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Background: The close proximity of adipose tissue and mammary epithelium

predispose involvement of adipose cells in breast cancer development. Adipose-tissue

stem cells (ASCs) contribute to tumor stroma and promote growth of cancer cells. In our

previous study, we have shown that murine ASCs, which undergo polyploidization during

their prolonged in vitro culturing, enhanced the proliferation of 4T1 murine breast cancer

cells in IGF1 dependent manner.

Aims: In the present study, our aim was to clarify the regulation of ASC-derived IGF1.

Methods: 4T1 murine breast carcinoma cells were co-transplanted with visceral

fat-derived ASCs (vASC) or with the polyploid ASC.B6 cell line into female BALB/c

mice and tumor growth and lung metastasis were monitored. The conditioned media of

vASCs and ASC.B6 cells were subjected to LC-MS/MS analysis and the production of

IGFBP2 was verified by Western blotting. The regulatory effect was examined by adding

recombinant IGFBP2 to the co-culture of ASC.B6 and 4T1. Akt/protein kinase B (PKB)

activation was detected by Western blotting.

Results: Polyploid ASCs promoted the tumor growth and metastasis more potently

than vASCs with normal karyotype. vASCs produced the IGF1 regulator IGFBP2, which

inhibited proliferation of 4T1 cells. Downregulation of IGFBP2 by polyploidization of

ASCs and enhanced secretion of IGF1 allowed survival signaling in 4T1 cells, leading

to Akt phosphorylation.

Conclusions: Our results implicate that ASCs in the tumor microenvironment actively

regulate the growth of breast cancer cells through the IGF/IGFBP system.

Keywords: adipose stem cells, breast cancer, tumor stroma, insulin-like growth factor 1, insulin-like growth factor

binding protein 2
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INTRODUCTION

Nowadays, stem cell-based therapies are feasible tools for
treatment of various diseases. Adipose-tissue derived stem cells
(ASCs) are especially popular, as these cells can be easily
harvested in large quantities. ASCs have a great potential to
proliferate, to differentiate into various cell lineages and to
modulate immune responses, therefore they seem to be ideal
for the treatment of orthopedic or inflammatory diseases (1).
ASCs have multiple roles in regeneration: they provide source
for cell-renewal, and secrete paracrine factors for cell growth,
revascularization, immunosuppression, and wound-healing. In
vivo studies suggest that ASCs may be used for the treatment
or adjunctive therapy for multiple sclerosis, ischemic stroke,
glioblastoma, spinal fusion, chronic liver failure, acute kidney
injuries, myocardial ischemia, chronic obstructive pulmonary
disease, osteoarthritis, and inflammatory bowel disease (1, 2).
However, fewer studies reach clinical phase II or beyond, and the
first marketing authorization of an allogeneic stem cell therapy
was approved in 2018 for the treatment of complex perianal
fistulas in Crohn’s disease (3). Although ASCs are considered
to be panacea, the U.S. Food and Drug Administration (FDA)
warns that only those therapies are acceptable, which are proved
to be safe and efficient in randomized, controlled trials (4). Many
clinics use the so called stromal vascular fraction (SVF), isolated
in a single step from the autologous adipose tissue (5). This
method avoids cell expansion in vitro; however, it also escapes
careful characterization of the utilized stem cell product. SVF
consists of heterogeneous cell population, depending on donor
age, gender, and weight, and the anatomic harvest location,
which causes high variation in clinical outcome. The better
approach would be establishment of an ASC bank, as ASCs
are not immunogenic, and cells from allogeneic source can be
used for therapies (6). The cells from an ASC bank could be
expanded ex vivo and fully characterized prior to clinical use.
An emerging problem with the ex vivo expanded stem cells
is that they show chromosomal instabilities (7–9), which may
be associated with cancer. Moreover, ASCs have been shown
to integrate into tumor microenvironment, where they may
promote the tumor progression by direct cell-cell contact or
paracrine factors (10–12).

In our previous study, we have shown that murine ASCs
became hypotetraploid under prolonged in vitro culturing,
which was accompanied with phenotypical, gene expressional
and functional changes. Polyploid ASC.B6 cells upregulated the
expression of several stemness factors, such as Krueppel-like
factor 4 (KLF4), and secreted growth factors, such as Insulin-
like growth factor 1 (IGF1). We detected that ASC.B6 enhanced
the in vitro proliferation of 4T1 murine breast cancer cells
in an IGF1-dependent manner (13). IGF1 is crucial during
mammary gland development; however, it also plays important
role in breast cancer (14). It is produced in the liver and
transported via blood into various tissues in the body, bound

Abbreviations: Akt/PKB, protein kinase B; ASCs, adipose-tissue stem cells; IGF1,
insulin-like growth factor 1; IGFBP2, insulin like growth factor–binding protein 2;
MSC, mesenchymal stem cells; vASC, visceral adipose-tissue stem cells.

to members of the Insulin like growth factor-binding protein
family (IGFBPs). The six members of this family bind IGFs with
high affinity, and as they are expressed in most tissues, they play
important role in the regulation of IGF activity both on endocrine
and autocrine/paracrine levels (15). The importance of the
IGF/IGFBP system in cancer progression has been emphasized
recently: IGFs are autocrine factors for many cancers, while
IGFBPs hinder tumor growth by inhibiting IGF functions,
such as cell proliferation, survival, and migration/invasion. The
balance of these proteins is often perturbed inmalignant diseases,
including glioma, prostate, breast, and ovarian cancer, although
the tumor suppressor function of IGFBPs in individual cases
is often debated (16). Given that we have found upregulated
IGF1 production by polyploid ASCs, which promoted breast
cancer cell proliferation in vitro, we aimed to confirm the
tumor-promoting function of these stem cells and to clarify the
underlying mechanism. In this study, we co-transplanted female
mice with 4T1 breast cancer cells and ASCs with normal or
polyploid karyotype andmonitored tumor initiation, progression
and metastasis. We detected that ASC.B6 cells downregulated
their IGFBP2 expression in parallel with IGF1 upregulation,
therefore we tested if the ASC.B6-induced 4T1 cell proliferation is
influenced by adding recombinant IGFBP2. Finally we examined
the PI3K/Akt pro-survival signaling pathway in 4T1 cells in the
presence of ASC.B6-derived factors and IGFBP2.

MATERIALS AND METHODS

Cells
Adipose stem cells (vASC) were isolated from visceral fat
tissues of 4 months old mice, males and females, C57BL/6J
strain (JAX). ASC.B6 cell line was established as previously
described (13). ASC.B6 and vASCs were cultured in DMEM/F12
supplemented with L-glutamin (Gibco), Penicillin/Streptomycin
(Sigma-Aldrich), 10% fetal calf serum (FCS, Gibco) and 5% horse
serum (Gibco), at 37◦C and 5% CO2. Conditioned media were
prepared as follows: confluent cell cultures of ASC.B6 or vASCs
were washed in PBS and kept in serum-free DMEM/F12 for 48 h.
Then the supernatants were collected and centrifuged for 10min
at 300 × g to remove cell debris. 4T1 mouse breast carcinoma
cells (ATCC CRL-2539) were maintained in DMEM/F12 with
5% FCS.

Murine Breast Cancer Model
Female Charles River-derivative BALB/c mice (Balb-c/kby) (8–
10 weeks old) were purchased from Kobay Ltd. (Turkey) and
were injected orthotopically with 4T1 breast carcinoma cells
(103 cells/animal) with or without vASCs or ASC.B6 cells (105

cells/animal). The animals had free access to food and water.
Six mice were included into each experimental group. The
experiments were repeated independently two times under same
conditions and the pooled results have been presented in the
paper. The incidence of palpable tumors was determined by
regular monitoring of animals, and the tumor size was measured
with a precision caliper and calculated according to the formula:
d2 ×D× 0.5, where d and D are the minor and major diameters,
respectively. The experiment was terminated with euthanizing
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the animals on day 28, and then the primary tumors and lungs
were excised and fixed in 4% formaldehyde fixation (Molar
Chemicals, Budapest, Hungary). Weights of the primary tumors
and lungs were measured after fixation. Mice showing signs
of suffering (lost 15% of body weight and/or righting reflex
is not working and/or enable to eat, drink) due to (ethical)
legislation were sacrificed before terminating the experiment.
Survival of experimental animals was estimated using Kaplan-
Meier plot analysis.

Protein Identification by LC-MS/MS
Conditioned media were harvested from confluent cell cultures
and the proteins were precipitated with 10% trichloroacetic acid
(TCA, Sigma), washed with acetone, and then boiled in sample
loading buffer. The proteins were separated on a 15% SDS-
PAGE and stained with Coomassie Brilliant Blue R-250 (Bio-
Rad Laboratories). The dominant band between 28 and 36 kDa
was cut and subjected to protein identification. The proteins
were in-gel digested according to the protocol of the UCSF
MS-Facility (http://ms-facility.ucsf.edu/protocols.html). Briefly:
after reduction with 1,4-dithiothreitol [(DTT), Sigma] and
alkylation of the free sulfhydryls with iodoacetamide [(IAM)
Sigma] the proteins were digested with trypsin (Sequencing grade
modified trypsin, Promega). Tryptic peptides were extracted
and the digests were subjected to LC-MS/MS analysis using
an LTQ-Orbitrap Elite (Thermo Fisher Scientific, Germany)
mass spectrometer online coupled with a nanoAcquity-UPLC
(Waters, USA) system. Peak picking was done using PAVA
script and the peaklists were subjected to database search on
our in-cloud ProteinProspector (v.:5.20.0) search engine using
the mouse sequences of the UniProtKB.2017.9.19.random.concat
(84204/89951742 entries searched) database.

IGFBP2 Detection With Western Blotting
For detection of IGFBP2 from the cell lysates, the cells were
detached and washed in PBS then counted. Cell concentration
was adjusted with sample loading buffer (62.5mM Tris HCl, pH
6.8, 2% SDS, 10% glycerol, 5% 2-mercaptoethanol, and 0.002%
bromphenol blue) to 106 cells/ml, boiled for 5min and then
vortexed for 1min. Boiling and vortexing was repeated three
times. Samples were centrifuged for 1min at 13,000 × g. For
detection of secreted IGFBP2 conditioned media were harvested
from confluent cell cultures and the proteins were precipitated
with 10% trichloroacetic acid (TCA), washed with acetone,
and then boiled in sample loading buffer. Cell lysates of 105

cells and precipitated proteins from 1ml of conditioned media
were run on a 10% SDS-PAGE. The proteins were transferred
to polyvinylidene difluoride membranes (Immobilon-P PVDF,
Millipore). The membranes were blocked with 3% gelatin from
cold-water fish skin (Sigma) in PBS for 1 h at room temperature,
and then incubated with anti-IGFBP2 antibody (Santa Cruz
Biotechnology, sc-515134) overnight at 4◦C. After washing and
incubating with swine anti-rabbit Ig-HRP (DAKO) for 1 h at
room temperature, the immunoreactive proteins were visualized
using WesternBright ECL HRP substrate (Advansta), and the
chemiluminescence signal was detected with Odyssey Imaging
System (LI-COR Biotechnology). Rabbit anti-β actin antibody

(Abcam, ab8227) and anti-rabbit Ig-HRP was used to test the
equal amount of loaded proteins.

Phospho-Akt Stimulation and Western
Blotting
4T1 cells were starved in DMEM/F12 supplemented with 0.5%
FCS for 24 h, then washed and resuspended in serum free
DMEM/F12 at 4 × 107 cells/ml. After 5min pre-incubation
at 37◦C, the cells were stimulated with equal volume of vASC
or ASC.B6 conditioned media for different time points. The
stimulation was stopped by adding 2× lysis buffer [1× lysis
buffer contains: 50mM TrisHCl pH 7.4, 150mM NaCl, 2mM
EDTA, 20mM NaF, 200µM Na3VO4, 1mM PMSF, cOmpleteTM

Mini EDTA-free Protease Inhibitor Cocktail (Roche)]. After
30min lysis on ice the samples were centrifuged for 15min at
13,000 × g and then the lysates were boiled with 2× sample
loading buffer for 5min. Cells lysates from 1.5 × 105 cells
were run on a 10% SDS-PAGE, and transferred to PVDF
membranes. The membranes were blocked with 3% gelatin from
cold-water fish skin in PBS for 1 h at room temperature, and
then incubated with anti-phospho Akt (Ser473) antibody (Cell
Signaling Technology, #9271) overnight at 4◦C. After washing
and incubating with swine anti-rabbit Ig-HRP (DAKO) for 1 h at
room temperature, the immunoreactive proteins were visualized
using WesternBright ECL HRP substrate (Advansta), and the
chemiluminescence signal was detected with Odyssey Imaging
System (LI-COR Biotechnology). To re-probe with different
antibodies, the membranes were stripped in stripping buffer (Re-
Blot Plus Strong, Millipore) for 15min at room temperature.
The amount of loaded proteins was tested with anti-Akt (Pan)
antibody (Cell Signaling Technology, #2920), followed by anti-
mouse Ig-HRP (DAKO).

Proliferation Test
4T1 cells were starved in DMEM/F12 supplemented with 0.5%
FCS for 24 h, then washed and seeded onto a 24 well plate at 5 ×
104 cells/well in DMEM/F12 supplemented with 2% FCS. ASC.B6
cells were washed in serum free DMEM/F12 and resuspended in
DMEM/F12 + 2% FCS, then seeded in Transwell inserts with
0.4µmpore size (Corning Costar), at a 4T1: ASC ratio of 2: 1, i.e.,
2.5 × 104 cells/insert. As a control, only DMEM/F12 + 2% FCS
was pipetted into Transwell inserts. For blocking the proliferative
effect of ASC.B6, recombinant mouse IGFBP2 (R&D Systems,
797-B2-025) was added at a concentration of 1µg/ml in lower
chambers. 4T1 cells were harvested after 48 h, and the living cell
number of 4T1 was determined with trypan blue staining and
counting with BioRad TC10 counter device.

Statistical Analyses
Experiments were repeated at least three times each conducted
in triplicate samples, unless indicated otherwise in the figure
legends. Mean and SD were determined with Microsoft EXCEL
software from the results of the three independent experiments.
Statistical analysis were carried using t-test (set at ∗P < 0.05,
∗∗P < 0.01).
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FIGURE 1 | ASCs promote tumor initiation, growth and metastasis. 4T1 cells (103 cells/mouse) were injected into BALB/c female mice with or without vASCs or

ASC.B6 (105 cells/mouse), control mice were injected with ASCs without tumor cells. n = 10–12. (A) Tumor initiation was regularly monitored and tumor incidence

was evaluated using Kaplan-Meier analysis. (B) Tumor size was measured with a special caliper and its volume was determined as described in Material and Methods.

(C) Mice were sacrificed on day 28 after tumor injection, and then primary tumors were resected and weighed. (D) The macroscopic metastatic nodules (white arrows)

were counted on isolated lungs. The statistical analysis was t-test with P-values set at: *P < 0.05, **P < 0.01.

RESULTS

ASC.B6 Increases Breast Cancer
Progression and Metastasis
Adipose-tissue derived stem cells were reported to promote
tumor growth (12). In our previous study, we have shown
that expression of genes involved in cancer, cellular growth,
proliferation and cellular movement changed significantly with
polyploidization of ASCs (13). To compare the tumor-promoting
activity of ASCs, we co-injected 4T1 murine breast cancer cells
with vASCs at low passage number (p3) or with polyploid
ASC.B6 cells into the mammary pad of female BALB/c
mice. Neither vASCs nor ASC.B6 cells alone induced tumors
(Figure 1A). 4T1 alone formed detectable tumors only after 2–3
weeks. However, palpable tumors appeared much earlier, within
10 days in ASC + 4T1 co-injected mice. ASC.B6 was more
potent in facilitating tumor initiation, as more animals bore
tumor in ASC.B6 co-injected mice at day 10 and 14 than in the
vASC co-injected group. Both ASCs augmented the volume and
weight of the tumors; however, tumors were bigger in ASC.B6
than vASC co-injected mice (Figures 1B,C). Finally, both ASCs

increased the number of macroscopic metastatic nodules in the
lung, but the number and size of these nodules was higher
in case of ASC.B6 + 4T1 co-injected mice (Figure 1D). These
results suggest that ASCs intensify breast cancer growth and
metastasis, and this capability increases in ASC.B6 cells with
abnormal karyotype.

ASC.B6 Upregulates IGF1 and
Downregulates IGFBP2 Expression to
Promote Tumor-Cell Proliferation
Previously, we have shown that ASCs upregulated IGF1
expression through polyploidization and that the ASC-derived
IGF1 promoted 4T1 proliferation (13). Searching for additional
differentially expressed factors, we found an abundant protein
in the supernatant of vASCs, which was absent from ASC.B6
(Figure 2A). Liquid chromatography-mass spectrometry analysis
identified this 32 kDa protein as Insulin-like growth factor-
binding protein 2 (IGFBP2), a member of the insulin-like
growth factor regulating proteins (15).We confirmed byWestern
blotting that vASCs at p3 expressed and secreted huge amount of
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FIGURE 2 | IGFBP2 expression of vASCs. (A) SDS-PAGE analysis is shown of the proteins precipitated from conditioned media of vASCs or ASC.B6 cell culture,

stained with Coomassie Brilliant Blue R-250. (B) IGFBP2 protein was detected by Western blotting experiment from the cell lysate of vASCs at passage number p3

and p16, and ASC.B6 cell cultures or conditioned media of vASCs p3 and ASC.B6 cell cultures. β-actin was used as loading control. (C) Recombinant IGFBP2

(1µg/ml) inhibited the proliferation of 4T1 cells in the presence of ASC.B6 at a ratio of 2.5:1 in Transwell inserts. The bars show the mean ± SD from three

independent experiments, the statistical analysis was t-test with P-values set at: *P < 0.05.

IGFBP2, vASCs at later passages (p16) decreased its expression,
while ASC.B6 completely downregulated it (Figure 2B). 4T1 cells
proliferated better in the presence of ASC.B6, however, adding
recombinant IGFBP2 (rIGFBP2) to the cell culture, it resulted in
significant decrease in ASC.B6 tumor-growth promoting effect
(Figure 2C). Based on our results, we concluded that vASCs
are normally regulating the accessibility of growth factors by
secreting high amount of IGFBP2, however, the ratio of IGF1 and
IGFBP2 changed in polyploid ASC.B6, leading to enhanced cell
growth and survival.

IGF1/IGFBP2 Balance the Survival
Signaling Pathway of Breast Cancer Cells
IGF1 is a general mitogen, it induces pro-survival signaling
pathways, such as the Ras/MAPK and the PI3K/Akt kinase
pathway (17). When we added ASC.B6 conditioned medium
to 4T1 cells, it rapidly induced Akt phosphorylation, with
a maximum at 5min (Figure 3A). In contrast, supernatant
of vASCs at p3 did not elevate substantially the level of
phosphorylated Akt over the baseline, suggesting that soluble
factors secreted by ASC.B6, such as IGF1, promoted the pro-
survival cell response (Figure 3B). When we pre-incubated the
ASC.B6 conditioned medium with rIGFBP2, it decreased the
induction of Akt phosphorylation, while rIGFBP2 alone did not
impact Akt phosphorylation (Figure 3C). Our results indicate

that polyploid ASC.B6 cells activate the pro-survival pathway
in 4T1 cancer cells by changing the balance of their paracrine
factors, namely, by downregulating IGFBP2 and secreting IGF1.

DISCUSSION

In breast, mammary tissue is embedded in the adipose tissue,
which allows direct paracrine action of adipose-derived factors
on mammary epithelial cells; thereby the stromal cells contribute
to the regulation of cellular growth and differentiation of the
mammary gland (18). However, adipose tissue-derived cells may
also be a source for tumor stroma (12), and their secreted
growth factors, especially IGF1, contribute to the growth of
breast cancer cells (19). In this way, ASCs may play crucial
role in the development of breast cancer and in the relapse of
the disease as well. Importantly, adipose tissue and enriched
ASCs are often used for reconstruction of breast tissue after
mastectomy (20), which carries the risk that residual cancer cells
might be activated by the stem cells, leading to fatal outcome.
Our results point out, that ASCs can robustly augment tumor
formation even when low number of tumor cells is present,
and they facilitate the progression of the disease, leading to
rapid metastatic events. When adipose stem cells go wrong, they
change their transcriptome in a way, which may favor cancer
development. We have previously shown that transcription
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FIGURE 3 | Secreted factors from ASC.B6 induce Akt phosphorylation in 4T1 cells. 4T1 cells were stimulated with conditioned media of vASCs and then the cells

were lysed and the phosphorylated or total Akt proteins were detected in Western blotting experiments. (A) 4T1 cells were stimulated with conditioned medium of

ASC.B6 at various time points (2.5, 5, 10, or 20min) or only cell culture medium was added (ctrl). (B) 4T1 cells were stimulated with conditioned medium of ASC.B6

or vASCs for 5min or left unstimulated. (C) Cell culture medium or conditioned medium of ASC.B6 were pre-incubated with rIGFBP2 in various concentrations (0.5, 1,

2µg/ml) and then added to 4T1 cells for 5min.

of more than 2,000 genes changed in polypoid ASC.B6 cells
compared to vASCs with normal karyotype, amongst them
there are genes, which are involved in the regulation of cancer,
cellular growth and proliferation (13). In addition, we found
that ASC.B6 cells promoted 4T1 cell proliferation better than
normal vASCs, suggesting that they gained stronger tumor-
promoting function. In our present in vivo experiment, we
verified that polyploid ASC.B6 cells facilitated tumor progression
better than vASCs with normal karyotype. The explanation
for the increase in efficacy may be the massive production
of IGF1 by ASC.B6 cells, which contributes to the 4T1 cell
proliferation in an in vitro assay (13).We show here that ASC.B6-
derived factors induce Akt phosphorylation, hence switch on the
PI3K/Akt signaling pathway, and thereby promote cell survival,
proliferation, growth and cellular metabolic pathways (17, 21) In
addition, we have identified IGFBP2 in the secretome of vASCs,
which sequesters IGF1 and thereby regulates its accessibility
and function (15). IGFBP2 was missing from ASC.B6 cells, and
supplementation with a recombinant protein abolished tumor
cell proliferation, and also mitigated the ASC.B6-induced Akt
phosphorylation. Our results indicate that the tumor-growth
promoting function of ASCs is influenced by the balance
of IGF1/IGFBP2.

It is well-known that IGF1 is a key growth factor in
mammary gland formation during development, however, it
also plays important role in breast cancer (14). There are anti-
cancer therapies under clinical trials which target the IGF/IGF-
receptor system, however, most of them failed due to interfering
with insulin signaling and manifesting metabolic toxicity (22).
In contrast, IGFBPs can prevent IGF from binding to IGF-
1R, but do not bind insulin and thus do not interfere with

insulin-insulin receptor interactions; therefore they might be
promising therapeutic targets. However, there are conflicting
results whether IGFBP2 is tumor suppressive or oncogenic.
Interestingly, IGFBP2 is often upregulated in various cancer
types, such as gliomas, prostate, ovarian, and breast cancer (16).
The oncogenic activity of IGFBP2 can be explained by its IGF-
independent activities: it possesses a functional integrin-binding
domain, heparin binding domains and a nuclear localization
signal motif as well, all contributing to cellular signaling
leading to cell proliferation, migration, and angiogenesis (23).
In case of benign proliferative breast diseases and various type
of breast cancers, the level of IGFBP2 both in serum and
tumor mass may be upregulated (24, 25), moreover, IGFBP2
has proliferative effect on breast cancer cell lines (26) and it
is associated with the endocrine resistance of breast cancer
(27), which suggests that IGFBP2 is oncogenic and it is a
potential biomarker (16). Based on IGFBP2 positivity of breast
cancers, a DNA vaccine was designed, encoding HER-2/neu,
IGFBP2 and insulin-like growth factor 1 receptor (IGF1R) as
tumor associated antigens and it proved to be effective in
preclinical trials. It blocks the development of palpable lesions
and slows tumor growth in TgMMTV-neu mice, which develop
spontaneous mammary cancer expressing these antigens (28).
Currently, a phase I clinical trial is going on with pUMVC3
vector and IGFBP2, HER2, and IGF1R to study the side
effects and to determine the best dose of a vaccine therapy in
preventing cancer recurrence in patients with non-metastatic,
node positive, HER2 negative breast cancer (Clinicaltrials.gov
ID: NCT02780401).

In contrast to these studies, IGFBP2 behaves as tumor
suppressor in our experiments: it inhibits the IGF1-induced
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proliferation and the pro-survival PI3K/Akt pathway in 4T1
cells. There are similar results in the literature: IGFBP2
inhibits the proliferation of human breast cancer cell line
Hs578T (29), which does not express IGFBP2, similarly to
4T1 (data not shown), suggesting that the pro- or anti-
tumorigenic effect of IGFBP2 depends on the actual state of the
cancer cell. It was also assumed that the immunohistochemical
methods used for the detection of IGFBP2 in tumor sections
recognized its cleaved forms as well. The cleaved IGFBP2 has
reduced affinity for IGFs, allowing their functions through
IGF1R. Indeed, the protease-resistant IGFBP2 inhibits MCF-
7 human breast cancer cell proliferation in vitro, and when
it is combined with a non-matrix-binding mutation, the
IGFBP2 mutant more effectively inhibits the growth and
angiogenesis of MCF-7 tumor xenograft in vivo (30). In addition,
expression of IGFBP2 is influenced by various conditions, such
as the body mass index (BMI), diet, physical activity, age
and hormonal status. A recent study from a large series of
primary invasive breast cancers showed that tumor expression
of IGFBP2 was a positive predictor of overall survival in
a multivariate analyses adjusted for BMI, and its expression
correlated with estrogen receptor status (31). Similarly, serum
IGFBP2 is associated with a decrease in risk of atypical
hyperplasia in the age- and BMI adjusted model and non-
users of hormone therapy (32). The contradiction in literature
data warns on that the IGF1/IGFBP2 system is delicately
regulated and the outcome of the signaling depends on
numerous factors, which have to be taken in account during
therapy design.

CONCLUSIONS

Accumulating data suggest that ASCs play important role in
the organization of breast tissue, and when their secreted
factors change, it may lead to pathological processes. Our
results show that ASCs with altered genetic background promote
tumor progression by unbalanced IGF1 and IGFBP2 secretion,
which leads to enhanced growth of breast epithelial cells and
favors tumorigenesis. We suggest that our model may be
suitable to further search for new players responsible for breast
cancer development, and to find new therapeutic targets in
tumor stroma.
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