, which yields that they are
closed circular arcs in S1. Let the (common) endpoints of these arcs be P
and Q.

The points P,Q ∈ S1 ∩ S2 are also in ∂ D1 ∩ ∂ D2, and hence, they are
connected by a simple curve in ∂ D1\S1 and also in ∂ D2\S2. These curves
coincide, because D = D1∪D2, and hence, it is S, and the proof of Lemma 2.2
is complete. �
Lemma 2.3. Let {D1,D2,D3} be a tiling of the topological disc D, where for
i = 1, 2, 3, Di is a topological disc, such that Si = Di∩∂ D is a non-degenerate
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simple curve. Then, D1 ∩ D2 ∩ D3 is a singleton {M}, and for any i �= j,
Di ∩ Dj is a simple curve connecting M and a point in ∂ D.

Proof. Suppose for contradiction that there are two distinct points M1,M2 ∈
Di for i = 1, 2, 3. For any i, let Γi be a simple curve connecting M1 and M2

which is contained in intDi, apart from M1 and M2. Note that for any i �= j,
Γi ∪ Γj is a simple, closed curve. Thus, the union of a pair of the curves,
say Γ1 ∪ Γ2 encloses the third one. This implies that Γ1 ∪ Γ2 encloses D3.
Since M1,M2 /∈ S1 by our conditions, it follows that D3 is disjoint from S1;
a contradiction. Thus, D1 ∩D2 ∩D3 contains at most one point. On the other
hand, since the closure X1 of (∂ D1)\S1 is a simple, connected curve and it can
be decomposed into the closed sets X1 ∩D2 and X1 ∩D3, it follows that these
sets intersect, that is D1 ∩ D2 ∩ D3 is not empty. Thus, D1 ∩ D2 ∩ D3 = {M}
for some M ∈ int D.

To prove the second part of Lemma 2.3, we may apply an argument like
in the proof of Lemma 2.2. �

By the circumcircle of a topological disc D, we mean the unique smallest
closed Euclidean circle encompassing D. The convex hull of the circumcircle
is the circumdisc of D, and the radius of the circumcircle is the circumradius
of D. Observe that the center of the circumcircle C of D is in conv(C ∩ D),
as, otherwise, a smaller circle would encompass D.

Lemma 2.4. Assume that S1 is the circumcircle of both of the non-overlapping
congruent topological discs D1 and D2. Then, there is a diameter PQ of B2

separating S1 = D1 ∩ S1 and S2 = D2 ∩ S1. Furthermore, any congruence g
with g(D1) = D2 is either the reflection about the line of PQ, or the reflection
about O.

Proof. Using the idea of the proof of Lemma 2.2, it follows that there are no
pairs of points X1, Y1 ∈ S1 and X2, Y2 ∈ S2 that strictly separate each other
on S1. In other words, there is a line � separating S1 and S2. On the other
hand, as O ∈ conv S1 ∩ conv S2, � contains O and � ∩ S1 ⊆ S1 ∩ S2, proving
the first statement with {P,Q} = � ∩ S1. We note that from this argument
it also follows that S1 ∩ S2 = {P,Q}.

Consider some isometry g with g(D1) = D2. The uniqueness of the
circumcircle clearly implies that g(S1) = S1, and thus, g({P,Q}) = {P,Q}.
This implies that g is either the reflection about the line of PQ, the reflection
about the line bisecting PQ, or the reflection about O. We show that the
conditions of the lemma exclude the second case: Consider a simple curve
Γ from P to Q, such that Γ\{P,Q} ⊂ int D1. Then, at least one point R
of Γ lies on the line �⊥ bisecting PQ. If g is the reflection about �⊥, then
g(R) = R, and hence, R ∈ intD1 ∩ intD2; a contradiction. �

In the remaining part of Section 2, we deal only with a monohedral
tiling of B2, where the tiles Di, i = 1, 2, . . . , n, are congruent copies of a
topological disc D. For any j �= 1, we fix an isometry g1j mapping D1 into
Dj , and for any values of i, j, we set gij = g−1

1i ◦ g1j . Then, by definition, we
have gji = g−1

ij for all values of i, j. Finally, we set Si = Di ∩S1 for all values
of i.
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Lemma 2.5. If D contains two points at the distance 2, then n = 1 or n = 2,
and the tiling is rotationally generated.

Proof. If D contains two points at the distance 2, then each tile contains two
antipodal points of B2. Thus, B2 is the circumdisc of each tile, which implies
that gij(B2) = B2 for all values of i, j. Since O ∈ Di for some value of i, it
also yields that O ∈ Di for all values of i. Then, by Lemma 2.4, there is a
diameter PQ of B2 whose endpoints belong to every tile, and the congruence
between any two of them is either a reflection about the line through PQ, or
the reflection about the midpoint of PQ. This implies that there are at most
two tiles.

To prove that the tiling is rotationally generated, assume that n = 2,
and D2 is a reflected copy of D1 about the line through PQ. Since, in this
case, D1 and D2 are the two closed half discs of B2 containing PQ in their
boundaries, the statement follows. �

Lemma 2.6. For all values of i, Si (i = 1, . . . , n) is a closed, connected arc
in S1.

Proof. As S1 is compact, there are points P,Q ∈ S1 farthest from each other
in S1. If P,Q are antipodal points of S1, then every Di = g1i(D1) (i = 1, . . .)
contains antipodal points, and hence, B2 is the circumdisc of every tile. Then,
Lemma 2.5 yields that n = 1 or n = 2. The case n = 1 is trivial, and if n = 2,
then by Lemma 2.4, there is a diameter PQ separating S1 and S2, which
implies that S1 and S2 are closed half-circles. Thus, we may assume that
P,Q are not antipodal.

Let Γ ⊂ S1 be the shorter arc connecting P and Q. We show that
Γ ⊂ D1.

For contradiction, suppose that a point X ∈ Γ does not belong to D1.
Then, without loss of generality, we may assume that X ∈ D2, and that
X �= P , X �= Q.

Let r > 0 be the radius of the circumdisc B of D1. Since D1 is compact,
and it does not contain antipodal points of S1, we have r < 1, implying that
�r

P,Q contains Γ\{P,Q} in its interior. Thus, Γ ⊂ B, and Γ\{P,Q} ⊂ int B.
Let Γ′ be a curve connecting P and Q, such that Γ′\{P,Q} ⊂ int D1. This
yields that Γ ∪ Γ′ is a simple, closed curve in B enclosing D2. which, by the
congruence of D1 and D2, implies that the B is the circumdisc of D2, as well.
Hence, by Lemma 2.4, it follows that conv(∂ B ∩ D1 ∩ D2) is a diameter δ
of B. As P,Q are the only points of Γ ∪ Γ′ that may fall on ∂ B, we have
δ = PQ.

From Lemma 2.4, it also follows that g12 is the reflection about the line of
PQ, or the reflection about the midpoint of PQ, and in particular g21 = g12.
On the other hand, observe that g12(�1

P,Q) = �1
P,Q = B2 ∩ g12(B2). Since

D1 ⊂ B2 and D1 = g12(D2) ⊂ g12(B2), this implies that D1,D2 ⊂ �1
P,Q. Now,

if there is a point R ∈ D2 ∩ ∂ �1
P,Q\Γ, then R and X can be connected with

a curve in intD2. This curve strictly separates P,Q ∈ D1 in �1
P,Q, which can

also be connected by a curve in intD1. This contradicts our assumption that
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D1 and D2 have disjoint interiors. Hence, D2 ∩ ∂ �1
P,Q ⊂ Γ, and accordingly,

D1 ∩ S1 = {P,Q}, and, in particular, D1 ∩ Γ = {P,Q}.
Assume that there is an interior point Y of Γ that belongs to, say, D3.

Since P,Q ∈ D2, we may repeat the argument in the previous paragraph,
replacing D1 and D2 by D2 and D3, respectively, and obtain that D2 ∩ Γ =
{P,Q} contradicting our assumption that there is an interior point X ∈ D2 of
Γ. Thus, Γ ⊂ D2, which yields by Lemma 2.4 that D2 ∩ S1 = Γ and �1

P,Q =
D1 ∪ D2. From this, in particular, it follows that area(D1) = area(D2) =
area(�1

P,Q)/2.
Since for all values of i, g2i({P,Q}) ⊂ B2, the definition of 1-spindle

implies that Di ⊂ �1
g2i(P ),g2i(Q) ⊂ B2, and g2i(D2)\Γ ⊂ int�1

g2i(P ),g2i(Q) is
disjoint from S1. In other words, the sets g2i(Γ) cover S1. Note that these
arcs may intersect each other only at their endpoints, and if |S1∩g2i(Γ)| ≥ 3,
then g2i(Γ) ⊂ S1. Thus, S1 can be decomposed into finitely many, say k < n
circular arcs, each of which is congruent to Γ.

Let s = 2π/k denote the arclength of Γ. Then, ks = 2π on one hand,
and

π

n
=

area(B2)
n

= area(D2) =
area(�1

P,Q)
2

=
s − sin s

2
=

2π
k − sin 2π

k

2
,

on the other hand. Thus, we have sin 2π
k = 2π( 1

k − 1
n ). The left-hand side is

an algebraic number (see, e.g., [18, Theorem 2.1]), from which 2
k = 4

n follows,
and hence, sin 2π

k = 0, implying that k is a divisor of 2, contradicting our
assumption that Γ is shorter than a half-circle. �

Remark 2.7. Since Si ⊂ ∂ conv Di, it follows that for all values of i, j, we
have gij(Si) ⊂ ∂ conv Dj .

Remark 2.8. For any values of i, j, k, the arcs gik(Si) and gjk(Sj) share at
most some of their endpoints, or they coincide.

Proof. Observe that since for any i, Si is contained in the convex hull of Di,
if the arcs gik(Si) and gjk(Sj) are not disjoint apart from (possibly) their
endpoints, then gik(Si) ∩ gjk(Sj) is a non-degenerate unit circular arc, and
thus, gik(Si) ∪ gjk(Sj) lies on a unit circle S.

Since Si = gki(gik(Si)) ⊂ S1, we have gki(S) = S1. Thus, Si ∪
gki(gjk(Sj)) ⊂ S1∩Di = Si. This implies that gjk(Sj) ⊆ gik(Si). The contain-
ment relation gik(Si) ⊆ gjk(Sj) can be obtained using a similar argument,
which yields the desired equality. �

Lemma 2.9. Let D1,D2, . . . ,Dn be a monohedral tiling of B2, where n > 1.
Then, at least two of the arcs S1, g21(S2), . . . , gn1(Sn) coincide.

Proof. Suppose for contradiction that the arcs S1, g21(S2), . . . , gn1(Sn) are
disjoint apart from possibly their endpoints. By our earlier observation, these
arcs are in ∂ conv D1. As the total turning angle of these n arcs is 2π, and the
total turning angle along the boundary of a convex body is also 2π, ∂ conv D1

may only consist in excess of these arcs some segments that connect the
endpoints of these arcs in a smooth way. In other words, conv D1 = P + B2



  156 Page 8 of 15 Á. Kurusa et al. MJOM

for some convex n-gon P. This implies that the circumradius of D1 is at least
1, with equality if and only if D1 = B2, a contradiction. �
Definition 2.10. A multicurve (see also [11]) is a finite family of simple
curves, called the members of the multicurve, which are parameterized on
non-degenerate closed finite intervals, and any point of the plane belongs to
at most one member, or it is the endpoint of exactly two members. If F and
G are multicurves,

⋃ F =
⋃ G, and every member of F is the union of some

members of G, we say that G is a partition of F .

Definition 2.11. Let F and G be multicurves. If there are partitions F ′ and
G′ of F and G, respectively, and a bijection f : F ′ → G′, such that f(C) is
congruent to C for all C ∈ F ′, we say that F and G are equidecomposable.

The following lemma can be proved very similarly to the analogous
statement for equidecomposability of polygons [5], and thus, we omit the
proof.

Lemma 2.12. Equidecomposability is an equivalence relation on the family of
multicurves in R

2.

Corollary 2.13. If F and G are multicurves with
⋃ F =

⋃ G, then F and G
are equidecomposable.

Proof. Clearly, it is sufficient to prove the statement for the connected com-
ponents of

⋃ F , and by Lemma 2.12, we may assume that one of the multic-
urves, say G, is a simple curve. But then, F is a partition of G, in which case
the statement is obvious. �
Corollary 2.14. If F and G are equidecomposable, and their subfamilies F ′ ⊆
F and G′ ⊆ G are equidecomposable, then F\F ′ and G\G′ are equidecompos-
able.

Proof. By Lemma 2.12, we may assume that
⋃ F =

⋃ G. Without loss of
generality, we may also assume that

⋃ F is connected, which yields that we
may regard both F and G as different partitions of the same simple curve.
More specifically, after reparametrizing if necessary, we may assume that
there is some curve C : [a, b] → R

2, and partitions PF and PG of [a, b], such
that the elements of F and G are the restrictions of C to the subintervals of
PF and PG, respectively. By Corollary 2.13, a multicurve is equidecomposable
with any of its partitions, and hence, we may assume that PF = PG, and there
is a bijection between the elements of F ′ and G′, such that the corresponding
elements are congruent. Since congruence is an equivalence relation, it is
clear that any such bijection can be extended to all subintervals of PF , which
proves the assertion. �

3. Proof of Theorem 1.1

First, consider a monohedral tiling of B2 with the topological discs D1 and D2.
The containment O ∈ D1∩D2 can be proved in a number of elementary ways
(see, e.g., [8]); here, we also show that the tiling is rotationally generated.
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By Lemma 2.6, for i = 1, 2, Si = Di ∩ S1 is a connected arc, and
hence, S1 or S2 is an arc of length at least π. Thus, D1 or D2 contains a pair
of antipodal points of B2, which, by Lemma 2.5, implies that the tiling is
rotationally generated.

From now on, we consider the case that B2 is decomposed into three
congruent topological discs D1,D2,D3, and for i = 1, 2, 3, we set Si = Di∩S1.
By Lemmas 2.6 and 2.5, we may assume that each tile intersects S1 in a non-
degenerate circle arc, which is smaller than a half-circle.

By Lemma 2.3, we have that D1 ∩ D2 ∩ D3 consists of a single point
M ∈ int B2, and that for any i �= j, Di ∩ Dj is a simple curve connecting M
and a point of S1.

To prove the assertion, we distinguish some cases. Before we do it, we
observe that by Remark 2.8, any pair of the curves S1, g21(S2), and g31(S3)
intersect in at most a common endpoint, or they coincide.
Case 1 No pair of the arcs S1, g21(S2), and g31(S3) coincide.

In this case, we immediately have a contradiction by Lemma 2.9.
Case 2 Two of the arcs S1, g21(S2) and g31(S3) coincide, and the third one
is different

Using a suitable relabeling of the tiles, we may assume that S1 =
g21(S2). Let the arclength of this arc be 0 < α < π, and the arclength of
S3 be β. The equality S1 = g21(S2) implies, in particular, that g21 is an
isometry of S1; or more generally that it is either the reflection about the
symmetry axis � of S1 ∪ S2 or a rotation around O with angle α. We may
assume without loss of generality that � is the y-axis, the common point of
S1 and S2 is (0, 1), and S1 ⊂ {(x, y) : x ≤ 0}. Furthermore, in the proof, we
set C1 = D1 ∩ D3, and C2 = D2 ∩ D3.
Subcase 2.a g21 is the reflection about �.

If there is a point P ∈ intD1 ∩ {(x, y) : x > 0}, then a curve Γ in intD1

connects P and the midpoint of S1, so g12(Γ) connects the midpoint of S2

to g12(P ) in intD2. This implies that Γ ∩ g12(Γ) is in intD1 ∩ int D2 = ∅,
which is a contradiction. Thus, we have D1 ⊂ {(x, y) : x ≤ 0} and also
D2 ⊂ {(x, y) : x ≥ 0}.

Observe that g13(S1) = g23(g12(S1)) = g23(S2), and D3 = cl(B2\(D1 ∪
D2)) is symmetric in �. We denote this arc of length α by S = g13(S1). Note
that by the conditions of Case 2, S �= S3, and S ⊂ ∂ conv D3 by Remark 2.7.
Furthermore, ∂ conv D3 does not contain any arc of length α apart from S
and possibly S3, as otherwise the idea of the proof of Lemma 2.9 yields a
contradiction. Indeed, if ∂ conv D3 contains two unit circular arcs of length α
and one unit circular arc of length β with mutually disjoint relative interiors,
then the fact that 2α+β = 2π is equal to the total turning angle of ∂ conv D3

yields that ∂ conv D3 is the union of these arcs and possible some straight
line segments, which contradicts our assumption that D3 is a proper subset
of B2. Thus, S is symmetric in the y-axis.

Since D3 is connected, and every point of � belongs either to D3, or
to both D1 and D2, the segment connecting the midpoint X of S and the
midpoint Y of S3 belongs to D3. Let the length of XY be δ > 0, and note
that the fact X,Y ∈ ∂ conv D3 yields that the line through XY intersects



  156 Page 10 of 15 Á. Kurusa et al. MJOM

D3 exactly in XY and XY \{X,Y } ⊂ int D3. For i = 1, 2, g3i(XY ) is the
segment of length δ in B2, starting at the midpoint of Si, and perpendicular
to it. Thus, if δ < 1, then O /∈ Di for any value of i, if δ > 1, then O ∈ intDi

for all values of i, and if δ = 1, then O is the midpoint of a unit circle arc in
the boundary of each of the Dis, which is a contradiction.
Subcase 2.b g21 is the rotation around O by angle α in counterclockwise
direction.

As O is a fixed point of g21, it follows that either O ∈ D1 ∩ D2, or
O /∈ D1 ∪ D2. By the definition of tiling and our assumptions, in the first
case, O ∈ ∂ D1 ∩ ∂ D2, and in the second case, O ∈ int D3.

First, consider the case that O ∈ ∂ D1 ∩ ∂ D2.
Recall that by Lemma 2.3, D1 ∩ D2 ∩ D3 is a single point M , and for

any i �= j, Di ∩ Dj is a simple curve connecting M to a point of S1. Thus, if
O = M , then g21(D1∩D2) = D1∩D3, and g12(D1∩D2) = D2∩D3. Since ∂ D1

and ∂ D3 are equidecomposable, this implies that S1 and S3 are congruent,
and hence, α = 2π/3. In other words, if O = M , then the tiling is rotationally
generated. Thus, we assume that O /∈ D3, which, by the compactness of D3,
yields the existence of a small closed circular disc B centered at O, such
that B ∩ D3 = ∅. Let t �→ C(t) be a continuous parameterization of the
curve D1 ∩ D2 satisfying O = C(0), and let t+ = sup{t : C([0, t])) ⊂ B} and
t− = inf{t : C([t, 0]) ⊂ B}. Then, g12(C(t±)) = C(t∓), which implies that
g12 is the reflection about O. Thus, α = π and β = 0, which contradicts our
assumptions.

In the remaining part of Subcase 2.b, we assume that O ∈ int D3.
Let M1 = g21(M) and M2 = g12(M). Since α > 0, we have M2 �= M .

On the other hand, we clearly have M2 ∈ ∂ D2 and M2 /∈ S1.
Let B be the circular disc in D3 that is centered at O and is of maximum

radius r > 0. Then, B is tangent to at least one of the curves C1 and C2, say
C2 touches B in X2 ∈ ∂ B∩C2. Let X1 = g21(X2). Then, X1 ∈ B∩D1 = B∩C1

clearly, and hence, X2 ∈ g12(C1) ∩ C2 �= ∅. Since g12(C1) is a curve in ∂ D2,
connecting the intersection point of S1 and S2 to M2 in intB2, it follows that
M ∈ g12(C1); that is, M1 ∈ C1, implying also M2 ∈ C2.

Thus, M1 divides the curve C1 into two parts: one from M to M1, which
we denote by CM

1 , and the other one from M1 to a point of S1, which we
denote by CS

1 . We define the parts CM
2 and CS

2 of C2 similarly, using M2 in
place of M1. Furthermore, we set CS

3 = D1 ∩ D2.
We clearly have g21(CM

2 ) = CM
1 , g21(CS

2 ) = CS
3 and g21(CS

3 ) = CS
1 .

Observe that since D1,D2 and D3 are congruent, their boundaries are equide-
composable. Furthermore, as CS

1 , CS
2 , and CS

3 , and also CM
1 and CM

2 are congru-
ent, we obtain by Corollary 2.14 that S1 and CM

1 ∪S3 are equidecomposable.
Thus, we deduce that CM

1 (and also CM
2 ) is a multicurve, such that its every

member curve is a unit circular arc, and their total length is α − β ≥ 0.
Let x and y denote the total length of the convex and concave unit

circular arcs of D1 in CM
1 . Since CM

1 and CM
2 are congruent, the total length

of the convex and concave unit circular arcs of D2 in CM
2 is also x and y,

respectively. Thus, since, for i �= j, a unit circular arc in Di ∩ Dj is a convex
circular arc of exactly one of Di and Dj and concave for the other, the total
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length of the convex and concave unit circular arcs of D3 in CM
1 ∪ CM

2 is 2y
and 2x, respectively.

The congruence of the tiles Di and the curves CS
i for i = 1, 2, 3 yields

that the total lengths of the convex and concave unit circular arcs of D1 in
S1 ∪ CM

1 is equal to the total lengths of the convex and the concave unit
circular arcs of D3 in S3 ∪ CM

1 ∪ CM
2 , respectively. This equality for convex

circular arcs implies that α + x = β + 2y, and the equality for concave arcs
implies y = 2x. From these equations, it follows that x = (α − β)/3 and
y = 2(α − β)/3. Thus, in particular, it follows that if β = α, then x = y = 0
and M = M1 = M2, which yields that α = 0, a contradiction. This means
that β < α.

We show that M is not an interior point of a unit circular arc in ∂ D3

longer than α − β. Suppose, for contradiction, that M is an interior point
of such a circular arc C. If one of M1 or M2, say, M1 ∈ C, then CM

1 ⊂ C,
which yields that CM

2 = g21(CM
1 ) is also a unit circular arc, implying that

CM
1 ∪CM

2 belongs to the same unit circle Ŝ. Since this circle is invariant under a
rotation around O, we have Ŝ = S1, which contradicts our assumption that
M,M1,M2 ∈ int B2. Assume that M1,M2 /∈ C, and let C1 and C2 denote
C ∩ CM

1 and C ∩ CM
2 , respectively. Then, g21(C2) is a unit circular arc in CM

1

whose length is equal to that of C2. Thus, since C is longer than α−β, g21(C2),
and C1 intersect in a unit circular arc, which yields that g21(C2) ∪ C1 = CM

1

is a unit circular arc, leading to a contradiction in a similar way.
Let us say that a unit circular arc in ∂ Di is maximal, if it is not a proper

subset of another unit circular arc in ∂ Di. By Lemma 2.1, ∂ D1 contains
finitely many, say m ≥ 1 maximal unit circular arcs of length α, one of which
is S1. Thus, ∂ D3 also contains m maximal unit circular arcs of length α.
By the previous paragraph, any of these arcs is contained in CS

1 ∪ CM
1 or in

CS
2 ∪ CM

2 . Assume that all these arcs are contained in CS
1 or in CS

2 . Since CS
1 ,

CS
2 and CS

3 are congruent, we have that the total number of unit circular arcs
of length α in CS

i is equal to m/2. Thus, ∂ D1 contains m + 1 arcs, which is
a contradiction.

Finally, consider the case that some maximal unit circular arc Sα of
length α in ∂ D3 is not contained in CS

1 ∪ CS
2 . Since α > α − β, M is not an

interior point of Sα, but M1 or M2 is. Without loss of generality, we may
assume that M1 is in the interior of Sα. This implies that M is in the interior
of g12(Sα) ⊆ CS

3 ∪CM
2 (similarly as Fig. 2 shows). Hence, M is not an interior

point of a unit circular arc in ∂ D1, which implies that M2 is not an interior
point of any unit circular arc in ∂ D2. On the other hand, again by Lemma 2.1,
∂ D3 contains k maximal unit circular arcs of length β for some k ≥ 1, one
of which is S3. By our previous argument, any of these arcs is contained in
one of CM

i or CS
i for some i ∈ {1, 2}. Let kM ≥ 0 and kS ≥ 0 denote the

number of these arcs in CM
1 and CS

1 , respectively. Then, CM
1 and CS

1 contain
exactly kM and kS of these arcs, respectively. From this, it readily follows
that k = 2kM +2kS +1. Furthermore, since ∂ D1 also contains k maximal unit
circular arcs of length β, we have k = kM + 2kS . This yields that kM = −1,
which is a contradiction.
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Figure 2. B2 is dissected into three topological discs

Case 3 All of the arcs S1, g21(S2), and g31(S3) coincide.
In this case, g21 and g31 are either reflections about a line through O,

or rotations around O. In particular, O is a fixed point of both of them,
and thus, it is the unique common point M of all tiles. For any i �= j, let
Cij = Di ∩ Dj . If both g12 and g13 are rotations around O, then the tiling
is clearly rotationally generated. Hence, assume that one of g12 and g13, say
g12 is a reflection about a line � through O. Then, g12(C13 ∪ C12) = C12 ∪ C23

yields that C12 is a straight line segment in �, which, by the congruence of
the tiles, implies also that Cij is a segment for all i �= j. Thus, also in this
case, the tiling is rotationally generated, and the assertion follows.

4. Remarks and Open Problems

First, we observe that the quantity n(K) can be similarly defined for any O-
symmetric convex body K in R

d playing the role of B2. On the other hand,
Theorem 1.1 cannot be generalized for any O-symmetric convex body even
in the case d = 2. Indeed, dissecting a parallelogram into three congruent
parallelograms with two lines parallel to a pair of sides of the parallelogram
shows that there are O-symmetric plane convex bodies K with n(K) = 3. This
raises the question which O-symmetric convex bodies K satisfy n(K) > 3.

Following [6], we generalize Question 1 for balls in arbitrary dimensions.

Question 4. Are there monohedral tilings of the closed unit ball Bd such that
the center of the ball is not contained in all of the tiles? More specifically,
what are the values of d for which it is possible?

We also raise the following, related problem:

Question 5. If B2 has a tiling with similar copies of some topological disc D,
does it follow that the tiles are congruent? Does it follow that B2 has a tiling
with congruent copies of D? Do these properties hold under some additional
assumption on the tiles, e.g., if they have piecewise analytic boundaries?
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We should finally mention the divisibility problem, in which the topolog-
ical conditions on the tiles are dropped: A subset of Rd is m-divisible if it can
be decomposed into m ∈ N mutually disjoint congruent subsets. It is proved
that typical convex bodies are not divisible [14], but balls are not typical in
this sense, and they are m-divisible for large values of m if d is divisible by
three [9] or d is even [10].
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