-

View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by UMS Institutional Repository

OPSEARCH
https://doi.org/10.1007/512597-020-00444-x

APPLICATION ARTICLE

®

Check for
updates

An effective hybrid local search approach for the post
enrolment course timetabling problem

Say Leng Goh' - Graham Kendall'?3 . Nasser R. Sabar'# . Salwani Abdullah®

Accepted: 7 May 2020
© Operational Research Society of India 2020

Abstract

We address the post enrolment course timetabling (PE-CTT) problem in this paper.
PE-CTT is known as an NP-hard problem that focuses on finding an efficient allo-
cation of courses onto a finite number of time slots and rooms. It is one of the most
challenging resources allocation problems faced by universities around the world.
This work proposes a two-phase hybrid local search algorithm to address the PE-CTT
problem. The first phase focuses on finding a feasible solution, while the second phase
tries to minimize the soft constraint violations of the generated feasible solution. For
the first phase, we propose a hybrid of Tabu Search with Sampling and Perturbation
with Iterated Local Search. We test the proposed methodology on the hardest cases of
PE-CTT benchmarks. The hybrid algorithm performs well and our results are superior
compared to the recent methods in finding feasible solutions. For the second phase,
we propose an algorithm called Simulated Annealing with Reheating (SAR) with two
preliminary runs (SAR-2P). The SAR algorithm is used to minimize the soft con-
straint violations by exploiting information collected from the preliminary runs. We
test the proposed methodology on three publicly available datasets. Our algorithm is
competitive with the standards set by the recent methods. In total, the algorithm attains
new best results for 3 cases and new best mean results for 7 cases. Furthermore, it is
scalable when the execution time is extended.

Keywords Tabu Search with Sampling and Perturbation (TSSP) - Iterated local
search (ILS) - TSSP-ILS - SAR - SAR-2P

1 Introduction

Combinatorial optimization problems (COP) require decision making on the values

for variables in a discrete search space, seeking to optimize (maximise or minimize) an
objective function. Traveling salesman, vehicle routing, bin packing, timetabling and

B Say Leng Goh
gohsayleng @yahoo.com

Extended author information available on the last page of the article

Published online: 20 June 2020 @ Springer

https://core.ac.uk/display/334424801?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s12597-020-00444-x&domain=pdf

OPSEARCH

minimal spanning tree are some examples of COP. Timetabling problem involves the
placement of resources in time and space in such a way to optimize utilization and sat-
isfy stakeholders’ requirements. Instances of this problem include sports timetabling,
educational timetabling, nurse rostering, transportation timetabling, etc. We focus on
the PE-CTT problem, a type of educational timetabling. In this context, the timetable
is a placement of courses into time slots and rooms, fulfilling a set of constraints. Uni-
versity students are allowed to select their favourite courses every semester. Therefore,
the general prerequisite is that they can attend all their registered courses without hin-
drance such as clashing of courses. In other words, events attended by a student should
not be allotted to the identical time slot. This requirement actually resembles that of
graph coloring problem where two connected nodes cannot be given the same colour.
In fact, timetabling problem can be reduced to graph coloring problem (known to be
NP-hard) [6,7]. Even et al. [8] and Cooper and Kingston [S] shows that timetable
construction is NP-hard. Additional requirements further complicate the process of
course timetabling. Therefore, it is complicated and time consuming to manually con-
struct a course timetable for hundreds (possibly thousands) of courses and students.
Nowadays, course timetabling is usually automated. It is widely believed that exact
methods cannot solve NP-hard problems optimally in polynomial time. Alternatively,
heuristic based approximation methods are used to produce satisfactory solutions
in decent computational times. In this work, we propose a two-phase hybrid local
search algorithm to effectively handle the PE-CTT problem. Our contributions are as
follows:

e We test the Tabu Search with Sampling and Perturbation (TSSP) [9] algorithm for
the first time on the 60 hardest publicly available cases of PE-CTT benchmarks.
Furthermore, we propose to enhance the TSSP by hybridizing it with Iterated Local
Search (ILS). We show the effectiveness of this hybrid by comparing it with each
individual algorithm run separately. The hybrid is far superior compared to the
recent methods found in the scientific literature where it achieved 60 best results
and 59 best means out of the 60 cases.

e We also propose an algorithm called Simulated Annealing with Reheating (SAR)
with two preliminary runs (SAR-2P) in minimizing the soft constraint violations.
The SAR algorithm uses the inputs from the preliminary runs. The first prelimi-
nary run employs a reinforcement learning based methodology to estimate a good
neighbourhood structure composition. This will be used in the second preliminary
run where the average cost changes A f is measured. Both the estimated compo-
sition and A f will then be utilized in SAR-2P in minimizing the soft constraint
violations. Unlike conventional SA where preliminary run is embedded in each
run, we perform preliminary run for once and utilize the information gathered for
multiple runs for each case. We test this novel method on three benchmark datasets
for PE-CTT problem and the results are compared with recent methods.

The structure of this paper is as follows. We describe the problem in Sect. 2. The
related work is presented in Sect. 3. Our methodology is proposed in Sect. 4. We
present the experimental results in Sect. 5. Section 6 gives concluding remarks. Lastly,
we provide some suggestions for future work in Sect. 7.

@ Springer

OPSEARCH

2 Problem description

In PE-CTT problem, we construct a weekly timetable by assigning a set of C courses
to 45 time slots (5 days a week, 9 time slots a day) and R rooms. The courses has F
features and are attended by S students. The aim is to fulfill all hard constraints (to
obtain a feasible solution) and minimize soft constraint violations (to obtain a higher
quality solution). Entire datasets have the following hard constraints (HC):

HC1: Students can only attend one course at a time.

HC2: Rooms must have specific features required by courses.

HC3: Rooms must have enough capacity for students attending courses.
HC4: Only one course is allowed in each room at a time.

ITCO7 dataset has extra two hard constraints:

e HCS5: Courses may have to be scheduled to predefined time slots.
e HCO6: Courses may have to appear in a specific sequence.

All the datasets (except Hard) have the following soft constraints (SC):

e SC1: Students should have more than one course on a day.
e SC2: Students should have less than three consecutive courses.
e SC3: Students should not have a course in the last time slot of the day.

Note that soft constraint violations are omitted for the Hard dataset. Instead the focus
is on minimizing the hard constraint violations (finding feasible solutions). The bench-
mark datasets utilized in this work are publicly available. Optimal timetables (zero
hard and soft constraint violations) are believed to exist except Hard where only hard
constraints are considered.

Hard comprises 60 cases.
Socha comprises 11 cases [19].
ITCO02 comprises 20 cases.
ITCO7 comprises 24 cases.

Refer to Table 1 for the size of the problems we are dealing with, in terms of number
of events, rooms, features and students. We use the standard execution time limit (as in
ITCO02) which is set by executing an application file on the host machine. Our machine
is granted 190 s.

3 Related work

Lewis and Paechter employed Grouping Genetic Algorithms (GGA) in constructing
feasible solutions for the Hard dataset [13]. The authors treated university course
timetabling problem (UCTP) as a grouping problem. Groups of time slots were used
for representations and genetic operators. They revamped the recombination operator
used in the standard GGA (comprising of point selection, injection, duplicate removal
using adaptation and reconstruction). Apart from the recombination operator, they
also used mutation and inversion as operators. Several fitness functions were tested. A

@ Springer

OPSEARCH

AT-00€ 05€-00C 00v 00¢c 08 AT T-008 AT-00¥ A1-00C juspmg
0€-01 01-¢ 01 S S 01 01-¢ 01—¢ aImea
0c—01 11-01 01 01 S 8C—6C 1101 9—¢ wooy

009-001 0vy—0S¢ 0oy 0o 001 CLO AT STy—06¢ §Cc-00¢ JuaAy
Y- 10 0c-10 1 SO-TON S0-10S oc-10d 0C-TON 0C-10S ase)
LODLI CODLI BY20S pIeH 1eseIeq

sjosejep Jo uondmosaq | a|qel

pringer

As

OPSEARCH

local search was employed following the mutation operator to improve the algorithm.
In a conclusion, local search outperformed GGA on large problem cases.

In addressing the Hard dataset, Tuga et al. applied a sequential heuristic approach
(ISheuristic) comprising of largest degree and degree to construct the initial solution
[22]. They placed unassigned events into artificial time slots. The unassigned events
were considered as soft constraint violations and minimized utilizing Hybrid Simulated
Annealing (HSA) with simple, swap and Kempe chain as neighbourhood structures.
They set the initial temperature to an adequately high value. They used a cooling
equation identical to that utilized by Kostuch [12]. The number of attempts for every
temperature was fixed to a - number of events. a is originally set to 10 and linearly
raised. After a certain number of iterations, the temperature was altered when no
advancement was detected. Their result was comparable to that of Lewis for small
cases. They reported good results with many feasible solutions found for medium and
big cases.

A clique based algorithm was used by Liu et al. in generating feasible timetables
for the Hard dataset [15]. They were inspired by Carter and Johnson who believed
that cliques found in the timetabling problems might be beneficial for timetable con-
struction. The algorithm comprises of three steps. Firstly, the 45 cliques (equivalent to
45 time slots) were initialized. A vertex is randomly selected for a clique. The clique
is then extended to include more vertices before a maximal matching is executed for
room assignment. Secondly, the cliques were expanded further followed by a max-
imal matching. Thirdly, the algorithm swapped some vertices between two cliques.
Superior results were reported in a comparison to other methodologies, particularly
for the larger cases.

Recently, Song et al. applied an iterated local search algorithm for the Hard dataset
[20]. A greedy heuristic procedure was utilized to generate an initial solution where
each period was initialized one by one sequentially before allocating rooms using max-
imal matching. SA and perturbation procedure were then alternated until the stopping
criteria was met. The algorithm outperformed other algorithms.

Ceschia et al. utilised Simulated Annealing (SA) on the Socha cases [3]. In
their method, events were moved and swapped. Dummy time slots and rooms were
exploited. They utilized a cost function comprising of various other components
besides soft constraint violations, such as unscheduled events, precedences and con-
flicts. Weights were set for each component. Furthermore, specific parameters in
simulated annealing were set using the F-race mechanism. Good results were reported
compared to solvers by other researchers.

Kostuch was the winner of ITC02 with his SA based heuristic approach [11]. After
the competition, he further improved his method on the same set of cases [12]. Graph
coloring heuristics and maximum matching were used to construct feasible solutions
which were then improved by ordering time slots and swapping pairs of events. Ten
dummy events were also introduced (two events at each last time slot of the day) and
removed in the final timetable. Breakthrough results were achieved on all the 20 cases.

Cambazard et al. won the PE-CTT of the ITCO7 [2]. Feasible solutions were con-
structed by using a tabu based method utilizing the neighbourhood structures such as
transferring events, interchanging events, interchanging time slots, matching (where
events are reassigned within a time slot), transfering events with matching and Hun-

@ Springer

OPSEARCH

garian moves. The feasible solutions were then enhanced in regard to soft constraint
violations by SA. Post competition, Lewis and Thompson utilized constructive heuris-
tics and their PARTTALCOL algorithm to obtain feasible solutions [14]. The feasible
solutions were enhanced by using SA. The beginning temperature was automatically
set as the standard deviation of the cost of sample moves. To fulfill the time limit, the
cooling rate was adjusted during the run. They found that a Kempe chain operator was
effective for the cases. Strong results were attained.

One notable observation from the scientific literature is that most of the successful
methods were based on SA. They are either highly tuned [3] or focused on certain cases
[14], indicating the requirement of intensive parameter tuning in simulated annealing
to obtain high quality results. In fact, most of them are conventional SA where the initial
temperature is critical and has to be set sufficiently high for each case (a preliminary run
is usually required for setting this value). In addition, the end temperature is critical
in the performance of SA and needs to be set for a specific case. Furthermore, for
problems restricted by a time limit, decay rate or Markov chain length needs to be set
for each case.

Based on these limitations, Goh et al. proposed the SAR algorithm for timetabling
problems [9]. It drew inspiration from the idea that the search should explore more
when the current cost is high and exploit more when the current cost is low. Search
exploration is directed by the current cost (through the initial and reheated temper-
ature). The methodology does not require setting the end temperature because the
temperature is reheated in case the search is stuck. In addition, no setting is required
for the algorithm to run with differing time limits. The method showed competitive
results and removed the requirement for rigorous tuning of certain parameters (begin-
ning temperature, the end temperature and the Markov chain length), which is often
required in a conventional SA. However, it has a scaling factor C needs to be set.

The SAR algorithm has limitations. It requires manual setting for neighbourhood
structure composition to obtain good results. Goh et al. further improved the algorithm
and proposed an algorithm termed as Simulated Annealing with Improved Reheating
and Learning (SAIRL) [10]. A reinforcement learning method was used to adjust the
composition of neighbourhood structures on the fly during the search. In addition,
the average cost changes was incorporated into the reheated temperature function.
Overall, improved results were reported.

Lately, Nagata employed a 2-stage approach for the problem [16]. In stage one, a
tabu search based algorithm was used to construct an initial solution. In stage two,
Random Partial Neighbourhood Search (RPNS) was used to reduce the soft constraint
violations. RPNS is based on Tabu Search with exception that the tabu tenure is set
to zero. The author found RPNS worked better when the neighbourhood sizes were
varied during the course of the search. RPNS were configured for each dataset in terms
of neighbourhood structure, ratio, update strategy and number of iterations. Highly
competitive results were reported for the datasets tested especially ITCO7.

@ Springer

OPSEARCH

Table2 Compung e cost s NS i
settings in terms of NES, NS and Transfer Swap Kempe
AC Random 443 4.07 7.35 Accept all
5.39 4.97 9.60 Reject all
Deterministic 4.46 4.06 7.23 Accept all
5.25 4.87 8.48 Reject all

N =1 run for ITCO2-1 case

4 Proposed methodology

In the SAR algorithm [9], the right composition of neighbourhood structures needs to
be manually set for specific datasets to obtain good results. In this work, we propose a
preliminary run to evaluate the neighbourhood structures so that a good composition
can be obtained automatically.

All improving or equivalent moves relative to the current solution are accepted by
SA based methods including SAR. Worse moves are also accepted with probability:

P = AT (D)

where A f is the change in cost (solution quality) and T is the temperature. Thus, T
can be derived as:

—Af
In P

T =

@)

From the Eq. (2), T is proportional to A f. Intuitively, we try to integrate the average
cost changes A f into the initial and reheated temperature function as we feel that the
use of current cost solely to dictate the initial and reheated temperature, as the case in
SAR, is rather limited.

We perform several runs of random walks on ITC02-1 case and found that the aver-
age cost changes A f varies for different settings in terms of neighbourhood structure
(NS), neighbourhood examination scheme (NES) and acceptance criteria (AC), as
shown in Table 2. This suggests how search exploration can vary for different settings.
Therefore, we propose to measure A f in a preliminary run that resembles the actual
run (SAR algorithm). This is to ensure the right A f is obtained, thus the right tem-
perature (initial and reheated) can be set according to the exploration level required.

An overview of the proposed timetabling is given in Algorithm 1. In the PRELIM-
INARYRUN1, we evaluate and estimate the right composition of each neighbourhood
structure in NS for a specific problem case. This composition will be used in the
PRELIMINARYRUN2 to measure the average cost changes (A f) to estimate the fitness
landscape of the search space. Both the NS composition and A f will be then utilized
in the HYBRIDLOCALSEARCH.

@ Springer

OPSEARCH

Algorithm 1

1: procedure TIMETABLING

2: E < list of events

3: NS < {nsy,...,nsNs1}

4: Af <0

5:

6: PRELIMINARYRUNI(E, NS) > Evaluating NS
7: PRELIMINARYRUN2(E, NS, Af) > Measuring A f
8: forrun =1to31do

9: HYBRIDLOCALSEARCH(E, NS, A f)

10: end for

11: end procedure

4.1 HYBRIDLOCALSEARCH

HYBRIDLOCALSEARCH is shown in Algorithm 2, with further details below. In phase 1
(Sect. 4.1.1), TSSP-ILS is utilized in constructing a feasible solution. When a feasible
solution is constructed, it is improved with regard to soft constraint violations in
phase 2 (Sect. 4.1.2), utilizing the SAR- 2P algorithm by using A f and NS calculated
earlier. Note that we do not reuse the feasible solution to ensure that initial solutions
are scattered across the search space in the hope that the search space is fully explored
and an optimal solution can be found.

Algorithm 2

procedure HYBRIDLOCALSEARCH(E, NS, A f)
bestSol < vacant
unassigned < E

if unassigned is vacant then
SAR- 2P(bestSol, E,NS, Af) > Phase 2: Improving soft constraint violations
end if

1:
2
3
4.
5: TSSP-ILS(bestSol, unassigned) > Phase 1: Constructing a feasible solution
6
7
8
9: end procedure

4.1.1 Phase 1: constructing a feasible solution

A feasible solution is constructed by using Tabu Search with Sampling and Perturbation
(TSSP) hybridized with Iterated Local Search (ILS), hence the term TSSP-ILS. This
is shown in Algorithm 3. If TSSP fails to find a feasible solution (unassigned is not
vacant) in % of the execution time ¢, the best solution is passed to ILS for further
processing using the remaining time.

@ Springer

OPSEARCH

Algorithm 3

1: procedure TSSP- ILS(bestSol, unassigned)
2: TSSP(bestSol, unassigned)

3 if unassigned is not vacant then
4 ILS(bestSol, unassigned)

5: endif

6: end procedure

Tabu Search with Sampling and Perturbation (TSSP)

The TSSP procedure was previously applied to course timetabling problems [9]. For
continuity and clarity, the TSSP procedure is restated in Algorithm 4. A neighbour
move is equivalent to transfering an event from the list of unplaced events unplaced
to a time slot in the current solution curSol. At each iteration, we randomly select a
certain number (0.25% of the total events) of events from unplaced and add them to
the sample list. We evaluate neighbor moves by assessing all non-tabu suitable time
slots for each event in the sample (lines 10-24). We temporarily remove the event e
from unplaced. To feasibly move an event into a particular time slot, we move minimal
conflicting events (violated clash or precedence constraint) from curSol to unplaced.
We use matching sparingly for room assignment. In case matching cannot get a room
for the event e, we randomly choose a suitable room and move the related event from
curSol to unplaced. The candidate solution cost f{canSol) is calculated as the number
of unplaced events plus the clash ratio as shown in Eq. (3). clashSum is the total
number of clashes of all events.

Z 1+ clash|e] 3)

clashSum
ecunplaced

We prefer the candidate solution with the least number of unplaced events and clashes
with other events. Before evaluating the next non-tabu suitable time slot, we move
the events conflicting with e in unplaced back to curSol. Before considering the next
event, we move e back to unplaced after evaluating all the non-tabu time slots. We
record the best neighbour move as bestEvent and bestSlot (lines 16—17).

We apply the best neighbour move to curSol by moving the bestEvent to the bestSlot
(line 26) after extracting the conflicting events from curSol. We update bestSol and
f(bestSol) if flcurSol) is better than f{bestSol). We prevent the extracted events from
returning to their original time slots for a number of iterations (line 33) according to
the tabu tenure in Eq. (4).

RANDOM[10) + |unplaced)|)

where |unplaced| is the number of unplaced events. Next, we remove the bestEvent
from unplaced and put the extracted events into unplaced.

@ Springer

OPSEARCH

Algorithm 4 [9]

1: procedure TSSP(bestSol, unassigned)
unplaced < unassigned

3 curSol < bestSol

4: f(bestSol) < f(curSol)
5. ITER < room?
6.

7

8

i<0
while unplaced is not vacant AND time.elapsed() < %t do
sample < select events randomly from unplaced

9: minimum <— 00

10: for all e € sample do

11: unplaced < unplaced — e

12: for all s € S | S non-tabu slot suitable for e do

13: curSol < curSol — {events conflicting e}

14: unplaced < unplaced U {events conflicting e}
15: if f(canSol) < minimum then

16: best Event < e

17: bestSlot < s

18: minimum < f(canSol)

19: end if

20: unplaced < unplaced — {events conflicting e}
21: curSol < cur Sol U {events conflicting e}

22: end for

23: unplaced < unplaced U e

24: end for

25: curSol < curSol — {events conflicting bestEvent}
26: curSol < curSol U best Event > bestSlot
27: f(curSol) < minimum

28: if f(curSol) < f(bestSol) then

29: bestSol < curSol

30: f(bestSol) < f(curSol)

31: unassigned < unplaced

32: end if

33: set tabu {events conflicting bestEvent} from original time slots
34: unplaced < unplaced — best Event

35: unplaced < unplaced U {events conflicting bestEvent}
36: if i = ITER then

37: PERTURB(curSol)

38: i« 0

39: reset tabu list

40: end if

41: i=i+1

42: end while
43: end procedure

At certain iteration intervals (i = ITER = room?>), we perturb (Algorithm 5)
curSol, reset 1 to 0 and reset tabu list. We perturb curSol by trying to move each
assigned event to each time slot in slotList (shuffled randomly) utilizing either a swap
or Kempe operator. We move the event only if it is feasible (not violating any hard
constraints) to do so.

@ Springer

OPSEARCH

Algorithm 5

1: procedure PERTURB(sol)
2: foralle € sol do

3 SHUFFLE(slotList)

4 for all slot € slotList do

5: if RANDOM[2) = 1| then

6 if SWAP(sol, e, slot) then
7 break;

8: end if

9: else

10: if KEMPE(s0l, e, slot) then
11: break;

12: end if

13: end if

14: end for

15: end for

16: end procedure

The PERTURB procedure is using the following neighbourhood structures:

e Swap: We attempt to swap e with the event in each room (room list shuffled
randomly) in slot. The swap is implemented provided all the hard constraints are
satisfied.

o Kempe: We attempt the Kempe chain interchange [4,14,21]. At first, e is added to
a chain. Events in the time slot occupied by e and slot which clash with any event
in the chain are gradually appended to the chain. When the chain is complete, the
events in both time slots are interchanged if all the hard constraints are satisfied.

The TSSP procedure is halted when a feasible solution is attained (unplaced is
vacant) or elapsed time passes % of the execution time ¢. Note that this algorithm does
not require parameter tuning.

Iterated local search (ILS)

In case there are remaining events in unassigned (Algorithm 3), ILS (Algorithm 6) will
be initiated. The best solution bestSol generated in TSSP is utilized in this phase. At
the beginning of each iteration, we perturb bestSol (line 3) by randomly shuffling the
assigned events using the PERTURB procedure (Algorithm 5). Next, we attempt to swap
each unassigned event e/ in unassigned with each assigned event e2 in bestSol (line
4-13). The swap will be implemented if e2 has lesser number of clashes than e/ and the
time slot occupied by e2 suits (not violating any hard constraints) e/. Subsequently,
unassigned will have a group of easier events for assignment later. Next, we sort
unassigned by number of clashes in descending order (line 14). Effectively, harder
events will be scheduled first. We attempt to transfer every event in unassigned to
every time slot in bestSol (line 15-22). The event e will be transferred to the time
slot if no hard constraint is violated. The iteration stops when unassigned is vacant
(feasible solution is found) or execution time 7 is exceeded.

@ Springer

OPSEARCH

Algorithm 6
1: procedure ILS(bestSol, unassigned)

2: while unassigned is not vacant AND time.elapsed() < t do
3: PERTURB(bestSol)

4 for all el € unassigned do

5: for all €2 € bestSol do

6: if clash[e2] < clash[el] then

7 if slot of €2 is suitable for e/ then

8: swap e/ and e2

9: break

10: end if

11: end if

12: end for

13: end for

14: sort unassigned by number of clashes (descending order)
15: for all ¢ € unassigned do

16: for slot = 1to 45 do

17: if slot is suitable for e then

18: transfer e from unassigned to slot of bestSol
19: break

20: end if

21: end for

22: end for

23: end while
24: end procedure

4.1.2 Phase 2: improving soft constraint violations

SAR- 2P algorithm is shown in Algorithm 7. The changes to the original SAR are
highlighted in boxes. Unlike SAR, it is utilizing the neighbourhood structure compo-
sition estimated in the PRELIMINARYRUN1 and average cost changes A f measured in
the PRELIMINARYRUN2. We set the initial temperature as the the initial cost f (curSol)
multiplied by A f and a constant C as shown in the Eq. (5). The exploration level is
dictated by the coefficient C.

temp < f(curSol) x Af x C (&)

A Markov chain is created (at each temperature) where each event e € E is
attempted in each time slot (except the one occupied by e) utilizing a neighbour-
hood structure chosen in a probabilistic manner from a set of neighbourhood structures
according to the composition estimated earlier. For room assignment, maximal match-
ing is used (only when necessary).

If a candidate solution canSol (a solution that fulfills all the hard constraints) exists,
it is evaluated where the improving or equal cost solution is accepted while the wors-
ening solution is accepted with a certain probability. If accepted, the candidate solution
will become the current solution. The best solution is updated provided the current
solution is better than the best. The neighbourhood structures used are:

@ Springer

OPSEARCH

Algorithm 7

: procedure SAR- 2P(curSol, E, Af, NS)
: [temp < Af x f(curSol) x C]
: heat < 0

1
2
3
4: bestSol < curSol

5: previousCost < f(curSol)

6: currentStagnantCount < 0

7 stuckedBestCost < f(curSol)
8: stuckedCurrentCost < f(curSol)
9.

10: while rerminationCondition = false do

11: foralle € E do

12: moved < false

13: for slot = 1to 45 do

14: nsy <— SELECTNEIGHBOURHOODSTRUCTURE(NS)
15: canSol < GETCANDIDATE(curSol, e, slot, nsy)
16: if canSol exists then

17: Af < f(canSol) — f(curSol)

18: if RANDOMI0,1) < exp(— Ifmp) then

19: moved <« true

20: curSol < canSol

21: if f(curSol) < f(bestSol) then

22: bestSol < curSol

23: end if

24: end if

25: end if

26: if moved then

27: break

28: end if

29: end for

30: end for

31: if STUCK(f (curSol), previousCost, current Stagnant Count) then
32: if f(bestSol) = stuckBestCost then

33: if f(curSol) — stuckCurrentCost < 2% then
34 heat = heat + 1

35: else

36: heat < 0

37: end if

38: else

39: heat < 0

40: end if

41: [temp <— Af x [heat x 0.2 x f(curSol) + f(curSol)] x C]
42: stuckBestCost < f(bestSol)

43: stuckCurrentCost < f(curSol)

44: else

45: temp < temp X B

46: end if

47: previousCost < f(curSol)

48: end while
49: end procedure

e Transfer: We attempt to transfer e into slot. A feasible transfer is evaluated for
acceptance as a candidate solution.

@ Springer

OPSEARCH

e Swap: We attempt to swap e with event in each room (incrementing order) in slot.
The first feasible swap is evaluated for acceptance as a candidate solution.

e Kempe: A Kempe chain interchange is attempted. As previously described, a com-
plete chain is built between events in time slot occupied by e and events in slot.
The events in both time slots are then exchanged (provided all the hard constraints
are fulfilled) and evaluated for acceptance as a candidate solution.

After each Markov chain, the STUCK procedure (Algorithm 8) is initiated to check
in case the search is stuck in a local optima. If the search is stuck, we reheat the
temperature according to the Eq. (6) where heat is an incremental step. Otherwise,
we cool the initial temperature according to 7;41 = T; x B.

temp < [heat x 0.2 x f(curSol) + f(curSol)] x A_f x C (6)

After reheating, the temperature is cooled again until the search is stuck in another
local optima. A higher temperature is applied for the next reheating if the search is
stuck in the previous local optima. A series of cooling and reheating is repeated until
the terminationCondition is true when either the elapsed time passes the execution
time ¢ or an optimal solution is obtained (all cases are known to have a zero-cost
solution). The decay rate 8 is set to 0.9995, meanwhile coefficient C is set to 0.008.

Algorithm 8

1: procedure STUCK(f (curSol), previousCost, currentStagnant Count)
2: if f(curSol) — previousCost < 1% then

3: currentStagnantCount = currentStagnant Count + 1
4: else

S: current StagnantCount < 0

6: endif

7. if currentStagnantCount > 5 then

8: return true

9: else

10: return false

11: endif

12: end procedure

4.2 PRELIMINARYRUN1

The details of the PRELIMINARYRUNI is shown in Algorithm 9. A feasible solution is
built constructively by using the TSSP-ILS (Algorithm 3). When a feasible solution
(which satisfies all the hard constraints) is constructed, it is passed to the SAR algorithm
to evaluate the neighbourhood structures in use.

Like the original SAR, the initial and reheated temperature is set according to the

Eq. (7).
temp < [heat x 0.2 x f(curSol) + f(curSol)] x C 7)

@ Springer

OPSEARCH

Algorithm 9

1: procedure PRELIMINARYRUNI(E, N S)
2. bestSol < vacant

3: unassigned < E

4:

5: TSSP-ILS(bestSol, unassigned) > Constructing a feasible solution
6: if unassigned is vacant then

7: SAR(bestSol, E, NS) > Evaluating NS
8: endif

9

: end procedure

Unlike the original SAR (where the neighbourhood structure composition is preset
manually), we adjust the composition by using a reinforcement learning method.
Implementation wise, a visit and a value are maintained for each neighbourhood
structure nsg. Each time the neighbourhood structure nsy is selected, nsi.visit is
incremented by 1. Meanwhile, nsi.value is updated as a cumulative mean of rewards:

reward — nsi.value
nsg.value < nsi.value + — (8)
nsg.visit

where the reward is defined as:

0, if candidate is accepted
reward =

©))

CPU time, otherwise

At the beginning, all neighbourhood structures have an equal probability of being
selected. Gradually, the probability varies according to:

1

_ nsi.value
Pog = —yate— (10)

k=1 nsi.value

If a candidate solution is accepted, a reward of 0 is awarded to nsi. Otherwise, the
nsy is penalized with CPU time (elapsed time since selection) in case the candidate
is rejected or the candidate does not exist because a move is not feasible. As differ-
ent neighbourhood structures may have different acceptance rates and computational
costs for different cases, the objective is to maximize the number of accepted moves
per time unit, with the hope that solution space connectivity can be improved. The
neighbourhood structures used are transfer, swap and Kempe.

4.3 PRELIMINARYRUN2

The PRELIMINARYRUN2 is described in Algorithm 10. Again, the TSSP-ILS (Algo-
rithm 3) is used to find a feasible solution. If a feasible solution is constructed, it is

@ Springer

OPSEARCH

passed to the SAR algorithm to measure the average cost changes A f to estimate the
fitness landscape.

Algorithm 10

1: procedure PRELIMINARYRUN2(E, NS, A f)
2: bestSol < vacant
unassigned < E

3

4

5: TSSP-ILS(bestSol, unassigned) > Constructing a feasible solution
6: if unassigned is vacant then

7: SAR(bestSol, E, NS, Tf) > Measuring Tf
8: endif
9: end procedure

The SAR algorithm here is utilizing the neighbourhood structure composition esti-
mated in the PRELIMINARYRUNI1. A sum and a count are initialized and updated during
the run. Only uphill and downhill moves are considered for the computation of sum
and count. Sideway moves are omitted to gain better insights on the fitness landscape

of the search space. The A f is calculated as .=

5 Experimental results

We code the algorithms in Java and perform the experiments on machines (Intel Xeon)
with 3.1 GHz clock speed and 4 Gb RAM. Each machine is entitled to a computational
time limit of 7=190 s (dictated by executing a benchmark program provided by
the ITCO2 organizer). When a feasible solution is found, the remaining available
time is used to either evaluate neighbourhood structures (in PRELIMINARYRUNT1) or
measure A f (in PRELIMINARYRUN2) or improve the soft constraint violations (in
HYBRIDLOCALSEARCH). We execute the HYBRIDLOCALSEARCH procedure for a total
of 31 times for each case.

5.1 Phase 1: finding a feasible solution
5.1.1 Comparing TSSP-ILS with TSSP and ILS

The effectiveness of TSSP-ILS and TSSP in constructing feasible solutions is com-
pared. Both methods are comparable in terms of performance on all the small and
medium cases with 100% feasibility (Tables 3 and 4).

For the big cases, TSSP-ILS is more effective than TSSP in terms of feasibility and
the number of unassigned events as shown in Table 5. TSSP-ILS manages to construct
feasible solutions for 17 cases comparing to 15 for TSSP. TSSP-ILS also achieves a
higher feasibility (%) for the cases B5, B6, B10, B17 and B18. Furthermore, TSSP-
ILS improves the mean of unassigned events for the cases B5, B6, B7, B10, B11,
B17, B18, B19 and B20. A ¢-test is conducted to compare the means between both

@ Springer

OPSEARCH

Table 3 Comparing feasibility (%), best(mean) of unassigned events among TSSP-ILS, TSSP and ILS on
Hard:Small cases

Case TSSP ILS TSSP-ILS t-test (p value)
TSSP ILS
S01 100, 0(0.00) 100, 0(0.00) 100, 0(0.00) - -
S02 100, 0(0.00) 100, 0(0.00) 100, 0(0.00) - -
S03 100, 0(0.00) 100, 0(0.00) 100, 0(0.00) - -
S04 100, 0(0.00) 100, 0(0.00) 100, 0(0.00) - -
S05 100, 0(0.00) 100, 0(0.00) 100, 0(0.00) - -
S06 100, 0(0.00) 100, 0(0.00) 100, 0(0.00) - -
S07 100, 0(0.00) 100, 0(0.00) 100, 0(0.00) - -
S08 100, 0(0.00) 97,0(0.03) 100, 0(0.00) - 0.321
S09 100, 0(0.00) 10, 0(4.65) 100, 0(0.00) - 0.000
S10 100, 0(0.00) 100, 0(0.00) 100, 0(0.00) - -
S11 100, 0(0.00) 100, 0(0.00) 100, 0(0.00) - -
S12 100, 0(0.00) 100, 0(0.00) 100, 0(0.00) - -
S13 100, 0(0.00) 45,0(2.52) 100, 0(0.00) - 0.000
S14 100, 0(0.00) 0, 12(20.16) 100, 0(0.00) - 0.000
S15 100, 0(0.00) 100, 0(0.00) 100, 0(0.00) - -
S16 100, 0(0.00) 100, 0(0.00) 100, 0(0.00) - -
S17 100, 0(0.00) 100, 0(0.00) 100, 0(0.00) - -
S18 100, 0(0.00) 100, 0(0.00) 100, 0(0.00) - -
S19 100, 0(0.00) 3,0(27.77) 100, 0(0.00) - 0.000
S20 100, 0(0.00) 100, 0(0.00) 100, 0(0.00) - -
N =31 runs

algorithms for each case. The last column of the table shows the respective p values.
t cannot be computed for some cases (as indicated by dash symbols) as the standard
deviations of both groups are 0 (means are 0). The p values (less than 0.05) show a
significant difference between the means (unassigned events) of TSSP and TSSP-ILS
for all the other cases except B11.

We also compare TSSP-ILS and ILS in constructing feasible solutions. Apparently,
TSSP-ILS is superior than ILS on all the cases (small, medium and big) in regard to
feasibility and the number of unassigned events as presented in Table 3, 4 and 5. A
significant difference is observed between the means (unassigned events) of ILS and
TSSP-ILS for all the cases except S8 as indicated by the p values of ¢-tests.

5.1.2 Comparing TSSP-ILS with state of the art methods

Here, the performance of TSSP-ILS and the state of the art methods is compared. As
shown in Tables 6 and 7, TSSP-ILS performs better than other methods for small and
medium cases. Best results are in bold. TSSP-ILS also outperforms other methods for
big cases as shown in Table 8. Feasible solutions are found for 17 out of the 20 cases
utilizing a benchmarked execution time # of 7= 190s. Note that the results of the solver

@ Springer

OPSEARCH

Table 4 Comparing feasibility (%), best(mean) of unassigned events among TSSP-ILS, TSSP and ILS on
Hard:Medium cases

Case TSSP ILS TSSP-ILS t-test (p value)

TSSP ILS
MOl 100, 0(0.00) 100, 0(0.00) 100, 0(0.00) - -
MO02 100, 0(0.00) 100, 0(0.00) 100, 0(0.00) - -
MO03 100, 0(0.00) 100, 0(0.00) 100, 0(0.00) - -
MO04 100, 0(0.00) 100, 0(0.00) 100, 0(0.00) - -
MO05 100, 0(0.00) 100, 0(0.00) 100, 0(0.00) - -
MO06 100, 0(0.00) 19,0(11.87) 100, 0(0.00) - 0.000
MO07 100, 0(0.00) 0, 72(79.26) 100, 0(0.00) - 0.000
MO8 100, 0(0.00) 0,21(31.71) 100, 0(0.00) - 0.000
M09 100, 0(0.00) 0, 29(40.19) 100, 0(0.00) - 0.000
MI10 100, 0(0.00) 100, 0(0.00) 100, 0(0.00) - -
Mll 100, 0(0.00) 100, 0(0.00) 100, 0(0.00) - -
MI12 100, 0(0.00) 100, 0(0.00) 100, 0(0.00) - -
MI13 100, 0(0.00) 100, 0(0.00) 100, 0(0.00) - -
Ml4 100, 0(0.00) 100, 0(0.00) 100, 0(0.00) - -
MI5 100, 0(0.00) 100, 0(0.00) 100, 0(0.00) - -
MI16 100, 0(0.00) 0,57(75.81) 100, 0(0.00) - 0.000
M17 100, 0(0.00) 100, 0(0.00) 100, 0(0.00) - -
MI8 100, 0(0.00) 0,24(61.32) 100, 0(0.00) - 0.000
MI9 100, 0(0.00) 10, 0(42.13) 100, 0(0.00) - 0.000
M20 100, 0(0.00) 48,0(8.45) 100, 0(0.00) - 0.000
N =31 runs

D5 shown here is based on execution time of 200 s (small cases), 500 s (medium cases)
and 1000s (big cases). For reference, D5 is executed utilizing Pentium IV 2.66 GHz
CPU and 1.0 Gb RAM machine. Details of the solvers are given in Table 9.

5.1.3 Extended execution time for TSSP-ILS

In this section, we measure the performance of TSSP-ILS using an extended execution
time. We manage to construct feasible solutions for 19 of the 20 cases when the
execution time ¢ is doubled to 27 (380s) as shown in Table 10. In a comparison,
solver D5 finds feasible solutions for 18 cases. Furthermore, we conduct a ¢-test to
compare the means of TSSP-ILS with execution time ¢ of 7 and 2T. The p values (less
than 0.05) indicate a significant difference between the means of TSSP-ILS for both
execution times.

We further extend the execution time ¢ for cases with non zero means (B6, B7,
B17,B18, B19, B20). The descriptive statistics are given in Table 11 and illustrated in
Fig. 1. In fact, we manage to obtain best known results for all the cases when execution
time is 47 =760 s except for the mean produced by the solver D5 for the case B20.

@ Springer

OPSEARCH

Table 5 Comparing feasibility (%), best(mean) of unassigned events among TSSP-ILS, TSSP and ILS on
Hard:Big cases

Case TSSP ILS TSSP-ILS t-test (p value)

TSSP ILS
BO1 100, 0(0.00) 100, 0(0.00) 100, 0(0.00) - -
B02 100, 0(0.00) 100, 0(0.00) 100, 0(0.00) - -
BO3 100, 0(0.00) 100, 0(0.00) 100, 0(0.00) - -
B04 100, 0(0.00) 100, 0(0.00) 100, 0(0.00) - -
BO5 87,0(0.71) 100, 0(0.00) 100, 0(0.00) 0.047 -
B06 0, 1(10.77) 0,70(90.13) 16, 0(1.87) 0.000 0.000
BO7 0, 11(64.61) 0, 185(191.65) 0, 23(29.55) 0.000 0.000
B08 100, 0(0.00) 100, 0(0.00) 100, 0(0.00) - -
B09 100, 0(0.00) 100, 0(0.00) 100, 0(0.00) - -
B10 74,0(1.42) 100, 0(0.00) 100, 0(0.00) 0.006 -
B11 94, 0(0.26) 100, 0(0.00) 100, 0(0.00) 0.314 -
BI12 100, 0(0.00) 100, 0(0.00) 100, 0(0.00) - -
B13 100, 0(0.00) 100, 0(0.00) 100, 0(0.00) - -
Bl14 100, 0(0.00) 100, 0(0.00) 100, 0(0.00) - -
BI5 100, 0(0.00) 0, 130(143.48) 100, 0(0.00) - 0.000
B16 100, 0(0.00) 100, 0(0.00) 100, 0(0.00) - -
B17 0, 8(13.45) 0,313(325.48) 6,0(3.97) 0.000 0.000
BI18 23,0(5.06) 0, 181(195.65) 48,0(0.84) 0.000 0.000
BI19 0, 15(35.39) 0, 301(309.32) 0, 1(16.97) 0.000 0.000
B20 0, 8(18.87) 0, 167(188.23) 0, 2(6.65) 0.000 0.000
N =31 runs

Meanwhile, the average time required to find feasible solutions (using TSSP-ILS
algorithm) is less than 1 s for all the cases in Socha, ITC02 and ITCO7 except the case
ITCO07-22 which requires approximately 2 s.

5.2 Phase 2: improving soft constraint violations
5.2.1 Comparing SAR-1P and SAR-2P

In this section, we compare the average of soft constraint violations between SAR-1P
and SAR-2P using different values for the constant C. Note that SAR-1P is a SAR
algorithm with one preliminary run. Specifically, the preliminary run consists of a
TSSP algorithm and a SAR algorithm. Both the neighbourhood structure composition
and fitness landscape are simultaneously estimated in the preliminary run. As evident
in Table 12, SAR-2P is superior compared to SAR-1P regardless of the value of C.
The lowest total average of soft constraint violations is recorded for SAR-2P with
C=0.008. Therefore this value is used in the other experiments.

@ Springer

OPSEARCH

Table 6 Comparing best(mean)

. Case Al A2 A3 A4 AS TSSP-ILS

of unassigned events among

solvers on Hard:Small cases s01 0 0(0.00) 0(0.00) _ 0(0.00) 0(0.00)
S02 0 0(0.00) 0(0.000 - 0(0.00) 0(0.00)
S03 0 0(0.00) 0(0.000 - 0(0.00) 0(0.00)
S04 0 0(0.00) 0(0.000 - 0(0.00) 0(0.00)
S05 0 0(0.00) 0(0.000 - 0(0.00) 0(0.00)
S06 0 0(0.00) 0(0.000 - 0(0.00) 0(0.00)
S07 0 0(0.00) 0(0.200 - 0(0.00) 0(0.00)
S08 0 0(1.90) 0(0.300 - 0(0.00) 0(0.00)
S09 0 0(3.85) 0(0.15 - 0(0.55) 0(0.00)
S10 0 0(0.00) 0(0.000 - 0(0.00) 0(0.00)
S11 0 0(0.00) 0(0.000 - 0(0.00) 0(0.00)
S12 0 0(0.00) 0(0.000 - 0(0.00) 0(0.00)
S13 0 0(1.00) 0(0.000 - 0(0.10) 0(0.00)
S14 0 3(595) 0(0.70) - 0(0.05) 0(0.00)
S15 0 0(0.00) 0(0.000 - 0(0.00) 0(0.00)
S16 0 0(0.00) 0(0.30) - 0(0.00) 0(0.00)
S17 0 0(0.00) 0(0.000 - 0(0.00) 0(0.00)
S18 0 0(0.45) 0(0.700 - 0(0.00) 0(0.00)
S19 0 0(1.20) 0(0.000 - 0(0.25) 0(0.00)
S20 0 0(0.00) 0(.15) - 0(0.00) 0(0.00)
N =31 runs

5.2.2 Comparing SAR-2P with SAR and SAIRL

In SAR algorithm, parameter values (neighbourhood structure composition) are set
manually. SAIRL is a type of dynamic optimization where parameter values (neigh-
bourhood structure composition and average cost changes used in the reheated
temperature function) are determined and utilized on the run. Meanwhile, SAR-2P
is a type of static optimization where parameter values are determined automatically
in the preliminary runs. As we also developed SAR and SAIRL, we have the privi-
lege to compare the performance between SAR, SAIRL and SAR-2P in relation to
the average of soft constraint violations as presented in Table 13. SAR-2P is partic-
ularly effective for Socha and ITCO7 datasets. Overall, SAR-2P is the most effective
algorithm with the lowest total average of soft constraint violations.

We compare the performance of SAR, SAIRL and SAR-2P in terms of best and
mean for Socha cases in Table 14. ¢-test results are presented in the last two columns
between (SAR-2P and SAR) and between (SAR-2P and SAIRL) respectively. The
t-tests are run with a confidence level of 95% (a=0.05). The p values reveal that
there is no significant difference between the means of SAR and SAR-2P for all the
cases. The same is true of SAIRL and SAR-2P except case L where SAR-2P performs
significantly better. P values less than 0.05 are in bold.

@ Springer

OPSEARCH

Table 7 Comparing best(mean) of unassigned events among solvers on Hard:Medium cases

Case Al A2 A3 A4 A5 TSSP-ILS
MO1 0 0(0.00) 0(0.00) 0(0.00) 0(0.00) 0(0.00)
MO02 0 0(0.00) 0(0.00) 0(0.00) 0(0.00) 0(0.00)
MO03 0 0(0.00) 0(0.00) 0(0.00) 0(0.00) 0(0.00)
Mo4 0 0(0.00) 0(0.00) 0(0.00) 0(0.00) 0(0.00)
MO5 0 0(0.00) 0(0.00) 0(0.00) 0(0.00) 0(0.00)
MO6 0 0(0.00) 0(0.00) 0(0.90) 0(0.00) 0(0.00)
MO7 14 1(4.15) 0(3.55) 0(0.00) 0(0.00) 0(0.00)
MO8 0 0(0.00) 0(0.00) 0(0.30) 0(0.00) 0(0.00)
M09 2 0(4.90) 0(2.15) 0(0.35) 0(0.65) 0(0.00)
M10 0 0(0.00) 0(0.00) 0(0.00) 0(0.00) 0(0.00)
Mill1 0 0(0.00) 0(0.00) 0(0.00) 0(0.00) 0(0.00)
Mi2 0 0(0.00) 0(0.00) 0(0.60) 0(0.00) 0(0.00)
M13 0 0 (0.50) 0(0.00) 0(0.00) 0(0.00) 0(0.00)
M14 0 0(0.00) 0(0.00) 0(0.05) 0(0.00) 0(0.00)
M15 0 0(0.05) 0(0.00) 0(0.00) 0(0.00) 0(0.00)
M16 1 1(5.15) 0(0.30) 0(0.00) 0(0.00) 0(0.00)
M17 0 0(0.00) 0(0.00) 0(0.15) 0(0.00) 0(0.00)
M18 0 0(6.05) 0(0.00) 0(0.30) 0(0.00) 0(0.00)
M19 0 0(5.45) 0(0.00) 0(0.50) 0(0.00) 0(0.00)
M20 3 2(10.60) 0(0.65) 0(0.55) 0(0.00) 0(0.00)
N =31 runs

For ITCO2 cases, the 7-tests show that SAR performs significantly better than SAR-
2P for cases 1,4, 9 and 16 as shown in Table 15. Meanwhile, SAR-2P is more effective
than SAIRL for case 3. There is no significant difference between the means between
SAR-2P and SAR as well as the means between SAR-2P and SAIRL, for the rest of
the cases.

For ITCO7 cases, SAR-2P performs significantly better compared to SAR for the
cases 1,2,9,10, 11, 15, 16, 19, 24 as shown in Table 16. SAR is better than SAR-2P for
the case 14. Meanwhile, SAR-2P is better than SAIRL for the case 23. No significant
difference is observed, neither between the means of SAR-2P and SAR nor between
the means of SAR-2P and SAIRL, for the rest of the cases.

Overall, SAR-2P is significantly better than SAR on 9 cases. Meanwhile, SAR
is significantly better than SAR-2P on 5 cases. SAR-2P is significantly better than
SAIRL on 3 cases.

5.2.3 Comparing SAR-2P with state of the art methods

We now compare SAR-2P with the state of the art methods in the literature. Table 17
summarizes the details of the solvers.

The performance of SAR-2P is superior to that of all the solvers except solver R
and solver S as shown in Table 18. Its performance is comparable to solver R and

@ Springer

OPSEARCH

Table 8 Comparing best(mean) of unassigned events among solvers on Hard:Big cases

Case Al A2 A3 A4 AS TSSP-ILS
BO1 0 0(0.00) 0(0.00) 0(0.15) 0(0) 0(0.00)
B02 0 0(0.00) 0(0.00) 0(0.60) 0(0) 0(0.00)
BO3 0 0(0.00) 0(0.00) 0(1.45) 0(0) 0(0.00)
B0O4 8 0(0.00) 0(0.00) 0(0.00) 0(0) 0(0.00)
BO5 30 0(1.10) 1(3.20) 0(0.00) 0(0) 0(0.00)
B06 77 5(8.45) 10(15.40) 1(2.85) 0(0.35) 0(1.87)
BO7 150 47(58.30) 39(46.65) 21(29.25) 22(32) 23(29.55)
BO8 5 0(0.00) 0(0.00) 0(0.00) 0(0) 0(0.00)
B09 3 0(0.05) 0(0.00) 0(0.00) 0(0) 0(0.00)
B10 24 0(1.25) 0(1.95) 0(0.00) 0(0) 0(0.00)
Bl11 22 0(0.35) 0(2.35) 0(0.00) 0(0) 0(0.00)
B12 0 0(0.00) 0(0.00) 0(1.15) 0(0) 0(0.00)
B13 0 0(0.00) 0(0.00) 0(1.15) 0(0) 0(0.00)
B14 0 0(0.00) 0(0.00) 0(1.20) 0(0) 0(0.00)
BI5 0 0(0.00) 0(0.00) 1(3.5) 0(0) 0(0.00)
Bl6 19 0(2.00) 0(0.00) 0(0.65) 0(0) 0(0.00)
B17 163 76(89.90) 0(2.05) 12(22.00) 0(4.0) 0(3.97)
BIS8 164 53(62.60) 0(1.70) 8(13.55) 0(0) 0(0.84)
BI19 232 109 (127.00) 40(53.20) 37(52.85) 12(24.55) 1(16.97)
B20 149 40(46.70) 9(14.05) 11(15.05) 0(0) 2(6.65)
N =31 runs

Table9 Details of solvers

Solver Methodology References

Al GA Lewis and Paechter [13]
A2 Hybrid SA Tuga et al. [22]

A3 Clique Based Algorithm Liu et al. [15]

Ad SA Ceshia et al. [3]

AS ILS Ting Song et al. [20]

S. SAR-2P obtains optimal solutions for 9 out of 11 cases. Furthermore, SAR-2P
achieves new best and mean for the case L.

For ITCO02, our results are competitive or better than the other solvers on all the
cases as shown in Table 19. SAR-2P obtains optimal solutions for 7 out of 20 cases
in comparison to the solver J2 (four), solver R (seven) and solver S (seven). SAR-2P
also achieves two new best results (cases 12 and 17) and three new means (cases 6,
12 and 14).

Table 20 shows the results comparison for ITCO7. Our results are good compared to
the other solvers. SAR-2P finds nineteen optimal solutions compared to the solver Q

@ Springer

OPSEARCH

Table 10 Comparing feasibility

(%), best(mean) of unassigned Case =7 =21 I-test (p value)

events .betv\./een TSSP-ILS with BO1 100, 0(0.00) 100, 0(0.00) _

execution time 7 of 7 and 2T
B02 100, 0(0.00) 100, 0(0.00) -
BO3 100, 0(0.00) 100, 0(0.00) -
B04 100, 0(0.00) 100, 0(0.00) -
BOS 100, 0(0.00) 100, 0(0.00) -
B06 16, 0(1.87) 35, 0(1.00) 0.006
BO7 0,23(29.55) 0,21(26.87) 0.006
BOS 100, 0(0.00) 100, 0(0.00) -
B09 100, 0(0.00) 100, 0(0.00) -
B10 100, 0(0.00) 100, 0(0.00) -
Bl1l1 100, 0(0.00) 100, 0(0.00) -
BI12 100, 0(0.00) 100, 0(0.00) -
BI13 100, 0(0.00) 100, 0(0.00) -
B14 100, 0(0.00) 100, 0(0.00) -
BI15 100, 0(0.00) 100, 0(0.00) -
B16 100, 0(0.00) 100, 0(0.00) -
B17 6,0(3.97) 19, 0(1.45) 0.000
BI18 48,0(0.84) 81,0(0.23) 0.004
B19 0, 1(16.97) 3,0(9.16) 0.000
B20 0,2(6.65) 6,0(3.35) 0.000
N =31 runs

Table 11 Comparing best(mean) of unassigned events for TSSP-ILS with extended execution time ¢ on
selected Hard instances

Case t=1T t=2T t=3T t=4T t=5T
Hard-B06 0(1.87) 0(1.00) 0(0.39) 0(0.35) 0(0.26)
Hard-B0O7 23(29.55) 21(26.87) 19(24.58) 17(23.74) 15(23.13)
Hard-B17 0(3.97) 0(1.15) 0(0.71) 0(0.61) 0(0.32)
Hard-B18 0(0.84) 0(0.23) 0(0.03) 0(0.00) 0(0.00)
Hard-B19 1(16.97) 0(9.16) 0(5.19) 0(3.39) 0(2.06)
Hard-B20 2(6.65) 0(3.35) 0(1.90) 0(1.45) 0(0.68)
N =31 runs

(seventeen), solver R (fifteen), solver S (eighteen) and solver T(nineteen). In addition,
SAR-2P achieves three new means (cases 2, 9 and 17).

5.3 Extended execution time for SAR-2P

We run the algorithm for fivefold the time limit (57 = 950s), only on selected cases
(Socha-L, ITCO2-1 and ITCO7-1) as it took around 8 hours to run each case for 31

@ Springer

OPSEARCH

Performance of TPPS-ILS

—®— Hard-B6 Hard-B7 Hard-B17
Hard-B18 == @» ® Hard-B19 *we » Hard-B20
35

30
25

20

15 S

10 \

Mean of number of unassigned events

T 2T 3T 4T 5T
runtime t

Fig. 1 Line graph showing the number of unassigned events for TSSP-ILS with extended execution time ¢
on selected Hard cases. N = 31 runs

Table 12 Comparing average of soft constraint violations between SAR-1P and SAR-2P on datasets

Dataset C=0.007 C=0.008 C=0.009

SAR-1P SAR-2P SAR-1P SAR-2P SAR-1P SAR-2P
Socha 20.72 20.79 20.71 20.20 20.94 20.92
ITCO2 25.29 24.68 24.17 24.52 24.57 24.36
ITCO7 126.96 122.44 125.51 102.06 129.07 124.87
Total 68.74 66.56 67.70 64.21 69.44 67.53

N =31 runs for each case in the dataset

Table 13 Comparing average of

. : > Dataset SAR SAIRL SAR-2P
soft constraint violations among
SAR, SAIRL, and SAR-2P on Socha 20.52 21.67 20.20
datasets
1TCO2 24.17 24.60 24.52
1TCO7 171.05 126.38 102.06
Total 87.53 68.43 64.21

N =31 runs for each case in the dataset

times. The best and average cost are remarkably improved when the execution time ¢
is extended as evident in Table 21. Notice that we do not adjust any parameters. We
just simply reset the execution time . The p values (0.000 < 0.05) of ¢-tests reveal a
statistically significant difference between the means.

Table 22 shows the comparison of soft constraint violations between SAR, SAIRL
and SAR-2P with execution time ¢ of 5T on the cases Socha-L, ITC02-1 and ITCO7-1.
t-tests are performed between (SAR-2P and SAR) and (SAR-2P and SAIRL) and the

@ Springer

OPSEARCH

Table 14 Comparing best(mean) of soft constraint violations among SAR, SAIRL and SAR-2P on Socha
cases

Case SAR SAIRL SAR-2P t-test (p value)

SAR SAIRL
S01 0(0.0) 0(0.0) 0(0.0) - -
S02 0(0.0) 0(0.0) 0(0.0) -
S03 0(0.0) 0(0.0) 0(0.0) -
S04 0(0.0) 0(0.0) 0(0.0) - -
S05 0(0.0) 0(0.0) 0(0.0) - -
MoO1 0(1.5) 0(2.3) 0(2.3) 0.087 0.951
MO02 02.2) 0(3.6) 0(2.7) 0.251 0.090
MO03 7(13.4) 6(14.4) 5(14.1) 0.599 0.802
Mo4 0(0.7) 0(1.4) 0(1.2) 0.212 0.679
MO5 0(1.2) 0(1.4) 0(1.7) 0.230 0.514
L 165 (206.6) 181(215.2) 164(200.2) 0.259 0.003
N =31 runs

Table 15 Comparing
best(mean) of soft constraint
violations among SAR, SAIRL SAR SAIRL
and SAR-2P on ITCO02 cases

Case SAR SAIRL SAR-2P t-test (p value)

01 23(32.6) 26(35.7) 29(36.8) 0.001 0.441
02 7(13.7) 6(16.3) 2(16.2) 0.088 0.931
03 26(36.4) 27(38.2) 24(34.3) 0.205 0.006
04 50(63.1) 47(69.0) 46(70.7) 0.031 0.626
05 38(58.6) 36(51.8) 43(55.0) 0.081 0.139

06 0(0.8) 0(0.8) 0(0.4) 0.178 0.104
07 0(2.6) 024) 0(2.4) 0.562 0.940
08 0(1.4) 0(1.5) 02.2) 0.099 0.169
09 0(4.6) 0(6.4) 0(6.5) 0.011 0.938
10 28(40.9) 22(40.4) 26(39.2) 0.235 0.495
11 10(17.7) 10(19.0) 9(19.7) 0.141 0.583

12 53(645) 47(64.1) 46(639) 0790 0.951
13 38(533) 33(51.0) 40(512) 0258 0.935
14 5(129) 4(13.6) 4(121) 0540 0.199

15 0(4.0) 0(4.8) 0(4.4) 0.574 0.487
16 0(0.5) 0(2.2) 0(1.6) 0.006 0.204
17 26(41.6) 25(36.8) 24(38.7) 0.177 0.317
18 2(9.7) 3(12.5) 4(11.7) 0.054 0.393
19 11(24.7) 15(25.6) 9(23.6) 0.502 0.199
20 0(0.0) 0(0.0) 0(0.0) - -

N =31 runs

@ Springer

OPSEARCH

Table 16 Comparing best(mean) of soft constraint violations among SAR, SAIRL and SAR-2P on ITCO7

cases

Case SAR SAIRL SAR-2P t-test (p value)
SAR SAIRL

01 0(307.6) 0(209.4) 0(191.8) 0.011 0.680
02 0(63.4) 0(10.1) 0(1.7) 0.016 0.352
03 163(199.4) 141(188.6) 137(189.8) 0.105 0.820
04 242(328.8) 192(320.9) 24(315.5) 0.383 0.743
05 0(2.7) 0(2.9) 0(2.9) 0.890 0.959
06 033.2) 0(54.7) 0(37.6) 0.718 0.110
07 5(18.0) 4(14.5) 5(16.2) 0.803 0.767
08 0(0.0) 0(1.6) 0(5.7) 0.069 0.219
09 0(100.7) 0(15.2) 0(2.6) 0.001 0.393
10 0(65.3) 0(30.5) 0(16.3) 0.040 0.258
11 161(244.3) 136(201.6) 21(199.6) 0.001 0.870
12 0(318.2) 0(303.5) 0(258.1) 0.123 0.229
13 0(99.5) 0(90.4) 0(85.9) 0.395 0.780
14 0(0.2) 0(25.6) 0(17.8) 0.017 0.452
15 0(192.0) 0(12.5) 009.3) 0.000 0.785
16 10(105.8) 0(45.8) 0(40.2) 0.000 0.642
17 0(0.8) 0(0.5) 0(0.1) 0.099 0.366
18 0(12.5) 0(7.7) 0(15.5) 0.633 0.081
19 0(516.7) 0(11.0) 0(79.6) 0.000 0.099
20 586(650.7) 555(664.0) 579(661.5) 0.329 0.847
21 0(12.5) 0(25.7) 0(14.8) 0.714 0.118
22 1(136.0) 0(5.8) 0(22.6) 0.154 0.197
23 11(504.4) 56(713.6) 0(531.7) 0.718 0.006
24 5(192.6) 0(77.5) 0(102.1) 0.005 0.347
N =31 runs

p values are presented on the two rightmost columns. SAR-2P is significantly better
than SAIRL (Socha-L case) and SAR (ITC07-1 case). Meanwhile, SAR is better than
SAR-2P on Socha-L case.

5.4 Discussion

A synergy is achieved by hybridizing TSSP and ILS. TSSP is excellent in solution
space exploration and exploitation. The best solution resulting from TSSP is further
refined by ILS en route to the search end. The search is guided by the ILS to exploit the
surrounding area of the best solution with the hope to obtain an optimal solution. As
ILS only accepts improving or equal cost solutions, it is greedy in nature. To improve
the solution space connectivity, transfer and swap operators are randomly utilized in
ILS.

@ Springer

OPSEARCH

Table 17 Details of solvers

Solver Methodology References

E Genetic Algorithm + Local Search Abdullah et al. [1]

F Fish Swarm Turabieh et al. [23]
H Honey Bee Mating Sabar et al. [18]

1 SA Ceschia et al. [3]

12 SA Kostuch [12]

N Hybrid Algorithm Chiarandini et al. [4]
(0] SA Cambazard et al. [2]
P Ant Colony Optimization Nothegger et al. [17]
Q SA Lewis and Thompson [14]
R SAR Goh et al. [9]

S SAIRL Goh et al. [10]

T RPNS Nagata [16]

SAR-2P not only eliminated the need for manual setting of neighbourhood structure
composition in SAR but also performed better in minimizing soft constraint violations.
The good performance is attributed to the use of average cost changes A f (measured
in the preliminary run to reflect the exploration level required) in the functions for
setting the temperature (initial and reheated) utilized in SAR-2P. In effect, we are
exploiting the information on fitness landscape in setting the temperature. Setting the
right temperature (initial and reheated) is crucial to ensure that the search is supplied
with the necessary exploration capability to explore the search space or perhaps escape
from local optima when it is stuck.

SAR-2P is computationally faster compared to SAIRL because it does not calcu-
late the parameter values on the run and it avoids the use of computation expensive
neighbourhood structures by utilizing a good neighbourhood structure composition
from the start of the search. Hence, SAR-2P achieved a higher number of transitions
in a given time limit which explained the better performance. SAR-2P also has the
advantage of using average cost changes A f (fitness landscape information) in deter-
mining not only the reheated temperature but also the initial temperature (better search
exploration).

The superiority of SAR-2P compared to SAR-1P (irrrespective of C values used),
affirms our hypothesis that preliminary run used to measure the average cost changes
A_f, should mirror the actual run. For SAR-1P, neighbourhood structures are evalu-
ated in the same preliminary run where A f is measured (unlike SAR-2P where these
values are obtained in two separate preliminary runs). As the dynamic neighbourhood
structure composition in the preliminary run differs from the static neighbourhood
structure composition in the actual run, the A f measured may not reflect the actual
exploration requirement of the actual run. Subsequently, inaccurate temperatures (ini-
tial and reheated) are set for the actual run and this could be the explanation for the
inferior performance shown by SAR-1P.

@ Springer

OPSEARCH

s)[nsar Jsaq pajiodar AJuo sioyine awog ‘suni [=N

(T000) 91 (T01€) 8% (TST1D 181 (9902) $91 (8'652) 80T €cs LOY (#'TSS) 628 T
Lno (CX2024 Do TDo (601)¢ ¥9 61 (F'SEDOET SO
@TDo o Do L00o (8¢l YL 93 (8°'L91) 91 YON

Tvns (82037 v 9 FeEDL 0'61)9¢ 6¢l 19 (0TsDI9PT 0N
Lo (€201 90 T00 (6'SOSI 88 oy (90sD Lyl 0N
€200 691 (€00 (SDO (5906 SL 97 (8+co)ice 10N
000 - 000 000 000 0 0 000 S0S
000 - 000 000 100 0 0 000 #0S
000 - 000 000 000 0 0 000 €0S
000 - 000 000 000 0 0 000 208
000 - 000 000 000 0 0 000 108

dc-dvs L S A I H d q ase)
I9A[OS

SOSED BYD0S IO SUOTIB[OIA JUTENSUOD 3J0S JO (ueawn))saq Sutredwo) gL 3jqel

pringer

As

OPSEARCH

Table 19 Comparing best(mean) of soft constraint violations for ITCO2 cases

Solver

Case N 12 I R S T SAR-2P
01 45 16(30.2) 45(57.1) 23(32.6) 26(35.7) 25(35.2) 29(36.8)
02 14 2(11.4) 20(33.2) 7(13.7) 6(16.3) 7(15.9) 2(16.2)
03 45 17(31.0) 43(53.2) 26(36.4) 27(38.2) 27(37.6) 24(34.3)
04 71 34(60.8) 87(109.9) 50(63.1) 47(69.0) 61(84.5) 46(70.7)
05 59 42(72.1) 71(91.7) 38(58.6) 36(51.8) 53(75.1) 43(55.0)
06 1 0(2.4) 2(14.1) 0(0.8) 0(0.8) 0(1.8) 0(0.4)
07 3 2(8.9) 2(13.7) 0(2.6) 024) 3(11.0) 024
08 1 0(2.0) 9(20.0) 0(1.4) 0(L.5) 2(10.3) 0(2.2)
09 8 1(5.8) 15(21.9) 0(4.6) 0(6.4) 7(16.7) 0(6.5)
10 52 21(35.0) 41(60.7) 28(40.9) 22(40.4) 18(37.8) 26(39.2)
11 30 5(12.9) 24(38.2) 10(17.7) 10(19.0) 4(15.6) 9(19.7)
12 75 55(76.3) 62(83.7) 53(64.5) 47(64.1) 74(95.4) 46 (63.9)
13 55 3147.1) 59(78.0) 38(53.3) 33(51.0) 52(66.3) 40(51.2)
14 18 11(22.3) 21(34.2) 5(12.9) 4(13.6) 20(29.8) 4(12.1)
15 8 2(8.4) 6(11.8) 0(4.0) 0(4.8) 1(7.2) 0(4.4)
16 55 03.4) 6(16.7) 0(0.5) 0(2.2) 1(4.8) 0(1.6)
17 46 37(54.0) 42(56.5) 26(41.6) 25(36.8) 38(55.6) 24(38.7)
18 24 4(9.4) 11(25.9) 2(9.7) 3(12.5) 6(13.9) 4(11.7)
19 33 7(16.4) 56(73.0) 11(24.7) 15(25.6) 16(29.6) 9(23.6)
20 0 0(0.5) 0(1.8) 0(0.0) 0(0.0) 0(0.0) 0(0.0)

N =31 runs. Some authors only reported best results

6 Conclusion

We have compared the performance of TSSP-ILS with TSSP and ILS in constructing
feasible solutions for the hardest standard timetabling problem. The TSSP-ILS method
has a better performance than either TSSP or ILS alone as well as other recent methods.
Moreover, we observed a remarkable result improvement when the execution time is
extended, indicating the extendability of TSSP-ILS. Furthermore, TSSP-ILS does not
require parameter tuning, making it one of the best algorithms in constructing feasible
solutions for the PE-CTT problems.

A SAR algorithm with 2 preliminary runs (SAR-2P) is presented. We tested different
values for the coefficient C for both SAR-1P and SAR-2P. The performance of SAR-
2P, SAR, SAIRL and other recent methods are compared in terms of soft constraint
violations. SAR-2P is comparable to SAR, SAIRL and other state of the art methods
in the scientific literature. SAR-2P is also shown to be scalable in runs with extended
execution time.

@ Springer

OPSEARCH

suni [¢=N

(I'zoD0 0o SLL0 961§ (T'879)81 (€500 - ¥T
L1€9)0 (S€801) LLL (9°€1L)9¢ F08) 11 I+190 (L°LoL1)T6TI - €T
9700 0590 (890 09eD 1 (1rro6LD) ¥ 6'61)¢ - 44
8+D0o 100 (LS00 (STNo (1zo1 (659§ - 1T
(S'199)6LS (0°Z8%) 8€Y (¥99) 6§ (L059)98S (S¥TL) LSS (T'00L) £¥S - 0T
96L)0 (89190 0IDO (L9190 (1'9%)0 (S'156)0 - 61
(SspDo (§0)0 woo (szDo 0 190 - 81
000 @00 (500 (800 1000 000 - L1
Toro SDO (8510 (8's01) 01 (TsoDo (1090 01000 91
(€6)0 000 (sTNo 0610 6°6£1)0 0'81)0 0620 Sl
8LD0 000 (9600 (00 (00 990 0190 14!
(6'$8)0 000 (+'06)0 (5660 06L)0 (4901 0109¢) § €l
(1'850)0 T€9)0 (S€0€) 0 (T'81)0 (Tore)0 (0°00%) L9T (0°8€9)0 Tl
(9°661)1¢ Worne (9'102)9¢€1 (€¥¥D) 191 (9°200) 8% (690 Tl OvLL) EFT 11
(€910 90 (S09)0 (€690 (202D 0 (t'981) € (13 21] 01
9200 (6890 (TsNo (L001)0 Fv19)0 (8'850)0 (0200 0 60
L9)o 000 ©Do 000 9000 Do 0190 80
(T9Ins¢ 9€)0 YDy 081¢ ($90 610 00 LO
9°L9)0 000 (L¥9)0 (T€9)0 (8200 (98)0 02100 90
600 000 600 Loo <00 woo 0o €l S0
(SS19%C (I'vsT) 01 (6029 261 (8'82€) THC 61981 (9°6¥£) ST (0089 €S ¥0
(8°681) LEI (0'ss1)SS (988D 11 (F'661) €91 (8181cel (6°600) 871 (0089011 €0
Loo 0810 (1ono #'€9)0 (TT890 @zrDo (09590 20
(816)0 L1890 (#6000 (9°L09)0 O°LLOO (T°66€) 65 (0€190 10

dz-avs L S d 0 I d
I9ATOS ase)

sased /(DL] 10 SUOTIB[OIA JUTETSUOD 1JOS Jo (ueowr)iseq Suuredwo) oz 3jqel

pringer

as

OPSEARCH

Table 21 Comparing best(mean)

of soft constraint violations for Case =T 1=sr I-test (p value)
SAR-2P with execution time = gogp, 1, 164/(200.16) 136(172.74) 0.000
T and t = 5T on selected cases
ITC02-01 29(36.84) 12(19.87) 0.000
1TC07-01 0(191.84) 0(25.68) 0.000
Total (142.95) (72.76)
N =31 runs

Table 22 Comparing best(mean) of soft constraint violations among SAR, SAIRL and SAR-2P with exe-
cution time ¢ = 5T on selected cases

Case SAR SAIRL SAR-2P t-test (p value)

SAR SAIRL
Socha-L 103(139.39) 157(190.42) 136(172.74) 0.000 0.000
ITC02-01 10(21.03) 11(20.84) 12(19.87) 0.357 0.413
ITC07-01 0(134.94) 0(23.06) 0(25.68) 0.000 0.861
N =31 runs

7 Future work

It will be interesting to test the robustness and general applicability of the SAR-2P
algorithm proposed in this paper, on other educational timetabling problems (school
timetabling and examination timetabling), other scheduling problems (transport
scheduling, sports scheduling and nurse rostering) and possibly other combinatorial
optimisation problems (bin packing, vehicle routing etc.).

As the proposed method is still purely based on SA, we are open to the idea of
hybridizing it with methods that exploit on the usage of memory (tabu mechanisms
and ant systems) or even evolutionary methodologies such as genetic algorithms which
are well known for their explorative capability.

Acknowledgements Funding was provided by Universiti Malaysia Sabah (Grant No. SLB0170-2018).

References

1. Abdullah, S., Burke, E.K., McCollum, B.: A hybrid evolutionary approach to the university course
timetabling problem. In: IEEE Congress on Evolutionary Computation, 2007. CEC 2007, pp. 1764—
1768. IEEE (2007)

2. Cambazard, H., Hebrard, E., O’Sullivan, B., Papadopoulos, A.: Local search and constraint program-
ming for the post enrolment-based course timetabling problem. Ann. Oper. Res. 194(1), 111-135
(2012)

3. Ceschia, S., Di Gaspero, L., Schaerf, A.: Design, engineering, and experimental analysis of a simulated
annealing approach to the post-enrolment course timetabling problem. Comput. Oper. Res. 39(7),
1615-1624 (2012)

4. Chiarandini, M., Birattari, M., Socha, K., Rossi-Doria, O.: An effective hybrid algorithm for university
course timetabling. J. Sched. 9(5), 403—432 (2006)

5. Cooper, T.B., Kingston, J.H.: The Complexity of Timetable Construction Problems. Springer, Berlin
(1996)

@ Springer

OPSEARCH

10.

11.

13.

14.

15.

16.

17.

18.

20.

21.

22.

23.

. de Werra, D.: An introduction to timetabling. Eur. J. Oper. Res. 19(2), 151-162 (1985)
. de Werra, D., Asratian, A.S., Durand, S.: Complexity of some special types of timetabling problems.

J. Sched. 5(2), 171-183 (2002)

. Even, S., Itai, A., Shamir, A.: On the complexity of time table and multi-commodity flow problems.

In: 16th Annual Symposium on Foundations of Computer Science (SFCS 1975), pp. 184-193 (1975)

. Goh, S.L., Kendall, G., Sabar, N.R.: Improved local search approaches to solve post enrolment course

timetabling problem. Eur. J. Oper. Res. 261(1), 17-29 (2017)

Goh, S.L., Kendall, G., Sabar, N.R.: Simulated annealing with improved reheating and learning for the
post enrolment course timetabling problem. J. Oper. Res. Soc. 70, 1-16 (2018)

Kostuch, P.: Timetabling competition-SA-based heuristic. In: International Timetabling Competition
(2003)

. Kostuch, P.: The university course timetabling problem with a three-phase approach. In: Burke, E.,

Trick, M. (eds.) Practice and Theory of Automated Timetabling V, pp. 109-125. Springer, Berlin (2005)
Lewis, R., Paechter, B.: Finding feasible timetables using group-based operators. IEEE Trans. Evolut.
Comput. 11(3), 397413 (2007)

Lewis, R., Thompson, J.: Analysing the effects of solution space connectivity with an effective meta-
heuristic for the course timetabling problem. Eur. J. Oper. Res. 240(3), 637-648 (2015)

Liu, Y., Zhang, D., Chin, F.Y.: A clique-based algorithm for constructing feasible timetables. Optim.
Methods Softw. 26(2), 281-294 (2011)

Nagata, Y.: Random partial neighborhood search for the post-enrollment course timetabling problem.
Comput. Oper. Res. 90, 84-96 (2018)

Nothegger, C., Mayer, A., Chwatal, A., Raidl, G.R.: Solving the post enrolment course timetabling
problem by ant colony optimization. Ann. Oper. Res. 194(1), 325-339 (2012)

Sabar, N.R., Ayob, M., Kendall, G., Qu, R.: A honey-bee mating optimization algorithm for educational
timetabling problems. Eur. J. Oper. Res. 216(3), 533-543 (2012)

. Socha, K., Knowles, J., Sampels, M.: A MAX-MIN ant system for the university course timetabling

problem. In: Dorigo, M., Di Caro, G., Sampels, M. (eds.) Ant Algorithms, pp. 1-13. Springer, Berlin
(2002)

Song, T., Liu, S., Tang, X., Peng, X., Chen, M.: An iterated local search algorithm for the university
course timetabling problem. Appl. Soft Comput. 68, 597-608 (2018)

Thompson, J.M., Dowsland, K.A.: Variants of simulated annealing for the examination timetabling
problem. Ann. Oper. Res. 63(1), 105-128 (1996)

Tuga, M., Berretta, R., Mendes, A.: A hybrid simulated annealing with Kempe chain neighborhood
for the university timetabling problem. In: 6th IEEE/ACIS International Conference on Computer and
Information Science, 2007. ICIS 2007, pp. 400-405. IEEE (2007)

Turabieh, H., Abdullah, S., McCollum, B., McMullan, P.: Fish swarm intelligent algorithm for the
course timetabling problem. In: Yu, J., Greco, S., Lingras, P., Wang, G., Skowron, A. (eds.) Rough Set
and Knowledge Technology, pp. 588-595. Springer, Berlin (2010)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Say Leng Goh' . Graham Kendall'23 . Nasser R. Sabar' . Salwani Abdullah®

Graham Kendall
Graham.Kendall @nottingham.edu.my

Nasser R. Sabar
nasser.sabar @ gmail.com

Salwani Abdullah
salwani @ukm.edu.my

@ Springer

OPSEARCH

1 Optimization Research Group (OPT), Faculty of Computing and Informatics, Universiti
Malaysia Sabah Labuan International Campus, Jalan Sungai Pagar, 87000 Labuan F.T., Malaysia

2 The University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul
Ehsan, Malaysia

3 University of Nottingham, University Park, Nottingham NG7 2RD, UK

Department of Computer Science and Information Technology, La Trobe University, Melbourne,
VIC 3086, Australia

5 Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

@ Springer

	An effective hybrid local search approach for the post enrolment course timetabling problem
	Abstract
	1 Introduction
	2 Problem description
	3 Related work
	4 Proposed methodology
	4.1 hybridLocalSearch
	4.1.1 Phase 1: constructing a feasible solution
	Tabu Search with Sampling and Perturbation (TSSP)
	Iterated local search (ILS)
	4.1.2 Phase 2: improving soft constraint violations

	4.2 preliminaryRun1
	4.3 preliminaryRun2

	5 Experimental results
	5.1 Phase 1: finding a feasible solution
	5.1.1 Comparing TSSP-ILS with TSSP and ILS
	5.1.2 Comparing TSSP-ILS with state of the art methods
	5.1.3 Extended execution time for TSSP-ILS

	5.2 Phase 2: improving soft constraint violations
	5.2.1 Comparing SAR-1P and SAR-2P
	5.2.2 Comparing SAR-2P with SAR and SAIRL
	5.2.3 Comparing SAR-2P with state of the art methods

	5.3 Extended execution time for SAR-2P
	5.4 Discussion

	6 Conclusion
	7 Future work
	Acknowledgements
	References

