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Abstract. The aim of this publication is to show how to integrate the designing process of straight bevel gears
into a computer software so it can be further used for making the three-dimensional (CAD) model of the gear
pair. During meshing the driven and the driving gears engage gradually so contact points can be mathematically
determined between the element pairs according to the developed coordinate system’s arrangement. With my-
developed computer software, I designed a certain bevel gear pair having straight teeth. Naturally, many
different types of this pair could be designed. After that Loaded Tooth Contact Analysis (LTCA) have been
done� by normal stress, normal deformation and normal elastic strain parameters. The aim of the LTCA is the
analysis of the connection tooth zone in mechanical aspects by different loads. If the received parameters are not
appropriate, you can return to the mechanical designing process where the starting parameters of the gear could
be modified. Different load torques were used to determine the established mechanical parameters of the
elements.
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1 Introduction

Straight bevel gears are applied widely in machinery (in
vehicles, tool machines, for medical tools and machines
etc.). They are used to connect shafts whose axes intersect
in some angles, thus the meshing surfaces form a cone on
which teeth are shaped (Fig. 1) [1–6].

One of the oldest process for producing gears applied
even today is the Reinecker�Bilgram process. In this case,
the vertical shaft of the machine intersects the centre of the
pitch surface. The cutting tool makes an alternating
movement while the operating pitch cone of the bevel gear
unwinds the axoid of the deriving pitch cone (Fig. 2)
[1,3–8].

During another production process of Heidenreich–
Harbeck, the machine uses 2 cutting tools. This method is
more advantageous because in this case the machine is
moved in the axes perpendicular to the axes of the pitch
surface. The machine is not set according to the l
dedendum angle, and the grip of the tool is stricter
(Fig. 3) [1,3–8].

The paths of the cutting tools are not parallel during
production, but they intersect in 2⋅u angle, this is called
planing angle, which can be calculated in the following way
odzassandor@eng.unideb.hu
[5] (Fig. 4):

arcu ¼ 0:25⋅m⋅pþRe⋅sinl⋅tana0

Re⋅cosl
ð1Þ

2 Defining the contact points

The profile curve r1R
�! of the bevel gear wheel is made as a

result of the movement of the machining tool and the
unwinding movement for the K1R (x1R, y1R, z1R) rotating
coordinate system related to the driver gear wheel.

I am looking for the surface connected to K2R
coordinate system related to r1R

�!. I use the fact that the
2 surfaces during their movements coincide. Taking into
consideration the following correlation [4,9]:

’2R ¼ i21⋅’1R ð2Þ
I can state that the movement can be described with

(’1) movement parameter [4,9,10].
The relative velocity between the 2 surfaces can be

determined by the transformation between the rotating
K1R coordinate system of the driver wheel and the rotating
K2R coordinate system of the driven wheel [4,9]:

v2R
�! 12ð Þ ¼ d

dt
r2R
�! ¼ d

dt
M2R;1R

� �
⋅r1R�!: ð3Þ
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Fig. 1. Angles and diameters of bevel gear.

Fig. 2. Reinecker–Bilgram principle [6].

Fig. 3. Heidenreich–Harbeck principle [6].

Fig. 4. Definition of planing angle.
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Transformation matrices between the K1R and K2R
coordinate systems (Fig. 5):

M2R;1R ¼ M2R;2S⋅M2S;1S⋅M1S;1R

¼
�cos ’1Rð Þ⋅sin ’2Rð Þ �cos ’1Rð Þ⋅cos ’2Rð Þ sin ’1Rð Þ 0
�sin ’1Rð Þ⋅sin ’2Rð Þ �sin ’1Rð Þ⋅cos ’2Rð Þ �cos ’1Rð Þ 0

cos ’2Rð Þ �sin ’2Rð Þ 0 0
0 0 0 1

2
664

3
775

ð4Þ

M1R;2R ¼ M1R;1S⋅M1S;2S⋅M2S;2R

¼
�sin ’1Rð Þ⋅cos ’2Rð Þ �sin ’1Rð Þ⋅sin ’2Rð Þ cos ’1Rð Þ 0
�cos ’1Rð Þ⋅cos ’2Rð Þ�cos ’1Rð Þ⋅sin ’2Rð Þ �sin ’1Rð Þ 0

sin ’2Rð Þ �cos ’2Rð Þ 0 0
0 0 0 1

2
664

3
775

ð5Þ
Taking into consideration the correlation between the

velocity vectors of the relative movement in K1R and K2R
coordinate systems [4,9]:

v1R
�! 12ð Þ ¼ M1R;2R⋅v2R�! 12ð Þ ð6Þ
in K1R coordinate system, the relative velocity vector,
based on (3) is:

v1R
�! 12ð Þ ¼ M1R;2R⋅

d

dt
M2R;1R

� �
⋅r1R�!; ð7Þ

where P1k is the kinematic mapping matrix [4,9]:

P1k ¼ M1R;2R⋅
d

dt
M2R;1R

� � ð8Þ

On the tooth surfaces of the meshing teeth, contact
points mutually covering each other can be determined by
solving the connection equation � which expresses the 1st
Law of Contact � and the vector-scalar function
simultaneously [4,9]:

n1R
��!⋅v1R�! 12ð Þ ¼ n2R

��!⋅v2R�! 12ð Þ ¼ n!⋅ v! 12ð Þ
: ð9Þ

3 Designing the computer program

Input data for designing the drive pair are: m module, z1
number of teeth of the driver bevel gear wheel, z2 number of
teeth of the driven gear wheel, c� root clearance factor and
the a0 angle of contact [1,3–8].

For designing, the necessary geometrical correlations
from technical literature was also used, which can be seen
below based on Figures 1 and 5 [1,3–8]:

–
 the largest pitch circle diameters:

d01;2 ¼ m⋅z1;2; ð10Þ



Fig. 5. Connection between the coordinate systems of the bevel gear drive pair.
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–
 half pitch angle of the driver gear wheel:

d01 ¼ atan
z2
z1

� �
; ð11Þ
–
 half pitch angle of the driven gear wheel:

d02= 90 °� d01, (12)
–
 effective pitch surface radius:

Re ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d01=2ð Þ2 þ d02=2ð Þ2

q
; ð13Þ
–
 addendum on the largest diameter:

f0 ¼ m; ð14Þ

–
 dedendum on the largest diameter:

l0 ¼ 1þ c�ð Þ⋅m; ð15Þ
–
 the largest tip circle diameters:

df1;2 ¼ z1;2 þ 2⋅cos d01;2
� �� �

⋅m; ð16Þ
–
 the largest root circle diameters:

da1;2 ¼ z1;2⋅m� 2⋅l0⋅cosðd01;2Þ; ð17Þ

–
 face width:

b ¼ 1

3:5
⋅Re; ð18Þ
–
 dedendum angle:

l ¼ atan
l0
Re

� �
; ð19Þ
–
 tip cone angles

df1;2 ¼ d01;2 þ l; ð20Þ



Fig. 6. Profile curves of the designed bevel gear pair (m=15mm, z1= 20, z2= 30, S=90°). (a) Profile curves of the driver gear.
(b) Profile curves of the driven gear.
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–
 root cone angles:

dl1;2 ¼ d01;2 � l: ð21Þ
The output of my computer program is some calculated

geometrical data of the bevel gear, and the profile curves
(Fig. 6) in case of the smallest and largest diameters.
Knowing the above mentioned manufacturing technologies
[1,3–8] and the path of the cutting tool this program can
determine the shape of the gear profiles.

The program saves the profiles of the bevel gear in
.txt file format. Onto the given profile set of dots an
interpolating B-spline can be fitted [11]. With the
geometrical parameters of the drive pair and its profiles,
the CAD model of the bevel gear was made by SolidWorks
designing software (Fig. 7).



Fig. 7. CAD model of the bevel gear pair having straight teeth
(m =15mm, z1= 20, z2= 30, S=90°).

Table 1. Parameters of the designed bevel gear pair.

Parameters of the bevel gear pair

Module
Number of teeth
The largest pitch circle diameters
Half pitch angle of the pitch circle
Effective pitch surface radius

Addendum on the largest diameter
Dedendum on the largest diameter
The largest tip circle diameters
The largest root circle diameters
Face width
Dedendum angle
Tip cone angle

Root cone angle
Circular pitch on the largest pitch circle diameter
Clearance at flank
Pitch circle tooth thickness on the largest diameters
Transmission
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4 LTCA analysis

The aims of the so called “Loaded Tooth Contact Analysis”
(LTCA) are to model the connection of toothed drive pairs
and to simulate the model by given loads and boundary
conditions. During the LTCA in case of this given
geometrical bevel gear (Figs. 6 and 7, Tab. 1) normal
stress, normal elastic strain and normal deformation values
were analysed on the surface of the driven and driver gear
wheels [12–21].

4.1 Material quality, FE mesh (finite element)

The property of thematerial used for our bevel gear is given
in Table 2.

During defining the FEmesh in the contact zone, sphere
volume (37mm radius) including dense triangles (1mm
mesh dimension) has been applied on the toothed area
(Fig. 8). Automatic meshing was used on the outside areas.
The friction coefficient in the tooth contact zone ism= 0.01,
because I considered the liquid and rolling frictions on the
contact zone.

4.2 Loads and boundary conditions

Four coordinate systems have been defined for LTCAs: Ks
� absolute static, Ks1–static related to the driver wheel,
Driver gear Driven gear

m = 15 mm
z1 = 20 z2 = 30
d01 = 300 mm d02 = 450 mm
d01 ¼ 56:3° d02 ¼ 33:69°

Re = 270.416 mm

f0 = 15 mm
l0 = 18 mm

df1 = 316.64 mm df 2 = 474.96 mm
da1 = 280.03 mm da2 = 420.04 mm

b = 77.26 mm
l = 3.8°

df1= 60.11° df2 ¼ 37:49°

dl1 ¼ 52:5° dl2 ¼ 29:88°
t = 47.123 mm
js = 2.356 mm

Sax = 21.2 mm
i = 1.5



Table 2. Material properties.

Material quality Structured steel

Density 7850 kg/m3

Yield stress 250 MPa
Tensile strength 460 MPa
Poisson factor 0.3
Young modulus 200 GPa
Temperature 22 °C

Fig. 8. FE mesh.

Fig. 9. Setting loads and boundary conditions.

Fig. 10. Defining normal stress.
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Ks2–static, related to the driven wheel and Kc– coordinate
system in the tooth contact zone.

During the analyses, the gear having less number of
teeth (driver gear) drives the gear having more number of
teeth. Five degrees of freedom were fixed of the driver gear,
only rotation along the rotational axis was allowed. The
driver gear was loaded by M = 200–400 Nm torque by
50 Nm steps. Six degrees of freedom of the driven gear were
fixed (Fig. 9).

4.3 Normal stress analyses

In a fixed P point of the body, rn
�! signals the stress vector

awakening on the n! normal surface elements. It can be
divided into a normal directional component and one
perpendicular to it [22–24] (Fig. 10):

rn
�! ¼ sn⋅ n!þ tn

�!; ð22Þ
where the normal stress is [22–24]:

sn ¼ n!⋅ rn
�!: ð23Þ
Normal stress partitions and average normal stress
values have been detected as an effect of the different loads,
on the tooth surfaces of the driver and driven gear (Fig. 11).

Results are shown in the diagram of Figure 12. In
absolute value, as an effect of the increasing load moment,
normal stress values also increase on the tooth surfaces of
the driver and driven gear.
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The shapes of the two diagrams are the same and they
are parallel. The normal stresses of the driven gear are a
little higher than the normal stresses of the driver gear in
absolute value. Because of the good comparison the same
limits were set.

4.4 Normal elastic strain analyses

The state of a body’s deformation can be signalled by
deformation tensor, which can be determined from the
displacement vector as seen below [22–24]:

A ¼ 1

2
u!°∇!þ ∇°

�!
u!

� 	
; ð24Þ

A ¼

∂u
∂x

1

2

∂u
∂y

þ ∂v
∂x

� �
1

2

∂u
∂z

þ ∂w
∂x

� �
1

2

∂v
∂x

þ ∂u
∂y

� �
∂v
∂y

1

2

∂v
∂z

þ ∂w
∂y

� �
1

2

∂w
∂x

þ ∂u
∂z

� �
1

2

∂w
∂y

þ ∂v
∂z

� �
∂w
∂z

2
66666664

3
77777775
;

ð25Þ
Fig. 11. Normal stress values. (a) M=200 Nm: driver gear, sn

(b)M=250 Nm: driver gear, sn ¼ �2:62MPa, driven gear, sn ¼ �2
gear, sn ¼ �3:297MPa. (d)M=350 Nm: driver gear, sn ¼ �3:796M
sn ¼ �4:402 MPa, driven gear, sn ¼ �4:495 MPa.
where

ex ¼ ∂u
∂x

gxy ¼
∂u
∂y

þ ∂v
∂x

ey ¼ ∂v
∂y

gyz ¼
∂v
∂z

þ ∂w
∂y

ez ¼ ∂w
∂z

gzx ¼ ∂w
∂z

þ ∂u
∂x

9>>>>>=
>>>>>;

ð26Þ

Based on the values of ex, ey, ez elastic strain per unit
length and unit vectors related to them, the FE program
calculates the normal direction resultant (en), which is
perpendicular to the surface. As an effect of the loads on the
surface of the driver and driven gear, normal elastic strain
partitions and average normal elastic strain values occur
(Fig. 13).

The results are shown in the diagram of Figure 14. You
can see that, in absolute value, as an effect of increasing
loads, normal elastic strain values also increase on the tooth
surfaces of the driver and driven gears.

The shapes of the two diagrams are the same and they
are parallel. The normal elastic strains of the driven gear
are a little higher than the normal elastic strains of the
driver gear in absolute value. Because of the good
comparison the same limits were set.
¼ �2:054 MPa (top), driven gear, sn ¼ �2:164 MPa (bottom).
:709MPa. (c)M=300 Nm: driver gear, sn ¼ �3:203MPa, driven
Pa, driven gear, sn ¼ �3:893MPa. (e)M=400 Nm: driver gear,



Fig. 11. Continued.
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Fig. 12. Load � normal stress diagram.

Fig. 13. Normal elastic strain values as a result of increasing loads. (a)M=200 Nm: driver gear, en ¼�0.0000114 (top), driven gear,
en ¼�0.0000127 (bottom). (b)M=250 Nm: driver gear,en ¼�0.0000141, driven gear, en ¼�0.0000154. (c)M=300 Nm: driver gear,
en ¼�0.0000168, driven gear, en ¼�0.0000183. (d)M=350 Nm: driver gear,en ¼�0.0000197, driven gear, en ¼�0.0000214. (e)M=
400 Nm: driver gear,en ¼ �0.0000227, driven gear,en ¼ �0.0000246.
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Fig. 13. Continued.
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Fig. 14. Load � normal elastic strain diagram.

Fig. 15. Definition of displacement vector.
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4.5 Normal deformation analyses

As an effect of a load, the points of a solid body move, and
the beginning state of the body differs from the state after
full load application [22–24].

For instance, the position of an arbitrary P point of the
body is given by the following placement vector, in the
state before the load was applied [22–24]:

rP
�! ¼ xP ex

�!þ yP ey
!þ zP ez

!: ð27Þ
Signals P 0 the state of P point after loading, the related

placement vector is rP
�!; the displacement vector is uP.

Based on Figure 15 you can state the following correlations
[22–24]:

rP
0�! ¼ rP

�!þ uP
�!: ð28Þ

The displacement vector is the function of the position
of the points of the body before loading, i.e. the placement
vector [22–24]:

u! ¼ u! r!� �
: ð29Þ

The sum of the displacement vectors related to the
points of the body is called displacement field, where the
displacement vector is [22–24]:

u! ¼ ux ex
�!þ uyey

!þ uzez
!: ð30Þ

The coordinates of the displacement:

ux ¼ ux x; y; zð Þ
uy ¼ uy x; y; zð Þ
uz ¼ uz x; y; zð Þ

)
ð31Þ
As an effect of the different loads, on the tooth surfaces
of the driver and driven gear, the following normal
deformation values (in this case x direction deformation)
and average normal deformation values (the average of the
x direction values) occur (Fig. 16).
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Calculated results are shown in Figure 17. You can see
that if the loads are increased the values of normal
deformation also increase on the tooth surfaces of the driver
and driven gear.

The shapes of the two diagrams are almost parallel. The
normal deformations of the driver gear are higher than the
normal deformations of the driven gear in absolute value.
The teeth are in contact that is why the presages of this
specific are different. Because of the good comparison the
same limits were set.
5 Conclusion

Straight bevel gears are widely used in machinery where
the axes of the two shafts intersect, and the faces of the
gears themselves form a cone. They are used as load
transmission equipment, to change the number of
rotation etc. Their further development (from construc-
tional and technological point of view) and their LTCA
based on different mechanical properties are highly
needed.
Fig. 16. Normal deformation values. (a)M=200 Nm: driver gear,
(b)M=250 Nm: driver gear, ux ¼�0.0644mm, driven gear, ux ¼ 0.
gear, ux ¼ 0.00247mm. (d)M=350 Nm: driver gear, ux ¼ �0.0629
ux ¼ �0.0621mm, driven gear, ux ¼ 0.00325mm.
Based on the geometrical and production analyses
of the straight bevel gear pair, I developed a computer
program to be able to design the drive pair. This
program calculates all the geometrical parameters of the
drive pair and draws the profile curves (which occur during
production), on the smallest and largest diameters.

The given profile curves can be analyzed from
constructional point of view and they are important for
making our CAD model.

After that a CAM (Computer-Aided Manufacturing)
software can be used to simulate the total production
process of the drive pair.

It is important to have the CAD model for LTCA as
well. These analyses are good for analyzing the mechanical
properties on the driver and driven gear (such as stress,
strains, elastic strain). LTCA are also important for having
the appropriate constructional planning, to be able to
choose the appropriate raw material, and to get important
information about loads.

Normal stress, normal deformation and normal elastic
strain values have been analyzed on the tooth surfaces of the
driver and driven gear pair by different load torques. The
results have been averaged, analyzed and shown in diagrams.
ux ¼ �0.0654mm (top), driven gear, ux ¼ 0.00166mm (bottom).
00207mm. (c)M=300 Nm: driver gear, ux ¼�0.0636mm, driven
mm, driven gear, ux ¼ 0.00286mm. (e)M=400 Nm: driver gear,



Fig. 16. Continued.
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Fig. 17. Load–normal deformation diagram.
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Nomenclature
!
v

12ð Þ
1R
Relative velocity vector (mm/min�1)
n1R
��!
 Normal vector of the surface in K1R

coordinate system

r1R
�!
 Placement vector of the moving

points of the profile curve

r2R
�!
 Placement vector of moving point of

conjugated surface

rP
�!
 Placement vector

rn
�!
 Normal stress vector (MPa)

tn
�!
 Shear stress vector (MPa)

∇!
 Differential operator

M2R,1R, M1R,2R
 Translation matrices between K1R

and K2R coordinate systems

P1k
 Matrix of kinematic mapping

c�
 Root clearance factor

u!
 Displacement vector (mm)

sn
 Normal stress (MPa)

2 ⋅ u
 Angle of planning (°)

A
 Deformation tensor

b
 Face width (mm)

d0
 Largest pitch circle diameter (mm)

df
 Largest tip circle diameter (mm)

dl
 Largest root circle diameter (mm)

f0
 Largest addendum (mm)

i21, i
 Transmission

js
 Clearance at flank (mm)
K1R (x1R, y1R, z1R)
 Rotational coordinate system related
to the driver gear wheel
K1S (x1S, y1S, z1S)
 Static coordinate system related to
the driver gear wheel
K2R (x2R, y2R, z2R)
 Rotational coordinate system related
to the driven gear wheel
K2S (x2S, y2S, z2S)
 Static coordinate system related to
the driven gear wheel
l0
 Largest dedendum (mm)

m
 Module (mm)

M
 Load moment (Nm)

Re
 Effective pitch surface radius (mm)

Sax
 Pitch circle face width on the largest

diameter (mm)

t
 Circular pitch on the largest pitch

circle diameter (mm)

z1, z2
 Number of teeth

a0
 Angle of contact (°)

d0
 Pitch angle (°)

df
 Tip cone angle (°)

dl
 Root cone angle (°)

en
 Normal elastic strain (mm)

ex, ey, ez
 Elastic strain values per unit length

(mm)

l
 Dedendum angle (°)

m
 Friction coefficient

S
 Shaft angle (°)

’
 Addendum angle (°)
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’1R, ’2R
 Angular displacement (°)

E
 Distance between the vertex of cones

(mm)

u, v, w
 Coordinates of the displacement

vector (mm)

∂
∂x ;

∂
∂y ;

∂
∂z
 Parts of the differential operator
gxy, gyx, gxz
 Shear specific elongation (mm)

x, y, z
 Coordinates (mm)
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