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Abstract

The recent [1] attempts to justify, from first principles, and within the stan-
dard framework, the emergence of classical behavior in the post-inflationary cos-
mological context. Accounting for this emergence is an important issue, as it
underlies the extraordinary empirical success of our current understanding of
cosmology. In this work, we offer a critique of this and other efforts at explaining
the emergence of classical behavior in cosmology within the standard framework.
We argue that such endeavors are generically found lacking in conceptual clar-
ity, as they invariably rely, either upon unjustified, implicit assumptions, or on
circular logic. We conclude that, within the standard approach, the emergence
of classical behavior in cosmology constitutes an unexplained phenomenon.

1 Introduction

Contemporary cosmology tries to explain the emergence of structure in the universe.
The current explanation for such an emergence is based on the study of certain quan-
tum effects, or fluctuations, during the inflationary epoch. The starting point of the
standard account is a completely homogeneous and isotropic situation—both as far
as space-time and matter are concerned—and quantum effects over such a symmetric
background are supposed to break the symmetry. That is, these quantum effects are
assumed to source the primordial inhomogeneities and anisotropies that, according to
the theory, eventually evolve into all the structure we observe in the late universe—
including the formation of galaxies, stars and planets (of which, in at least one, intelli-
gent life capable of wondering about its own origins developed). The primordial seeds
responsible for the formation of structure are believed to leave their first observational
imprint (insofar as current technology allows us to confirm) in the anisotropies of the
cosmic microwave background (CMB).

Based on these ideas regarding quantum fluctuations, what is usually done in prac-

tice is the following. When considering the late inflationary epoch, it is argued that
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the quantum state (initially a Bunch-Davis vacuum) can be replaced with a classical
description of the state of affairs. More specifically, at the end of inflation, one usually
disregards the original quantum nature of the system and, instead, describes it as an
element of an ensemble of systems, characterized by a certain distribution of states in
classical phase space. Cosmologists have tried to account for this quantum-to-classical
transition, or emergence of classical behavior, by different types of arguments, and re-
lying on a variety of methods. In a recent paper by Ashtekar et al., [1], some of these
explanations for the emergence of classicality are revisited. In particular, they explore:
i) the fading of the importance of quantum non-commutativity, ii) the phenomenon of
quantum squeezing, and iii) the ability to approximate the quantum state by a dis-
tribution function on the classical phase space. The conclusion reached in [1] is that,
while the three notions considered are conceptually distinct, they do provide a rather
robust explanation for the emergence of classicality in cosmology—and do so even in
more general contexts.

In this work, we challenge the notion that these or similar schemes constitute a
solid justification for the transition to a classical description of the situation under
consideration. In our opinion, all of the standard attempts simply fail. In particular,
we find them lacking in conceptual clarity and invariably relying upon unjustified,
implicit assumptions. We conclude that the standard approach to cosmology is simply
unable to explain the emergence of classical behavior.

To make our case, we start in section 2 by considering in full generality the issue of
classicalization of a quantum system. In particular, we consider the ways in which such
a notion might be defined, and the conditions under which its use could be deemed
appropriate. Next, in section 3 we explore the issue of classicalization, as it arises in
the cosmological context in particular. Then, in section 4 we recount the arguments
and conclusions in [1] and we examine whether they succeed in the job they set out to

do. We finish the discussion with some concluding remarks in section 5.

2 On the classicalization of a quantum system

We start the discussion by emphasizing that an exploration of the idea of the classical-
ization of a quantum system must develop in a setting in which one takes the quantum

description to be, if not fundamental, at least deeper or more profound than the clas-



sical one.! If so, it is clear that there are no grounds for interpreting classicalization
in a literal sense; in other words, it is never the case that a quantum system, strictly
speaking, stops being quantum and becomes ‘fully classical’. So what is actually meant
when such a concept is employed? A sensible possibility is to take it to reflect situations
in which certain aspects of the system in question can be suitably described through
the use of classical language. This sounds reasonable, but rather vague, so, in order to
clarify the idea, we need to spell out the notions sketched in the previous statement.
To do that, we consider first the relatively simple situation for which quantum
theory was initially conceived, namely, the use of the theory to analyze a small system
in the lab. For such a situation, we can use the following instrumentalist criteria for

classicalization:

A quantum system described by the state [¢) is said to have classicalized
during the time interval T, relative to the measuring apparatuses {M;}

designed to measure the observables {OAZ}, it during that interval:

i) The quantum uncertainties of |¢)) regarding the observables {O;} are
equal or smaller than the experimental uncertainties dictated by the
{M;}.

ii) To the level of accuracy provided by the {M;}, the expectation val-
ues of the observables {OZ} approximate the corresponding classical

equations of motion.

The first condition ensures that the results of the available measurements coincide
with the corresponding expectation values. It also ensures that the disturbances pro-
duced by such measurements are negligible, so they can be safely ignored. The second
condition guarantees that, within the accuracy of the available measurements, the ex-
pectation values follow the corresponding classical equations of motion—and hence
that the measured values agree with the classical predictions.

As an example, consider a simple harmonic oscillator in a highly excited coherent
state, provided with apparatuses to measure position and momentum with sufficiently

low accuracy. Such a system clearly fits our classicality criterion. In contrast, consider

'We assume this to be the case for all types of matter, an even for space-time itself. There are,
of course, arguments contemplating the viability of a theory in which space-time is in fact classical,
without any quantum theory of gravity underlying it (see, e.g., [7]). Those considerations have raised
quite interesting debates, but we will not contemplate such possibilities any further in the present
work.



the same harmonic oscillator, this time in its ground state |tg), together with a po-
sition measuring device of accuracy greater than AX lwo)- In that case, measurements
of position would, in general, not coincide with the expectation value of position and,
moreover, they would radically change the state of the system. Clearly, such a situ-
ation does not fit our classicality criterion. Suppose, however, that after a position
measurement, the system ends up in a coherent state and that, after the measurement,
the accuracy of the measuring apparatus is lowered to below the width of the resulting
coherent state. If so, one ends up with a system for which the classicality criterion is
valid. That is, one starts with a situation that does not fit the classicality criterion,
but after a measurement, and provided that only particular measurements are allowed,
a sort of classicalization arises.

Now, if we were to consider a large ensemble of harmonic oscillators, all initially
prepared in the ground state, measurements of position would produce a large range
of results, spread around the minimum of the potential (say, X = 0), with disper-
sion A)A(W,O). Moreover, if as in the example above, such measurements would lead
to classicalization, then the ensemble could be effectively described by a distribution
over classical states, characterized by positions distributed around the origin with a
statistical spread equal to AX o) 1t is important to point out that it is very unfortu-
nate, due to the confusion it tends to generate, that both the statistical dispersion of
the distribution of the ensemble after a measurement, and the quantum uncertainty or
width of the original state, are usually referred to by the same word: fluctuations. Let
us emphasize that, even though they might have the same numerical value, conceptu-
ally, they are very different notions; and that, at least according to textbook quantum
theory, their connection is only brought about through measurements.

A further aspect of the above example is worth considering, as it will strongly
impinge on our coming discussion of the cosmological context. Having set the minimum
of the harmonic oscillator potential at X = 0, it is clear that the dynamics of the
system, as encoded in the Hamiltonian, has the reflection symmetry P: X — —X. It
is then natural to consider the behavior of states under such a symmetry, which can
be associated with an operator P with eigenvalues +1 (completely symmetric states)
and —1 (completely anti-symmetric states). All states can be decomposed into their
symmetric and anti-symmetric parts, with the vast majority presenting components
of both kinds, and therefore having no well-defined behavior under the symmetry.
Note, however, that the ground state is completely symmetric. Moreover, its unitary

evolution will not break this symmetry (in fact, the symmetry will not be broken, even



if we make the spring constant and mass time dependent, so as to lead to the squeezing
of the state). Nevertheless, once a position measurement is carried out, the resulting
state will, in general, be neither symmetric nor anti-symmetric: the symmetry of the
initial state is then broken by the act of measuring X. In sum, the presence of ‘quantum
fluctuations’ in the ground state, i.e., the fact that the state has a non-zero width, in
no way implies that it is not symmetric; it is only through the act of measuring X that
the symmetry is broken.

Before moving on, we discuss another illustrative example. Consider a free particle
prepared in a state with a relatively small dispersion in momentum AP, around the
value Fy. Suppose also that the phases in the state are such that the uncertainty in
position starts very large, then shrinks to a minimum AX,,;, = h/AP, at a certain time
Tnin, after which it spreads out again. Finally, suppose that an observer has measuring
devices that work with precision 0 P and § X with 6P > AF, and § X slightly larger than
A X, in- One might then say that there is a certain time interval around T,,,;, in which,
according to our definition, the system classicalizes—both regarding measurements of
X and P (note that the system behaves classically regarding P at all times). What we
want to emphasize is that, in this case, the classicalization is generated by the system’s
own dynamics, and not as a result of a measurement or external intervention, as it
occurred in the previous example.

As far as we know, nothing of what we said above is new or controversial. Still, the

discussion so far has provided us with some important lessons:

1. Classicality can be predicated of a state of a system only when supplemented by a
list of admissible observables, each associated with a tolerance in the uncertainty
of its value. In an experimental setting, this list of observables and tolerances
is dictated by the apparatuses available to the observer. As a consequence of
this, there is no absolute sense in which a quantum system might be said to

classicalize—this can only be asserted relative to the cited additional information.

2. Classicalization, in the above described sense, might arise as a result of a mea-
surement, or as a result of some other process (we provided examples for the
two situations above). This, however, does not change the fact that the crite-
rion for classicality we have been exploring crucially depends on the notion of

measurement.

The classicalization criterion introduced above was designed with standard labo-

ratory situations in mind. It seems clear, though, that its use can be extended to



more general situations, as long as the system under consideration is assumed to be
describable by quantum theory, and as long as one is provided with a list of relevant
observables, along with their tolerated uncertainties. It is important to point out that,
in order to apply our proposed criterion for classicality, it is not necessary for actual
measurements to ever take place; that is, a system can be deemed to have classicalized,
even if there are no observers around to verify it. Still, the notion of measurement re-
mains central, as it does in the standard quantum interpretation. Therefore, it seems
clear that, whichever way we decide to define the notion of classicality, and as long
as we retain the standard interpretation at the basis of the discussion, the notion of
measurement will have to play a crucial role.

Regarding the distinct role that measurements play in standard quantum mechan-
ics, it might be argued that such a role is to be expected because, ultimately, “physics
is just about measurements.” That is, an argument could be made to the effect that it
is only through measurements that we can interact with the world in order to compare
it with our theoretical predictions—and that this is true, not only within quantum
mechanics, but also classically. We should point out, though, that the notion of mea-
surement enters quantum and classical theories in radically different fashions. While in
classical theory the notion of measurement is relatively innocuous, in quantum theory,
at least as depicted by the standard framework, a measurement enters the theory in
an essential manner.

In classical theory, on the one hand, the notion of measurement does not appear
at the foundational level, i.e., it is not part of its axiomatic structure. Sure, it might
be argued that classical theories fail to precisely define what counts as a measurement,
and even that the notion might be ultimately tied to the notion of perception, and
even to the hard problem of consciousness [9], but the point is that one does not need
to know what constitutes a measurement in order to employ classical physics to make
predictions. In other words, once the precise constitution and initial state of both a
system and a measuring device are provided, the dynamics of the theory itself accounts
for the way in which the device ends up registering the result of a measurement.

In standard quantum theory, on the other hand, the notion of measurement enters
the theory at the foundational or axiomatic level, and does so as a primitive, undefined
term. This makes measurement an essential component of the theory, without which
no predictions at all can be extracted from the formalism. That is, even if complete
information of the initial state of the system and measuring apparatus are provided, in

the absence of external information regarding what exactly constitutes a measurement,



the dynamics of the theory itself simply does not lead to a final state in which the device
ends up registering the result of a measurement. This situation might be argued to
be tolerable in a lab setting. However, it becomes untenable as soon as one intends
to employ the theory in more complex scenarios, such as the early universe, in which
there are no observers around to measure, or even worse, in which one is precisely
trying to explain the emergence of the conditions that make possible the appearance
of observers capable of performing measurements. In sum, one should not confuse the
lack of a detailed description of what constitutes a measurement in classical theory,
with the fact that, in standard quantum mechanics, observers external to the studied
system are necessary in order to make sense of the theory.

A final important difference between measurements in classical and quantum the-
ories, which will play a fundamental role in the discussion below, is the fact that in
the latter, but not the former, the act of measurement generically changes the state
of the measured system. That is, while in classical physics one assumes that one can
always perform measurements that do not modify the state of the system, in quantum
theory one recognizes that, unless one is measuring a state which is an eigenstate of
the measured property, measurements will certainly modify the state of the system.
This implies that, in quantum theory, measurements cannot be interpreted as simply
revealing preexisting features of the measured system—a fundamental fact that must
be kept in mind while interpreting the application of quantum theory to the early

universe, as we do next.

3 Classicalization in a cosmological context

As we explained above, the starting point of the standard, contemporary account of
cosmology is a fully homogeneous and isotropic situation—both as far as space-time
and matter fields are concerned.? What is at stake, then, is the ability to account for
the emergence of the primordial seeds of cosmic structure. That is, an explanation
of how the primordial inhomogeneities and anisotropies that, according to the theory,
eventually evolve into all the structure we observe in the late universe, came about.
The standard story for such an emergence runs as follows: quantum fields are subject

to uncertainty relations that lead to inevitable quantum fluctuations; such fluctuations,

2Inflation is assumed to quickly smooth out any preexisting inhomogeneities and anisotropies.



which cannot be switched off even in principle, allow for the Bunch-Davies vacuum? to
be replaced, towards the end of inflation, with a distribution function on the classical
phase space—and for its subsequent evolution to be described in classical terms. The
key question, of course, is whether this standard procedure is justified; that is, if it
indeed follows from first principles or if it depends upon some additional, possibly
unwarranted, assumptions.

As we saw in the previous section, in order to talk about the classicalization of
a quantum system, it is essential to provide a well-defined sense in which the term
is to be used. In particular, we saw that classicalization can only be defined relative
to a set of observables, with associated uncertainties, and that a given state of the
system might be describable in classical terms when focusing on a certain feature, but
not when focusing on others. Therefore, to explore the issue of classicalization in a
cosmological context, the first thing we must do is to establish the precise notion of
classicality that must be employed, together with the set of relevant observables that
should play a role in the analysis. Only then, a thorough assessment of the issue can
be carried out.

Regarding the set of relevant observables, focus is often directed towards the inho-
mogeneities and anisotropies that are left as an imprint of the evolved version of those
primordial inhomogeneities and anisotropies on the last scattering surface— a feature
which is susceptible of empirical analysis through detailed observations of the CMB.
It is true that these are quite interesting, as they provide us with the opportunity to
study those imprints before the much more complex effects of gravitational clustering
take place. However, we must not lose sight of the fact that, focusing on such obser-
vations might be convenient, but is not the essence of the question. In fact, it is only
a contingent fact that we can observe them at all.* The aspect that is truly central to
the story that our cosmological models must provide, and part, in fact, of the essential
reason for doing cosmology, is to account for the primordial generation of structure, as
well as for the evolution in time of this essential process that makes our own existence

possible.

30r a suitable adiabatic vacuum if the cosmic expansion is not exactly de Sitter. This caveat
applies to every mention of the Bunch-Davies vacuum but will not be repeated elsewhere.

4For instance, if our solar system was deeply embedded in the bulge region of a gigantic galaxy,
the CMB would be hidden from us (as it occurs with that part of the last scattering surface that lies
on our galactic plane). Moreover, if another advanced civilization arises in the distant future, many
billions of years after the current epoch, they might encounter the CMB so highly red-shifted that it
might become unobservable in practice even by their best technology.



A key point that follows from all this is that, in a cosmological context, the issue of
classicalization is intimately intertwined with the breakdown of the homogeneity and
isotropy of the initial state; but what is exactly the relation between the two? It seems
clear that the breakdown of the symmetry can occur in the absence of classicalization.
That is, the mere breakdown of the symmetry does not imply classicalization (there are,
of course, plenty of inhomogeneous and anisotropic quantum states that are far from
satisfying the conditions for classicality). Therefore, in order to explain the emergence
of classicality in the cosmological context, one must not only account for the breakdown
of the symmetry, one also has to show that the resulting state allows for a classical
description.

Now, in the same way that a breakdown of homogeneity and isotropy does not
imply classicality, classicality can occur in the absence of a breakdown of the symmetry.
Nevertheless, what we want to point out is that, classicalization by itself, cannot erase
or eliminate a symmetry present at the quantum level and, in particular, it cannot
break homogeneity and isotropy. This, in fact, follows from very general considerations
regarding a hierarchical structure of relations between theoretical descriptions. Suppose
that we have, for the same system or class of systems, two theoretical frameworks:
theory A, the more fundamental description, and theory B, an effective construction
which, at least in principle, is derivable from theory A under a certain set of conditions
or approximations. In such a situation, it is said that theory B supervenes on theory
A, in the sense that differences according to theory B require differences according to
theory A, [21]. If so, it follows that, if according to theory A, a physical situation
possesses a certain symmetry, then the same physical situation, as described by theory
B, also must possess the symmetry (provided that the symmetry in question is definable
in terms of theory B).

As an illustration of this, consider a classical gas, described in terms of two different
coarse-grainings, A and B, with the scale of the coarse-graining of A smaller than that
of B. It is then quite possible for the characterization of the gas to be homogeneous
according to B, but not to A. However, it is logically impossible for it to be homogeneous
according to A, but not to B. Similarly, for the cosmological scenario at hand, if the
quantum state of the system is indeed fully homogeneous and isotropic, as it is taken
to be after the first few e-folds of inflation, then, even if a classical description would
be available, such a description would also have to be fully homogeneous and isotropic.
That is, classicalization by itself is unable to describe the emergence of structure.

From this, we conclude that any successful effort to explain the emergence of classical



behavior in the standard cosmological context must necessarily involve a satisfactory
account of the breakdown of the homogeneity and isotropy of the quantum state. But
what constitutes a satisfactory account of the breakdown of such a symmetry?

The first thing to point out is that a purely unitary evolution of the quantum state
after inflation is simply unable to break it. That is, the standard quantum evolution
explicitly preserves the homogeneity and isotropy of the initial state—and crucially,
this is so even if one takes into account the alleged factor responsible for the quantum-
to-classical transition, namely quantum fluctuations. To see this, we note that such
quantum fluctuations are no more than a way to express the fact that, regarding
certain observables, the Bunch-Davies vacuum has some width and, in the same way
that the fact that the ground state of a harmonic oscillator is symmetric regarding
a reflection about the center of the potential, even though it has some width, the
Bunch-Davies vacuum is fully homogeneous and isotropic, even though it is not sharp
regarding certain variables. Moreover, it is clear that decoherence is also of no use in
this respect because, a mere anthropocentric decision to call certain degrees of freedom
the ‘system’, and others the ‘environment’, does not cancel the fact that the dynamics
is fully unitary and the state fully symmetric.

It must be noted that there is another way in which the notion of decoherence could
be understood—a notion that has been argued to be more relevant in the cosmological
context at hand. Instead of linking decoherence to the tracing of environmental degrees
of freedom, it could be associated with the wave function splitting into branches of
disjoint support on configuration space (these branches, by the way, are what many
Everettians would read as “different worlds”). The point we would like to stress is that
this alternative notion of decoherence is of no use in order to explain the breakdown
of the homogeneity and isotropy. This is because, since the wave functions associated
with the quantum vacuum are Gaussian, there is no splitting of this sort ever occurring.

What about measurements? Well, it seems clear that any account of the breakdown
of such a symmetry cannot rely on the notion of measurement since, clearly, in the
homogeneous and isotropic state of the early universe, there cannot be observers to
perform any measurements. One could, instead, claim that it is our observations that
break the symmetry, but an account of that sort clearly contains a circular causal
chain of events: the breakdown of the homogeneity and isotropy of the early universe
occurred because measurements were performed, but such measurements were possible
because the symmetry was broken. That is, we are here because the seeds of structure

that appeared in the early universe evolved into large scale cosmic structure (including
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galaxies and solar systems), but those seeds of structure arose because we performed
measurements of the CMB. In short, our observations would be part of the account of
the emergence of the conditions that made us possible.’

To sum up, neither quantum fluctuations, standard unitary evolution, measure-
ments nor decoherence are able to explain the breakdown of the homogeneity and
isotropy of the quantum state after inflation. It seems that, in the absence of an addi-
tional element, the standard approach is simply unable to accommodate the breakdown
of the symmetry. Thus far, we have specified in detail the challenge to be met by any
attempt to account for the classicalization of the early universe. In particular, one
must account for the transition of the initial, completely homogeneous and isotropic
state, into one with inhomogeneities and anisotropies. Moreover, one must show that
the resulting inhomogeneous and anisotropic state can, in fact, be described in classical
terms. We are, finally, in a position to present and assess the validity of the arguments
defended in [1]. Below, we will argue that all of the attempts considered fail because,
either they rely upon unjustified, implicit assumptions regarding the breakdown of
homogeneity and isotropy, or they contain the sorts of circular causal explanations

mentioned above.

4 Three paths to classical behavior: the usual sus-

pects

In this section, we describe the three paths to classical behavior in cosmology consid-
ered by [1]: fading of non-commutativity, quantum squeezing, and the transition from
quantum states to classical distributions. It is worth noting that similar proposals have
been put forward in multiple publications, including [2,6,12-16,18,23], and have been
severely criticized in discussion such as [8,10,19,24]. The work in [1] could then be
interpreted as an attempt to overcome those criticisms by strengthening the standard

arguments. In what follows we discuss this new proposal, pointing out its deficiencies.

4.1 Fading of non-commutativity

It is well known that the failure of observables to commute is a typical marker of

quantum behavior. As a result, it might be argued that, if in a certain situation, this

5Tt is like pretending to explain the birth and development of a tree by arguing that the seed from
which it grew was produced by the tree itself.
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non-commutativity becomes negligible (in an appropriate sense), then the system in
question might be thought of as behaving classically. In [1] it is further argued that
a fading of non-commutativity could be detected by comparing the expectation values
for commutators and anticommutators. They conclude that, if in the cosmological con-
text, the expectation value of the commutator of the canonical operators (¢(n), (1))
becomes small compared to the corresponding anticommutator, then one can take this
as a sign of the fading of non-commutativity—and hence of the emergence of classical
behavior.

In favor for this strategy, they advance two considerations. First, that for homoge-
neous and isotropic states, the expectation value of the anticommutator is equal to the
expectation value of the corresponding classical observables in a natural distribution
on the classical phase space. Therefore, the ratio of the two expectation values can be
taken to measure the ‘importance of the quantum aspects of the system relative to its
classical aspects’. Second, that for quantum mechanical systems whose configuration
space is a manifold, one naturally associates configuration observables with functions
and momentum observables with vector fields. If so, although the classical and quan-
tum commutation relation are of course different, it turns out that the classical and
quantum algebras have the same anticommutation relations. As a result, they propose
to take the ratio between the expectation values for commutators and anticommutators
as a measure of quantum behavior.

Before exploring the soundness of this whole strategy for classicalization, we briefly
review the way in which, according to [1], in the cosmological context of interest,
the expectation value of the commutator of the canonical operators(¢(n), 7(n)) in the
Bunch-Davies vacuum becomes small relative to that of the anticommutator. To show

this, they consider a FLRW space-time
guda"ds’ = a(n)*(~dn? + di’), 1

with 7 the conformal time, related to cosmic time (i.e., proper time associated with
comoving observers) t via a(n)dn = dt. For such a scenario, it can be shown that the ex-
pectation values in the Bunch-Davies vacuum for the commutator and anticommutator

of the single mode operators (¢z(n), (1)) are given by

([Br(n), g (n)]) = ihdg 5., (2)
([@5(n), 7 (m)]4.) = —2ha’ () Re(er(n)el (n))dg i (3)
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with the functions eg(n) a normalized basis of modes satisfying the appropriate Klein-

Gordon equation. The absolute value of the ratio of these expectation values is therefore

1
~ [2a2(n) Re(ex(n)e,(n))]

| Ry ()] (4)
where we have considered the only possible case of interest, i.e. k=—Fk.

For the case of de Sitter space-times® this ratio does indeed decrease, doing so
exponentially with the number of e-folds after the mode has crossed the Hubble horizon
(see [1, section II1.B]). However, the authors point out that the ratio does not decrease
with n in all possible contexts of interest—for example, it does not vanish in the case
of the radiation filled universe. As a result, they conclude that the fading is not really
a robust criterion for the emergence of classical behavior, as non-commutativity need
not fade even when the system does seem to behave classically. That is, they conclude
that the fading of non-commutativity is not a necessary condition for classicality. Still,
they believe that, at least in certain scenarios, it does signal the emergence of classical
behavior.

We just saw that, according to [1], the fading of non-commutativity is not a neces-
sary condition for classicality. Now we show that it also isn’t a sufficient condition for
classical behavior; that is, that the fact that a certain commutator vanishes in a certain
situation, does not imply that the situation can be modeled classically. To see this,
consider a pair of spin 1/2 particles in a singlet state. Of course, the components of
the spin operator of particle 1 commute with those of particle 2, but that clearly does
not imply that we might regard the situation as classical regarding, for instance, the
values of those two spins and their correlations. In particular, as has been conclusively
shown in [4] and (even more explicitly, for the case of 3 entangled particles) in [11], it is
simply untenable to assume that, before any measurement is involved, the spins have
well-defined values. It was already clear from [1] that the fading of non-commutativity
is not necessary for classicality; now we see that it also isn’t sufficient. It seems that
the sensible thing to conclude is that there is, in fact, no relation between the fading
of non-commutativity, at least as characterized by [1], and classicality.

A further problem with the proposed criterion for classicality is that it can be shown

6Tn which case we have

() = ( 1 i )e_k'"
e =(—+— :
T e T R VR
with H the Hubble constant, so the ratio becomes |R,, »(n)| = ﬁ(n)
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to depend on unacceptable arbitrary choices. To see this in a simple example, consider
a free particle of mass m, which at £ = 0 is in a minimum uncertainty wave function
centered at x = xg and p = py. Now, for the expectation value of the commutator we
of course have (¥|[X, P]|1) = ih. As for the anticommutator, it can be computed to

give
2t
= —(

2 2
2 5)
mp0+0')+ ZoPo ()

WX, P}v)

with ¢ the uncertainty in momentum (which for a free particle is constant in time).
The point is that, at any time, we can change the value of the anticommutator—and, in
particular, make it vanish—by a change of frame or origin (the expectation value of the
commutator will, of course, not change). This means that, according to this criterion,
the classicality (or lack thereof) of a system would depend on those choices, which
seems utterly unsatisfactory. Yet another complication we would like to mention is that
the arguments in favor of the proposal depend on identifying expectation values with
possessed values. However, as we explained above, within the standard interpretation,
such an identification only obtains when measurements are involved. Therefore, in
order to make any sense, the proposal seems to require for measurements to take place
in the early universe.

As we explained in section 3, any successful explanation of the quantum-to-classical
transition in cosmology must account for the breakdown of the homogeneity and
isotropy of the quantum state after inflation. It is easy to see that the fading of non-
commutativity does not fare well in this regard. In the whole discussion in [1] regarding
this strategy, the underlying quantum state is always assumed to be the Bunch-Davies
vacuum. Therefore, even if the fading of non-commutativity would lead to some sort of
classicalization, as we proved in section 3, the resulting classical state would necessarily
share the homogeneity and isotropy with the quantum state. Going back to the exam-
ple of the singlet, to think that the fading of non-commutativity breaks the symmetry
of the Bunch-Davies vacuum, would be like arguing that the commutativity between
S} and S, breaks the rotational symmetry along the axis joining the two particles. Of
course, a measurement of the spins will, in general, break the symmetry and allow a
slightly more classical description, in the sense that each particle will have a definite
spin orientation, but in the absence of such an external influence, i.e., that resulting
from the act of measurement, the symmetry persists.

In sum, regarding the whole idea of associating classicality with commutativity, the

fact is that, even in the absence of non-commutativity, there are many other features
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that make a situation profoundly quantum mechanical. One such feature is entangle-
ment, which is responsible, not only for establishing important correlations, but also
for codifying the symmetry of a state. For instance, in the singlet case discussed above,
entanglement is responsible for the correlation between the spins of the particles, as
well as for the rotational symmetry of the state. In the case of the Bunch-Davies vac-
uum, something completely analogous occurs. The entanglement present in the state
is fundamental in codifying essential properties of the state, including its homogeneity

and isotropy, [25].7

4.2 Quantum squeezing

The phenomenon of quantum squeezing is often employed in arguments for the emer-
gence of classical behavior in the early universe. The idea is that the fact that the
uncertainty of the field gets highly squeezed during inflation, and remains so at late
times, can be taken as a sign of classicality. In [1] it is further argued that squeezing
can be traced back to geometrical structures in classical phase space and that inflation
is not essential for its occurrence.

Before examining the alleged relation between squeezing and classicality, let us
illustrate the issue by reproducing the calculations on the subject, in the context of
a de Sitter space-time (see [1, section IV.A]). We start by recalling that a quantum
system is said to be in a squeezed state when the uncertainty in its canonical variables
is not “evenly distributed”. Now, in the case of de Sitter, the uncertainties for the

canonical operators in the Bunch-Davies vacuum are given by

A0 = 5 + ) (©
. ., kh ,
) = S a?(). @

If we focus on modes deep within the Hubble radius at early times, for which ﬁ > H,

"In fact, it is easy to show that, for any finite collection of points {z;....z,,} on a constant (cosmo-
logical) time hypersurface, and for any transformation L, corresponding to a rotation or a translation
acting on such set of points (operations that are well-defined because of the fact that the correspond-
ing space-like hypersurfaces are flat), all the n-point functions involving, say, field QAS or conjugate
momentum operators 7, denoted collectively here as y, evaluated in the Bunch-Davies vacuum, are
invariant. Namely pp(0|x(21)X(22).....X(21)|0)Bp = 5p(0|X(Lz1)X(Lx2)......x (L2, )|0) pp. That is,
the nature of the quantum mechanical correlations present in the state of interest are precisely of the
type that ensures the symmetries of homogeneity and isotropy of the state, so they are, in that sense,
analogous to those that occur in the singlet state of a pair of spin-1/2 particles in a singlet.
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we have

h

512 g 0

R kh
gt = 21, )

where we have, following the convention adopted in [1], set a = 1 at a cosmic time

t = 0. However, after leaving the Hubble horizon, i.e. when ﬁ < H, for those modes
we have
hH?
A 12
[AG = S (10)
. kh
Al = a0, (1)

We see that the uncertainty in the field at late times is very small, compared to early
times. This is the phenomenon of squeezing during inflation.

It seems clear that, at least in the sense described above, squeezing indeed oc-
curs during inflation. What we are interested in exploring here is whether such a
phenomenon implies that the situation under consideration can be successfully ap-
proximated by a classical description. We start by pointing out that in [1] there are no
actual arguments presented in favor of quantum squeezing as a sign of the emergence
of classical behavior. The authors, instead, seem to have taken this as a given, focusing
only on bringing to the fore how and why squeezing occurs in the cosmological setting.
Needless to say, a squeezed state is a quantum state and any talk of it being a sign of
classical behavior needs explicit argumentation.

Presumably, the intuition behind the association of squeezing and classicality stems
from the observation that quantum uncertainties are a unmistakably quantum charac-
teristic of a physical system. Therefore, it is contended that, if the uncertainty in a
quantum state becomes small, then the state itself becomes ‘less quantum-like’. There
are, however, serious complications with this sort of reasoning.

To begin with, the fact that a state is squeezed, in no way means that it will not
display any of the typical quantum features, such as indeterminism (in agreement with
the Born Rule), entanglement, tunneling, being affected by measurements, etc. In
fact, squeezed states are very well-known to display acute quantum behavior [3,17,
24]. This has been exploited by experimentalists working in quantum optics who use

squeezed states of light to reduce the photon counting noise in optical high-precision
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measurements, to calibrate the quantum efficiency of photo-electric photo detectors,
or for entanglement-based quantum key distribution.

Moreover, it seems that if one decides to take squeezing as a sign of classicality,
that is, if one chooses to regard states with a narrow uncertainty in some property
as behaving classically, then one is bound to take states with large uncertainties as
very quantum. The problem, of course, is that, just because a certain variable has
become squeezed, does not entail that other variables will too. In fact, the contrary
is the case: the conjugate of a squeezed variable will get stretched (and often the
product of the uncertainties will not even saturate the Heisenberg relation). It seems,
then, problematic to take the squeezing of one observable as a sign of classicality; why
should we consider a system which is highly localized in its position, but with a highly
unlocalized momentum as somehow classical?

As we argued in section 2, classicality can only be predicated of a state, relative to
a list of observables and associated accuracies. Then, what one could say about, for
instance, a particle squeezed in position, is that its state exhibits classical behavior with
regards to its position, and only if the uncertainty is small compared to the accuracy of
the position measuring apparatus at hand. Moreover, since the squeezing in position
implies a stretching in momentum, then all the possible observables of the form F(z, p)
would exhibit non-classical behavior, due to their dependence on p. Since the family
of operators which only depend on 7 is extremely small in comparison to the set of
observables with the general form F(z,p), this leaves us with an extremely narrow
scope for the relation between squeezing and classicality.

Finally, as emphasized in [24], and explicitly acknowledged in [1], the issue of
whether or not the state, at any particular time, is squeezed or not, depends on the
quantum operators one chooses to consider in the description of the quantum field.
In order to address this rather serious obstacle, [1] proposes to justify their preferred
choice of operators on considerations of what we can in fact measure. As we explained
above, this dependence of the explanation of the emergence of classicality on measure-
ments performed by us is simply untenable, as it relies on a circular logic. Again,
what we are trying to explain are the primordial conditions that, eventually, led to
our existence. It should be clear that it is absurd to allow for considerations regarding
what we, humans, can or cannot in fact measure, to play a role in such an explanation.

How does squeezing fare regarding the breakdown of the homogeneity and isotropy
of the state? Very poorly indeed. To begin with, it is easy to see that squeezing
is perfectly compatible with the symmetry. That is, that the presence of squeezing
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by itself does not imply a breakdown of homogeneity and isotropy . Moreover, as
with the fading of non-commutativity, the whole discussion in [1] regarding squeezing
assumes that the quantum state is the symmetric Bunch-Davies vacuum. We conclude
that, even if squeezing were to lead to classicality, the resulting classical state would be
homogeneous and isotropic, so the strategy would fail its task to explain the emergence
of structure.

All of these considerations prompt us to conclude that there is no sense in which
squeezing, in and of itself, entails or is a feature of classicality, as required by the

problem at hand.

4.3 From quantum states to classical distributions

As we explained above, the standard procedure in contemporary cosmology is to replace
the quantum state at the end of inflation with an appropriate classical state—with all
subsequent analysis being classical. The question is whether such a procedure can, in
fact, be justified from first principles. With this question in mind, in [1] it is shown that
one can associate with the quantum vacuum a distribution function over phase space,
such that the quantum expectation value of any Weyl-ordered quantum operator in the
vacuum, exactly equals the corresponding classical expectation value. This is taken as
a “clear-cut justification for the procedure used in the early universe literature.” It is
further noted that the proved result is not tied to inflation and that, as long as the
perturbations are assumed to be linear, it is valid on any globally hyperbolic space-time.
This they take as an indication that non-linear effects, such as mode-mode coupling
and decoherence, although quite interesting, are not essential for the emergence of
classicality in cosmology.

What are we to make of these assertions? As we just saw, the authors take the equal-
ity of expectation values as complete justification for the replacement of the quantum
state by the corresponding classical distribution. However, things are not that simple.
The problem is that the fact that the expectation values coincide numerically, does
not imply that the physical situations they represent are equal. In particular, it is
very important to keep in mind that, in general, a quantum expectation value does not
represent a possessed property of the system under consideration, it only codifies how

the system will behave when measured.® Therefore, to simply assume that, because the

81t is interesting to point out that a very similar mistake is commonly made in arguments defending
the use of decoherence to explain the absence of macroscopic interference (see [22, section 2]).
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expectation values coincide, one can replace the quantum state by a classical distribu-
tion, is in effect to implicitly assume that the quantum vacuum has somehow morphed
itself into one of the members of the corresponding classical ensemble. But isn’t that
just begging the question? Rather than finding a dynamical, or otherwise non-ad hoc,
way to justify the quantum-to-classical transition, the strategy simply presupposes that
this transition has somehow taken place.

To make these considerations more transparent, let us focus again on the much
simpler case of an harmonic oscillator in one dimension (with the center of the potential
at X = 0). If we take the system to be in the ground state (with uncertainties
in position and momentum AX and AP), we can construct a suitable distribution
function over phase space, such that the quantum and classical expectation values
exactly coincide. Does that mean that we might regard a single harmonic oscillator
in its ground state as equivalent to an ensemble of points in phase space, with the
corresponding distribution? Of course not. It is only if we consider an ensemble of
harmonic oscillators in the ground state, and we subject all of them to a measurement
of position with a precision higher than A X, that we would have an ensemble of systems
with relatively well-defined positions, distributed around the origin with a statistical
dispersion of order AX. The crucial point is that, each of the elements of the ensemble,
would have undergone a change in its state as a result of the measurement. It is,
then, only through measurements that the quantum expectation values get connected
with the statistical characteristics of the ensemble that results from the measurement
performed on all the systems.

Regarding the breakdown of the homogeneity and isotropy, it must be noted that
this last strategy considered in [1] is the only one in which an attempt is made to deal
with the passing from a symmetric to a non-symmetric situation. In order to assess its
success, consider the reflection symmetry X — —X of the harmonic oscillator. Such a
symmetry is present, both at the dynamics of the system (i.e., its Hamiltonian), and
in the ground state. Now, can a substitution of the ground state by the corresponding
distribution over phase space—made on paper by some theoretical physicist, with not
actual physical counterpart—be used to argue that the actual physical situation has
lost its symmetry? Of course not, unless a measurement is involved. In exactly the
same way, a mere substitution of the Bunch-Davies vacuum by a classical distribution
function with the same expectation values, does not constitute a breakdown of the
symmetry. It is often argued that this prevalence of the symmetry must be read as

indicating that the whole ensemble retains full homogeneity and isotropy, but that each
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member is not required to be symmetric. However, this answer only works if, again,
one implicitly, but illicitly, assumes that the system stops being the Bunch-Davies
vacuum and transforms into one of the members of the ensemble. Of course, some
sort. of measurement would be able to achieve this but, as we have explained above,

measurements cannot play any role in this sort of explanation.

5 Conclusions

The standard story for the emergence of classicality in the early universe asserts that
quantum fluctuations, or uncertainties, associated with the completely homogeneous
and isotropic Bunch-Davies vacuum, constitute the primordial seeds of all cosmic struc-
ture. Based on these ideas, what is usually done in practice is that, towards the end of
inflation, the symmetric quantum vacuum is replaced by an appropriate distribution
function over classical phase space. A vital question is whether such a standard pro-
cedure is indeed justified, i.e., if it follows from first principles, or if it depends upon
some additional, possibly invalid, assumptions.

Over the years, cosmologists have tried to account for this transition by different
arguments and methods. A recent work by Ashtekar et al., [1], explores three different
ways in which classical behavior has been argued to emerge in the early universe:
i) the fading of the importance of quantum non-commutativity, ii) the phenomenon
of quantum squeezing, and iii) the ability to approximate the quantum state by a
distribution function on the classical phase space. They conclude that these notions
provide a quite robust explanation for the emergence of classicality in cosmology.

In this work, we dispute the assertion that these or similar accounts constitute a
valid justification for the transition to a classical description. We claim that they fail
because, they either rely upon unjustified, implicit assumptions, or they contain some
kind of invalid, circular logic. Moreover, we point out that any successful effort to
explain the emergence of classicality in cosmology must account for the breakdown of
homogeneity and isotropy, and we show that none of the considered proposals is able to
do so. We conclude that the proposals considered are unable to explain the emergence
of classical behavior in the early universe.

More generally, we pointed out that when attempting to explain the emergence of
structure in cosmology, one is actually dealing with two issues which are, in principle,

distinct and independent, but that, in the context at hand, appear closely connected:
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A) classicalization and B) breakdown of homogeneity and isotropy. Now, in principle,
one might attempt to deal with them in different orders: first A and then B or vice
versa. As we have seen, most of the existing attempts to address the problem at hand,
including two of the three considered in [1] (with the last one suffering from circularity
in its explanatory power) focus on A without even considering B. It should be clear
that any attempt to follow such path is essentially doomed to fail. This is because
one would be trying to account for the breakdown of homogeneity and isotropy in
classical terms, but in a manner that has no quantum mechanical counterpart. As we
argued in section 3, that is inconsistent with the basic assumption that the quantum
description is more fundamental than the classical one—and thus that any classical
characterization supervenes on a quantum one.

Finally, it seems clear that when attempting to deal with A without considering B,
one will be confronted with the cosmological version of the measurement problem. In
this regard, one should heed the lessons from Bell [5] and others, and, in particular,
the fundamental result of [20], showing the intrinsic inconsistency of simultaneously
holding the following three claims: 1) the physical description given by the quantum
state is complete; 2) quantum evolution is always unitary; 3) measurements always
yield definite results. The measurement problem is the elephant in the room in many

situations of physical interest, and ignoring it might lead one astray.
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