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One of themost focused-on point in biomedical and biotechnological research is the fabrication of complex tissue
engineering scaffolds, with the ultimate objective being a functional, biocompatible and biodegradable implant
that could facilitate and enhance tissue regeneration. Creating such implants is a highly challenging task. Physical
and chemical characteristics have to be optimized and the balance between biodegradability, mechanical
strength and overall practicality cannot be easily obtained. In this regard, composite materials have been regu-
larly used in numerous areas of science and engineering as they incorporate advantages from two or more com-
ponent materials. Our objective was to fabricate a composite, fibrous mesh composed of both degradable and
non-degradable elements, that could be applicable as an implant with reliable mechanical properties without
hindering in vivo tissue integration. In themanuscript, we present the fabrication, chemical, physical, mechanical
and cytotoxic evaluation of co-electrospun polysuccinimide/poly(vinyl alcohol) (PSI/PVA) meshes. Results con-
firmed the presence and random distribution of both PSI and PVA fibres in the fabricated meshes. Mechanical
studies indicate that meshes are competent for implantation while cell viability study revealed no cytotoxic
effects.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Tissue engineering is a multidisciplinary field aiming to regenerate
damaged or replace lost tissues. The threemain approaches to tissue en-
gineering include a. Chemical techniques using drugs and signalling
molecules to induce a direct, in vivo cellular proliferation and differen-
tiation thus slowly developing new tissues [1] b. Biological methods,
where ex vivo cell cultures are established utilizing cells extracted
from the patient herself/himself or a donor which will be subsequently
implanted back to the patient [2] and c. Physical systemsnamely bioma-
terials and tissue scaffolds which are directly implanted serving as a
framework where the innate cells of the patient can adhere, proliferate
and differentiate [3]. Furthermore, hybrid methods i.e. combinations of
two or more of the above methods have been examined as well [4]. Tis-
sue scaffolds can be fabricated using either natural/biological or syn-
thetic materials with each one having its own advantages and
disadvantages. Polymers, are very prominent materials for scaffold fab-
rication. Their synthesis is feasible with several methods (e.g. via
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thermal polycondensation, ring-opening polymerization, enzymatic po-
lymerization), they have numerous possibilities for modifications (e.g.
via curing, grafting, derivatization) and most of them have effective
manufacturing methods (e.g. solution polycondensation, melt polycon-
densation)making polymers themost frequently usedmaterials for the
design and production of biomaterials [5].

Polymer-based biomaterials are already widely used in medicine:
from dental implants to vascular grafts to abdominal wall prostheses
[6,7]. However, one of the current aims of tissue engineering is to fabri-
cate biomaterials that will be degraded (after fulfilling their purpose)
and disappearwhile the patient's own cells proliferate and differentiate,
regenerating the lost tissue by having used the implant as a framework
[8]. Unfortunately, the application of fully biodegradable biomaterials is
limited as finding the perfect balance between themechanical strength,
the duration of biodegradability, the desired functionality yet manage-
able costs is a huge challenge [9].

Apart from its chemical and physical composition, a biomaterial's
microstructure has a huge impact on the implant-host tissue interac-
tion. Logically, an implant should resemble and match the structure
and characteristics of the original tissue. Accordingly, one widely ac-
cepted tactic, especially for soft tissue implants, is to produce fibrous
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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biomaterials aiming to mimic the extracellular matrix, a component
found in almost every tissue surrounding cells providing physical and
biochemical support [10].

Electrospinning is a commonly used technique to fabricate polymer
meshes composed of micro- or even nano-sized fibres. The simplest
form of the technique involves transferring a polymer solution to a sy-
ringe with an attached needle which is connected to a high-power volt-
age supply. As the solution is slowly pushed through by an infusion
pump, the polymer droplet at the end of the needle will elongate as
the electric force increases, overcoming the surface tension of the poly-
mer solution. Droplets are then expelled, fly towards and finally adhere
onto a grounded collector while simultaneously the polymer-solvent
evaporates resulting in the formation of polymer fibres. While
electrospinning is perhaps the simplest and most cost-effective tech-
nique to fabricate tissue scaffolds, it is quite versatile and can be easily
modified resulting in enhanced, complex, functionalized meshes
[11,12].

Poly(vinyl alcohol) (PVA) is a well-known, water-soluble, biocom-
patible polymer that has already been utilized for biomedical applica-
tions mostly in colloidal (e.g. eye drops) and hydrogel forms (e.g.
contact lenses, cartilage grafts) [13]. Electrospun PVA meshes have
been examined before as potential tissue scaffolds demonstrating a
non-toxic, minimally immune reactive, biocompatible nature [14]. Nev-
ertheless, some difficulties have been observed regarding cell adhesion,
infiltration and tissue integration [14,15]. These are issues commonly
observed when examining potential biomaterials or tissue scaffolds
and several approaches have been examined as potential solutions to
the problem (use of anti-inflammatory drugs, corticosteroids, biologi-
cally active molecules etc.) [16].

Conversely, poly(succinimide) (PSI) is a relatively recently devel-
oped polymer which has been investigated as a drug delivery system
and biodegradable tissue scaffold [17,18]. While its biocompatibility is
highly suggested [18,19], its mechanical performance and short degra-
dation time [20] limit the spectrum of its application possibilities. The
two polymers having individual advantages and disadvantages of their
own could be combined to form a composite material which perhaps
could demonstrate synergistic properties.

PVA has been proven to have excellent mechanical properties, even
being a suitablematerial for surgical herniamesh [14]. Furthermore, the
water solubility of PVAmakes the addition of active pharmaceutical in-
gredients (antibiotics, analgesics, anti-inflammatory drugs) a simple
matter, something researchers have exploited numerous times
[21,22]. On the contrary, PSI is awater-insoluble polymer that is suscep-
tible to enzymatic degradation under physiological conditions [23].
Apart from its biocompatible nature, PSI is a polymer that can be easily
functionalized due to the monomer's imide group which have been
proven to reactwith nucleophilicmolecules even undermild conditions
[18,24].

Co-electrospinning is a branch techniquewhere two individual poly-
mer solutions are electrospun at the same moment resulting in a com-
posite material composed of two different polymer fibres [25].
Although seemingly a simple modification the resulting composite
meshmay have enhanced physical, chemical ormechanical characteris-
tics. The objective of this work was to attempt combining PSI and PVA
fabricating a composite co-electrospun nanofibrous mesh. Our primary
aim was to fabricate a composite tissue scaffold with a degradable and
non-degradable component to enhance cell adhesion, infiltration and
overall tissue integration while still providing a stable foundation for
the cells and retaining its mechanical strength. Additionally, in the fu-
ture, both polymer fibres could also be utilized to encapsulate drugs
resulting in a complex drug delivery system where two synergistically
acting drugs can be delivered together or even a system which is able
to deliver water-soluble and -water insoluble drugs concurrently [26].

In this work, we present the fabrication of co-electrospun composite
PSI/PVA meshes, their physical and chemical characterization with scan-
ning electron microscope (SEM), two-photon excitation microscopy
(TPEM), and infrared spectroscopy (ATR-FTIR), their mechanical charac-
terization and finally an examination of in vivo cell-mesh reactions with
two different cell lines (A2058 melanoma and MeWo malignant mela-
noma cell line).

2. Materials and methods

2.1. List of materials

Poly(Vinyl Alcohol) (Mowiol® 10–98, Mw ~61,000, Sigma Aldrich,
USA), Glutaraldehyde (25%, Merck, Germany), Hydrochloric Acid (37%,
Reanal Labor), Chlorine Dioxide (3350 Ppm, Solvocid, Hungary), L-
Aspartic Acid (Reagent Grade ≥ 98%, Mw ~133, Sigma Aldrich, USA), Or-
thophosphoric Acid (Reagent Grade ≥ 99%, Mw ~98, Sigma Aldrich,
USA), Dimethylformamide (Anhydrous, Reagent Grade 99.9%, VWR
International), Nile Blue A Stain (Dye Content ≥75%, Sigma Aldrich,
USA), Ultrapure Water (Water Purification System, Zaneer), Phosphate-
Buffered Saline (Sigma Aldrich, USA), Sodium-azid (Sigma Aldrich,
USA), RPMI 1640 Medium (Sigma-Aldrich, USA), Fetal Bovine Serum
(FBS) (Gibco, USA), L-Glutamine (Lonza, Switzerland), Penicillin-
Streptomycin (Gibco, USA), Eagle's Minimum Essential Medium (Lonza
Bioscience, Switzerland), Dulbecco's Modified Eagle Medium (Lonza Bio-
science, Switzerland), Non-Essential Amino Acid (NEAA) Solution (Gibco,
USA), Trypsin (Gibco, USA), Paraformaldehyde (4% Sigma Aldrich, USA),
Vybrant™ DiD Cell-Labeling Solution (Thermo Fisher Scientific),
alamarBlue™ Cell Viability Reagent (Thermo Fisher Scientific, USA).

2.2. Synthesis of polysuccinimide

Polysuccinimide (PSI) is the product of the thermal polycondensa-
tion of L-aspartic in the presence of phosphoric acid. L-aspartic acid
and phosphoric acid were mixed at a 1:1 ratio and subsequently sealed
in a flask. The flask was connected to a rotary vacuum evaporator sys-
tem with a silicon oil bath (RV10 digital rotary evaporator, IKA,
Germany). The mixture was gradually heated up to 180 °C while the
pressure inside the flask was gradually decreased to 5 mbar. The mix-
ture was left to rotate at a constant speed for 8 h. Further details about
the synthesis and information about the quality control (polymerization
yield, average molarmass andmolarmass distribution) can be found in
the research group's previous publication [27], where the molar mass
was calculated by the Kuhn-Mark-Houwink equation following viscos-
ity measurements according to the methodology of J. Vlasak et al. [28].

2.3. Preparation of the polymer solutions

PSI was dissolved in dimethylformamide(DMF) to gain a 25 w/w %
concentration solution. To produce the PVA solution, PVA pellets were
added to heated (90 °C) and vigorously stirred water. The solution
was stirred until the pellets fully dissolved and a homogenous solution
was observed. The polymer solution was then left to cool down to
room temperature. The concentration of the raw unprocessed solution
was determined by gravimetric analysis. The exact concentration used
for the electrospinning (18 w/w %) was then adjusted by the addition
of water if required. Stock solutions of PVA and PSI were kept in refrig-
eration until used. Exactly before electrospinning 327 μl of 1M glutaral-
dehyde (GDA) solution was thoroughly mixed to 4 ml of PVA solution.
GDA was used as a cross-linking agent with cross-link density of 50,
(i.e. every 50th monomer is theoretically crosslinked) for both the
pure PVA and PSI/PVA meshes [14].

2.4. Electrospinning setup

To fabricate the single polymer meshes, the standard electrospinning
setup was used. Polymer solutions were transferred to 5 ml Luer-slip sy-
ringes (Chirana, Slovakia) with customized 18G needles (Becton Dickin-
son, USA). Polymer solutions were delivered by an infusion pump
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(KDS100, KD Scientific, USA) at a constant flow rate. The desired electric
potential was provided by a high voltage DC supply (73030P series,
Genvolt, UK) the positive electrode was clamped on the needle while
the ground electrode was attached to the rotating collector (RPM =
50). For the composite meshes, a co-electrospinning setup was designed
to electrospin the two polymer solutions simultaneously at a 1:1 mass
ratio (Fig. 1.). Electrospinning parameters can be found in Table 1.

2.5. Post-electrospinning processing

After extraction from the collector, meshes underwent physical and
chemical treatments. All types of meshes (PSI, PVA, PSI/PVA) were
folded into 10 × 10 cm squares. After the folding, meshes were com-
pressed with 5 t of pressure along their entire surface for 5 min with
an RH-97331 Hydraulic Press (Shanghai Reach Automotive, China). In
the case of the PVA and PSI/PVA meshes, immersion in 2 M HCl for 1 h
was essential in order for the cross-linkage formation to occur [14].
After the chemical treatment sampleswere extensivelywashedwith ul-
trapurewater until the pH reached a value of 7. PSI sampleswere stored
dry, at room temperature while PVA and PSI/PVA samples were stored
in sterilized ultrapure water at 4 °C.

2.6. Attenuated total reflectance Fourier transform infrared (ATR-FTIR)
spectroscopy

Chemical analysis of the sampleswas performedusing a FT/IR spectro-
photometer (4700 series type A, JASCO, Japan), equippedwith a diamond
ATR head (ATR Pro One, JASCO, Japan). All measurements were carried
out in a mid-infrared range of wavelength (4000–400 cm−1), with
2 cm−1 resolution and 126 total number of scans. Before sample analysis,
background spectra (H2O, CO2 subtraction) were obtained on a clean and
dry diamond crystal and were subtracted from the sample spectra. PSI
samples were examined dry, directly after the electrospinning. PVA and
PSI/PVA sampleswere examined before (dry state) and after the chemical
treatment (after washing and drying). Additionally, PSI/PVA samples
were also examined after 1st, 3rd and 5th days of incubation in a sterile,
room temperature PBS solution (after being washed and dried).

2.7. Scanning electron microscopy

To verify the fibrous microstructure, measure the thickness and as-
sess the size distribution of the fibres, scanning electron microscopy
was utilized. Small samples (25 mm2) were cut from all the pre-
processed samples. Due to absorbing liquid, chemically treated samples
namely PVA and PSI/PVA required lyophilization before their examina-
tion. Images were taken with a JSM 6380LA scanning electron
microscope (JEOL, Japan). After securing them on an adaptor with con-
ductive stickers, samples were subsequently coated with a thin layer of
gold using a JFC-1200 Sputter Coating System (JEOL, Japan). The applied
Fig. 1. Co-electrosp
voltage was 15 kV and micrographs were obtained at a 1000×, 5000×
and 10,000× magnifications. Average fibre diameter and size distribu-
tion were determined by measuring 100 individual fibres. Measure-
ments were performed using Fiji software (Open Source Software).

2.8. Two-photon excitation microscopy

Additionally, in the case of the composite meshes (PSI/PVA) to ex-
amine and visualize the presence and distribution of the two polymers
two-photon excitation microscopy was utilized. PSI fibres can be ob-
served as produced without staining, due to their auto-fluorescent na-
ture [29,30]. PVA fibres were stained with Nile Blue A stain (0.5 wt% of
PVA). A Femto2D series (Femtonics, Hungary) two-photon microscope
was used. Photo-activity of samples was induced with a DeepSee™
laser (Spectra Physics, United States), at a wavelength of 800 nm. Im-
ages were taken with a 10× and 60× objectives.

2.9. Contact angle measurements

Assessment of wettabilitywas possible bymeasuring thewater con-
tact angle on the different meshes. Small circular samples (d= 1.5 cm)
were prepared from the electrospun fibrous meshes. For the measure-
ment, PVA and PSI/PVA samples were extensively dried. Distilled
water was transferred to a 50 μl Hamilton syringe with a 0.56 mm nee-
dle then, a droplet (5 μl) was carefully placed on the centre of the sam-
ples Investigations were performed using a contact angle meter with a
built-in camera (OCA 15 Plus, Dataphysics, Germany).

2.10. Mechanical studies

Evaluation of mechanical parameters is essential for any type of tis-
sue engineering implant. For the mechanical studies, rectangle samples
(2 cm × 6 cm) were prepared from every mesh. Samples of both hori-
zontal (n= 5) and vertical (n = 5) direction to the direction of the ro-
tating collector were measured. For the assessments, a uniaxial
mechanical tester (4952, Instron, USA) was utilized. Samples were
assessed before and after the mechanical and chemical treatment. Un-
treated samples were measured in air (Temperature: 25 °C, Humidity:
28%) while treated samples were measured under physiological saline
solution (0.9 w/w %, 25 °C) at a 1 mm/min pulling speed.

2.11. Cell studies

Cell viability studies were performed to examine any possible cyto-
toxic effects from the meshes. Two types of human tumour cell lines:
A2058 melanoma cell line (ATCC CRL-11147) and MeWo malignant
melanoma cell line (ATCC HTB-65) were cultured as subconfluent
monolayers under standard conditions (100% humidity, 37 °C and 5%
CO2). The A2058 cells were cultured in RPMI 1640 medium (Sigma-
inning setup.



Table 1
The applied parameters for the single and co-electrospinning.

Mesh type Polymer concentration Flow rate (ml/h) Voltage
(kV)

Collector distance
(cm)

Single polymer mesh - PSI (25 w/w%) 1 13.5 15
Single polymer mesh - PVA (18 w/w%) 0.7 18 15
PSI/PVA composite polymer mesh (25/18 w/w%) 0.5/0.7 13.5/18 15

Fig. 2. PSI, PVA(post-treatment) and PSI/PVA (post-treatment samples in PBS.
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Aldrich, USA) supplementedwith 10% foetal bovine serum (FBS) (Gibco,
USA), 2 mM L-glutamine (Lonza, Switzerland), 100 units/ml penicillin
and 100 mg/ml streptomycin (Gibco, USA). The growth medium for
MeWo cells consisted of Eagle'sMinimum Essential Medium containing
10% FBS (Gibco, USA), 1% non-essential amino acids (Gibco, USA),
2 mM L-glutamine (Lonza, Switzerland), 100 units/ml penicillin and
100 mg/ml streptomycin (Gibco, USA). Disks with a diameter of 6 mm
were cut from each mesh. Before adding the polymer meshes to the
cells, they were sterilized in 0.1% chlorine-dioxide solution (in PBS)
for 10 min. In case of both melanoma types, 10 000 cells/well were
seeded into 96 well microplates in 200 μl culture medium/well and in-
cubated at 37 °C for 24 h. Afterwards, the culture mediumwas replaced
by200 μl freshmedium/well and a single diskwas placed into eachwell.
Cell viability was evaluated by a colorimetric assay 24 and 48 h after the
treatmentswith themeshes. Firstly, the polymermesheswere removed
from the cell culturemedium, then 22–22 μl of the alamarBlue® Cell Vi-
ability Reagent (10×) solution (Thermo Fisher Scientific, USA) was
added to each well. After a 3-h incubation with the alamarBlue® re-
agent, the fluorescence intensity was measured by means of a LS-50B
Luminescence Spectrometer (Perkin Elmer, UK) applying 560 nm as
an excitation wavelength and 590 nm for detection of the emitted light.

3. Results and discussion

3.1. Co-electrospinning

No issues were observed with either polymer during the co-
electrospinning. The single polymer meshes and the composite PSI/
PVA mesh are macroscopically identical and there seems to be a differ-
ence only in texture as the composite meshes are fleecier.

3.2. Post-electrospinning processing

One of the most prominent disadvantages of single needle
electrospinning is the slow production rate (e.g. 0.5–1.5 ml of polymer
solution per hour) resulting in thin and fragilemeshes. Variousmethods
have been developed for increasing production rates (e.g.multiple spin-
nerets, needleless electrospinning) [11]. In our case, amore practical ap-
proach was chosen to reinforce and enhance the mechanical
characteristics of the meshes, therefore, increasing the overall resis-
tance to handling during in vitro cell studies or ensuing in vivo animal
experiments. After the mechanical treatment (folding and compres-
sion), meshes became compact and rigid. Furthermore, PVA being a
water-soluble material requires some type of cross-linkage to prevent
the instant dissolution of the meshes at physiological environmental
conditions. After the chemical treatment and extensive washing, PVA
meshes become opaque and gelatinous. This change is due to the
cross-linking reaction as the polymer fibres absorb surrounding liquid
and become gel fibres. [14,31,32]. On the contrary, PSI/PVA composite
meshes are still matte white but become soft and flexible (Fig. 2).

3.3. Chemical characterization

The obtained FTIR spectra for the electrospun meshes are shown in
Fig. 2. The peaks obtained from the PSI samples are in accordance with
the peaks in previous works of our own [24,33] and other research
groups [18] as well. Specifically, the peak at 3596 cm−1 marks the
O\\H groups, the one at 2961 cm−1 the C\\H bonds [34]. The peak at
1709 cm−1 corresponds to the imide rings (asymmetric stretching vi-
bration) while the peak at 1380 cm−1 for the C\\O (bending vibration)
[27]. Examining the spectra of the PVA samples we can clearly see how
the O\\H peak at 3303 cm−1 decreases after the chemical treatment as
the GDA crosslinking takes place. Additionally, peaks at 2905 cm−1,
1418 cm−11 and 1076 cm−1 mark the C\\H, C\\O and C-O-C bonds re-
spectively and remain unaffected [35]. As expected, the spectra of the
composite mesh demonstrate characteristic peaks of both polymers
but also the decrease of the O\\H group after the chemical treatment
due to the cross-linkage formation (Fig. 3). Examining the PSI/PVA sam-
ples incubated in PBS, no detectable change was observable after 24 h
but the 3rd and 5th day samples show a slight decrease of some of the
O\\H peak (see Supplementary Fig. 1).

3.4. Physical characterization

3.4.1. Scanning electron microscopy
The images obtained with the scanning electron microscope display

that throughout the entire fabrication process all the produced meshes
retain their nanofibrousmicrostructure unaffected from themechanical
(compressing) and chemical (cross-linking) processing (Fig. 4).

While initially, the PSI meshes have thicker fibres than the PVA
meshes, after the chemical treatment fibres absorb liquid (gel-fibre for-
mation) and become thicker with a final average diameter close to the
PSI samples. Furthermore, while retaining the overall microstructure,
PVA fibres positioned too close to each other can adhere then fuse,
forming larger fibres which we regarded as a single fibre that may



Fig. 3. ATR-FTIR spectra of electrospun meshes before (A) and after (B) the chemical treatment.
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explain discordance of the average diameter in some cases [24]. The av-
erage fibre diameter of the examined meshes can be found in Table 2.

Observing the histogram (Fig. 5) of the composite PSI/PVA meshes
we can see two peaks compared to the normal Gaussian distribution ob-
tained from the single polymer meshes (see Supplementary Figs. 2 and
3) further confirming the presence of two types of fibres in one mesh.
Furthermore, the peaks move after the post-electrospinning processing
as the PVA fibres become thicker.

3.4.2. Two-photon excitation microscopy
Two-photonmicroscopy proved to be an effective method to visual-

ize the spatial distribution of the fibres over the composite PSI/PVA
meshes. PSI has the ability to highly fluoresce at around 600 nmwave-
length without requiring staining (autofluorescence was previously
published by Juriga et al. [33]). In order to distinguish the PSI and PVA
fibres, Nile Blue dye was utilized to stain the PVA fibres red at the
same time as PSI fibres would emit green light. Micrographs show
that both fibres types are randomly distributed across the entire sample
(Fig. 6). In addition, a Z-stack of the PSI/PVA samples was also prepared
(see Supplementary Materials).
Fig. 4. SEM micrographs of electrospun meshes: PSI (A), PVA before (B)
3.4.3. Wettability
In general terms, wettability defines the bonding ability of different

materials resulting from the intermolecular forces in question [36]. Re-
garding tissue engineering, measuring the water contact angle of tissue
scaffolds is essential as wettability highly influences cell adhesion and
therefore tissue integration [37,38]. In addition, to our knowledge wet-
tability of electrospun PSI had yet to be performed. Water angle mea-
surement was not successful with all the meshes (Table 3). In the case
of the PVA meshes a contact angle of 44.7° was measured, then addi-
tional measurements were repeated with wet PVA samples measuring
an angle of 66.4° (Fig. 7). Based on the literature [39] it is obvious that
the dried PVA mesh showed more hydrophilicity than the already wet-
ted one. The wet PVA mesh already contains water, the fibres are al-
ready in a swelled state, thus less water can penetrate to the mesh,
which results in the increase of the water contact angle [26]. Measuring
a water contact angle for the PSI and PSI/PVA composite was not possi-
ble due to fast droplet disappearance. In the case of the PSI, the droplet
instantaneously penetrates the sample. The PSI itself is hydrophobic, but
the fibrous structure has a capillary effect due to the surface roughness,
thus instead of retaining the droplet on the mesh surface, the droplet is
and after (C)treatment, PSI/PVA before(D) and after (E) treatments.



Table 2
The average fibre diameter of fabricated samples.

Mesh type Average fibre diameter (nm)

PSI 614 ± 106
PVA 267 ± 59
PVA (post-treatment) 598 ± 139
PSI/PVA composite 359 ± 69
PSI/PVA composite (post-treatment) 789 ± 103
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drawn in, a phenomenon already described in current literature [40].
The PSI/PVA sample exhibited a similar behaviour but as the droplet
passed through the samples starts to swell as the PVA fibres absorb it.
The droplet took a slightly longer time to pass through the sample. As
the droplet passed though, the sample started to swell due to absorbing
the water. Both attempts can be seen on video (see Supplementary
Materials).
Fig. 6. TPEM micrographs of PSI/PVA meshes: green channel (A), red channel (B), both
channels (C), both channels at lower magnifications (D).

Table 3
Wettability test results.

Mesh Water angle

Dried PVA mesh 44.7°
Wet PVA mesh 66.4°
PSI mesh Not measurable
PSI/PVA composite mesh Not measurable
3.5. Mechanical characterization

The setup of the mechanical measurements can be found in Fig. 8. A
comprehensivemechanical study is essential for any type of tissue engi-
neering implant. In our case, we examined the meshes before and after
the treatments and in both orientations of the rotating collector in order
to gain as much information as possible regarding the strength of the
meshes. All samples exhibited a similar behaviour (Fig. 8, E) as de-
scribed in our and other works with evaluation of mechanical parame-
ters of electrospun membranes [14,41,42]. Stress-strain curves for the
single polymersmeshes can be found in the supplementary information
(see Supplementary Fig. 4).

The produced meshes were so thin that measuring their thickness
with a calliper proved unreliable resulting in extraordinary loading ca-
pacities when calculated by force per thickness (N/cm) or force per sur-
face (N/cm2). To make the evaluation as objective as possible results
were calculated in force (N) per area density or in other words
grammage (g/m2). Results can be found in Table 4. Between the un-
treated samples, PVA is slightly stronger than the PSI. As the mass and
size of the samples are normalized the cause of this difference is proba-
bly the difference in fibre diameter (Table 2). Shing-Chung Wong and
others also reported that thinner fibres can result in higher tensile
strengths [43,44]. The tensile strength of the untreated PSI/PVA com-
posite meshes as expected falls somewhere between the PSI and PVA
meshes. No synergistic effect was observed verifying that no chemical
bonding occurred between the two polymers only physical fibre to
fibre contact. When comparing the treated samples PSI proved signifi-
cantly weaker than the treated PVA meshes. Having no cross-links PSI
meshes are more prone to tearing under the liquid as only physical
bonds hold the fibres together unlike the PVA meshes [45]. In the
Fig. 5. Fibre size distribution of PSI/PVA mes
same manner, treated PSI/PVA composite meshes also suffer from the
absence of cross-linkage as they did not prove as strong as the treated
PVA meshes. This result was expected as PSI was introduced into the
system in order to degrade after a week and provide paths for the infil-
trating cells around the mesh [46]. Comparing the PSI/PVA to the PVA
meshes the decrease in tensile strength is not critical and there should
not be difficulties during in vivo experiments as even implantation of
hydrogels was possible [14,18,47,48]. Nevertheless, if required, several
options for improvement of mechanical properties are available
[49,50] (fibre alignment, additional crosslinkers, freezing treatment)
and could be easily implemented if technical failures are observed dur-
ing the In vivo experiments. Comparing the orientation of the samples
to the collector, vertically aligned samples performed better as fibres
can withstand more load when pulled along their own axis.
hes before (A) and after (B) treatment.



Fig. 7. Water angle of dry (A) and wet (B) PVA meshes.

Fig. 8.Untreated PSI/PVA composite during(A) and after (B)measurement, treated PSI/PVA during (C) and after (D)measurement under buffer solution, typical stress-strain curve of the
fabricated PSI/PVA meshes (E).
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3.6. Cell viability results

For the cytotoxicity measurements, we used 2 different kinds of cell
culture. The choice of the cell types was based on the different invasion
capacity of the cultures. The MeWo is malignant melanoma, thus the
cell proliferation and the invasion of the cells are more aggressive com-
pared to the A2058. According to the results of the cell viability tests, no
cytotoxic effects deriving from the meshes were observed (Fig. 9). Al-
though the cell viability of the A2058 cells in the presence of the poly-
mer meshes was lower compared to the control at 24 h, N2-fold
increase in viability was detected by 48 h. In the case of MeWo cells,
the viability in the treated groups was at a similar level as the control
at 24 h, and increased values were measured in all the 4 groups by
48 h. Consequently, both cell types could not only survive but also pro-
liferate in the presence of the PSI, PVA and PSI/PVA composite meshes.

Both cell types showed normal morphology throughout the whole
experiment and no signs of cell death were revealed. A notable increase
in cell number can be observed on the light microscopic images from
Table 4
Results of the mechanical assessment.

Loading capacity (Nm2/g)

Mesh type Horizontal alignment Vertical alignment

PSI (in air) 0.235 ± 0.04 0.330 ± 0.07
PSI (in saline) 0.10 ± 0.007 0.095 ± 0.006
PVA (untreated, in air) 0.404 ± 0.04 0.553 ± 0.07
PVA (treated, in saline) 0.316 ± 0.06 1.064 ± 0.5
PSI/PVA composite (untreated, in air) 0.255 ± 0.02 0.325 ± 0.03
PSI/PVA composite (treated, in saline) 0.059 ± 0.01 0.177 ± 0.04
24 h to 48 h after the treatment with the meshes in each experimental
group (see Supplementary Fig. 5). This finding also underlines that
both cell types can survive and grow in the presence of the 3 types of
polymer meshes. Similar positive results were previously reported by
us and other groups as well [14,23,33,51,52].

4. Conclusion

In the current manuscript, we presented the first attempt to com-
bine electrospinning of PSI with PVA. The co-electrospinning proved
successful and the concurrent presence of both polymers in the fabri-
cated compositemesheswas confirmed chemically via ATR-FTIR and vi-
sually via TPEM. The fibrous microstructure of the composite mesh was
closely observed with SEM throughout the fabrication process and no
damage was observed by either the mechanical or chemical treatment,
a key parameter for tissue replacement. The mechanical parameters of
the meshes were assessed by a uniaxial mechanical tester. Although
the compositemeshes did not perform aswell as the pure PVA polymer
meshes their performance should not provide difficulties during in vivo
experiments. Cell viability studies were performed and no cytotoxic ef-
fect was detected in any of the meshes thus no contraindication for
in vivo experiments on animals can be reported.
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