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Abstract

The Bag-of-Audio-Word (or BoAW) representation is an

utterance-level feature representation approach that was suc-

cessfully applied in the past in various computational paralin-

guistic tasks. Here, we extend the BoAW feature extraction

process with the use of Deep Neural Networks: first we train

a DNN acoustic model on an acoustic dataset consisting of 22

hours of speech for phoneme identification, then we evaluate

this DNN on a standard paralinguistic dataset. To construct

utterance-level features from the frame-level posterior vectors,

we calculate their BoAW representation. We found that this ap-

proach can be utilized even on its own, although the results ob-

tained lag behind those of the standard paralinguistic approach,

and the optimal size of the extracted feature vectors tends to

be large. Our approach, however, can be easily and efficiently

combined with the standard paralinguistic one, resulting in the

highest Unweighted Average Recall (UAR) score achieved so

far for a general paralinguistic dataset.

Index Terms: Bag-of-Audio-Words, Deep Neural Networks,

computational paralinguistics, classifier combination

1. Introduction

An emerging area of speech technology is computational pa-

ralinguistics, which seeks to extract, locate and identify vari-

ous types of non-verbal phenomena appearing in human speech.

Notable examples of such tasks are emotion detection [1, 2, 3]

and laughter localization [4, 5, 6], but numerous other tasks

have been investigated such as conflict intensity estimation [7,

8, 9], measuring the amount of cognitive and physical load [10]

and various medical applications like detecting Parkinson’s dis-

ease or Alzheimer’s disease and depression [11, 12, 13].

One key aspect in which computational paralinguistics dif-

fers from Automatic Speech Recognition (ASR) is that ASR has

to handle a variable-size input (i.e. an utterance) and it has to

produce a variable-length output (i.e. the transcription). Com-

putational paralinguistics, by contrast, treats one utterance as

one example, therefore the output for one utterance has a fixed

length (e.g. a class label or some score estimated by regres-

sion). However, we still have to process utterances of vari-

ous lengths. To be able to utilize standard machine learning

methods such as classification and regression algorithms, fixed-

length feature vectors have to be extracted from these utterances

of varying length. These fixed-length feature vectors can then

be used for training standard classification algorithms such as

Support-Vector Machines (SVMs) [14] and Deep Neural Net-

works (DNNs).

In the standard solution for utterance-level feature extrac-

tion in computational paralinguistics, developed over the years

mainly during the Interspeech Computational Paralinguistic

ChallengEs (ComParE, see e.g. [15, 16, 17]), first low-level de-

scriptors such as energy, spectral, cepstral (MFCC) and voicing

related attributes are computed frame-wise; then these are trans-

formed into utterance-level features by using specific function-

als like the mean and standard deviation. This approach also

appears to be task-independent, as it has been effectively used

in dozens of different tasks [18].

Another technique for utterance-level feature extraction, in-

troduced in the last few years, is that of Bag-of-Audio-Words

(BoAW, [19]). In the BoAW approach, inspired by the area of

Natural Language Processing and of image processing, we take

the frame-level features (e.g. MFCCs or mel filter bank ener-

gies) of the utterances of the training set and cluster them. Then,

for the next step, each frame-level feature vector is replaced

with its cluster; utterance-level feature vectors are calculated as

the (normalized) histogram of the clusters of the frame vectors

of the given utterance [20]. This process can then be applied for

the test set as well: a feature vector unseen during the clustering

step (such as those of the test set) can be assigned to one of the

already defined clusters based on its Euclidean distance from

the cluster centers. In the third step, utterance-level classifier

training and evaluation can be realized by utilizing these nor-

malized histograms as utterance-level feature vectors, e.g. by

using an SVM.

BoAW representations have been used in various audio pro-

cessing tasks such as multimedia event classification [20], emo-

tion recognition [21, 22], acoustic event detection [23], snore

sound classification [24] and determining whether the actual

speaker has a cold [17]. This indicates that the BoAW rep-

resentation is another, powerful way of extracting features in

computational paralinguistics. However, although Pancoast and

Akbacak originally proposed the BoAW representation in order

to incorporate large, unannotated audio archives into the par-

alinguistic classification process [20], all the above-listed stud-

ies performed BoAW extraction only on the given paralinguis-

tic dataset. Keeping in mind that paralinguistic datasets tend to

consist of only a few hours of recordings overall, while in ASR

having over a hundred hours is quite common nowadays, mak-

ing use of such large datasets in the BoAW process might prove

to be beneficial. (We will denote the latter dataset the external

one.)

Incorporating large external corpora into the BoAW pro-

cess, however, is far from straightforward. The approach which

seems to be the easiest would be to extract the frame-level fea-

ture vectors from this external dataset and perform the BoAW

clustering step on these examples. Unfortunately, a small ASR

dataset of a few dozen hours consists of tens of millions of

frames, and such a large number of examples is extremely dif-

ficult to cluster efficiently. Were we to downsample the frames

of the external dataset, we would lose the advantage of utilizing

such a large audio source.

In this paper we present an approach that allows us to ef-

fectively incorporate such external acoustic corpora for paralin-

guistic tasks. The key idea is to train a standard DNN acoustic
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Figure 1: The general workflow of the proposed BoAW-based classification process.

model on such an external corpus. In the next step, we eval-

uate this DNN on the frame-level feature vectors of the given

paralinguistic dataset, and perform the BoAW clustering step

on the frame-level posterior estimates obtained (i.e. the DNN

outputs). Combining the proposed approach with the standard

paralinguistic one, we got a 10% improvement in terms of rel-

ative error reduction on a public paralinguistic dataset. Further

utilizing the BoAW representation of the MFCC feature vectors

yielded an even better error reduction score of 32% compared to

the baseline, also significantly outperforming the combination

of the standard paralinguistic approach with the BoAW-MFCC

one. Overall, we report the highest UAR score on a public par-

alinguistic dataset that was achieved in a scientifically sound

manner.

2. BoAW Features of ASR DNN Posteriors

Next, we will describe our proposed workflow. After the de-

scription of the general BoAW process, we will explain how we

extracted the BoAW representation from the DNN posteriors,

and how we fused the predictions of the utterance-level classi-

fier models trained on the various feature sets tested.

2.1. BoAW Representation

The BoAW representation seeks to represent a varying-length

utterance by a fixed-length feature vector. Its input is a set of

frame-level feature vectors (e.g. MFCCs). In the first step, we

cluster these vectors, the number of clusters being a parameter

of the method; the resulting cluster centroids will form the code-

book. Next, each original feature vector is replaced by a single

index representing the nearest codeword (vector quantization).

We calculate the feature vector for the given file by generating

a histogram of these indices; and to eliminate the influence of

the utterance length, it is common to use some kind of normal-

ization such as the L1 normalization (i.e. divide each cluster

count by the number of frames in the given utterance). Further-

more, as an input frame may have a small distance to several

audio words (leading to possible ambiguous assignments), we

can also take multiple assignments into account.

2.2. BoAW Features of ASR DNN Posteriors

In this study our aim is to incorporate a large audio dataset (i.e.

the external one) in the BoAW feature extraction step. In order

to do this, first we train a DNN acoustic model on this exter-

nal corpus. Then, in the next step, we evaluate this DNN on

our paralinguistic dataset; BoAW codebook generation and fea-

ture extraction is done using these frame-level phonetic poste-

rior estimates. Utterance-level classifier training and evaluation

is done by utilizing these BoAW feature representations. (For

the general workflow of the proposed approach, see Fig. 1.)

Note that, for the proposed approach, we need corpora that

have annotated and time-aligned phonetic labels. In our opin-

ion, however, this is not a limitation from a practical point of

view for a number of reasons. Firstly, such datasets are quite

easy to obtain. Secondly, they can be re-used for different par-

alinguistic tasks without the need of re-annotation. Another ad-

vantage of relying on such external datasets is that databases

used for speech recognition systems tend to be much larger than

paralinguistic ones (i.e. hundreds of hours). This increase in

dataset size, however, does not hinder the BoAW process, as

this only affects the DNN training step.

Although DNN-based ASR systems achieve the best accu-

racy with the context-dependent (CD) phoneme modelling ap-

proach [25], we suggest using context-independent (CI) DNNs

instead (where each phoneme is represented by three states,

corresponding to the beginning, middle and ending part). We

recommend this simplification in order to keep the posterior

vector length within a manageable size: ASR systems tend to

use thousands or even tens of thousands of context-dependent

tied states, which in our case would lead to the same number

of DNN outputs, i.e. posterior vector sizes. In contrast, in a

CI phoneme state representation we typically have states three

times the number of phones (i.e. phoneme beginning, center and

ending), usually lying between 100 and 200. Since the posterior

scores fall in the unit interval (i.e. [0, 1]), we also suggest taking

their logarithm first before calculating the codebook vectors.

2.3. Feature Set Combination

Although using the BoAW representation may prove to be ben-

eficial for classification, we should not discard all other kinds of

features, especially since the standard paralinguistic feature set
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proposed by Schuller et al. proved to be quite effective over the

years on several different tasks (see e.g. [15, 17]). Optimality

is probably achieved via some combination of the proposed ap-

proach with this standard paralinguistic one. In our experience,

an effective way of such combining them is to train separate

machine learning models for the different types of features, and

combine their posterior estimates (called late fusion). Now we

will take the weighted mean of the resulting posterior scores,

which we found to be a simple-yet-robust technique in our ear-

lier studies (see e.g. [26]).

3. Experimental Setup

3.1. The iHEARu-EAT Corpus

We performed our experiments on the iHEARu-EAT data-

base [27], which contains the utterances of 30 people recorded

while speaking during eating. Six types of food were used along

with the ”no food” class, resulting in seven classes overall. The

total recording time of this dataset is only 2 hours and 51 min-

utes. For each speaker and food type, seven utterances were

recorded; some subjects refused to eat certain types of foods,

resulting in a total of 1414 utterances in German. Although

this dataset can be used primarily to test machine learning and

signal processing techniques, Hantke et al. also anticipated sev-

eral possible future applications [27]. This dataset was later

used in the Interspeech ComParE 2015 Eating Condition Sub-

Challenge [15].

3.2. Utterance-level Classification

Our experiments essentially followed the set-up of the Com-

ParE 2015 Challenge [15]. As the standard paralinguistic so-

lution, we used the 6373 ComParE features (see e.g. [15]), ex-

tracted by using the openSMILE tool [28]. The feature set in-

cludes energy, spectral, cepstral (MFCC) and voicing related

low-level descriptors (LLDs), from which specific functionals

(such as the mean, standard deviation, percentiles, peak statis-

tics etc.) are computed to provide utterance-level feature values.

We used Support-Vector Machines for utterance-level clas-

sification, using the LibSVM [29] library. We applied the nu-

SVM method with linear kernel; the value of C was tested in

the range 10{−5,...,2}, just like in our previous paralinguistic

studies (e.g. [30, 26]). Optimal meta-parameters (e.g. C for

SVM or codebook size for BoAW) were determined in speaker-

wise cross-validation (CV). To measure performance, we em-

ployed the Unweighted Average Recall (UAR) metric. We per-

formed speaker-wise feature standardization, as in our prelim-

inary tests we found that this is beneficial for all feature sets

tested; we used the annotated speaker IDs in cross-validation,

while the speakers of the test set were identified by using the

single Gaussian-based bottom-up Hierarchical Agglomerative

Clustering algorithm [31, 32, 33].

3.3. DNN Acoustic Model Training

As the DNN component of the proposed workflow, we applied a

deep network, consisting of rectified linear units as hidden neu-

rons [34, 35]. The main advantage of deep rectifier nets is that

they can be efficiently trained with the standard backpropaga-

tion algorithm, without any tedious pre-training [35, 36]. We

used our custom implementation, which achieved the lowest er-

ror rate on the TIMIT database ever published with a phonetic

error rate of 16.5% on the core test set [37]. We utilized DNNs

with three hidden layers, each containing 1000 rectified neu-
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Figure 2: Classification accuracy and UAR scores as a function

of the BoAW codebook size in the cross-validation setup.

rons, and applied the softmax function in the output layer. We

used 12 MFCC values along with energy, and their first and sec-

ond order derivatives [38]; we extended the feature vectors with

the features of 7 neighbouring frames from both sides, resulting

in a 15 frame-wide sliding window.

The acoustic models were trained on the “Szeged” Hungar-

ian broadcast new corpus [39]. This 28 hour-long speech cor-

pus was collected from eight TV channels. We then used the

22-hour long training subset for training our CI DNN acous-

tic model. Since we set up a phonetic set of 51 (Hungarian)

phonemes, we had 153 phonetic states, leading to the same

number of DNN output neurons. The order of utterances was

randomized at the beginning of training. Notice that the par-

alinguistic dataset had utterances in German, while our external

audio database contained Hungarian speech. In our hypothesis,

however, this mismatch should not affect the efficiency of our

workflow.

3.4. BoAW Parameters

We used the OpenXBOW package [40], which is an open-

source toolkit written in Java. We tested codebook sizes of 32,

64, 128, 256, 512, 1024, 2048, 4096 and 8192. We did not in-

crease the codebook size further for two reasons. Firstly, 8192

is already the highest value we found in previous paralinguis-

tic studies (i.e. in [17, 22, 23]). Secondly, having 8192 feature

values for each example already leads to a classification process

with quite high time and memory requirements, even when the

training set size is fairly low.

We used random sampling instead of k-means or k-

means++ clustering for codebook generation because it was re-

ported (see [22]) that it provides a similar performance and it is

significantly faster. We allowed 5 parallel cluster assignments,

i.e. for each frame we chose the 5 closest cluster centers. As we

mentioned in Section 2.2, we took the logarithm of the posterior

estimates before calculating the codebooks. For comparison,

we also tested the standard BoAW approach with the 39-sized

MFCC + ∆ + ∆∆ frame-level feature vectors as input.

4. Results

Figure 2 shows the classification accuracy and UAR scores ob-

tained as a function of the codebook size for the two BoAW ap-

proaches tested in the cross-validation setup. It can be seen that
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Feature set CV Test

ComParE (baseline) 74.3% 74.8%

BoAW-MFCC 69.5% 77.9%

BoAW-DNN 68.5% 66.7%

ComParE + BoAW-MFCC 76.6% 79.5%

ComParE + BoAW-DNN 77.4% 77.3%

BoAW-MFCC + BoAW-DNN 75.2% 79.3%

All three feature sets (proposed) 79.6% 82.8%

Table 1: Optimal UAR values for the different feature sets.

increasing the codebook size leads to a higher-quality classifi-

cation: the highest value tested (16384) produced the optimal

accuracy and UAR values for both approaches. Unfortunately,

this results in quite large feature vectors, which are difficult to

handle. In our future studies, however, it may be worth increas-

ing the codebook size even further.

These models led to competitive scores on the test set as

well (see Table 1). In fact, using the MFCC-based BoAW fea-

ture representations outperformed the baseline ComParE fea-

ture set on the test set, although in CV it lags far behind it, which

reflects its non-uniform behaviour. Combining one BoAW ap-

proach with the ComParE feature set via late fusion improved

the UAR scores further, but we got the best results by combin-

ing all three approaches. In this case the weights of the three

approaches (determined in the cross-validation setting) were

0.30, 0.35 and 0.35, ComParE, BoAW-MFCC and BoAW-DNN

approaches, respectively, which tells us that all three types of

feature sets are equally important for achieving state-of-the-art

classification accuracy.

Comparing the resulting UAR scores with the other accu-

racy values published in the literature (see Table 2), the first

thing to notice is that our baseline (i.e. using only the Com-

ParE feature set) is significantly higher than the baseline of

the ComParE Challenge (65.9%) was [15]. This is mainly

due to two reasons. Firstly, we used the libSVM library in-

stead of Weka [41]; and secondly, our baseline already employs

speaker-wise feature standardization, which was demonstrated

to improve classification accuracy for this particular task (see

e.g. [15, 33]).

Furthermore, we can see that the UAR scores attained by

applying the proposed method are, in fact, at the same level

(78.9%, cross-validation) or even higher (82.8%, test) as Fisher

Vector analysis proved to be (see [33]). Also note that the best

result reported on this dataset was achieved by guessing combi-

nations of existing techniques, which is a perfectly valid tech-

nique in a machine learning challenge, but perhaps not the best

approach in a standard scientific study. In contrast, we opti-

mized all meta-parameters (i.e. SVM complexity, BoAW code-

book size, late fusion weights) in cross-validation.

The proposed approach, of course, is open to further inves-

tigations. For example, it might be worth seeing how the lan-

guage or the size of the external dataset affects BoAW quality

(and therefore, paralinguistic classification as well). The effec-

tiveness of using the BoAW representation of the ASR DNN

posteriors might also vary depending on the type of the ac-

tual paralinguistic dataset (e.g. variations of emotion detection,

identifying speaker stress and conflicts). Moreover, from the

technical point of view, the DNN output vectors could be treated

as samples from a probability distribution. This observation

Approach CV Test

ComParE + BoAW (proposed) 78.9% 82.8%

ComParE 2015 baseline [15] 61.3% 65.9%

Fisher Vectors analysis (Kaya et al., [33]) 78.9% 81.6%

Best result reported (Kaya et al., [33]) — 83.1%

Chance 14.3% 14.3%

Table 2: Optimal UAR values for the different feature sets.

could also be exploited during the BoAW codebook construc-

tion process, for example by using a different distance function.

These points, however, fall outside of the scope of the current

study, and are the subject of future work.

5. Conclusions

In this study, we sought to incorporate large, unannotated au-

dio datasets for high-quality paralinguistic classification. To

this end, we trained context-independent DNN acoustic mod-

els on a general speech recognition dataset, and used the frame-

level posterior estimates (i.e. DNN outputs) as feature vectors.

To construct utterance-level feature values from the frame-level

feature vector sets, we employed the Bag-of-Audio-Words ap-

proach. According to our experimental results, this technique is

viable even on its own, as the UAR values attained were accept-

able on a public paralinguistic dataset.

Another possible application of the proposed BoAW-DNN

technique is to combine it with other types of features. By com-

bining the predictions got using our method with the classic

ComParE functionals proposed by Schuller et al., and also in-

corporating the predictions obtained by relying on the BoAW

representations of MFCC feature vectors, we attained a relative

error reduction of about 32%. The UAR score of 82.8% re-

ported is the highest one on this particular paralinguistic corpus

achieved so far in a scientifically sound way.
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