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Program analyses detect errors in code, but when code changes frequently as in an IDE, repeated re-analysis
from-scratch is unnecessary: It leads to poor performance unless we give up on precision and recall. Incremental
program analysis promises to deliver fast feedback without giving up on precision or recall by deriving a
new analysis result from the previous one. However, Datalog and other existing frameworks for incremental
program analysis are limited in expressive power: They only support the powerset lattice as representation
of analysis results, whereas many practically relevant analyses require custom lattices and aggregation over
lattice values. To this end, we present a novel algorithm called DRedL that supports incremental maintenance of
recursive lattice-value aggregation in Datalog. The key insight of DRedL is to dynamically recognize increasing
replacements of old lattice values by new ones, which allows us to avoid the expensive deletion of the old value.
We integrate DRedL into the analysis framework IncA and use IncA to realize incremental implementations of
strong-update points-to analysis and string analysis for Java. As our performance evaluation demonstrates,
both analyses react to code changes within milliseconds.
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1 INTRODUCTION

Static program analyses are fundamental for the software development pipeline: They form the basis
of compiler optimizations, enable refactorings in IDEs, and detect awide range of errors. For program
analyses to be useful in practice, they must balance multiple requirements, most importantly
precision, recall, and performance. In this work, we study how to improve the performance of
program analyses through incrementality, without affecting precision or recall. After a change of
the subject program (program under analysis), an incremental analysis updates a previous analysis
result instead of re-analyzing the code from scratch. This way, incrementality can provide order-
of-magnitude speedups [Bhatotia et al. 2011; Sumer et al. 2008] because small input changes only
trigger small output changes, with correspondingly small computational cost. Prior research has
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shown that incrementality is particularly useful for program analysis. For example, incrementality
was reported to speed up FindBugs checks 65x [Mitschke et al. 2014] and C points-to analysis
243x [Szabó et al. 2016]. Unfortunately, existing approaches for efficiently incrementalizing static
analyses are limited in expressiveness due to limitations of the Datalog solvers they rely on.
Datalog is a logic programming language that is frequently used for program analyses [Av-

gustinov et al. 2016; Green et al. 2013; Smaragdakis and Bravenboer 2011; Whaley and Lam 2004].
Incremental Datalog solvers efficiently update query results based on code changes [Gupta and
Mumick 1995]. However, existing incremental solvers do not support recursive user-defined aggre-
gation, which means that an analysis can only compute fixpoints over powersets but not over any
other data structure such as intervals. This severely limits the applicability of incremental Datalog
solvers to practically relevant program analyses, which often aggregate over custom lattices using
the least upper or greatest lower bound. Indeed, in general, recursive user-defined aggregations
may require complete unrolling of previous computations when aggregation inputs change.
In this paper, we present a new algorithm DRedL that incrementally solves recursive Datalog

queries containing user-defined aggregations subject to the following two requirements: (i) aggre-
gations operate on lattices and that (ii) recursive aggregations are monotonic. Both requirements
are readily satisfied by program analyses. The key insight of DRedL is that the monotonicity of
recursive aggregations allows for efficient handling of monotonic input changes. This is necessary
for correctness and essential for efficiency. We have formally verified that DRedL is correct and
yields the exact same result as computing the query from scratch.
We integrate DRedL into the existing incremental program analysis framework IncA [Szabó

et al. 2016]. IncA is based on Datalog and supported the incremental maintenance of relations only,
but not user-defined aggregations. We extended the front-end, compiler, and runtime system of
IncA to support lattice operations. Specifically, we added lattice declarations and operations to
the front-end of IncA and preserve them through compilation. We changed the runtime system of
IncA to detect aggregations over lattice operations and use DRedL to incrementally maintain their
results. IncA is integrated into the MPS language workbench 1 and our implementation is available
open source.2

To evaluate the applicability and performance of IncA, we have implemented two Java analyses
in IncA adapted from the literature: Strong update points-to analysis [Lhoták and Chung 2011] as
well as character-inclusion and prefix-suffix string analysis [Costantini et al. 2011]. Our analyses
are intra-procedural, the points-to analysis is flow-sensitive, while the string analyses are flow-
insensitive. We ran performance measurements for both analyses on four real-world Java projects
with up to 70 KLoC in size. We measured the initial non-incremental run time and the incremental
update time after random as well as idiomatic code changes. Our measurements reveal that the
initialization takes a few tens of seconds, while an incremental update takes a few milliseconds
on average. Additionally, we also benchmarked the memory requirement of the system because
incrementalization relies on extensive caching. Our evaluation shows that the memory requirement
can grow large but not prohibitive.
In summary, we make the following contributions:

• We identify and describe the key challenge for incremental lattice-based program analysis:
cyclic reinforcement of lattice values (Section 2).
• We present the IncA approach for incremental lattice-based program analysis by embedding
in Datalog, requiring recursive aggregation (Section 3).

1https://www.jetbrains.com/mps
2https://github.com/szabta89/IncA
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• We develop and verify DRedL, the first algorithm to incrementally solve recursive Datalog
rules containing user-defined aggregations (Section 4).
• We implemented DRedL and IncA as open-source software (Section 5).
• We demonstrate the applicability and evaluate the performance of DRedL and IncA on two
existing Java analyses (Section 6).

2 CHALLENGES OF INCREMENTAL PROGRAM ANALYSIS

In this sectionwe introduce a running example to illustrate the challenge of incremental lattice-based
static program analysis. The example is a flow-sensitive interval analysis for Java, which reports
the possible value ranges of program variables. As a starting point, we choose logic programming
in Datalog because the use of Datalog for program analysis is well-documented [Green et al. 2013;
Smaragdakis and Bravenboer 2011], and there exist incremental Datalog solvers [Gupta et al. 1993;
Mitschke et al. 2014; Szabó et al. 2016]. It will become clear in this section that incremental program
analysis requires incremental recursive aggregation, which existing solvers fail to support.

Interval Analysis with Datalog. A flow-sensitive interval analysis keeps track of the value ranges
of variables at each control flow location. We first analyze a program’s control flow by constructing
a relation CFlow(src,trg), where each (src,trg) tuple represents an edge of the control flow
graph (CFG). We define CFlow(src,trg) through Datalog rules.
A Datalog rule r has form h :- a1,...,an where h is the head of the rule and a1,...,an are

the (possibly negated) subgoals. In standard Datalog (as opposed to some extensions of it [Green
et al. 2013]), the rule head and subgoals are of the form R(t1,...,tk) where R is the name of a
relation and ti is a term that is either a variable or a constant value. Each rule is interpreted as
a universally quantified implication: For each substitution of variables that satisfies all subgoals
ai , the head h must also hold. Given a rule head R(t1,...,tk), the satisfying substitutions of the
terms t1,...,tk yield the tuples of relation R. We refer the reader to [Green et al. 2013] for further
literature on Datalog. The following rules compute CFlow:

CFlow(from, to) : − Next(from, to), ¬IfElseStmt(from).

CFlow(while, start) : − WhileStmt(while), FirstChild(while, start).

CFlow(last, while) : − WhileStmt(while), LastChild(while, last).

First, control flows from a statement to its successor statement if the former is not an IfElseStmt

(or any other construct that redirects control flow). Second, control flows from a while head to the
first child in its body. And third, control flows from the last statement of a loop body to the loop
head. Figure 1B shows an example subject program with statements N1 to N5; its CFG as computed
by CFlow is shown in Figure 1A.
We now construct a flow-sensitive interval analysis on top of this CFG. We define a relation

IntervalAfter(stmt,var,iv), where a tuple (s,v,i)∈IntervalAfter describes that after exe-
cution of statement s, variable vmust take a value in interval i. Terms s and v are existing program
elements, and i is a computed value from the interval lattice. To compute the interval i of variable
v after statement s, the analysis must consider two cases. If s (re)assigns v, we compute v’s interval
based on the assignment expression. Otherwise v’s interval does not change, and we propagate the
interval associated with v from before the statement:

IntervalAfter(stmt, var, iv) : − AssignsNewValue(stmt, var), AssignedInterval(stmt, var, iv).

IntervalAfter(stmt, var, iv) : − ¬ AssignsNewValue(stmt, var), IntervalBefore(stmt, var, iv).

In order to figure out this previous interval, we query the CFG to find all control-flow predecessors
of the current statement and collect the variable’s IntervalAfter for each of the predecessors in
a relation PredecessorIntervals. As the interval containment partial order forms a lattice, we
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Fig. 1. Relations of the running example. (A) CFlow relation encoding the CFG of the subject program. (B)
Interval relation showing the value ranges of variables per CFG node. (C) - (E) Updates in the Interval relation
after changing the initializer of y through the series 0 → -1 → cond ? -1 : 0 → 0. Red color shows the
changes compared to previous values.

can obtain the smallest interval containing all predecessor intervals of the current statement. It is
computed by aggregating such predecessors using the least upper bound (lub) lattice operation:

PredecessorIntervals(stmt, var, pred, iv) : − CFlow(pred, stmt), IntervalAfter(pred, var, iv).

IntervalBefore(stmt, var, lub(iv)) : − PredecessorIntervals(stmt, var, _pred, iv).

Note that IntervalAfter and IntervalBefore are mutually recursive and also induce cyclic

tuple dependencies whenever CFlow is cyclic. This is typical for flow-sensitive program analyses.
We obtain the final analysis result by computing the (least) fixpoint of the Datalog rules. The
computation always terminates because the rules in our analysis are monotonic wrt. the partial
order of the interval lattice, and because we use widening to ensure that the partial order does
not have infinite ascending chains [Cousot and Cousot 2004]. For example, as shown in Figure 1B,
the interval analysis computes tuples (N2,x,[7,11]) and (N2,y,[0,∞]) for the loop head. Tuple
(N2,x,[7,11]) is the result of joining (N1,x,[7,7]) and (N5,x,[11,11]). Tuple (N2,y,[0,∞])
is the result of the fixpoint computation, joining all intermediate intervals lub([0,0], [0,1],

[0,2],...) of y before N2.

Incremental Interval Analysis. The analysis presented up to here is standard; we now look at
incrementalization. Existing incremental Datalog solvers cannot handle this analysis because they
do not support recursive aggregation. The root cause of the limitation is that realistic subject
programs typically have loops or recursive data structures. Analyzing them requires fixpoint
iteration over cyclic control flow or data-flow graphs, which, in turn, requires recursive aggregation.
Indeed, there is no known algorithm for incrementally updating aggregation results over recursive
relations with cyclic tuple dependencies.

The goal of an incremental analysis is to update its results in response to the subject program’s
evolution over time with minimal computational effort. For illustrative purposes, we consider three
changes 1 , 2 , and 3 of the initializer of y in Figure 1B, and then we review what is expected from
an incremental analysis in response to them. First, we change it from 0 to -1. Figure 1C shows the
updated iv column of relation IntervalAfter. While this change does not affect previous results
of x, the intervals assigned to y require an update at all CFG nodes. After a subsequent change
from -1 to (cond ? -1 : 0) we expect that only the interval at N1 gets updated (see Figure 1D)
because the analysis of the loop already considered y=0 before. Third, consider a final change from
(cond ? -1 : 0) to 0. Now the analysis does not have to consider y=-1 anymore, and we expect
an update to all lower bounds of the intervals assigned to y as shown in Figure 1E.
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How can we update a previous result with minimal computational effort in response to changes
1 , 2 , and 3 ? Fundamentally, we propagate program changes bottom-up through the analysis’
Datalog rules, starting at the changed program element. For example, a change to a variable’s
initializer directly affects the result of AssignedInterval, which is then used in the first rule of
IntervalAfter. If the new initializer has a different interval than the old initializer, AssignedIn-
terval propagates a derived change to IntervalAfter. A derived change leads to the deletion
of the old interval and the insertion of the new interval into the relevant relation. In turn, In-
tervalAfter propagates such a change to PredecessorIntervals, which propagates it to the
aggregation in IntervalBefore, which propagates it to the second rule of IntervalAfter, and so
on. This way we can handle change 1 , where we delete (N1,y,[0,0]), insert (N1,y,[-1,-1]),
and propagate these changes.
Handling change 2 efficiently is more challenging: We must augment our strategy to avoid

deleting (N1,y,[-1,-1]) before inserting (N1,y,[-1,0]), so that we can reuse previous results.
Failing to do that would result in re-computing the exact same result, which is unnecessary excess
work degrading efficiency.

The toughest problem is change 3 , where we delete (N1,y,[-1,0]) and insert (N1,y,[0,0]).
The problem manifests at CFG node N2 and is due to the loop in the CFG and the lub aggregation
over it. Before change 3 , N2’s CFG predecessors N1 and N5 report intervals [-1,0] and [-1,∞) for
y, as shown in Figure 1D. When propagating deletion (N1,y,[-1,0]) and insertion (N1,y,[0,0])

to N2, we expect to replace (N2,y,[-1,∞)) by (N2,y,[0,∞)). However, the aggregation in
IntervalBefore for N2 also has to consider interval [-1,∞) from N5 and lub([0,0], [-1,∞))

= [-1,∞). However, note how this yields the wrong result for N2 because the very reason for
[-1,∞) at N5 is the old initializer at N1, which just got deleted. We call this situation cyclic

reinforcement of lattice values. An incremental analysis must carefully handle cyclic reinforcements
to avoid computing incorrect analysis results. The design of an algorithm for executing program
analyses incrementally and correctly is the central contribution of this paper.

Problem Statement. Our goal is to incrementalize program analyses with recursive, user-defined
aggregations. Our solution must satisfy the following requirements:

Correctness (R1): An incremental analysis must produce the exact same result as re-running
the analysis from scratch. For example, it must rule out cyclic reinforcements.

Efficiency (R2): An incremental analysis must update its results with minimal computational
effort. We expect from an incremental analysis to be significantly faster than the correspond-
ing non-incremental analysis, so that we can use analyses in interactive editing scenarios.

Expressiveness (R3): Our solutions should apply systematically to any program analyses that
use (one or more) user-defined lattices and user-defined aggregation operators.

Note that we do not mention precision or recall because these are the responsibility of the analysis
developer when designing the lattices and their operations. There is no limitation on the design
of those by our solution. However, a more precise analysis might take more time to compute (e.g.
because we reach a fixpoint in more iterations), so it has an impact on performance, just like in a
non-incremental analysis.

3 INCREMENTAL LATTICE-BASED PROGRAM ANALYSIS WITH IncA

IncA is a framework for specifying and incrementally executing program analyses that perform
recursive lattice-based aggregations. IncA provides a DSL for the specification of lattices and
program analyses. As we describe in Section 5, the DSL compiles to Datalog-style rules similar to
the ones we have shown in Section 2. In the present section, we focus on the runtime system of
IncA and how it executes analyses incrementally.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 139. Publication date: November 2018.
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As pointed out in Section 1, this work extends our prior work on incremental program analysis.
The prior version of IncA could only incrementally analyze relations over program elements; for
example, we used it for an incremental points-to analysis for C. However, because of fundamental
limitations in the runtime system, there was no support for lattices nor aggregation over them. In
this paper, we solve these limitations by adding support for lattice-based aggregations, which, as
we have argued above and validate in Section 6, enables a much wider range of program analyses.

3.1 Incremental Execution of Non-Recursive Analyses

The runtime system of IncA incrementally computes relations described by Datalog-style rules. We
briefly review program representation, handling of program changes, and non-recursive aggrega-
tions first. Then we discuss recursive analyses in Section 3.2.

Program representation and change. We represent the abstract syntax tree (AST) of a program in
base relations (extensional predicates in Datalog). We use a separate base relation for each AST node
type, for example, IfElseStmt and AssignStmt. We use additional base relations to connect AST
nodes, for example, Next(prev,next) for subsequent nodes in a list and Parent(child,parent)

to represent the containment hierarchy. We rely on the IDE to incrementally maintain the base
relations for the subject program, either by incremental parsing [Ramalingam and Reps 1993], non-
incremental parsing with tree diffing [Dotzler and Philippsen 2016], or projectional editing [Voelter
et al. 2014]; we use the latter.

Program analyses and analysis results. Traditionally, a program analysis traverses the AST of
a program to extract analysis results. Correspondingly, in IncA, program analyses query the
base relations. That is, program analyses are Datalog-style rules that define derived relations. For
example, in Section 2 we showed rules that define the derived relation CFlow based on IfElseStmt,
Next, and others. Derived relations can also make use of the contents of other derived relations,
which is useful for decomposing an analysis into multiple smaller parts. For example, we defined
PredecessorIntervals based on CFlow.

IncA allows updates to derived relations to be observed. For example, we can extend our interval
analysis to define a derived relation BoundedArrayAccess that contains a tuple for each array
access where the interval of the index is guaranteed to be within bounds of the array. By observing
this relation, an IDE can incrementally highlight safe and (possibly) unsafe array accesses.

Change propagation. IncA ensures that derived relations are up-to-date; as tuples are inserted
and deleted from base relations, IncA propagates these changes to dependent derived relations.
Effectively, IncA maintains a dependency graph between relations and caches their tuples. The
base relations are sources of changes, and the IDE-observed derived relations are sinks of changes.

IncA propagates tuples from sources to sinks, and it skips the propagation where a relation is not
affected by an incoming change. This can happen in two cases: (i) The cache of the derived relation
already accounts for the tuple, or (ii) a Datalog rule ignores the tuple entirely. The first case occurs
when the tuple was already derived before through an alternative derivation, which can happen
because there can be alternative bodies for the same Datalog rule head. For example, change 2 in
Figure 1B was skipped at statement N2 because the previous analysis result remained valid. The
second case for skipping occurs when an incoming tuple simply could not affect the contents of a
relation. For example, boolean variables are irrelevant for our interval analysis. This manifests in
those Datalog rules that inspect the right-hand sides of assignments, but never query relations such
as AndExpr that represent boolean expressions. The IncA compiler optimizes the subject analyses
to avoid the propagation of irrelevant changes, see more details in [Szabó et al. 2016].
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Finally, the occurrence of negated subgoals in a rule’s body leads to a stratification of change
propagation. That is, the relation that occurs negated must be fully up-to-date before we can draw
conclusions about the absence of a tuple. For example, in our control-flow analysis, we must fully
update relation IfElseStmt before we can derive changes to CFlow based on it. Moreover, when
CFlow uses ¬IfElseStmt, an insertion into IfElseStmt triggers deletion(s) from CFlow, and a
deletion from IfElseStmt triggers insertion(s) into CFlow. IncA’s change propagation respects
negation. Stratification requires that there is no recursion through negation because then we could
not fully compute the negated relations before computing the non-negated ones.

Non-recursive aggregation. In contrast to other incremental systems [Gupta and Mumick 1995],
IncA supports aggregations over recursive relations. Here, however, we first review how IncA
handles non-recursive aggregations, which, while much simpler, is an important stepping stone.
Formally, an aggregating Datalog rule has the following form:

Agg(t1,...,tk,α(v)) :- Coll(t1,...,tk,_x1,...,_xl ,v).

Here the aggregand column v and aggregate result column α(v) are both lattice-valued, and α
is an aggregation operator, i.e. a mapping from a multiset of lattice values to a single lattice value.
Without loss of generality (as shown below) we assume this is the only rule with Agg in the head.
We call Agg the aggregating relation and Coll the collecting relation; t1,. . . ,tk are the grouping
variables, while _x1,. . . ,_xl are auxiliary variables.

For example, in the interval analysis from Section 2, PredecessorIntervals served the role of
Coll whereas IntervalBefore served the role of Agg, while α was lub. We used stmt and var

as grouping variables (the value of var after statement stmt), and we used pred as an auxiliary
variable to enumerate the interval values of all CFG predecessors.

For each substitution of the grouping columns, the aggregand values v in Coll, if any, are mapped
by α into the aggregate result column of the single corresponding tuple in Agg. Given a set of
grouping values t1,...,tk , different sets of values _x1,...,_xl can have the same aggregand v

associated with them, so α aggregates over a multiset of values (instead of just a simple set).
Note that the above form of the aggregating rule does not restrict expressiveness (R3): the

IncA language actually allows multiple alternative rules for Agg, each with several subgoals. The
compiler then introduces a helper relation Coll that is derived using these multiple rule bodies,
and then aggregates Agg from Coll.

We can incrementalize non-recursive aggregations by (i) incrementally maintaining Coll as usual
and (ii) incrementally maintaining the aggregate result α(v) of each group whenever an aggregand
v is inserted or deleted from the collecting relation. IncA specifically supports (see Section 4.4)
the latter kind of incrementality for aggregation operators that are induced by associative and
commutative binary operations, e.g. lub (least upper bound) or glb (greatest lower bound).
The above form of aggregating rules is independent of whether the aggregation is recursive

or not. An aggregation is recursive if Coll also depends on Agg (e.g. see dependencies between
PredecessorIntervals, IntervalAfter, and IntervalBefore in Section 2). This leads us to the
next part where we discuss recursive analyses.

3.2 Incremental Execution of Recursive Analyses

Our strategy for incrementalizing non-recursive analyses is relatively simple once the analysis is
formulated as a relational computation (e.g., through our DSL, Section 5): We propagate changes
through the dependency graph, we are careful about negations, and we incrementally maintain
aggregate results. Adding recursion, the process is severely complicated because of cyclic reinforce-
ment, as shown in Section 2.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 139. Publication date: November 2018.
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To deal with recursion, we modify our approach in two steps. First, we add recursive relations

but the aggregations must remain non-recursive. This enables the incrementalization of control
flow analysis as well as set-based data-flow analyses and represents the current state of the art of
incremental Datalog solvers (including the prior version of IncA as documented in [Szabó et al.
2016]). Second, we add recursive aggregations on values of lattices with monotonic lattice operators.
This enables the incrementalization of lattice-based data-flow analyses and goes beyond the state of
the art. We carefully engineer our solution to handle cyclic reinforcement of lattice values correctly,
thus satisfying Correctness (R1).

Recursive relations. In contrast to non-recursive relations, recursive relations require a fixpoint
computation. That is, an insertion into a recursive relation can trigger subsequent insertions,
which can trigger subsequent insertions, and so on. Consider the following recursive relation that
computes the transitive closure of CFlow:

CFlowReach(from, to) : − CFlow(from, to).

CFlowReach(from, to) : − CFlow(from, step), CFlowReach(step, to).

When adding a statement stmt to the program, we trigger an insertion of (pred,stmt) into
CFlow for stmt’s predecessor. This triggers subsequent insertions such as (predpred,stmt) into
CFlowReach for pred’s predecessor, but eventually CFlowReach stabilizes when no new tuples can
be derived.
Incrementally deleting tuples from a recursive relation is more difficult because of cyclic rein-

forcement of tuples. If a tuple was derived multiple times within a cycle, deleting one derivation
does not necessarily invalidate the other derivations, but invalidating all derivations is sometimes
necessary to obtain correct results. This is similar to the cyclic reinforcement of lattice values we
discussed in Section 2, with an important difference: The cyclic reinforcement of tuples does not
involve aggregations.

There is a generic solution called Delete and Re-derive (DRed) [Gupta et al. 1993] for supporting
deletions in spite of cyclic reinforcement of tuples. The basic strategy of DRed is to first delete
the tuple and everything that was derived from it, ignoring alternative derivations of that tuple
for now. This is an over-approximation and, in general, will delete too much. After the deletion
reaches a fixpoint, DRed starts a re-derive phase to insert back all those tuples that can be derived
from the remaining ones that were left intact during the delete phase.

Recursive aggregation. The key technical contribution of our paper is to develop a novel algorithm
for incremental recursive aggregation in Datalog. As we explained in Section 2, the main challenge
is the cyclic reinforcement of lattice values (in contrast to cyclic reinforcement of tuples, as discussed
above). Specifically, change 3 in Figure 1B induced the deletion of tuple (N1,y,[-1,0]), which
should have triggered the deletion of (N2,y,[-1,∞)). However, because N2 occurred in a loop,
there was cyclic reinforcement between the lattice values: N5 still reported the interval [-1,∞),
even though the very reason for that value is that the initial interval was [-1,0] previously. At
this point, we did not know how to proceed.
Why can we not just apply DRed here? How is cyclic reinforcement of lattice values different

from cyclic reinforcement of tuples? The main difference is that updating an aggregate value
induces both a deletion of the old value and an insertion of the new value. However, DRed first
processes all deletions and postpones insertions until the re-derive phase. Hence, one issue is that
lattice values require an interleaving of the delete and re-derive phases, which violates the contract
of DRed. A second issue is more subtle. Let’s say we allow interleaving. When deleting the old
aggregate value, DRed’s delete phase will delete all tuples derived from it. In particular, it will
delete the new aggregate value, which we were just about to insert.
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To resolve these issues, we developed a novel algorithm called DRedL. It generalizes DRed
to support incremental computation of recursive monotonic aggregations over lattices. Given a
partially ordered set (M,⊑), an aggregation operator α is ⊑-monotonic if α(M) ⊑ α(M ∪ {m})

⊑ α(M ∪ {m’}) for all multisets of values M ⊆ M and all values m,m’ ∈ M with m ⊑ m’. That is,
the aggregate result of a monotonic aggregation increases with the insertion of any new tuple or
with the increasing replacement of any existing tuple in the collecting relation.

Crucially, our algorithm recognizes monotonicity at runtime when handling the update of an
aggregate result. Given a ⊑-monotonic aggregator α , whenever DRedL sees a deletion (t1,...,

tk,old) from a relation and an insertion (t1,..., tk,new) to the same relation with old ⊑ new,
it recognizes that together they represent an increasing replacement of a lattice value. We call such
a change pair a ⊑-increasing replacement, and deletions that are part of a ⊑-increasing replacement
do not need to go through a full delete phase. This way, deletions of old aggregate results will not
invalidate cyclically dependent lattice values and, in particular, the new aggregate values. This
allows DRedL to perform correct incremental maintenance even in presence of recursive aggregation.
We describe the details of DRedL in Section 4, with a focus on correctness and efficiency; its novelty
over the state-of-the-art (esp. DRed) will be discussed in Section 7.

While in Section 4 we explain DRedL in its full generality, its main application is the incremen-
talization of program analyses that use custom lattices. Program analyses routinely use lattices
to approximate program behavior [Nielson et al. 2010]. Without recursive aggregation, only the
power set lattice can be represented because recursive tuple insertion and deletion can model
set union and intersection. DRedL’s support for recursive aggregation lifts this limitation and
enables the incrementalization of program analyses over any user-defined lattice. In Section 6,
we show how DRedL performs on strong-update points-to [Lhoták and Chung 2011] and string
analyses [Costantini et al. 2011].

4 INCREMENTAL RECURSIVE AGGREGATIONWITH DREDL

We design DRedL, an incremental algorithm for solving Datalog rules that use recursive aggregation
over lattices. Given a set of Datalog rules, DRedL efficiently and transitively updates derived relations
upon changes to base relations.
DRedL propagates changes to derived relations in the four steps described below, which are

similar to earlier algorithms (notably DRed). However, there are key differences at each step,
necessitated by the support for lattice aggregation, that will be discussed in Section 7.

(1) Change splitting: Split incoming changes into monotonic changes (increasing replacements
and insertions) and anti-monotonic changes (deletions that are not part of increasing replace-
ments). The crucial novelty over the older DRed algorithm is the lattice-aware recognition of
increasing replacements at runtime, which heavily impacts the other three steps as well.

(2) Anti-monotonic phase: Interleaved with the previous step, we process anti-monotonic changes
by transitively deleting the relevant tuples and everything derived from them. This is an
over-approximation and, in general, will delete too much, but, importantly, over-deletions
guarantee that we compute correct results in the face of cyclic reinforcements.

(3) Re-derivation: Fix the over-approximation of the previous step by re-deriving deleted tuples
from the remaining tuples.

(4) Monotonic phase: Process monotonic changes. For insertions, we insert the new tuple and
transitively propagate the effects. For increasing replacements, we simultaneously delete the
old tuple and insert the new tuple and transitively propagate their effects. By propagating
deletions and insertions of increasing replacements together, we ensure that dependent
relations will in turn recognize them as increasing replacements and handle them accordingly.
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In the remainder of this section, we summarize the assumptions of DRedL on Datalog rules,
introduce necessary data structures for DRedL, present DRedL as pseudocode, explain how DRedL
incrementalizes aggregations, and present a proof sketch of our algorithm.

4.1 Assumptions of DRedL on the Input Datalog Rules

In order to guarantee that DRedL computes a correct (R1) analysis result efficiently (R2), the input
Datalog rules must meet the following assumptions:

Monotonic recursion (A1): We call a set of mutually recursive Datalog rules a dependency
component. DRedL assumes that each dependency component respects a partial order ⊑ of
each used lattice (either the natural order of the lattice, or its inverse). Given this order, the
relations represented by the rules must only recur ⊑-monotonically: If they are updated by
insertions or ⊑-increasing replacements, then recursively derived results may only change
by insertions or ⊑-increasing replacements. This assumption has important implications:
Abstract interpretation operators and aggregations must be monotonic within a dependency
component wrt. the chosen partial order. The analysis developer needs to ensure operators
are monotonic. Additionally, recursion through negation is not allowed: IncA automatically
rejects analyses that do not conform to this requirement (Section 5).

Aggregation exclusivity (A2) Alternative rules deriving the same (collecting) relation must
produce mutually disjoint results, if the relation is in a dependency component that uses
aggregation at all. This is important for ruling out cyclic reinforcements.

Cost consistency (A3) Given a non-aggregating relation R(t1,...,tk,v) with lattice-typed
column v, we require that columns (t1,...,tk) uniquely determine column v.

No infinite ascending chains (A4) DRedL computes the least fixpoint of the Datalog rules.
To ensure termination and as is standard in program analysis frameworks, DRedL requires
that the used lattices do not contain infinite ⊑ -ascending chains [Atiyah and Macdonald
1994, Section 6] for any ⊑ that is chosen as part of A1. Fulfilling this requirement may
require widening [Cousot and Cousot 2004], as shown in our interval analysis in Section 2.

Assumption A1 allows a dependency component to use and aggregate over several lattices. For
each of those, the component must be monotonic; this is the responsibility of the analysis developer.
In many typical lattice analyses (e.g. where aggregators are idempotent like lub, glb), the IncA
compiler can automatically guarantee A3 by transforming the IncA analysis code (using the idea
in [Ross and Sagiv 1992] as detailed in Section 5.3). In other cases, it is the responsibility of the
analysis developer. For non-aggregating standard Datalog programs A2 trivially holds.

We validated that these assumptions suffice for correctness (R1) by constructing a proof sketch
(Section 4.5). We also validated that these assumptions do not inhibit expressiveness (R3) for
incremental program analyses by construction of IncA (Section 5) and case studies (Section 6).

4.2 Support Data Structures

The anti-monotonic step of DRedL performs an over-deletion, after which some tuples may need to
be re-derived; while the monotonic phase performs monotonic deletions that do not always have
to be propagated. To make these decisions, we adapt support counts [Gupta et al. 1993] for tuples,
and we design a new data structure called support multisets for aggregate results:

• Support count: The support count of a tuple is equal to the number of alternative derivations
a tuple has within a relation (across all alternative rules and local variables). Given a tuple t
in relation R, Support#R(t) represents the support count of t.
• Support multiset: The support multiset of an aggregate result contains the individual aggre-
gands that contribute to it. Formally, given an aggregating rule as in Section 3.1, the support
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1procedure maintainIncrementally(all) {

2for C in top. order of dep. components {

3effect:= immediateConsequences(C, all)

4(anti,mon):= changeSplitting(effect)

5deleted:= ∅

6while (anti != ∅) {//ANTI-MONO - fixpoint

7new:= updateAnti(anti); deleted ∪= new

8newEffect:= immediateConsequences(C, new)

9(anti,mon):=changeSplitting(newEffect ∪mon)

10}

11red:= directRederive(deleted) // RE-DERIVE

12mon ∪= immediateConsequences(C, red)

13all ∪= deleted ∪ red

14while (mon != ∅) { // MONO - fixpoint

15new:= updateMon(mon); all ∪= new

16mon:= immediateConsequences(C, new)

17}}}

36procedure directRederive(deleted) {

37red:= ∅

38foreach change in deleted {

39R:= rel (change)

40if (R is non-aggregating) {

41if (Support#
R
( |change |) > 0)

42red ∪= { + |change | }

43} else { // aggregating: R(t,α(v)):-...

44let R(t,v) = |change |

45if (SupportMS
R

(t) != ∅) {

46red ∪= { +R(t,α(SupportMS
R

(t))) }

47}

48}

49}

50update stored relation contents by red

51return red

52}

18procedure updateAnti(body) {

19head:= ∅

20foreach change in body {

21R:= rel (change); h:= πR (change)

22if (R is non-aggregating) {

23Support#
R
( |h |) -= 1

24if ( |h | ∈ R)

25head ∪= {h}

26} else { // aggregating: R(t,α(v))

27let R(t, v) = |h |

28SupportMS
R

(t) -= {v}

29if (∃w. (t, w) ∈ R)

30head ∪= {−R(t, w)}

31}

32}

33update stored relation contents by head

34return head

35}

53procedure updateMon(body) {

54head:= ∅

55foreach change in body {

56R:= rel (change); h := πR (change)

57if (R is non-aggregating) {

58Support#
R
( |h |) += sign(h)

59if (support changed to or from 0)

60head ∪= {h}

61} else { // aggregating: R(t,α(v))

62let R(t, v) = |h |

63head ∪= {-R(t,α(SupportMS
R

(t)))}

64if (sign(h) == -1) { SupportMS
R

(t) -= {v} }

65else { SupportMS
R

(t) += {v} }

66head ∪= {+R(t,α(SupportMS
R

(t)))}

67}}

68update stored relation contents by head

69return head

70}

Fig. 2. The DRedL algorithm in pseudocode. The entry point is procedure maintainIncrementally..

multiset SupportMS
Agg

associates, to each substitution of grouping variables of aggregating rela-

tion Agg, the aggregands in the group from Coll. In other words, SupportMS
Agg

(t1,...,tk) is
the multiset of values v that satisfy Coll(t1,...,tk,_x1,...,_xl,v) for some _x1,...,_xl .

These support data structures are used and incrementally maintained throughout DRedL. As
Support#R is no larger than R and Support

MS
Agg

is no larger than Coll, there is no asymptotic overhead.

4.3 DRedL Algorithm

We present the DRedL algorithm as pseudocode in Figure 2. The entry point is procedure main-
tainIncrementally, which takes a changeset all as input and updates affected relations. In the
code, we use italic font exclusively for variables that store changesets.

As usual for incremental Datalog solvers, DRedL iterates over the dependency components of the
analysis in a topological order (Line 2). We exploit that recursive changes within each component
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are required to be monotonic (Assumption A1). We start in Line 3 by computing the immediate

consequences of changes in all on the bodies of the Datalog rules in the current component C.
That is, for a Datalog rule h :- a1,...,an in C, we compute the consequences of the changes on
a1,...,an first. We omit the details of immediateConsequences, but the implementation relies
on straightforward algebraic differencing from the Datalog literature [Gupta and Mumick 1995].
Technically, the interim result effect is expressed on rule bodies and not yet projected to rule
heads like h (the actual relations to be maintained). This allows us to maintain support counts and
support multisets for alternative body derivations.
If component C uses aggregation, in Line 4 we perform change splitting of changeset effect,

according to the ⊑ of Assumption A1. We compute the set of monotonic changes mon from effect

by collecting all insertions and those deletions that are part of an increasing replacement:

mon = {+r (t1, . . . , tk ) | + r (t1, . . . , tk ) ∈ effect}

∪ {−r (t1, . . . , tk , cold ) | − r (t1, . . . , tk , cold ) ∈ effect,+r (t1, . . . , tk , cnew ) ∈ effect, cold ⊑ cnew }

Here and below we write +r (t1, . . . , tk ) for a tuple insertion and −r (t1, . . . , tk ) for a deletion. The
set of anti-monotonic changes consists of all deletions not in mon. Note that for a component C that
does not use aggregation, mon simply consists of all insertions and anti consists of all deletions.
Next, we perform the anti-monotonic phase on changeset anti iteratively until reaching a

fixpoint (Line 6-10). In each iteration, we first use procedure updateAnti (discussed below) to
update the affected support data structures and relations (Line 7). This yields changes new to rule
heads defined in C. We propagate the new changes to deleted because they are candidates for a
later re-derivation. But we also propagate the new changes to C to handle recursive effects (Line 8),
yielding recursive feedback in newEffect. By design, the anti-monotonic phase within a dependency
component only produces further deletions and never insertions. We merge the newEffect changes
with the monotonic changes mon and split them again because a new change may cancel out an
insertion or form an increasing replacement. Note that this can be done efficiently by indexing the
changesets for aggregating relations over the grouping variables. This way we can efficiently query
relevant lattice values when deciding if a pair needs to be split up or formed.
Procedure updateAnti processes anti-monotonic changes of rule bodies and projects them to

changes of the rule heads while keeping support counts and support mutlisets up-to-date. We
iterate over the anti-monotonic body changes, all of which are deletions by definition. For each
change, we obtain the changed relation symbol R, and we project with πR the body change to the
corresponding change of the relation’s head h (Line 21). While h is a change, we write |h| to obtain
the change’s absolute value, that is, the tuple being deleted or inserted. If R does not aggregate, we
decrease the support count of h and we propagate a deletion of h if it is currently derivable in R.
If instead R aggregates, we decompose h to obtain the grouping terms t and the aggregand v. We
delete v from the support multiset of t . Furthermore, if R currently associates an aggregation result
w to t , we propagate the deletion of said association from R. Note that the associated aggregation
result w is unique by Assumption A3, and we delete it as soon as any of the aggregands is deleted. It
is important to point out that a positive support count or non-empty support multiset after deletions
is no evidence for the tuple being present in the relation, due to the possibility of a to-be-deleted
tuple falsely reinforcing itself through cyclic dependencies. We will put back tuples that still have
valid alternative derivations, and we will put back aggregate results computable from remaining
aggregands in the re-derivation step of DRedL. Finally, we update the stored relations and return
head for recursive propagation in the main procedure maintainIncrementally.

Back in maintainIncrementally, we proceed with re-derivation to fix the over-deletion from
the anti-monotonic phase (Line 11-12). To this end, we use procedure directRederive to re-derive
tuples that were deleted during the anti-monotonic phase but still have support. The input to the
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procedure is deleted, and we iterate over the deletions in the changeset. If R does not aggregate,
we use the support count: A positive support count indicates the tuple is still derivable, and we
propagate a re-insertion (Line 41-42). If instead R aggregates, we use the support multiset: A
non-empty support multiset indicates that some aggregand values are left (Line 45). In this case,
we recompute the aggregation result by applying the aggregation operator α and propagating a
re-insertion (Line 46). Due to the support multiset, we do not need to re-collect aggregand values,
saving precious time. In Section 4.4, we explain how we further incrementalize the aggregation
computation (blue highlighting in the code). We return to procedure maintainIncrementally by
storing the re-derived tuples in red. Because these tuples, together with the previously deleted
ones, can trigger transitive changes in downstream dependency components, we add deleted and
mon to all (Line 13). We perform a signed union, so ultimately if a tuple was deleted but then we
could re-derive it, then that tuple will not change all. Note that re-derivation triggers insertions
only and hence only entails monotonic changes that we handle in the final step of DRedL.
Finally, DRedL runs the monotonic phase until a fixpoint is reached (Line 14-16). In each

iteration, we use procedure updateMon to compute the effect of the monotonic changes. Procedure
updateMon is similar to updateAnti, but updateMon handles deletions as well as insertions due
to increasing replacements. If R does not aggregate (Line 57-60), we update the support count of
h according to the tuple being an insertion (sign(h)=1) or a deletion (sign(h)=-1). If instead R

aggregates (Line 61-66), we delete the old aggregate result and insert the new one. To this end, we
compute the aggregate result over the support multiset before and after the change to the support
multiset. We collect all tuple deltas and return them to maintainIncrementally, which continues
with the next fixpoint iteration. The implementation also checks if the produced tuple deltas may
cancel each other out, which is quite common with idempotent aggregation functions such as lub.
Procedure maintainIncrementally executes the four steps of DRedL for each dependency

component C until all of them are up-to-date. While it may seem that a change requires excessive
work, in practice many changes have a sparse effect and only trigger relatively little subsequent
changes. We evaluate the performance of DRedL in detail in Section 6. One potential source of
inefficiency in DRedL is computing the aggregation result over the support multiset (highlighted in
blue in Figure 2). We eliminate this inefficiency through further incrementalization.

4.4 Incremental Aggregator Function

Procedures updateAnti and updateMon recompute the aggregate results based on support multisets.
A straightforward implementation, that reapplies aggregation operator α on the multiset contents,
will requireO (N ) steps to recompute the aggregate result from a multiset of N values. For example,
a flow-insensitive interval analysis on a large subject program may write to the same variable N
times. For large N , this can degrade incremental performance as computational effort will linearly
depend on input size N (instead of the change size), which contradicts Efficiency (R2).
Given associative and commutative aggregation operators (like glb or lub), our idea is to

incrementalize the aggregator functions themselves using the following approach. Independently
from the partial order of the lattice we aggregate over, we take an arbitrary total order of the
lattice values (e.g., the order of memory addresses). Using this order, we build a balanced search
tree (e.g. AVL [Sedgewick and Wayne 2011, Chapter 3.3]) from the aggregands. At each node, we
store additionally the aggregate result of all aggregands at or below that node. The final aggregate
result is available at the root node. Upon insertion or deletion, we proceed with the usual search
tree manipulation. Then we locally recompute the aggregate results of affected nodes and their
ancestors in the tree. At each node along the path of lengthO (loдN ), the re-computation consist of
aggregating in O (1) time the locally stored aggregand with intermediate results. In sum, this way
we can incrementally update aggregate results in O (loдN ) steps, while using O (N ) memory.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 139. Publication date: November 2018.



139:14 Tamás Szabó, Gábor Bergmann, Sebastian Erdweg, and Markus Voelter

4.5 DRedL Semantics and Correctness Proof

Our approach relies on the formal semantics of recursive monotonic aggregation given by Ross
and Sagiv [Ross and Sagiv 1992]. We recap here the most important semantical aspects (taken from
[Ross and Sagiv 1992]), and then present a novel proof sketch for the correctness of DRedL.

4.5.1 Semantics of Recursive Aggregation. A database or interpretation assigns actual instance rela-
tions to the relation names (predicates) appearing in the Datalog rules. A database is cost consistent
if it satisfies the condition in Assumption A3, i.e. lattice columns are functionally determined by
non-lattice columns in all relations. Let the set of variables that appear in the body (in any of the
subgoals) of a Datalog rule r be Vars . Then, given a concrete database, one can evaluate the body
of a rule r to find all substitutions to Vars that satisfy all subgoals in the body.

Amodel is a cost-consistent database that satisfies all Datalog rules, i.e. any given derived relation
is perfectly reproduced by collecting or aggregating the derivations of all those rules that have this
relation in the head. A Datalog semantics assigns a unique model to a set of Datalog rules (where,
technically, base relations are also encoded as rules that only use constants, so called extensional

rules). In the following, we present the semantics of Ross and Sagiv by induction on dependency
components, i.e. when considering the relations defined by a given component, we assume that we
already know the semantics of all other components it depends on, so they can be equivalently
substituted by constants and considered as base relations.
For such a single dependency component, by Assumption A1 we have a partial order ⊑ for

each lattice used. We can thus lift this notation to define a partial order (shown to be a lattice as
well) on databases; we say that D1 ⊑ D2 iff for each tuple t1 ∈ D1, there is a tuple t2 ∈ D2 in the
corresponding relation such that t1 ⊑ t2. For cost-consistent databases, this is equivalent to saying
D2 can be reached from D1 by tuple insertions and ⊑-increasing replacements.
It has been shown [Ross and Sagiv 1992] that if a set of Datalog rules satisfy Assumption A1

and A3, then there is a unique minimal model Mmin, i.e. all models M have Mmin ⊑ M . Thus the
minimal model is considered as the semantics of the Datalog rules with recursive aggregation.

4.5.2 Correctness of the Algorithm - Proof Sketch. Following [Green et al. 2013; Motik et al. 2015;
Ross and Sagiv 1992], we give an informal sketch to prove the proposed DRedL algorithm correct
(R1), given the assumptions3 from Section 4.1. We do not include proofs for the correctness of
well-known techniques used, such as algebraic differencing [Gupta and Mumick 1995] or semi-naïve
evaluation [Green et al. 2013].

Specifically, we will show that DRedL terminates and produces the minimal model, while keeping
its support data structures consistent, as well. As usual, we will conduct the proof using (i) induction
by update history, i.e. we assume that DRedL correctly computed the results before given input
changes were applied, and now it merely has to maintain its output and support data structures in
face of the change; as well as (ii) componentwise induction, i.e. we assume that the result for all
lower dependency components have already been correctly computed (incrementally maintained),
and we consider them base relations.

Preliminaries. Let Bold be the base relations (input) before a changeset ∆, inducing minimal model
Mold

min, which DRedL correctly computed by the induction hypothesis; let B = Bold ∪ ∆ be the new
input and Mmin the new minimal model, which DRedL shall compute. Let D∩ be the ⊑-greatest
lower bound of the two minimal models (exists since databases themselves form a lattice [Ross and
Sagiv 1992]); essentially it is the effect of applying the anti-monotonic changes only.

3 To prove general fixpoint convergence, Ross and Sagiv required each lattice to be a complete lattice. We have dropped
this assumption in favor of Assumption A4, which will also suffice for our goals. Note that we require the finite height of
ascending chains only, thus strictly speaking our assumption is neither stronger nor weaker than the original one.
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Let we denote by Dinit = D0
anti the current database (state of base and derived relations) when

DRedL starts to process the dependency component (with changes in base relations already applied),

by Di
anti after iteration i of the anti-monotonic phase, by D

final
anti at the end of the anti-monotonic

phase, by Dred = D0
mon after the immediate re-derivations, by Di

mon after iteration i of the monotonic

phase, and finally by D
final
mon after the monotonic phase.

Monotonicity. Iterations of the anti-monotonic phase only delete tuples, so Dinit ⊒ Di
anti ⊒ D

final
anti .

Re-derivations are always insertions, and each re-derived tuple tred compensates for a tuple tanti ⊒
tred (tanti = tred for non-aggregating relations) that was deleted during the anti-monotonic phase;

therefore we also have Dfinal
anti ⊑ Dred ⊑ Dinit . Finally, by induction on i and by Assumption A1, each

iteration i of the monotonic phase performs monotonic changes, thus Dred ⊑ Di
mon ⊑ D

final
mon .

Termination. The anti-monotonic phase must terminate in finite time as there are finite number of
tuples to delete. The immediate re-derivation affects at most as many tuples as the anti-monotonic
phase, thus it terminates. The monotonic phase must reach its convergence limit in a finite number
of steps as well, for the following reasons. Given a finite database of base relations, a finite amount of
non-lattice values are available. Due to Assumption A3 it follows that the output of the component
is also finite. As the monotonic phase never deletes tuples, it can only perform a finite number of
insertions to reach this finite output size. Finally, it may only perform a finite number of ⊑-increasing
replacements due to Assumption A4.

Upper bound and support consistency. We now show that after the anti-monotonic phase, interme-
diate database states are upper bounded by the desired output, and that support data structures are
consistent: A tuple t is (i) contained in the database or (ii) has a positive support count or nonempty
support multiset only if ∃t ′ ∈ Mmin with t ⊑ t ′.
The anti-monotonic phase deleted all tuples that, in any way, depended transitively on the

anti-monotonic part of input deletions, therefore those that remained must have had support not

impacted by the deletions, thus Dfinal
anti ⊑ D∩ ⊑ Mmin. As rules are monotonic by Assumption A1,

and the support data structures are correctly maintained (using algebraic differencing [Gupta and

Mumick 1995] by immediateConsequences), any tuple t that has support in state Dfinal
anti must have

a t ′ that has support in (and thus contained in)Mmin. This means that re-derivation only inserts
tuples upper bounded by the minimal model, so Dred ⊑ Mmin.
A similar argument applies during the monotonic phase. Assume by induction that Di−1

mon ⊑

Mmin. All tuples t that are to be inserted in iteration i due to having support (as computed by
immediateConsequences and reflected in the support data structures by updateMon), must have
(by Assumption A1 and the induction hypothesis) a corresponding t ′ ∈ Mmin with t ⊑ t ′, thus

Di
mon ⊑ Mmin still holds. Eventually, D

f inal
mon ⊑ Mmin.

Cost consistency. We will show that the output Df inal
mon is cost consistent. Base relations are

considered cost consistent due to Assumption A3 and the assumed correctness of DRedL for lower
dependency components. Therefore it is sufficient to check the cost consistency of derived relations,
which we do by indirect proof. By the induction hypothesis, the state of the algorithm before the
change was the cost-consistent model Mold

min. The change in base relations did not directly affect

derived relations and the anti-monotonic phase only deleted tuples, so Dfinal
anti is cost-consistent as

well. During the re-derive and monotonic phase, tuples are only inserted if they have support, so
cost-consistency is only violated if tuples t , t ′, agreeing on all non-lattice columns, both had
support. Let us assume such a situation arises, and we prove that it can actually never happen.
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(module) m ::=module n import n {mc }

(module content) mc ::= f | l

(lattice) l ::= lattice L {constructors{c } lop }
(lattice name) L ::= name
(type in lat. def.) TL ::= AST node type | Java base type | String | L
(constructor) c ::= n (TL )
(lattice op) lop ::= def n (n : TL ) : TL = lopb
(lattice op body) lopb ::= Java code + lattice constructors and operations
(visibility) vis ::= private | public

(function) f ::= vis def n (n : TR ) : TR = alt

(type in rel. code) TR ::= AST node type | L | L/lop

(alternative) alt ::= s
(statement) s ::= n := e | assert cond | return e
(condition) cond ::= e == e | e != e | e instanceOf TR |

e not instanceOf TR | undef e

(expression) e ::= n | l it | e .n | n (e ) | n+(e ) | L.n (e )

(literal) lit ::= number | string | enum | boolean
(name) n ::= name

Fig. 3. Syntax of IncA. The highlighted parts show the additions in comparison to the prior version of the
IncA DSL [Szabó et al. 2016].

Due to Assumption A3, the Datalog rules themselves are specified to obey cost consistency,
so t and t ′ both can’t be transitively derivable from base relations at the same time. Thus one of
them, say t , must be an error in the support data structure, cyclically reinforcing itself. Such cyclic
reinforcement can form for t if it was previously present, then one of its derivations is deleted
(which is possible in the monotonic phase via an increasing replacement), but a positive support
count still remained, so it was left in the database.

Because of the way how change splitting is performed, increasing replacements in the monotonic
phase are only permitted for dependency components that use aggregation. By Assumption A2,
alternative rules for the same relation must produce disjoint results, so all derivations of t must
stem from the same rule, and may only differ in local variables of the rule. Therefore an increasing
replacement that has removed one such derivation must have removed all of them, decreasing the
support count of t to zero. This contradiction concludes the indirect proof.

Model. The monotonic phase acts as a standard bottom-up Datalog evaluation using semi-naïve
(differential) iterations [Green et al. 2013]. Each iteration i takes the Datalog rules that can be
applied to Di−1

mon in order to derive new facts or increase aggregate results to obtain Di
mon. If a rule

can be applied to a database, its result will contribute to the computed immediate consequence
due to the correctness of differential evaluation. At the final fixpoint, the immediate consequence

is empty; this means that no more rules can be applied to Dfinal
mon , therefore the state thus reached

(shown above to be cost-consistent) is a model.

Minimality. By definition,Mmin ⊑ M for any modelM over the same base relations. However, we

have shown above that Dfinal
mon ⊑ Mmin which implies that Dfinal

mon = Mmin, i.e. the algorithm is correct.

5 THE IncA FRAMEWORK

We build a complete analysis framework as an extension of our prior IncA incremental analysis
framework [Szabó et al. 2016]. Our extensions span four layers: DSL, compiler, runtime system,
and IDE integration. We briefly review each of these extensions. IncA is open source software, and
every component of this architecture is available online, along with the complete implementation
of the interval analysis and the other case studies used in Section 6.4 The exception is the runtime
solver, which is stand-alone and hosted elsewhere, as discussed below.

4https://github.com/szabta89/IncA
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5.1 DSL

IncA provides a DSL for the specification of lattices and analyses using these lattices. The DSL is
subject language independent, that is, one can use it to define program analyses for any language.
We developed this language as an extension of our prior IncA DSL, and we highlight our extensions
in Figure 3.

A lattice definition l declares the name of the lattice, algebraic data-type constructors for lattice
values, and lattice operations. Each lattice operation has a name and is implemented in Java extended
with calls to lattice constructors and operations. Each lattice must implement at least leq, lub,
and glb operations; other user-defined operations for abstract interpretation of expressions or
statements are optional.

Functions f define IncA analyses. Internally, IncA treats functions as relations, but the distinction
between input parameters and output values seems useful for analysis developers [Szabó et al. 2016].
We extended type annotations TR such that functions can take and produce lattice values. The type
L simply means that a function uses lattice values, but does not aggregate them. In contrast, L/lop
means lattice-based aggregation using lattice operation lop. In this case, IncA only allows to use
operations with the right signature: An aggregation operation must take two lattice values and
produce one lattice value. IncA does not verify that the aggregator operator is indeed monotonic,
ensuring this is the responsibility of the analysis developer. Finally, expressions within a function
body can invoke lattice constructors and operations L.n using the lattice name as a qualifier.
To illustrate the IncA DSL, let us re-implement the Datalog rules IntervalAfter and Inter-

valBefore from the interval analysis in Section 2 using IncA.

def getIntervalAfter(stmt : Stmt, var : Var) : Interval = {

assert assignsNewValue(stmt, var)

initializer := getInitializerFor(stmt, var)

return assignedInterval(stmt, initializer)

} alt {

assert undef assignsNewValue(stmt, var)

return getIntervalBefore(stmt, var)

}

def getIntervalBefore(stmt : Stmt, var : Var) : Interval/lub = {

pred := getCFlowPred(stmt)

return getIntervalAfter(pred, var)

}

The analysis is governed by two recursively dependent functions getIntervalBefore and get-

IntervalAfter. They both take a statement and a variable as input and return the associated
interval as output. Note that the functions use lub for aggregation as specified by the annotation
on the return type. In contrast to Section 3.1, there is no need to define separate functions that
compute the Coll and Agg relations; as we discuss later, those are automatically generated by
the compiler based on the type annotations. Section 6 shows more IncA examples through the
implementation of our case studies.

5.2 Runtime System

The low-level incremental solver of IncA is the open source Viatra Query5 system (formerly
IncQuery [Ujhelyi et al. 2015]), which is an incremental engine for graph pattern matching [Rozen-
berg 1997] (essentially a variant of Datalog) that did not support incremental recursive aggregation

5https://www.eclipse.org/viatra
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prior to this work. We extended Viatra Query with our new aggregation constraint Agg and our
DRedL algorithm (see Section 4) that incrementally maintains such patterns.

5.3 Compiler

Translation. To bridge the gap between the high-level analysis language and the underlying
solver ViatraQuery, IncA translates the DSL code into graph patterns encoded in Java. Compared
to prior work [Szabó et al. 2016] on pure relational analyses, our first extension to is to allow
relations to carry lattice values. We translate a lattice definition into a Java class, where lattice
constructors become class constructors and lattice operations become static methods. We allow
relations to use instances of these classes as values. For each aggregation operation L.n used in the
IncA program under compilation, we generate an AVL tree implementation τL.n specialized for
L.n, as described in Section 4.4.

Our second extension is to generate new aggregating graph patterns Agg(p,c,τL.n), where p is
a graph pattern, c is a lattice-typed column of p, and τL.n is the AVL tree for the aggregation of
c. We use such an aggregating graph pattern as the translation of any IncA function f that takes
or yields an aggregated lattice value. Specifically, we generate two graph patterns: An auxiliary
pattern f′p that is the result of compiling f without any aggregation annotation (analogous to Coll
of Section 3.1), as well as the main pattern fp that aggregates the tuples of f′p using our new Agg

graph pattern (analogous to the relation Agg). This translation naturally extends to more than one
aggregating columns.

Checks on IncA analyses. The IncA compiler also performs static analyses on IncA subject analyses
to ensure that the assumptions from Section 4.1 are met. These analyses include (i) checking the
consistent usage of aggregations, (ii) enforcing stratifiable negation, and (iii) aggregation exclusivity.
These analyses are all implemented in IncA itself, and they all rely on analyzing the strongly
connected components in the call graph of analysis functions. The results of the analyses are used
by the compiler, which reports errors to the analysis developer.
Although not implemented yet, we propose an additional static check of the cost consistency

assumption. Note that cost consistency is a form of functional dependency. Thus if a graph pattern
obeys cost consistency, in most cases it should be possible for the existing functional dependency
reasoner of ViatraQuery to prove it, using information such as (i) the single-valued nature of
expression evaluation and aggregation, (ii) knowledge on the structure of the AST (e.g. each try

block has at most one finally block), and by induction on (iii) functional dependencies exhibited
by other user-defined patterns used as subgoals.

Transformation for ensuring cost consistency. If such a functional dependency cannot be established
for an aggregating rule, the IncA compiler can, in typical cases, perform a transformation (written
in Java) on the analysis code that will ensure cost consistency anyway. More precisely, it can
remove a few very common violations of cost consistency. The rest of Section 5.3 is devoted to this
transformation, based on an idea from [Ross and Sagiv 1992].

The transformation assumes that within a single rule body, the lattice-typed variables are already
uniquely determined by the non-lattice typed variables (local or not); this can typically be verified
by the functional dependency solver. If the assumption is satisfied for all bodies of the aggregating
pattern, the transformation runs in two steps. First, in order to prevent multiple derivations of the
same aggregation group within the same rule body, we lift up all local variables from the rule body
to the head. This way, we can ensure that the lattice-typed head variables are uniquely determined
by the non-lattice typed head variables (since we have just made all variables head variables).
Second, for patterns with multiple rule bodies, we introduce a new intermediate pattern per body,
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and we discriminate them with a unique constant value in the rule head. Each such intermediate
pattern performs an intermediate aggregation over the łliftedž local variables, so its head will match
that of the original aggregating pattern, plus the unique discriminator. The final transformed rule
will then aggregate the union of these intermediate aggregates (incl. body discriminator).

It is important to point out that this transformation preserves the semantics of the original Datalog
rules only because IncA analyses exclusively use lattice aggregators derived from idempotent,
associative, and commutative binary operations (glb, lub). In contrast, for a generic aggregating
Datalog rule set (e.g. with summation), lifting would indeed change the semantics (as some parts
would be included in the sum multiple times). We emphasise that the transformation is specific
to IncA, not the underlying DRedL algorithm (which assumes cost-consistent Datalog rules on its
input). Although the current implementation is limited, we have verified that it works well for many
typical analyses, including our case studies. In future work, we will extend the transformation, so
that it can also (i) help with the non-aggregating Datalog rules; consult the functional dependency
reasoner to (ii) verify that rule bodies are cost consistent and (ii) leave the rule intact if it is already
found to be cost consistent.

5.4 IDE Integration

Our primary goal with IncA is to enable the application of program analyses in interactive use cases
in an IDE. To this end, we integrated IncA into the MPS language workbench: Our integration comes
with typical IDE features, such as syntax highlighting, type system, generators, and validations
for analyses expressed with IncA’s DSL. MPS relies on a projectional editor [Voelter et al. 2016],
where user edits directly lead to AST modifications, without parsing. This aligns perfectly with
incremental program analysis because edits directly correspond to fine-grained incremental AST
changes.

6 EVALUATION

To validate that our solution satisfies Efficiency (R2) and Expressiveness (R3), we used IncA to
implement two program analyses with aggregation over lattices that were designed by program
analysis researchers, and we ran these analyses on four open source code bases. Our goal is to
use these analyses (and IncA, in general) for interactive applications in IDEs, so we need sub-
second update times, otherwise clients would observe a noticeable pause in the development
flow. Therefore, IncA caches the previous analysis results, which, however, induces extra memory
consumption. This leads to two evaluation criteria:

Run-time (RQ1) Is the update time of IncA fast enough for interactive applications in IDEs, and
does this come with an acceptable initialization time?

Memory (RQ2) Is the extra memory requirement induced by incrementalization acceptable?

Note that we cannot compare to another incremental framework because to the best of our knowl-
edge none exists that supports recursive aggregation over lattices.

6.1 Evaluation Setup

The subject language for our evaluation is Jimple, an intermediate Java representation adopted from
the Soot framework [Lam et al. 2011]. It only uses ifs and gotos to express control, which relieves
us from reasoning about more complex control flow. It helps with the construction of the CFG, but
it does not simplify the data-flow analyses themselves. Implementing control flow analyses with
relations is itself an interesting research problem; IncA has been successfully used for C control
flow analysis [Szabó et al. 2016], but addressing Java is beyond the scope of this paper.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 139. Publication date: November 2018.



139:20 Tamás Szabó, Gábor Bergmann, Sebastian Erdweg, and Markus Voelter

Our first analysis adapts the strong update points-to analysis for C introduced in [Lhoták and
Chung 2011] to Jimple. We chose this analysis because of its practical relevance; points-to analyses
are the basis of many other analyses. Our points-to analysis implementation is flow-sensitive, field-
sensitive, and intra-procedural. Our second analysis addresses character inclusion and prefix/suffix
analyses for string values [Costantini et al. 2011]; we chose these because they rely on non-trivial
lattices and lattice computations. Our string analyses are intra-procedural. Compared to the points-
to analysis, the string analyses are flow-insensitive because we wanted to verify that, even though,
the string analyses use more complex lattices, the ballpark of the run time is still lower, meaning
that flow-sensitivity is the dominating factor. All of our analyses rely on recursive aggregation
over lattices. Our implementations in IncA are available open source.6

We analyze the following Java code bases: (1) Google Truth, an assertion framework (9 KLOC
Java code), (2) Google Gson, a JSON serialization library (14 KLOC), PGSQL JDBC, a PostgreSQL-
Java binding (45 KLOC), and (4) BerkeleyDB, an embedded database (70 KLOC). We selected
these because they represent widely used real world applications. We are not aware of a standard
benchmark for incremental analyses that comes with a particular code base and sequences of
code changes. We imported the code into MPS and transformed it to Jimple, which is functionally
equivalent to the original Java programs.
The actual evaluation is as follows. For each code base, we start the analysis with an initial,

non-incremental run. We then introduce 1000 incremental program changes on the Jimple code,
simulating the edits of a developer. We use two kinds of changes. First, we randomly perform
generic changes such as copying and deleting expressions, statements, and methods, or renaming
variables. Second, we perform random changes tailored to each analysis: We change assignments for
the points-to analysis and modify string values for the string analysis. In all cases, we measure the
wall clock time of the initial run and the run-time of the incremental updates to answer Run-time

(RQ1). To measure memory consumption (Memory (RQ2)), we subtract MPS’ total memory use
before the initialization of the analyses from the value after the analyses are initialized. For the
points-to analysis, we vary the subject code base when running the measurements. For the string
analyses, we also vary the number of tracked string properties to find out howmuchmore expensive
it is to track not only one string property (e.g. only prefix) but two or three at the same time. We
do this in order to see if a developer can simply turn on and off tracked properties to control the
amount of information the analysis provides without incurring excessive performance penalty.
To validate Correctness (R1), we compared the results of the incremental analysis with the

results of a full re-analysis after every code manipulation, and we verified that they are the same.
We ran the benchmarks on an Intel Core i7 at 2.7 GHz with 16 GB of RAM, running 64-bit OSX

10.12.6, Java 1.8.0_121 and MPS version 2017.3.5. The raw data and the sequence of code changes
are available online.7 We now show interesting implementation details of the analyses, and then
present our measurement results to answer our research questions.

6.2 Strong Update Points-to Analysis

The strong update points-to analysis is at the sweet spot between the cheap flow-insensitive and
the precise flow-sensitive analysis: It is flow-sensitive for a variable or field (given that we analyze
Java/Jimple) as long as the target points-to set consists of a singleton object, and then gives up
on flow-sensitivity immediately when the target set has more than one object. This makes sense
because dereferencing a non-singleton points-to set does not allow strong updates (that would
overwrite the previous results) anyway, and so in most of the cases the precision gained through

6https://github.com/szabta89/IncA
7https://github.com/szabta89/IncA
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Fig. 4. Building blocks of the IncA strong update points-to analysis.

flow-sensitivity is limited. The original paper [Lhoták and Chung 2011] provides details on the
corner cases and precision characteristics. Here, we focus on the implementation in IncA.

Implementation. Figure 4 shows the main building blocks of the analysis. The first one is the
flow-insensitive points-to analysis. Figure 4A shows the signatures of the IncA analysis functions.
varPT returns the points-to set of variable v, while fieldPT returns the points-to set of object o
through field f. Similar to the interval analysis, these functions collect assignments and interpret
the left and right hand sides to collect the pointer variables and the pointed objects. The functions
recursively call each other, but they do not use a custom lattice or aggregation.

Next, we define the flow-sensitive analysis that uses the singleton-set lattice to decide when to
give up on tracking the points-to set of a variable. Figure 4C shows the lattice definition in IncA, and
Figure 4B shows the signatures of the flow-sensitive analysis functions. The implementation of these
functions follows the same approach as the interval analysis in Section 2 in that they recursively
depend on each other to propagate the points-to information along the subject program’s CFG,
using a forward style analysis. The current implementation builds on a control flow analysis for
Jimple. The functions in Figure 4B all annotate the SObj lattice type with lub, making sure that the
analysis gives up on tracking non-singleton sets (see first case in the body of lub in Figure 4C).

The final ingredient of the strong update analysis is responsible for combining the results of the
previous two (Figure 4D). The analysis returns the result of the flow-sensitive analysis in the first
alternative, given that it yields an exact result in the form of a singleton set. The second alternative
turns to the flow-insensitive analysis. Additionally, these two functions use a power set lattice for
the output parameter (PSObj) to aggregate the target objects into one set. The reason for this is that
the flow-sensitive analysis gives up on tracking non-singleton targets to save memory, so we must
not store separate tuples per target objects here either, otherwise we would lose the memory saving.
To query the points-to information, clients would interact with the varPT_SU and fieldPT_SU

functions, whose results are maintained incrementally.

Run-time (RQ1) The initialization times of the points-to analysis are as follows: Google Truth -
6.5s, Google Gson - 9.4s, PostgreSQL JDBC - 57.8s, and BerkeleyDB - 64.3s. In contrast to these
numbers, loading a larger project in MPS easily takes a few tens of seconds, so even the initialization
on BerkeleyDB is not prohibitively long. We compare the numbers to the MPS project loading time

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 139. Publication date: November 2018.



139:22 Tamás Szabó, Gábor Bergmann, Sebastian Erdweg, and Markus Voelter

Fig. 5. Runtime measurement results. Box plot whiskers cut off outliers beyond 1.5 IQR.

because it is better to initialize the analyses during start-up, otherwise developers would observe a
longer pause when an analysis is queried first. Figure 5A captures the incremental update times of
IncA for the four code bases in a box plot (outliers removed). These times are very fast, exactly
the kind of numbers we want in interactive applications. Figure 5B reinforces this observation
because it shows the scaling of the system on BerkeleyDB in terms of update time wrt. the size of
the program change. We had multiple data points per change sizes: The line connects the mean
values, and we obtained the red area by subtracting and adding the standard deviation to the mean.
We can see also on this graph that the update times are fast, even for larger changes. For example,
changes affecting ~800 AST nodes were typically the duplication or removal of complete methods.

Memory (RQ2) The memory consumption of IncA is as follows: Google Truth - 670MB, Google
Gson - 1GB, PostgreSQL JDBC - 4.5GB, and BerkeleyDB - 5GB (these numbers essentially remain
constant as the program changes). To put these numbers into perspective: (1) At the time of
measurements MPS used around 2GB of memory, so the analysis on BerkeleyDB uses 2.5X of
that, and (2) the points-to analysis is a flow-sensitive analysis, and the Jimple representation of
BerkeleyDB has a few hundred thousand CFG nodes. To provide a ballpark for the number of tuples
we note that the relations of the points-to analysis on the BerkeleyDB together contain roughly 57
million tuples. These are high numbers, and they are because of extensive caching, but, in return,
we have fast incremental updates.

6.3 String Analyses

Our second case study concerns string values. Costantini et al. proposed several abstract domains
to keep track of the properties of string values [Costantini et al. 2011]. We implemented with
IncA three distinct string analyses. First, the character inclusion analysis that keeps track of the
definitely-contained and maybe-contained set of characters for a string variable. This, in turn, can
be used to decide whether the return value of operations like indexOf(s) can be negative or not,
which is interesting because a negative value causes operations like split or substring to throw
an exception. We also implemented analyses that compute the longest common prefix and suffix of
the strings a variable take; this is useful to check well-formedness, for example, to ensure that an
SQL statement always starts with a keyword and terminates with a semicolon.

Implementation. Due to space reasons, we only show a few operations of the prefix lattice:

1lattice Prefix {

2constructors { Bot | Pre(string) }

3def top() : Prefix = Pre("")

4def leq(l : Prefix, r : Prefix) : boolean =

5return match (l,r) with case (Pre(p1),Pre(p2)) => p1.startsWith(p2)

6def lub(l : Prefix, r : Prefix) : Prefix =

7return match (l, r) with case (Pre(p1), Pre(p2)) => Pre(lcp(p1, p2))

8def interpretSubstring(v:Prefix, s:int, e:int) : Prefix =
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9return match v with case Pre(p) => {

10final int l = p.length();

11if (s <= e && e <= l) return Pre(p.substring(s, e));

12else if (s <= e && s < l && l < e) return Pre(p.substring(s, l));

13else return top();

14} ... }

The Prefix lattice 8 has two kinds of elements: Bot, the bottom of the lattice, is never used by the
analysis, it marks a łfailurež. The Pre element wraps a prefix string. The leq operator performs
a prefix-check using Java’s String.startsWith method, while lub uses a helper function, lcp,
that computes the longest common prefix of two strings. The pattern matching syntax allows us to
encode the lattice structure in just a few lines of code.

For example, function interpretSubstring interprets the result of substring calls on strings,
in the Prefix abstract domain. It performs various checks using the start and end indices and
returns a slice of the prefix accordingly, or resorts to the lattice top in case of an empty result.

Run-time (RQ1) We use the notation Pre to refer to the string analysis that keeps track of
the longest common prefix, Pre+Suf tracks the suffix in addition, while Pre+Suf+Inc also tracks
character inclusion. The initialization times for BerkeleyDB are as follows: Pre - 13.5s, Pre+Suf -
13.8s, and Pre+Suf+Inc - 20.4s. Figure 5 (C) shows the incremental update times. We observe: (1)
as expected, a flow-insensitive analysis is cheaper to compute, even incrementally, (2) these run
times meet the requirements of interactive applications, (3) activating one (Suf) or two more string
properties (Suf+Inc) has only very minor impact on incremental performance.

Memory (RQ2) The memory requirement of the analyses are as follows: Pre - 1.6GB, Pre+Suf -
1.7GB, Pre+Suf+Inc - 2.2GB. The overall lower memory use compared to the points-to analysis is
because of flow-insensitivity. An interesting observation is that maintaining the longest common
suffix in addition to the prefix requires only a 100MB extra memory, but activating the character
inclusion induces an extra 500 MB compared to Pre-Suf. This is because the character inclusion
lattice wraps two sets of characters, which is expensive in terms of memory for the large code base.

6.4 Discussion

We summarize the results of our performance benchmarking, and we briefly discuss how inter-
procedurality fits into our IncA roadmap.

Run time IncA achieves our goals for run-time performance. It requires an acceptable amount
of initialization time even on our largest benchmark code base, and its update times are a few
milliseconds on average.

Memory We pay the price for the fast update times with memory. The memory requirement of
IncA can grow large, but it is not prohibitive. In practice, developers would typically work with
smaller parts of projects, reducing the absolute amount of memory needed.
In addition, we have concrete plans for reducing the memory use in the future. Likely, a major

source of memory overhead is the strategy of our incremental backend Viatra Query to break
down a large analysis function into subqueries, each performing an elementary relational algebra
operation. For instance, a rule h :- a1,a2,a3,a4 may be automatically substituted with h :- b1,b2
and b1 :- a1,a2 and b2 :- a3,a4, so that the rule body is decomposed into a tree of three simple
relational joins. The results of these subqueries are each stored, maintained, and indexed separately
(the Rete [Forgy 1982] approach). This reduces runtime of change propagation (when a3 changes, b1

8This lattice is an interesting example, as it has infinite descending chains (any prefix can be continued to an even longer
prefix), but no ascending ones (any given prefix has a finite number of truncations), hence Assumption A4 is still satisfied.
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can be looked up from the index instead of recomputed) at the expense of additional memory (both
b1 and b2 are stored and indexed). The TREAT system [Miranker 1987] is on the other side of this
spectrum, it consumes less memory by using more coarse-grained operations, but it loses efficiency
in maintenance run time. Gator networks [Hanson and Hasan 1993] form a continuum between
Rete and TREAT by selecting subqueries of various granularities for caching. We will experiment
with finding the right trade-off between these approaches and either make it configurable or employ
a dynamic solution that tunes the cache granularity.

Inter-procedural analyses We have benchmarked IncA on intra-procedural analyses, because
these are relatively easy to express while also requiring significant computation time as the size of
procedures grow. The goal of incrementalization is to make the computational effort for (re-)analysis
proportional to the size of the change, not to the size of the code base. In future work, we will
investigate how to express inter-procedural analyses in IncA and how they perform incrementally.

7 RELATED WORK

We discuss the relation of this work to incremental Datalog solvers, to individual incremental
algorithms, and to analysis frameworks.

Incremental Datalog evaluation. Datalog [Ceri et al. 1989] forms the theoretical underpinning
for our declarative analyses in mathematical logic. Non-recursive Datalog is straightforward to
maintain incrementally (see Counting [Gupta et al. 1993]). For stratified recursive Datalog programs,
incremental maintenance algorithms (see survey [Gupta and Mumick 1995]) include DRed [Gupta
et al. 1993]; improvements over DRed that reduce work in some cases (e.g. Backward/Forward [Motik
et al. 2015]); and various provenance-based approaches [Liu et al. 2009] that maintain, for each tuple,
logical expressions as conditions of validity. In contrast to our solution, none of these algorithms
can handle recursive aggregation over custom lattices, and this is because of the different notion of
monotonicity: while these approaches use monotonicity in the conventional set-theoretic sense, in
our case, the partial order of the respective lattice also governs monotonicity.
Our proposed solution DRedL generalizes DRed for recursive lattice aggregation, so the two

algorithms share many features. In particular, the four steps introduced in Section 4 correspond to
the analogous steps of DRed. However, some notable differences stem from aggregation support:

• For aggregations, tuple insertions may result in increasing replacements, which DRed cannot
correctly handle as they are not conventionally monotonic.
• As its key novelty, DRedL solves this problem by splitting tuples at runtime according to ⊑-
monotonicity as opposed to simply separating deletions and insertions. This has far-reaching
consequences on all aspects of the algorithm:
• The monotonic phase of DRedL must thus incrementally process monotonic deletions (in
addition to insertions). This requires a mechanism to determine how to propagate such
deletions that were not present in DRed. For this purpose we have adapted support counts
(from Counting) and introduced support multisets, neither of which were part of DRed where
only insertions were considered monotonic.
• The maintenance of these support data structures required DRedL to enumerate each deriva-
tion exactly once; this is achieved (following [Motik et al. 2015]) through semi-naïve evalua-
tion (algebraic differencing).
• As a side effect, such support data structures also enabled the rederive phase of DRedL to
avoid recomputation in contrast to DRed.

An alternative to maintaining recursive aggregations would be to rewrite them [Mazuran et al.
2013; Shkapsky et al. 2015] into a form supported by DRed: replicate tuple t with lattice value c to
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tuples t ′ with c ′ for each c ′ ⊑ c , thus mapping ⊑-monotonic changes, aggregations, and recursions
into their classical monotonic counterparts. Depending on the lattice, this transformation may
be prohibitively expensive or even impossible. For example, the (integer) interval analysis would
require a quadratic amount of additional interval values (one for each sub-interval); while an infinite

amount of new tuples would have to be produced for an occurrence of Top in the points-to analysis.
First-class support of lattice values avoids this blowup in DRedL.

Single-analysis algorithms. While IncA is a program analysis framework, other researchers have
studied how to incrementalize individual analyses. Lu et al. encode points-to analysis as a reachabil-
ity problem over an auxiliary data structure that encodes the points-to information and selectively
re-computes affected paths after a program change [Lu et al. 2013]. Yur et al. incrementalizes a flow-
and context-sensitive points-to analysis using worklists [Nielson et al. 2010, Chapter 6.1.1][Yur et al.
1999]. Saha and Ramakrishnan define points-to analysis as a logic program using Datalog [Ceri
et al. 1989], and they build on top of the DRed algorithm [Gupta et al. 1993] to incrementalize its
execution [Saha and Ramakrishnan 2005]. Their algorithm is lazy, meaning that it only computes
points-to information when demanded by clients. Cooper and Kennedy develop an algorithm for
the incremental maintenance of inter-procedural and flow-insensitive MOD analysis. A MOD
analysis reports about which variables are affected by which statements in the program. Souter and
Pollock [Souter and Pollock 2001] and Ismail [Ismail 2009] incrementalize call graph construction
with specialized algorithms targeted towards in-IDE use. Instead of incrementalizing individual
analyses, we have aimed for a framework that supports the incrementalization of a wide range of
analysis.

Analysis frameworks. Pollock and Soffa present two algorithms for the incremental maintenance
of data-flow analyses [Pollock and Soffa 1989]. First, the IMMEDIATE analysis is used to maintain
the results ofmay analysis problems (i.e. any path). This is analogous to the Counting algorithm from
the Datalog literature [Gupta et al. 1993]. Second, the TWO_PHASE algorithm is used to compute
the results of must analyses (i.e. all paths). This algorithm is more complex than IMMEDIATE, and
it is analogous to DRed because it considers cyclic reinforcements that can appear among the nodes
of a strongly connected component in the CFG. In the low level, TWO_PHASE also uses four phases
just like DRed and our DRedL. The key difference compared to our DRedL is that TWO_PHASE
(and DRed) relies on set-theoretical monotonicity, which means that it is bound to analyses that
use the powerset lattice (e.g. liveness, very busy expressions, uninitialized variables analysis). In
contrast, DRedL relies on an extended notion of monotonicity, which also uses the partial order of
the custom lattices, leading to very different steps in the four phases.

Khedker provides a formal treatment ofmonotone data flow frameworks and defines requirements
against incremental analyses performed on them [Khedker 1995]. The thesis provides concrete
algorithms for the incremental maintenance of analyses using bitvector-represented (boolean) lattices.
It is not possible to efficiently represent arbitrary lattices as bitvectors, as is the case for the string
prefix lattice in Section 6.3. The potential for generalization is mentioned in Section 13.2.1 of the
thesis, but it is largely left as future work.
Zadeck develops algorithms to incrementally maintain the results of partitionable data flow

analyses [Zadeck 1984]. A data-flow analysis is partitionable if the nodes in the strongly connected
components of the CFG all have the same associated data-flow value. The presented algorithms
operate over bitvectors, which is a limitation because infinite lattices cannot be expressed this way.
Also, as discussed in Section 5.3 of the thesis, flow-sensitive analyses do not fall into the category
of partitionable problems, so we could not use this technique for the analyses in this paper.

The Magellan system encodes program analyses in Prolog, and it uses incremental tabled evalua-
tion to update the analysis result in response to changes in the subject program [Eichberg et al.
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2007]. The framework is integrated into Eclipse, and it can automatically infer input facts based on
the single static assignment form of Java programs. Clients of Magellan analyses can also mark
analyses that are not used anymore, and the framework automatically throws away the caches for
the affected relations, thereby freeing up memory. In contrast to IncA, Magellan only supports
analyses that operate on the powerset lattice.
Hermenegildo et al. design algorithms for the incremental maintenance of top-down (goal

directed) constraint logic programs [Hermenegildo et al. 2000; Puebla and Hermenegildo 1996].
However, the algorithms do not support negation nor aggregation, thus the expressivity is the
same as that of DRed, which is not enough for analyses with custom lattices.

Facebook’s Flow9 is an incremental type checker for JavaScript. Assuming that JavaScript modules
have explicitly typed signatures, Flow analyzes the code per module, and stores a summary for
each module. When code gets changed, Flow only re-analyzes the transitively affected modules
bottom up, also parallelizing as much of the computation as possible. Unfortunately, there is no
documented performance numbers on Flow, but the authors argue that it delivers the performance
needed for interactive type checking in IDEs. In contrast to Flow, IncA is a generic framework that
is not bound to a particular language or analysis.

Arzt and Bodden’s Reviser framework incrementalizes IFDS data-flow analyses [Arzt and Bodden
2014; Reps et al. 1995], which associates semantic information (data flow facts) with nodes in the
inter-procedural CFG of the subject program and uses flow functions to propagate the information
along the CFG. Upon a change at a CFG node, Reviser computes the transitively reachable affected
nodes and re-executes the flow functions on them to compute the updated analysis result. In contrast,
IncA provides a more fine-grained incrementalization, and it also exploits monotonic lattice value
updates; this would not be possible with Reviser’s selective re-computation. Additionally, IFDS is
bound to distributive data-flow analysis problems, and, for example, points-to analysis is known
to be non-distributive. Späth et al. has shown that certain parts of points-to analysis can be
re-formulated as a distributive problem [Späth et al. 2016], but it is unclear if and how such a
re-formulation is possible for other kinds of analyses.

In terms of expressivity, the most closely related framework to IncA is Flix [Madsen et al. 2016].
Flix combines Datalog and lattices and thus, from the frontend’s perspective, is similar to IncA.
However, Flix is not incremental. In contrast to IncA, Flix uses a verifier to automatically prove the
monotonicity and other properties of lattice operations at compile time; in IncA, we only check
that a program analysis is free of inconsistent lattice orderings and recursion through negation
(Section 5). It should be possible to integrate Flix’s verifier in IncA since the expressivity is similar.

Like Flix, Conway et al. also combine lattices and logic programming in BloomL [2012]. BloomL

offers many built-in lattices (e.g. bool, max, map) in its standard library, and developers can
also define their own. In contrast to IncA, BloomL does not support full incrementality: only
insertions are allowed. However, deletions are not only much more difficult to handle (requiring
anti-monotonic propagation and re-derivation), deletions are also crucial in an IDE setting where
developers freely edit code. BloomL targets distributed application development, and Conway et al.
argue that supporting insertions is sufficient for this use case.

8 CONCLUSIONS

We presented IncA, a framework that efficiently incrementalizes the evaluation of program analyses
with user-defined lattices. To this end, we developed the DRedL algorithm that incrementalizes
recursive aggregations over lattice values. We then integrated DRedL into the runtime system of
IncA and developed an analysis DSL to hide the technical details of incrementalization, allowing

9https://perma.cc/5JWN-K8HR
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developers to focus on the essentials of the analysis definition. Our evaluation with practically
relevant program analyses on real-world code shows that IncA can efficiently support interactive
applications in IDEs through fast incremental update time. Our future work is centered around two
main directions. First, we will experiment with inter-procedural analyses in IncA to examine the
effects of incrementalization. Second, we will work on reducing the memory overhead of IncA by
tuning the granularity of caching and indexing, potentially dynamically as the analysis runs.
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