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Abstract

This paper asks whether or not it is possible to induce agents to good behavior per-
manently via regulators’ reputations and attain perpetual social efficiency. We propose
and analyze a repeated incomplete information game with a specific payoff and mon-
itoring structure between a regulator possessing a behavioral type and an agent. We
provide an affirmative answer when a patient regulator faces myopic agents: Reputation
empowers the regulator to prevent agents’ bad behavior in the long-run with no cost and
hence to attain the social optimum in any Nash equilibrium. However, with long-lived
and patient players, reputation cannot induce permanent good behavior in equilibrium
involving sporadic experimentation with bad behavior. The stark contrast between these
cases portrays the significance of the longevity of the interaction and provides a novel
application of the theory of learning and experimentation in repeated games.

Journal of Economic Literature Classification Numbers: C73

Keywords : Reputation, repeated games, long-lived vs. short-lived agents, regulation.

∗This paper subsumes the result that appeared in a conference proceeding, Özdog̃an (2016), under the title
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1 Introduction

The misbehavior of an agent facing a regulator who spends costly time and resources to

audit/investigate is frequently observed. Examples include an investor engaged in fraud by

misrepresenting his books to a certified auditor; a bank misreporting the information about

its financial health to a regulator; a taxpayer filing false income statements to a tax authority;

a construction or mine company neglecting work safety precautions and misreporting its prac-

tices; an employee not exerting the promised effort in a business owned by a principal, etc.

The instances of financial fraud, corporate deceptions, and work accidents often involve these

kinds of misbehavior which are frequently related to the corresponding regulator’s reputation

for being diligent or lack of it.1 Indeed, reputation concerns of regulators may prevent or

lessen the extent and severity of such socially undesirable outcomes and behavior.2

Motivated by instances of “bad” behavior frequently emerging in regulated and repeated

environments, this paper aims to unravel whether or not regulators’ reputation can induce

the “good” behavior permanently when the repeated interaction is neither observable nor

contractable. We analyze a dynamic environment where the regulator (he) is responsible to

detect deviations from the good behavior via costly auditing yet may not be diligent in doing

so because of the associated costs. We propose a dynamic incomplete information game with a

stage game possessing a particular payoff and signaling structure played between a long-lived

regulator (who could be committed to being diligent or is strategic) and an agent (she).

First, we show that when the patient long-lived regulator faces a sequence of myopic

agents who play only once but observe the public history of past play, reputation empowers

1For instance, Bernard Madoff was found guilty to several offenses including fraud and making false state-
ments with the Securities and Exchange Commission (SEC). He began the Ponzi scheme in the early 1990s, yet
he was arrested in late 2008 even though the SEC had previously conducted several investigations since 1992.
SEC has been criticized for failing to act on Madoff fraud. The SEC inspector confessed: “Despite several
examinations and investigations being conducted, a thorough and competent investigation or examination was
never performed” (see “SEC criticized for failing to act on Madoff” at http://business.timesonline.co.uk by
Seib and “Madoff Explains How He Concealed the Fraud” at www.cbsnews.com). Yet in another investment
fraud charge, against Robert Allen Stanford in 2009, a report of the investigation by the SEC Office of the
Inspector General shows that the agency has been following Stanford’s companies for much longer and reveals
lack of diligence in the SEC enforcement (see http://www.sec.gov/news/studies/2010/oig-526.pdf ).

2The negligence of regulation may be associated with serious casualties. There was a mine accident that
took place in Soma, Turkey, which caused a loss of 301 lives in 2014. In response to a parliamentary question,
The General Directorate of Mining Affairs of Turkey (GDMA) told that they could only afford to audit less
than one-fourth of all the minefields annually. Meanwhile, many established NGOs (e.g., The Union of Turkish
Bar Associations and The Union of Turkish Engineering and Architecture Associations) announced doubts and
concerns about GDMA’s governance practices in conjunction with this accident. In fact, during the criminal
case associated with this accident, it became public information that an auditor of GDMA responsible for that
particular mine was also employed by the company owning that mine as a technical supervisor (see Turkish
newspaper page at https://www.hurriyet.com.tr/ekonomi/somada-denetci-skandali-29868799 ).
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the regulator to prevent agents’ bad behavior by inducing them to behave (well) in the long-

run with no cost (and hence attain the maximum payoff which coincides with the social

optimum) in any Nash equilibrium. To address situations with large populations of many long-

lived agents who are not able to coordinate on future behavior, rewards, and punishments,

we consider the Markovian setting with a single myopic (representative) agent.3 We show

that there exists a unique Markov equilibrium with a value function that is continuous and

nondecreasing in the reputation for being diligent. The regulator’s value function attains

the maximum payoff at the absorbing reputation levels (Markov states) at which the agents

exhibit good behavior while the regulator incurs no cost. These findings are robust in the

sense that requiring each agent to choose any of her actions with an arbitrarily small but

positive probability does not alter these results qualitatively.

However, when the regulator faces the same long-lived agent, we show that permanency

of good behavior cannot be a robust equilibrium outcome with sufficiently patient players:

we prove that, regardless of the initial beliefs, there is no Nash equilibrium in which the

agent behaves (well) on average in the long-run on a positive probability set of histories while

experimenting with the bad behavior every once in a while.4

Hence, our findings display a stark contrast between the myopic agents’ case and the

case with a long-lived skeptical agent who cannot refrain from (costly) testing the regulator’s

reputation (no matter how high it is) by behaving badly now and then. Therefore, the current

paper contributes to the theory of reputation by portraying the significance of the longevity

of the interaction among the participants and providing a novel application of the theory

of learning and experimentation in repeated games: In our setting, agent’s good behavior

corresponds to the absorbing case (because then no additional information could emerge and

require updating of beliefs), while the strategic regulator would exploit this by refraining from

costly auditing (thereby, sustaining efficiency); thus, the problem boils down to discouraging

experimentation in the case of perpetual interaction among the participants.5

The repeated game between the regulator and the agent(s) involves unobservable actions

3There are many such cases (e.g., a population of taxpayers facing a tax authority) where the dismissal
of intertemporal coordination among agents is plausible. Under some additional restrictions known in the
literature, the resulting situation parallels with the Markovian case involving a myopic representative agent.

4To ensure that the agent experiments with the bad behavior occasionally, we discuss a setting where she
suffers one-period amnesia with some small but positive probability in every period (in which case she hangs
on to her sufficiently low initial beliefs that the regulator is tough). Moreover, perfection of Selten (1975)
implies our notion of robustness as well. Sadly it is too powerful: the regulator (the informed player) would
be enforced to choose each of his actions with some arbitrarily small but positive probability as well. Besides,
it creates non-trivial complications. Meanwhile, the ant colony optimization (ACO) techniques of computer
science pioneered by Dorigo (1992) parallel with our robustness notion.

5We thank an anonymous referee for elegantly outlining and helping us to summarize these observations.
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on both sides and incomplete information about the regulator’s type. The agent’s actions

consist of good behavior and bad behavior and the regulator’s of firm and lax actions. The

behavioral type of the regulator is committed to playing the firm action. The good behavior

by the agent generates a good public signal regardless of the regulator’s choice. However, if

the agent has chosen to behave badly, the regulator can detect the misbehavior with some

probability (which determines the audit quality) only if he has chosen the costly firm action.

The stage game payoffs are so that the agent’s best response to believing that the regulator

will be diligent (i.e., firm) is to be truthful (the good behavior), whereas it is to be untruthful

(the bad behavior) if the agent believes the regulator will be lazy (lax). Meanwhile, the

regulator’s best response is to be lazy when the agent is truthful and to be diligent if the

agent is expected to be untruthful. The regulator prefers that the agent is truthful (regulator-

preferred action) and the agent prefers that the regulator is lazy (agent-preferred action). The

regulator’s reputation determines the agent’s belief about the regulator’s type and choices.

If the tough type (the Stackelberg type), the regulator is always diligent, while the strategic

regulator may choose to establish a false reputation by mimicking the tough type.

Our objective is to analyze whether the strategic regulator can build up a reputation that

induces the agent(s) to good behavior permanently. There is no correct model in terms of the

longevity of the strategic interaction among the players as some instances fit situations where

the regulator faces different myopic agents in each period, while others suit the regulator

facing the same agent in every period. To provide an answer and novel insight, we analyze

two extremes: (1) a long-lived regulator faces short-lived agents who play once observing the

public history of past play; (2) a long-lived regulator faces a long-lived agent.

In the first, we show that any Nash equilibrium payoff of the strategic regulator converges

to the efficient payoff as the discount factor approaches one given any interior initial (common)

belief the agents may have about the regulator’s type. Moreover, he enjoys a permanent (ab-

sorbing) reputation inducing agents’ good behavior indefinitely. Then, the strategic regulator

refrains from costly auditing and hence attains perpetual social efficiency. In furtherance, we

establish that there is a unique Markov equilibrium with a continuous and nondecreasing value

function such that the reputation for being diligent becomes permanent whenever it exceeds a

threshold: The reputation is above this level implies all the future agents will behave and the

regulator will be lax with probability one permanently. Thus, the perpetual social optimum

is secured. For low values of the regulator’s reputation, players use mixed strategies.

The intuition behind these stems from the short-lived agents only caring about their short-

run payoffs and giving myopic best responses to their updated beliefs while not considering

the information externality that they could initiate and be helpful to future generations.
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This is because, when an agent is truthful, Bayesian updating is not called for as there will

not be any signal suggesting that the regulator has not been diligent. Thus, the strategic

and patient regulator will find it beneficial to make sure that his false reputation eventually

reaches a level above which it persists as all the subsequent agents will find it optimal to

be truthful thereafter. Hence, the strategic and patient regulator guarantees the maximum

payoff (exceeding his Stackelberg payoff) in any Nash equilibrium and induce the agents to be

truthful permanently in the long-run. Thus, good behavior is attained in perpetuity thanks

to the reputation of the patient regulator and short-term incentives of the myopic agents.

The analysis is more complicated if the regulator faces a long-lived and sufficiently patient

agent. Both make their choices and update their beliefs according to their private histories

while the regulator cannot anticipate the strategy of the agent as her beliefs are private and

the long-lived patient agent will not be giving myopic best responses. However still, insisting

on a high initial reputation level may block the avenue leading to information externalities,

thereby preventing the agent from making critical inferences in the future, by inducing the

agent to be truthful with probability one and hence close the gate to Bayesian updating. This,

on the other hand, is not robust: Even if the agent were to experiment with untruthfulness

very occasionally, the agent will expose the regulator’s false reputation in the long-run. So,

there is no Nash equilibrium with sufficiently patient players, where the agent sporadically

behaves badly and the regulator enjoys a high permanent reputation and hence perpetual

social efficiency cannot be sustained in any Nash equilibrium in these cases.

The intuition behind this result is as follows: Suppose on the contrary that there is a

set of events with a positive measure on which the agent finds it optimal to be truthful on

average after some date with a very high probability. Thus, the agent must be expecting to see

the diligence with a sufficiently high probability on average from then on for sufficiently long

periods after observing her private history. In our setup, the “conditional identification of the

agent” holds which is formalized in Remark 1 and it implies that the diligent regulator can

infer the fixed behavior of the agent from the frequencies of the public signals.6 Following the

footsteps of Cripps, Mailath, and Samuelson (2007) thanks to “conditional identification of the

6This enables us to accommodate the techniques of Cripps, Mailath, and Samuelson (2007) suited for a
particular set of private histories of the regulator (even though their critical assumptions of full support and
full rank do not hold in our model) and surpass the complications due to private beliefs. The basic intuition
of Cripps, Mailath, and Samuelson (2004) in establishing impermanency of public reputations is that the
informed player knows the beliefs of the uninformed player. Thus, she knows when her deviations from the
commitment action have virtually no effect on the opponent’s beliefs and continuation payoffs. On the other
hand, in proving disappearing private reputations, as the informed player cannot infer the opponent’s belief,
Cripps, Mailath, and Samuelson (2007, pp.289) shows that “when the uninformed player’s private history
induces her to act as if she is convinced of some characteristic about the informed player, the informed player
must eventually be convinced that such a private history did indeed occur.”
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agent”, we establish that “if the agent’s private history implies that she is almost convinced of

facing a diligent regulator and behaves accordingly, then this eventually becomes known to the

regulator” on a particular private history of the regulator (coinciding with the agent’s private

beliefs about the regulator’s future behavior that is induced by the agent’s private history).

But then, the agent, knowing that her beliefs will eventually become known to the strategic

regulator on these particular histories where the regulator is believed to be diligent on average,

can infer that the strategic regulator (who can identify the long-run behavior of the agent on

those particular private histories of his) would be convinced that the agent believes that the

regulator will be diligent thereafter and he would act on it by choosing lazy. However, this

may not be enough to convince the agent to switch to bad behavior when the regulator’s

reputation is high. But, the agent draws the irrefutable inference that the regulator is indeed

of the strategic type and is choosing lazy since she is bound to experiment with the bad

behavior every once in a while. Indeed, every time the agent is untruthful in such situations,

the agent’s private beliefs would be updated accordingly which the regulator cannot observe

and hence respond to. Thus, there must be a period in which the agent’s private beliefs are

not compatible with facing a diligent regulator; delivering the desired contradiction.

1.1 Related Literature

Early literature studying the value of reputations focuses on settings where a long-lived player

faces a sequence of short-lived players who play once but observe the past play. These stud-

ies provide the Stackelberg payoff as the lower bound on the sufficiently patient long-lived

player’s average limiting payoff given that there is a commitment type who always chooses

the Stackelberg strategy.7 Such one-sided reputation results also arise in settings that involve

two long-lived players.8 Cripps, Mailath, and Samuelson (2004), on the other hand, shows

that a long-lived informed player, both against short-lived uninformed opponents and also a

long-lived one (with a condition on the equilibrium behavior), can maintain a permanent rep-

utation for playing a commitment strategy in a game with imperfect public monitoring only if

that strategy is an equilibrium of the complete information stage game.9 Thus, the powerful

7See Fudenberg and Levine (1989) for games with perfect monitoring, Fudenberg and Levine (1992) for
games with imperfect public monitoring and Gossner (2011) for games with any imperfect monitoring.

8These studies include: Schmidt (1993a) (conflicting interests with asymmetric discount factors); Celentani,
Fudenberg, Levine, and Pesendorfer (1996) and Aoyagi (1996) (with imperfect monitoring and asymmetric
discount factors); Cripps, Dekel, and Pesendorfer (2005) (strictly conflicting interests with equal discount fac-
tors); Atakan and Ekmekci (2012) and Atakan and Ekmekci (2015) (locally nonconflicting or strictly conflicting
interests with equal discount factors); Chan (2000) (equal discounting and commitment being dominant).

9Benabou and Laroque (1992) also provides a model of repeated strategic communication with a long-lived
insider trader who has noisy private information about the value of an asset and aims to manipulate asset
prices. They focus on the stationary Markov equilibrium and show that insider traders reveal their true type
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results about the lower bounds on the long-lived player’s average payoff are short-run reputa-

tion effects, where the long-lived informed player’s payoff is calculated at the beginning of the

game.10 Cripps, Mailath, and Samuelson (2007) extends their disappearance of noncredible

reputations result by allowing for private beliefs in both cases and unrestricted equilibrium

strategies for the uninformed long-lived player case. For the asymptotic equilibrium behav-

ior, they show that the continuation play in every Nash equilibrium is a Nash equilibrium

of the complete information game when the reputation is public; a correlated equilibrium of

the complete information game when the reputation is private (regardless of the longevity

of the interaction among the players). So, the selection effects of reputations on the set of

equilibrium payoffs should not be assumed to carry over asymptotically. Meanwhile, Cripps,

Mailath, and Samuelson (2004) implies non-transient reputations need the incorporation of

other mechanisms into the model. One strand of literature attains recurrent reputations by

assuming that the type of the player is governed by unobserved replacements and stochas-

tic processes through time such as Gale and Rosenthal (1994), Holmström (1999), Mailath

and Samuelson (2001), Phelan (2006), Wiseman (2008) and Ekmekci, Gossner, and Wilson

(2012). The others propose mechanisms that rely on the restricted memory of the uninformed

player(s) such as the costly discovery of histories (Liu (2011)), rating system (Ekmekci (2011)),

bounded memory (Monte (2013)) or limited record-keeping (Liu and Skrzypacz (2014)).11

Our findings concerning the asymptotic equilibrium behavior and the permanency of repu-

tation with short-lived uninformed players diverge from those of Cripps, Mailath, and Samuel-

son (2004) due to the differences in the monitoring structures: While Cripps, Mailath, and

Samuelson (2004) assumes full-support and full-rank (any signal is probable after any action

profile and identification of each player’s constant action is possible following sufficiently many

observations), our setting violates both of these assumptions.12 Our main question is whether

or not perpetual good behavior can be sustained in equilibrium via reputation. We provide

an affirmative answer with myopic uninformed players and we show that, in the case of a

long-lived uninformed player, this conclusion does not hold in any Nash equilibrium involving

asymptotically in any Markov equilibrium. Moreover, Özdog̃an (2014) extends the disappearing reputations
result to games with two long-lived players with incomplete information on both sides.

10The results of Fudenberg and Levine (1992) and Cripps, Mailath, and Samuelson (2004) differ because
Fudenberg and Levine (1992) fixes the prior belief of being the commitment type and selects a threshold
discount factor depending on this prior above which the player is sufficiently patient for their results to hold;
whereas Cripps, Mailath, and Samuelson (2004) fixes the discount factor while allowing the posterior belief to
vary which eventually becomes so low that makes the required threshold discount factor (for Fudenberg and
Levine (1992)’s result to hold) to exceed way above the fixed discount factor.

11See Mailath and Samuelson (2015) for a survey on the reputation literature.
12In particular, detection happens and is informative about the regulator’s behavior only when the agent

is untruthful (conditional identification of the regulator) and a bad signal following agent’s untruthfulness is
probable only when the regulator is diligent (conditional identification of the agent).
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agent’s sporadic experimentation with bad behavior.

The other important work related to our short-lived agents case deals with bad reputations.

Building on Ely and Välimäki (2003)’s motorist-mechanic example and bad reputation result,

Ely, Fudenberg, and Levine (2008) characterizes a class of games in which the following holds:

the short-run uninformed players decide whether to participate in a game with the long-

run player while every action of the long-run player that induces the short-run players to

participate may generate a signal which could suggest that the long-run player is bad. As a

result, any equilibrium payoff of a sufficiently patient long-run player is close to her payoff from

the exit decision of the short-run players (with a condition on the size of commitment types)

which is assumed to be her minmax payoff. This also suggests a patient long-run player

can attain her maximum payoff if the exit action provides her the maximum payoff (exit-

maximum). The similarity of results in terms of equilibrium payoff when the participation

games have exit-maximum lies in the fact that the public signals in Ely, Fudenberg, and

Levine (2008) satisfy our condition of conditional identification of the long-lived informed

player and the short-lived players do not find it optimal to experiment and unravel the type

of the long-lived player. This leads to a persistent reputation in both studies. Yet, the two

signaling structures differ in important ways. In their setup, there are exit signals that occur

with probability one if the short-run players choose an exit action, which cannot be observed

if the short-run players choose to participate and they are not affected by the action of the

long-lived player. However, in our model, the no detection signal that occurs with probability

one if the short-lived agents choose to be truthful (“exit”) can also be generated when the

agent chooses to be untruthful (“participate”), the probability of which then depends on the

regulator’s action. This structure gives rise to “the conditional identification of the agent”

that is the key condition in the analysis of the two long-lived player case which was left as an

open question in Ely, Fudenberg, and Levine (2008).13, 14

The organization is as follows: Section 2 presents the model. The descriptions of the

repeated games and the results with the short-lived and long-lived agent cases are provided in

Section 3 and 4, respectively. Section 5 concludes. The proofs are presented in the Appendix.

13We would like to note that Ely and Välimäki (2003) constructs a sequential equilibrium that shows their
bad reputation result may not hold with two long-lived players in the motorist-mechanic example.

14Another strand of related reputation literature involves recent studies featuring continuous-time models
that analyze monitoring in employment contracts (e.g., Halac and Prat (2016)) and certification of quality
in product-quality choice settings (e.g., Dilmé (2019) and Marinovic, Skrzypacz, and Varas (2018) following
Board and Meyer-ter Vehn (2013)). While only Halac and Prat (2016) and Marinovic, Skrzypacz, and Varas
(2018) endogenize the costly learning, the former focuses on dynamics and the latter analyzes costly voluntary
certification as a means to build a reputation in Markov Perfect Equilibrium (MPE). Indeed, that study
sustains permanency of reputation in MPE with a stage game based on Board and Meyer-ter Vehn (2013)
when “the industry manages to coordinate on a good certification standard.”
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2 Model

We model the strategic interaction between the agent and regulator through a simultaneous-

move stage game.15

At the beginning of the game, the agent (she) gets some private information about the

state of nature and has the incentive to deceive the uninformed regulator (he) by strategically

manipulating information through reporting false messages. The agent can either be truthful

or untruthful about the information she has. Thus, the action set of the agent is A = {T, U}
where a ∈ A. The reporting strategy of the agent is given by σA ∈ ∆(A) where ∆(A) is the

probability simplex on A; with abuse of notation, we denote the probability that she chooses

T also by σA. The regulator is supposed to detect deviations from the truthful behavior via

costly auditing. He chooses to be diligent or lazy in auditing the agent. His choice generates

different probabilities of eliciting information about the agent’s untruthfulness if she is indeed

untruthful. The regulator’s action set is R = {D,L} while his strategy is given by σR ∈ ∆(R).

By adopting a slight abuse of notation, we let σR also denote the probability of him choosing

the diligent action.

The set of public signals is Id = {0, 1} where 1 stands for detection and 0 for no detection.

The audit quality is given by the following probability distribution on Id conditional on A×R,

which is denoted by ρ where ρ(id | a, r) is the probability of id given (a, r) ∈ A×R:

ρ(1 | U,D) = 1− ρ(0 | U,D) = β ρ(1 | T,D) = 1− ρ(0 | T,D) = 0

ρ(1 | U,L) = 1− ρ(0 | U,L) = 0 ρ(1 | T, L) = 1− ρ(0 | T, L) = 0

where β ∈ (0, 1) is the probability of detecting an agent who has chosen U if the regulator

choosesD. Notice that no detection must occur whenever the agent has chosen T as ρ(0|T, r) =

1 for all r ∈ R.

An action chosen by a player is not observable to the other. Yet, the public signals become

commonly observable at the end of the corresponding period (after all have made their choices)

and provide information about the chosen actions. More specifically, each player can infer the

other’s action only when he/she chooses a particular action. In other words, public signals

15The stage game considered here is the one presented in Özdog̃an (2016). The following is an alternative
formulation that parallels with those in some papers on monitoring in employment contracts, e.g., Halac and
Prat (2016): There is a business owned by a principal (he) who has to employ an agent (she) to operate. The
performance of the agent is unobservable to the principal. His options are to monitor the agent intensively (I )
or not (N ). If the agent chooses high effort (H) the outcome has to be good, g, regardless of whether or not
the principal monitors intensively. If she chooses low effort (L), there is a probability that the bad outcome, b,
occurs which can be detected only when the principal monitors the agent intensively. Otherwise, he observes
a good signal even though the agent has chosen L.

10



are statistically informative about a player’s behavior conditional on the other one choosing

a particular action: the regulator can infer the fixed action chosen by the agent from the

frequencies of signals only when he has been diligent; the agent can identify the fixed action

chosen by the regulator from the frequency of the detections only when she has been untruthful.

Otherwise, no information about the opponent’s behavior is revealed. These are summarized

in Remarks 1 and 2.

Remark 1 The conditional identification of the agent’s actions is satisfied as |A| columns in

the matrix [ρ(id | a,D)]a=U,T ; id=0,1 are linearly independent. And ρ(0|U,L) = ρ(0|T, L) = 1.

Remark 2 The conditional identification of the regulator’s actions holds as |R| columns in

the matrix [ρ(id | U, r)]r=D,L; id=0,1 are linearly independent. And ρ(0|T,D) = ρ(0|T, L) = 1.

In our model, the full support assumption, typically presumed in many studies in the

literature, does not hold.

Independent of the auditing strategy of the regulator, the agent’s payoff is normalized to

zero if she chooses T . When she is untruthful, she pays a fine of l if detected and otherwise

receives a gain of g. So, uA(T,D) = uA(T, L) = 0, uA(U,L) = g, and uA(U,D) = ` =

g − β(g + l). The following ensures that the agent’s unique best response to D is T :

Assumption 1 The parameter values satisfy g
g+l

< β.

The regulator’s payoff is also normalized to zero if he chooses L and the agent T . This is

the maximum payoff the regulator can attain. Given that the agent chooses U , the regulator’s

gain is d if untruthfulness is detected and otherwise his expected loss is f . The regulator

incurs a cost of c if he chooses D. Thus, regulator’s expected payoffs are: uR(T, L) = 0,

uR(T,D) = −c, uR(U,D) = −e = βd− (1− β)f − c, and uR(U,L) = −f .16

The resulting ex-ante (expected) stage game payoffs are presented in Table 1.

We employ the following restriction on the regulator’s payoffs.

Assumption 2 The parameter values satisfy c
d+f

< β < f
d+f

.

16Our ex post and ex ante payoff specifications differ from the ones typically assumed in the literature where
a player’s ex post payoff is presumed to depend on a player’s own action and the public signal and the ex ante
payoff to equal the expectation of the ex post payoffs taken over the opponents’ actions. If we had followed this
type of specification, we would have obtained uR(U,L) = uR(T, L) for the regulator as he would be choosing
the same action and receiving the same signal of no detection with probability one. However then, the forgone
societal loss due to the agent choosing U would not be captured. We depart away from the literature in
that regard to accommodate the influence of the conditional identification assumptions on ex-ante payoffs by
reflecting the effects of the public signals on the ex-post payoffs only when the agent chooses U . Otherwise,
the realized payoff of the regulator is independent of the signal and depends only on his own action D.
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D L
T 0,−c 0, 0
U −`,−e g,−f

Table 1: Ex ante stage game payoffs under complete information

The first inequality implies uR(U,D) > uR(U,L) and the second uR(T,D) > uR(U,D).

Thus, the regulator’s expected payoffs are ordered as follows: 0 = uR(T, L) > uR(T,D) >

uR(U,D) > uR(U,L) = −f .

Under this construction, no matter what the regulator chooses, he prefers the agent to be

truthful as the implied expected loss in case of untruthfulness, f , is higher than the cost of

being diligent, c.17 Thus, the regulator would like to convince the agent for being diligent to

induce truthfulness, which is the regulator-preferred action. However, the regulator wants to

be lazy if he thinks that the agent is truthful while he has an incentive to be diligent if he

believes that the agent is going to be untruthful.

Additionally, we assume that g < f so that the regulator’s payoff maximizing action profile

is also maximizing the total welfare.18

Given these assumptions, the unique Nash equilibrium is in mixed strategies:

σ∗A = 1− c

β(d+ f)
and σ∗R =

g

β(g + l)
.

Next, we discuss some important properties of the ex-ante stage game payoff structure.

First, the minmax payoffs (both in pure and mixed strategies) are as follows: 0 for the agent

with (T,D) being the pure action profile that minmaxes the agent; −e for the regulator

with (U,D) being the pure action profile that minmaxes the regulator. Second, the pure

Stackelberg action of the regulator is D and D mixed-action minmaxes the agent. Thus,

following Schmidt (1993b), the stage game described in the current paper has conflicting

17Consider the situation where the ex-post payoffs depend on a player’s own action and the public signals.
Let u∗R(1, D) denote the realized payoff following D and signal “detection” and u∗R(0, D) the realized payoff
following action D and signal “no detection”. Then, uR(T,D) = u∗R(0, D). Thus, uR(T,D) > uR(U,D) thanks
to Assumption 2 implies u∗R(0, D) > u∗R(1, D). This may be puzzling at first sight as the signal “detection”
is the rewarding signal for the regulator. However, observing “no detection” is more likely when the agent
chooses T (having a probability of 1/(1 +β)) compared to observing “no detection” when the agent chooses U
(associated with a probability β/(1+β)). Thus, the former intrinsically incorporates that it is less likely for the
regulator to incur a forgone societal loss due to untruthfulness. We thank an anonymous referee for pointing
out that a justification for uR(T,D) > uR(U,D) can be attained by considering a situation where “detection”
of untruthfulness has follow-up (disciplinary) procedures requiring the regulator to perform additional tasks
(e.g., preparing and presenting the resulting case in a court of law) and hence reducing his ex-ante payoffs.

18We thank an anonymous referee for pointing out this observation.
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interests. The regulator’s preferred opponent action is T which is also the unique best response

to the Stackelberg action D; whereas the agent’s preferred opponent action is L.19

To induce uncertainty about the regulator’s preferences and obtain a model with repu-

tation, we incorporate a behavioral type into the game following Harsanyi (1967-68), Kreps

and Wilson (1982) and Milgrom and Roberts (1982).20 In particular, the regulator can be

one of two types: tough or strategic. The tough regulator is committed to being diligent

(which is the pure Stackelberg action for the strategic type), whereas the strategic one has the

preferences described above. The regulator knows his true type while the belief of the agent

that the regulator is tough (i.e., the reputation of the regulator) is given by γ ∈ (0, 1). Now,

the agent’s equilibrium behavior (determined by her belief about the probability of detection)

depends on her belief about the regulator’s type. Let π(γ, σR) be the expected probability

of detection, i.e., π ≡ π(γ, σR) = γβ + (1 − γ)σRβ. Then, the agent’s problem is to choose

σA ∈ [0, 1] to maximize

(1− σA) [(1− π)g − πl] (1)

There is a cutoff value of detection, π∗ = g
g+l

, determining the optimal behavior of the agent:

her best response equals {U} if π(γ, σR) < π∗ and {T} if π(γ, σR) > π∗. The equilibrium of

the incomplete information game is presented in Lemma 1 and its proof is in Appendix A.

Lemma 1 The following strategy profile (σA, σR) constitutes a Nash equilibrium,

1. σA = 1 and σR = 0 if γ ≥ γ∗,

2. σA = 1− c
β(d+f)

and σR = g−γβ(g+l)
(1−γ)β(g+l)

= π∗−γβ
(1−γ)β

if γ < γ∗,

where the cutoff value of the belief is γ∗ = g
β(g+l)

∈ (0, 1).

This lemma establishes that there is no equilibrium in which the regulator chooses to be

diligent with probability one. If the belief that the regulator is tough is above a threshold,

19If Assumption 2 is violated and uR(T, L) > uR(U,D) > uR(T,D) > uR(U,L), then the Stackelberg action
of the regulator is still D and (U,D) minmaxes the regulator; however, the Stackelberg action profile gives a
payoff strictly less than the minmax payoff. Hence, the reputation of being diligent will have no use to the
regulator. So, the strategic regulator will separate himself from a diligent behavioral type. If, on the other
hand, uR(T, L) > uR(U,D) > uR(U,L) > uR(T,D), then (U,D) still minmaxes the regulator but this time L
becomes the pure Stackelberg action and the Stackelberg profile (U,L) provides a payoff strictly less than the
minmax payoff (U,D) provides. Hence, the resulting model is similar to the one we solve.

20If β = 1, the agent choosing U implies in two possible outcomes: Detection whenever the regulator chooses
D; and no detection whenever the regulator has chosen L. The second contingency indicates that he is of
the strategic type. Thus, the game becomes one with perfect monitoring. Therefore, Fudenberg and Levine
(1989) and Cripps, Mailath, and Samuelson (2004) imply that the informed player would not risk additional
payoffs but obtain the Stackelberg level and maintain his reputation. Moreover, having β = 1 contradicts with
Assumption 2 as we can no longer have β < f

f+d .
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then the agent is truthful with probability one; anticipating this, the regulator chooses to

be lazy with probability one. Otherwise, players go for the mixed strategy specified in the

lemma. Moreover, the equilibrium strategies are monotone in the prior belief.

3 Dynamic game with short-lived agents

The game begins at time t = 1 and is infinitely repeated. The regulator is the long-lived

player with a discount factor δ ∈ (0, 1), and the agents are short-lived (myopic) players. The

agent of a period t, agent t, plays only in that period and cares only about her own payoff. In

each period, the players simultaneously choose actions from their action sets.

The regulator’s type is determined once and for all before the beginning of the game, and

the common prior belief about the regulator being tough is γ0 ∈ (0, 1).

The reputation affects behavior only when the short-lived agents have information about

past detections. Hence, we suppose that in every t, agent t observes the public history of

signals ht (while h1 stands for the unique null history) consisting of whether or not each of

the preceding agents has been detected. We let htR be the private history of the regulator. It

is composed of ht and his past actions up to time t. A strategy for the long-lived player is a

sequence of maps σR,t(h
t
R) ∈ ∆(R) and a strategy of agent t is σA,t(h

t) ∈ ∆(A).

A Nash equilibrium is a strategy profile σ such that for all t and positive probability

histories ht and htR, (1) σA,t(h
t) is a best response of agent t against σR,t(h

t); (2) σR,t(h
t
R)

is a best response of the strategic regulator against σA,t(h
t). Given a strategy profile σ, the

prior belief γ0 and a public history ht that has positive probability under σ, we can find the

conditional probability of long-lived strategic player action σR,t(h
t) that depends on the public

history. Thereby, we restrict attention to public strategies and public equilibria.

The posterior belief of agent t at the beginning of period t is γt−1(ht) with γ0(h1) = γ0.

When the meaning is clear, we shorten γt−1(ht) to γt−1 As each agent is short-lived, their

decision depends only on the updated reputation of the regulator, the strategic regulator’s

expected behavior, and the resulting detection probability. If γt−1 ≥ γ∗, agent t chooses T and

the strategic regulator L delivering each a payoff of zero and sustaining efficiency. If γt−1 < γ∗,

then agent t chooses U with some probability only if the strategic regulator is diligent with no

more than probability π∗−γt−1β
(1−γt−1)β

as from the perspective of agent t the probability of detection

at t is

π(γt−1, σR,t(h
t)) ≡ γt−1 β + (1− γt−1) σR,t(h

t) β. (2)

Bayesian updating is needed at the end of period t if agent t has chosen U (see Remark

2). If agent t is truthful, the reputation of regulator does not change as there is no new
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information, i.e., γt = γt−1. Then, given that agent t is untruthful, the reputation after the

signal id ∈ {0, 1} is calculated as follows:

γt =

γ
+
t = γt−1β

π(γt−1,σR,t)
= γt−1β

γt−1β+(1−γt−1)σR,tβ
if id = 1,

γ−t = γt−1(1−β)
1−π(γt−1,σR,t)

= γt−1(1−β)
γt−1(1−β)+(1−γt−1)[σR,t(1−β)+(1−σR,t)]

if id = 0.
(3)

3.1 Nash equilibrium payoff of the regulator

Özdog̃an (2016) shows that when the agents are short-lived, the reputation helps the patient

strategic regulator to achieve the maximum attainable payoff (i.e., the socially efficient level)

for any prior belief agents may have about the types of the regulator. Specifically, for any

prior belief γ0 > 0, the average payoff of the strategic regulator across all Nash equilibria

converges to zero (the maximum payoff of the regulator) as δ approaches one.

Let V̂ (γ0, δ) be the minimum payoff for the strategic regulator in some Nash equilibrium.

Theorem 1 For any prior belief γ0 > 0 and auditing quality β ∈ (0, 1) satisfying Assumptions

1 and 2, limδ→1 V̂ (γ0, δ) = 0.

This theorem says that the slightest uncertainty about the type of the regulator guarantees

the patient strategic regulator the best outcome in any Nash equilibrium. This outcome

provides more utility than his Stackelberg payoff of −c.21 Thus, the reputation is a useful tool

in achieving the regulator-preferred and total welfare-maximizing outcome.

The techniques in Ely and Välimäki (2003) are employed in the proof presented in Ap-

pendix B.22 The intuition of the result follows from the fact that the short-lived agents only

care about their own payoffs and give myopic best responses to their updated beliefs about

the regulator’s type. The myopic agent plays truthfully if and only if her belief about the reg-

ulator being diligent is above a threshold. In such cases, there is no learning and the regulator

attains his maximum payoff as there is no need to engage in costly auditing (Lemma 2). Thus,

whenever the public histories lead to a strong belief about the regulator being tough, all the

agents are truthful and the regulator is lazy thereafter. At histories where the agent is not

yet strongly convinced of the regulator being diligent, she has an incentive to be untruthful.

21When the payoff bound established by Gossner (2011) is applied to the current context, we find that the
lower bound of the regulator’s payoff in any Nash equilibrium approaches the Stackelberg payoff of −c as he
gets arbitrarily patient (since the unique 0-entropy confirming best response of the agent to the Stackelberg
action D is T with the associated bound being −c < 0).

22Unlike ours, the long-lived player’s concern for differentiating himself from his bad counterpart results in
the loss of all surplus in their bad-reputation model.

15



This leads to an incentive for the strategic regulator to be diligent with some probability to

induce a possible increase in the agent’s belief. After the event of subsequent detections, the

reputation would eventually reach a level above which it persists as all the agents will find

it optimal to be truthful thereafter. Hence, the regulator receives a payoff different than his

maximum for a finite number of periods and the permanency of the reputation would enable a

sufficiently patient strategic regulator to capture all the surplus (i.e., sustain social efficiency)

in the long-run.23

When γ0 < γ∗, a typical equilibrium starts with (totally) mixed actions involving agents

experimenting with untruthfulness. Some of these will be detected and this will continue until

the posterior belief about the regulator being tough gets strong enough. Thereafter, (T, L)

will be played in every period and the reputation for being tough will persist.

3.2 Markov equilibrium

Now, we consider a single short-lived agent who is restricted to use history independent Markov

strategies. This situation also corresponds to cases in which agent t is one of a continuum of

long-lived (population of) agents, coordination/communication among agents (across periods)

is not possible, and all agents observe the same public history.24

We characterize the stationary Markov equilibria with the reputation of the regulator being

the Markov state variable and the players’ strategies of being truthful and diligent, σA(γ) and

σR(γ), are functions of only the current reputation level (and not the public history).

The strategic regulator maximizes the normalized discounted sum of expected payoffs and

the agents give myopic best responses given the reputation level as to optimize (1) as before.

We let V (γ) denote the expected life-time payoff to a strategic regulator associated with the

23Lemma 4 in Appendix B suggests that every Nash equilibrium continuation path starting from history ht

at which γt−1 < γ∗ must include a play of diligence with some probability. Thus, there is a positive probability
of detection in every continuation path. Since for the agent to be untruthful, the regulator’s diligence must

be lower than π∗−γt−1β
(1−γt−1)β

, the smallest posterior belief after a detection would be γβ
π∗ > γ.

24There are many cases where coordination among the agents and the regulator for future punish-
ments/rewards is not plausible (e.g., a large number of taxpayers, agents, are audited by the tax authority,
the regulator) if agents do not receive the same signal and the individual signals are not publicly observed
by the others. In such cases, it is most innocuous to assume that each agent receives privately observed and
independently drawn (i.e., idiosyncratic signals) breaking the coordinated behavior among the agents and
the regulator to provide intertemporal incentives (punishment/experimentation) in the continuation games.
Mailath and Samuelson (2015) points out that one can construct an equilibrium with coordinated punishments
if the idiosyncratic signals are public or they all receive the same signal in a stylized version of Mailath and
Samuelson (2001). (Mailath and Samuelson (2006, Remark 18.1.3) provides a construction with idiosyncratic
signals in the context of Mailath and Samuelson (2001).) However, the idiosyncrasy of signals causes techni-
cal complications (see, for instance, Al-Najjar (1995)) and divert attention away from the reputation effects.
Thus, to abstract away from these technical complications and to capture the myopic incentives of the agents
due to lack of coordination devices in a large population environment, it suffices to consider a continuum of
agents who cannot communicate/coordinate among each other but receive the same signal.
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strategy (σA, σR) ≡ (σA(γ), σR(γ)). The value function V (γ) satisfies:

V (γ) = (1− δ)
{
σR[(1− σA) (βd− (1− β)f)− c]− (1− σR)(1− σA)f

}
+ δσAV (γ)

+ δ(1− σA)σRβV

(
γβ

π(γ, σR)

)
+ δ(1− σA)(1− σRβ)V

(
γ(1− β)

1− π(γ, σR)

)
(4)

In the complete-information case (when γ = 0), with history-independent strategies, the

only equilibrium is the repetition of the stage-game equilibrium. This is because then

V = (1− δ)
{
σR[(1− σA) (βd− (1− β)f)− c]− (1− σR)(1− σA)f

}
+ δV

and the agent chooses σA = β(d+f)−c
β(d+f)

∈ (0, 1) in order to make the regulator indifferent. In turn,

for the agent to use this mixed strategy, the regulator’s strategy should satisfy σR = g
β(g+l)

.

The corresponding value is − cf
β(d+f)

< 0 due to Assumption 2.

The (stationary) Markov equilibrium is defined as follows.

Definition 1 A stationary Markov equilibrium consists of the strategy profile (σ∗A(γ), σ∗R(γ))

and the corresponding beliefs such that for all γ ∈ [0, 1]:

1. Given the expected probability of detection π(γ, σ∗R) induced by σ∗R(γ), σ∗A(γ) maximizes

the agent’s problem given in (1);

2. Given σ∗A(γ), σ∗R(γ) maximizes the associated value function V (γ) given in (4);

3. Posterior beliefs are determined via Bayes’ rule whenever possible (i.e., when σ∗A < 1)

according to (3).

An equilibrium value function V : [0, 1] → [−f, 0] should satisfy the Bellman equation

given by (4). So, it should be a fixed point of the operator T which maps any continuation

value function W into W̄ in the following way:

W̄ (γ) = TW (γ)

= (1− δ)
{
σR[(1− σA) (βd− (1− β)f)− c]− (1− σR)(1− σA)f

}
+ δσAW (γ)

+ δ(1− σA)σRβW

(
γβ

π(γ, σR)

)
+ δ(1− σA)(1− σRβ)W

(
γ(1− β)

1− π(γ, σR)

)
(5)

where σR(γ) maximizes the right-hand side of the equation (5) given σA(γ) while σA(γ) max-

imizes (1) given the expected probability of detection π(γ, σR) implied by σR(γ).
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We focus on the equilibrium that is associated with a value function that is continuous

and nondecreasing in the reputation, γ. Let C+ denote the space of such value functions

endowed with the sup norm. We show that there is a unique Markov equilibrium with a

continuous and nondecreasing value function where players use mixed strategies for low values

of the regulator’s reputation, whereas the agents are truthful and the regulator is lazy with

probability one above a threshold state.

Theorem 2 Suppose that Assumptions 1 and 2 hold. Then, there is a unique stationary

Markov equilibrium (σ∗A(γ), σ∗R(γ)) with a continuous and nondecreasing value function V

such that γ ≤ γ∗ implies

σ∗A(γ) = 1− (1− δ)c
β{(1− δ)(f + d) + δ[V (γ+)− V (γ−)]}

and σ∗R(γ) =
π∗ − γβ
(1− γ)β

and γ ≥ γ∗ implies

σ∗A(γ) = 1 and σ∗R(γ) = 0

where γ∗ = g
β(g+l)

and π∗ = g
g+l

. Moreover, the reputation persists whenever it exceeds γ∗ with

the corresponding value function attaining its maximum value, i.e., V (γ) = 0 for any γ ≥ γ∗.

The proof, relegated to Appendix C, is built upon a couple of lemmas that follow from

Benabou and Laroque (1992): We start by taking a continuous and nondecreasing value

function W ∈ C+ as given, call the associated problem involving this continuation payoff a

short-term game, and show that there exists a unique profile σA(γ;W ) and σR(γ;W ) such

that the following holds: σR(γ;W ) maximizes the right-hand side of (5) given σA(γ;W ),

and σA(γ;W ) maximizes (1) given the expected probability of detection π(γ, σR) induced by

σR(γ;W ). We call this unique equilibrium for any given W ∈ C+ as the temporary equilibrium

of the short-term game. Then, we consider the operator that maps the continuation valuation

W into current valuation resulting from the outcomes of the optimization of the short-term

game T (W ) : γ ∈ [0, 1]→ W̄ (γ,W ) and show that the resulting W̄ (γ) is also a continuous and

nondecreasing function, i.e., W̄ ∈ C+. Lastly, it is shown that T : C+ → C+ is a contraction

mapping so that there is a unique fixed point of T in C+, which we call V .

The stationary Markov equilibrium induces a Nash equilibrium. Note that there is a unique

concatenation history after all histories ending with the absorbing state and both equilibria

specify the same pure action profile of truthful and lazy thereafter. Given γ < γ∗, Markov

equilibrium specifies a completely mixed action profile so that every public history is reached

with a strictly positive probability. Let any public history that is induced by the stationary
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Markov equilibrium σ∗(γ) be denoted by htm ≡ ht(σ∗(γ)). Then, we describe the associated

Nash equilibrium as σ(htm) = σ∗(γt−1), for any htm starting with the same belief γt−1(htm). As

in any Nash equilibrium, the regulator attains the maximum payoff as δ tends to 1 (Theorem

1), the payoff under the stationary Markov equilibrium also approaches the maximum payoff

as δ approaches 1. This theorem says that for γ < γ∗, the regulator and each short-lived agent

play mixed actions that result in a positive probability of producing consecutive detections.25

We identify an upper bound on the number of consecutive detections that can be observed

at each reputation level provided that the agent chooses U whenever she is indifferent between

her actions. This bound is also the minimum number of periods that the regulator has to

invest to build up reputation at that state which would be permanent thereafter. Corollary 1

establishes this upper bound.26

Corollary 1 Suppose that Assumptions 1 and 2 hold and ht be a positive probability history

involving k consecutive detections starting date τ with respect to the unique Markov equilibrium

defined in Theorem 2. Then, k can be at most the smallest integer that is greater than k∗γ where

k∗γ = log(γ∗)−log(γ)
log(β)−log(π∗)

for γ ≡ γτ−1(ht) < γ∗.

When β = 1− π∗, an observation of detection followed by no detection or vice versa does

not change the posterior belief. Hence, the posterior probability depends only on the number

of different public signals in history and not on the order that they have been observed. Thus,

the concatenation of any history that involves at least k∗γ0 more detections than no detections

continues with a persistent reputation of at least γ∗.27

25{γt}t is a martingale. The details are in Section 4 and in the discussion in Appendix D starting on page 40
and in Footnote 41 which can be verified in the Markovian context by Theorem 2 and Lemma 8 (presented in
Appendix C). Therefore, the evolution of beliefs is such that, no matter what has happened in the past (and
regardless of whether or not the agent is short-lived), the expectation of future beliefs about the regulator
being the tough type conditional on the current information must equal today’s value. By employing Lemma
8, we also observe that the belief at the beginning of tomorrow, γt, cannot equal the belief at the beginning
of today, γt−1 (even though this must hold for the expected values) whenever the agent has chosen U in t. In
fact, γt must either be γ+(γt−1) or γ−(γt−1) with some probabilities specified by Theorem 2 and equation (3).

26Suppose that the parameters are given as γ0 = 1
2 , β = 3

4 and π∗ = g
g+l = 2

3 . The threshold reputation

level at these values becomes γ∗ = 8
9 . The Markov equilibrium specifies σ∗R(γ) = 8−9γ

9−9γ for γ ≤ γ∗. Under

Markov strategy σ∗R, γ+(γ) = 9
8γ after a detection and γ−(γ) = 3

4γ after no detection. The smallest k, at
which the reputation exceeds γ∗ = 8

9
∼= 0.89 after observing of consecutive k detections is 5.

27It would be interesting to compute the expected time until the agent stops being untruthful, i.e., the
expected hitting time until the Markov chain starting from γ0 reaches the absorbing state γ∗. Suppose that
β = 1 − π∗, which implies π∗ < 1

2 as β > π∗. Then, we get a Markov chain with infinitely countable states
where γk∗γ0 , that is the reputation level after k∗γ0 many detections, is the only absorbing state and all other
states are transient. One can construct an example in which, starting from γ0, it is sufficient to observe only
one detection to reach the absorbing state. But, when this is the case, the Markov equilibrium requires that
the regulator chooses to be diligent with a very small probability and the expected hitting (absorption) time
becomes unboundedly large as the transition probability puts higher weight on the lower levels of reputation.
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3.3 Possible extensions

Given the seminal result of Cripps, Mailath, and Samuelson (2004) establishing the imper-

manency of reputation effects (obtained when the long-lived player’s action is imperfectly ob-

served but all the signals are statistically informative about the long-lived informed player’s

behavior), in the literature, the survival of the reputation effects is mainly generated by two

means: (1) unobserved replacements of the long-lived player with a new copy, and this intro-

duces persistent changes in the type of long-lived player (e.g., Benabou and Laroque (1992),

Gale and Rosenthal (1994), Holmström (1999), Mailath and Samuelson (2001), Phelan (2006),

Wiseman (2008) and Ekmekci, Gossner, and Wilson (2012)); (2) limited observability of his-

tories, i.e., the bounded memory of short-lived uninformed players (e.g., Liu (2011), Ekmekci

(2011) and Liu and Skrzypacz (2014)). Below we discuss how our results will change if we

extend our Markov model to these directions.

First, we consider a setting with unobserved replacements and changing types: Suppose

that in each period, the regulator survives to the next period with probability λ and otherwise

is replaced with a new regulator. The new regulator is the behavioral type with probability

γ̂. To simplify exposition, we assume that γ0 = (1 − λ)γ̂. Then, when the agent chooses U ,

the posterior belief that the regulator is the Stackelberg type in period t after the observation

of the signal id ∈ {0, 1} is:

γt =

γ
+
t = λ γt−1β

γt−1β+(1−γt−1)σR,tβ
+ (1− λ)γ̂ if id = 1

γ−t = λ γt−1(1−β)
γt−1(1−β)+(1−γt−1)[σR,t(1−β)+(1−σR,t)]

+ (1− λ)γ̂ if id = 0
(6)

while γt = λγt−1 + (1 − λ)γ̂ (***) when the agent is truthful. Then, with replacement we

get the following result the proof of which parallels with the proof Theorem 2 and hence is

omitted due to space considerations:

Proposition 1 There is a unique stationary Markov equilibrium with the replacement of the

regulator that possesses a continuous and nondecreasing value function V rep. Moreover, if the

survival rate of the regulator is sufficiently low (i.e., λ < γ∗−γ0), then the posterior beliefs are

always below γ∗, there is no absorbing state, and the agent is never truthful with probability

one. And for any γ ∈ (0, γ∗),

σ∗A(γ) = 1− (1− δλ)c

β{(1− δλ)(f + d) + δλ[V rep(γ+)− V rep(γ−)]}
and σ∗R(γ) =

π∗ − γβ
(1− γ)β

.

In this case, the resulting dynamic programming problem is very similar to the one in
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Appendix C.28 The condition λ < γ∗ − γ0 implies that the posterior beliefs cannot exceed

the threshold γ∗.29 Thus, with a highly probable replacement possibility the regulator cannot

attain the maximum and socially efficient payoff of zero and hence his payoffs and efficiency

are adversely affected. This is because, in this case, agents cannot get strongly convinced that

the regulator is the tough type. Indeed, with such a replacement structure, the agents will

never be sure of the true type of the regulator.

Ekmekci, Gossner, and Wilson (2012), on the other hand, shows that the replacement of

the long-lived player can generate permanent reputation effects if the replacements are arbi-

trarily infrequent and the long-lived player is arbitrarily patient.30 They provide lower bounds

(albeit might be quite small) on equilibrium payoffs in every continuation game, which coin-

cides with those of Fudenberg and Levine (1989), Fudenberg and Levine (1992) and Gossner

(2011), without making any specific assumptions on the stage game payoffs and the monitor-

ing structure as the discount rate goes to one at a faster rate than the replacement rate goes

to zero.31 This payoff bound corresponds to the Stackelberg payoff of the regulator that is

−c in our setting. Yet, the regulator could do better as λ approaches 1 in our model. The

posterior beliefs that are given by (6) and (***) imply that the absorbing states reemerge and

the regulator’s payoff approaches zero as in no replacement case of Theorem 2. Thus, we can

conclude that unobserved and very rare replacements do not affect our results.

Second, we consider a setting in which the agents have access only to the recent piece

of the history (rather than the entire history) of play:32 Suppose that each agent t is born

with the same prior belief γ0 and can observe only the last k entries of the public history.

So, agent t’s behavior depends on the k-tail of public history at t (all signals in periods

τ = t − k, . . . , t − 1). To eliminate the possibility of deriving complicated inferences with

bounded memory (see Barlo, Carmona, and Sabourian (2016, Section 5)), we suppose that

agent t’s behavior does not depend on the calendar time, t.

When k is strictly less than k∗γ0 , there is no hope of the regulator to strongly convince

28The posterior probabilities stated in (6) and (***) should be substituted into the expressions (12) and
(13); δ must be replaced by λδ. Hence, the construction in Appendix C can be replicated and the updating

takes the following form: γ+ = λγβπ∗ + (1− λ)γ̂ and γ− = λγ(1−β)1−π∗ + (1− λ)γ̂.
29Note that if λ = 0, we get the repetition of the stage game Bayesian Nash equilibrium.
30The reason is that the renewed doubt about the informed player’s type provides him the chance to rebuild

a reputation when it is damaged and this dominates the adverse effect of the loss in the value of the reputation
of the long-lived player because of the possibility of replacement when the limits on the replacement rate and
discount rate are taken appropriately.

31More precisely, as established by Ekmekci, Gossner, and Wilson (2012, pp.164), “if the discount rate goes
to one at a faster rate than the rate at which the logarithm of the replacement rate goes to infinity.”

32It maybe that the short-lived players do not observe any of the previous outcomes without exerting time,
effort, or cost. Liu (2011) constructs a class of equilibria that exhibits reputation cycles in a perfect-monitoring
product-choice game incorporating costly discovery of past actions.

21



the agents that he is tough (i.e., inducing a posterior belief strictly exceeding γ∗). Thus,

the persistent reputation effect, desired by the regulator, disappears and he would want to

announce the relevant part of the public history to restore the reputation effect.33

With bounded but long memory, the analysis becomes more complicated. Liu and Skrzy-

pacz (2014) analyzes a variation of perfect-monitoring product-choice game with limited but

long records of the history. They establish that if the record length exceeds a finite lower

bound, then an arbitrarily patient long-lived player can attain the Stackelberg payoff as the

limiting payoff in any stationary perfect Bayesian equilibria after every history, which gives

rise to permanent reputation effects. The equilibria feature recurrent reputation bubbles.

Even though the long-lived player’s true type is perfectly observed, the informed short-lived

players ride up the reputation up to a level after which it is exploited by the long-lived player

(hence, revealing his type). Ekmekci (2011), on the other hand, examines a version of the

product-choice game with imperfect public monitoring where the public signals are observed

by a mediator (rating agency) announcing one of the finite numbers of ratings to the short-

lived players. Ekmekci (2011) shows that there exists a finite rating system that induces a

perfect Bayesian equilibrium in which the sufficiently patient long-lived player’s payoff is close

to the Stackelberg payoff after every history implying permanent reputation effects.

We conjecture that with a bounded but long memory, a detailed analysis (which is outside

the scope of the current paper) would establish that reputation effects would prevail.

4 Regulator faces a long-lived agent

Now, we assume that the agent is long-lived with the common discount factor δ ∈ (0, 1). Each

long-lived player observes the realization of the public signals and his or her own previous

actions. Then, we have htR = ((r0, id0), (r1, id1), ..., (rt−1, idt−1)) ∈ H t
R ≡ (R × Id)

t for the

regulator and htA = ((a0, id0), (a1, id1), ..., (at−1, idt−1)) ∈ H t
A ≡ (A × Id)

t for the agent to

show the private histories up to period t. As before, ht = (id0, id1, ..., idt−1) ∈ I td denotes the

public history of signals observed by both players. The set of full histories is then shown by

htf = ((a0, r0, id0), (a1, r1, id1), ..., (at−1, rt−1, idt−1)) ∈ H t
f ≡ (A × R × Id)t. The filtration on

(A×R× Id)∞ induced by private and public histories are denoted by {Hit}∞t=0 for i = {A,R}
and {Ht}∞t=0, respectively. We let K = {tough, strategic} be the type space for the regulator.

Then, the strategy of the regulator, σR, is a sequence of maps σRt : H t
R ×K → ∆(R). We let

σR ≡ (σ̂R, σ̃R) where σ̂R is the strategy of the tough type, who always plays diligent (action D)

with probability one regardless of his private history, and σ̃R is the strategy of the strategic

33For instance, if β = 1−π∗, the regulator would like to announce any part of the history that has involved
at least k∗γ0 more detections than no detections to each agent.
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type. Agent’s strategy, σA, is a sequence of maps σAt : H t
A → ∆(A). The prior belief γ0

with strategies σR ≡ (σ̂R, σ̃R) and σA induce a probability measure Q on the set of states

Ω ≡ K × (R × A× Id)∞, which illustrates how the game evolves for an uninformed player.34

The strategy profiles σ̂ ≡ (σA, σ̂R) and σ̃ ≡ (σA, σ̃R) induce probability measures Q̂ and Q̃ on

Ω, describing the evolution of the game when the regulator is tough type and strategic type,

respectively. The expectation taken with respect to Q is E ≡ E(σA,σ̂R,σ̃R) and the expectations

associated with Q̂ and Q̃ are Ê ≡ E(σA,σ̂R) and Ẽ ≡ E(σA,σ̃R), respectively.

A Nash equilibrium is a strategy profile (σA, σ̃R) that satisfies

(i) E(σA,σ̂R,σ̃R)[(1− δ)
∑∞

t=0 δ
tuA(a, r)] ≥ E(σ̄A,σ̂R,σ̃R)[(1− δ)

∑∞
t=0 δ

tuA(a, r)], for all σ̄A, and

(ii) E(σA,σ̃R)[(1− δ)
∑∞

t=0 δ
tuR(a, r)] ≥ E(σA,σ̄R)[(1− δ)

∑∞
t=0 δ

tuR(a, r)], for all σ̄R.

In the following, as discussed in the introduction, we concentrate on Nash equilibria in

which there is costly learning on the agent’s behalf: She is bound to experiment with the

bad behavior every once in a while. This, in turn, delivers the notion that we call an α-Nash

equilibrium with α > 0 and arbitrarily small: An α-Nash equilibrium is a Nash equilibrium

in which the agent is restricted to choose any one of her actions with at least α probability.

Ours is a direct approach. Instead, we could adopt the following formulation involving

one-period amnesia:35 Suppose that the initial belief, γ0 ∈ (0, γ∗) where γ∗ is as in Lemma

1. In every period t, the agent may experience one-period amnesia with a probability of

ϑ > 0 arbitrarily small. While it is common knowledge that she will recover at the end of the

period, whether or not she suffers from one-period amnesia in a given period is her private

information. If there is no amnesia, it is business as usual: The agent observes her private

history htA (hence, γt−1) and chooses accordingly. However, in case of amnesia when choosing

her period t action, she observes neither her private nor the public history, htA, and hence

cannot infer γt−1. Thus, from her perspective, it is indistinguishable from the start of the

game apart from the calendar time t. To avoid serious complications (see Barlo, Carmona,

and Sabourian (2016)), it is natural to consider strategies that do not use the calendar time

in these cases: her action, hence, cannot depend on t. In this contingency, we require her to

behave according to the unique Markov equilibrium of Theorem 2 hanging on to her initial

34The discussion starting on page 40 and in Footnote 40 establishes that {γt}t is a Martingale.
35One may think of the following detailed scenario: The agent uses reading glasses to keep a notebook that

contains her records. In the morning (the beginning) of the period t, there is an ϑ chance that she cannot find
her glasses. If they are not misplaced, she uses them to check her notebook and observe her private history
and chooses her action by noontime accordingly. But if her glasses cannot be found, she cannot check her
notebook by noon and hence has to choose an action without knowing the past and caring about the calendar
time. The glasses do not get lost. At the end of the day, she finds them and uses them to record today’s
observations also performing the Bayesian updating if needed.
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belief γ0 < γ∗. This provides a consistent formulation because players’ behavior depends only

on the level of reputation (and no other aspect related to the past play) in that equilibrium.

Hence, her choice would be U with a probability of (1−σ∗A(γ0)) as γ0 < γ∗. At the end of period

t, she recovers from the amnesia, observes htA along with her period t choice at, whether or

not there has been a detection in period t (i.e., idt), performs the Bayesian updating if idt = 1

(i.e., there was a detection in period t), records these as ht+1
A (hence, γt), and gets ready for

tomorrow. When ϑ > 0 is set to be arbitrarily small, the incentives of the strategic regulator

and the agent do not get affected. Thus, a Nash equilibrium of this formulation with ϑ > 0 is

an α-Nash equilibrium with α = ϑ(1− σ∗A(γ0)) > 0.

Regardless of the formulation employed, this notion of robustness does not imply qualita-

tive changes to our results with myopic agents. If the short-lived players were to be restricted

to choose any one of their actions with a probability α > 0 but sufficiently small, the regula-

tor’s best response does not change and calls for the diligent action for histories with γt−1 ≤ γ∗

and being lazy otherwise. Hence, the findings presented in Section 3.1 continue to hold with

some small modifications to their statements and proofs. Moreover, the same holds for our

results concerning Markov equilibrium: the modification implied in Theorem 2 involves chang-

ing its statement so that σ∗A(γ) = 1− α for any γ ≥ γ∗ while the values of γ∗, π∗, and σ∗R(γ)

do not change and V (γ) needs a slight alteration.

The following result, Theorem 3, states that in every α-Nash equilibrium with α > 0

and arbitrarily small, the sufficiently patient agent plays the regulator-preferred action T

with a probability bounded away from 1 − α on average indefinitely on a strictly positive

probability set of events. That is, the regulator cannot build the absorbing reputation that

induces the patient agent to be truthful indefinitely in the long-run in equilibrium whenever

learning/experimenting is enforced even with an arbitrarily small probability. In this sense,

the permanency of reputation is not robust.

Theorem 3 Suppose that Assumptions 1 and 2 hold and let (σ̃A, σ̃R) be any α-Nash equilib-

rium with α > 0 and arbitrarily small. Then, there is δα ∈ (0, 1) such that there exists no

A ⊂ Ω with Q̃(A) > 0 that is induced by this α-Nash equilibrium such that for all ω ∈ A,

lim
t→∞
‖σ̂A − Ẽ[σ̃At | HAt]‖ = α

for all δ > δα.

Appendix D is devoted to the proof of Theorem 3. The technique that employs the

identification conditions is borrowed from Cripps, Mailath, and Samuelson (2007) and adapted
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to our setting as follows: Thanks to Remark 1, the regulator can identify private histories of

the agent in which she plays the truthful action T with a constant probability in the long run

if the regulator were to concentrate on histories in which he is diligent. This is stated formally

in Lemma 12 in Appendix D. On the other hand, Remark 2 empowers the agent to identify

private histories of the regulator who plays diligently with a constant probability when the

agent restricts attention to histories in which she plays U and such histories are sustained in

an α-Nash equilibrium. This is presented formally in Lemma 11 in Appendix D.

The intuition behind the result is as follows: Suppose on the contrary that there is a set

of events with strictly positive measure, A, on which the agent finds it optimal to play the

truthful action T with a probability close to 1 − α in all continuation histories after some

period t̄. The agent finds it optimal to play T with a high probability indefinitely implies

that she expects to see the diligent action D with a sufficiently high probability on average

for a long enough period after every s ≥ t̄ observing her private history. The key step in

our proof is Lemma 12 which says that “if the agent’s private history ensured that she is

almost convinced that she faces a diligent regulator and behaves according to that belief, then

this eventually becomes inferred by the regulator” on a particular private history where the

regulator is choosing D. Therefore, the strategic regulator would find it optimal to deviate

and play the lazy action L on those histories. At first, the agent may act as the regulator

wishes if his reputation is at a high level. However, in every period there is α > 0 chance

that the agent tests the regulator’s reputation. Every time this happens, the reputation level

of the strategic regulator gets updated. Indeed, thanks to Remark 2 (saying that the fixed

action of the regulator can be inferred by the agent when she chooses U), there is a period

when the agent (restricting attention to her private histories with her choosing U) deduces

that her opponent is not choosing D but L. Hence, we get a contradiction on such a set of

events, A, with a positive probability measure.

5 Concluding Remarks

This paper analyzes the long-run equilibrium behavior of uninformed players in a repeated

game with incomplete information and imperfect public monitoring that aims to model the

strategic interaction in a regulatory environment. We ask whether the uninformed players

(agents) can be induced to good behavior permanently through the reputation concerns of

the informed player (regulator). We provide a positive answer to this question when a patient

long-lived regulator faces a sequence of short-lived agents: using his reputation, the regulator

prevents agents’ bad behavior by inducing them to behave in the long-run with no cost in
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any Nash equilibrium. As a result, reputation secures the perpetual social efficiency. On the

other hand, we show that permanent good behavior cannot be an equilibrium outcome when

the long-lived agent is sufficiently patient and occasionally experiments with bad behavior.

This stark contrast demonstrates the significance of the longevity of the strategic interaction

and provides a novel insight into the importance of learning and experimentation in repeated

games: While the sufficiently patient strategic regulator may induce permanent social effi-

ciency via sustaining a high reputation with myopic agents, there is no interior reputation

level behind which the strategic regulator can hide and induce social efficiency whenever the

long-lived sufficiently patient agent tests the regulator’s reputation every once in a while.

In repeated games with incomplete information and imperfect public monitoring, identi-

fiability is a critical assumption used in the literature. In our paper, these are not satisfied.

The identifiability assumptions we need are the conditional identification properties formal-

ized in Remarks 1 and 2. They suffice and are the key deriving force that results in different

long-run equilibrium behavior for the uninformed players. The conditional identification of

the informed player results in a sharp and long-lasting equilibrium selection effect (in terms

of payoffs and behavior) when the informed player faces a sequence of short-run players.36 On

the other hand, when the uninformed player is also long-lived, the conditional identification

of the uninformed player enables to specify whether a particular behavior of the uninformed

player is attainable in the long-run by easing the complications due to private beliefs (when the

action of the long-lived informed player that makes the agent’s behavior is identifiable in Re-

mark 1 coincides with that of the behavioral type). Insisting on an experimentation/learning

structure on behalf of the uninformed player by making her go for bad behavior now and then

ensures that the conditional identifiability requirements bite. That is, entangling conditional

identifiability and this experimentation structure delivers the stark contrast between the case

with short-lived agents and the case with a long-lived agent.

36We note that Fudenberg, Levine, and Maskin (1994)’s sufficiency conditions on the distribution of public
signals that guarantee the Folk theorem result for repeated games with imperfect public monitoring in a
complete-information setting are not satisfied in our paper. The set of all equilibrium payoffs of games
satisfying some version of conditional identification property is an open question to the best of our knowledge.
In our setting, an equilibrium payoff attained in the complete-information game by repeating the stage game
Nash equilibrium is eliminated in the incomplete information setting with short-lived uninformed players.
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Appendix

A The proof of Lemma 1

The utility of the agent being truthful is uA(T, σR) = 0; her expected utility when she is

untruthful is uA(U, σR) = γ[(1− β)g− βl] + (1− γ)σR[(1− β)g− βl] + (1− γ)(1− σR)g. The

agent’s best response correspondence against the strategic regulator’s strategy is:

σA ≡ BRA(σR) =


1 if σR >

g−γβ(g+l)
(1−γ)β(g+l)

[0, 1] if σR = g−γβ(g+l)
(1−γ)β(g+l)

0 if σR <
g−γβ(g+l)

(1−γ)β(g+l)
.

(7)

From this, we can deduce the cutoff prior beliefs. The strategy of the regulator that makes

the agent indifferent between being truthful and untruthful, σR = g−γβ(g+l)
(1−γ)β(g+l)

, is greater than

0 if γ < γ∗ = g
β(g+l)

and equals to 0 if γ = γ∗. If γ > γ∗, then BRA(σR) = 1 for any value of

σR, i.e., even if the strategic regulator is lazy for sure.

The expected utility of the regulator choosing to be diligent is uR(σA, D) = (1− σA)[βd−
(1− β)f ]− c, whereas his expected utility, when he is lazy, is uR(σA, L) = −(1− σA)f . Thus,

the regulator’s best response is given by:

σR ≡ BRR(σA) =


1 if σA < 1− c

β(d+f)

[0, 1] if σA = 1− c
β(d+f)

0 if σA > 1− c
β(d+f)

.

(8)

The strategy of the agent that makes the regulator indifferent, σA = 1− c
β(d+f)

, is greater than

0 if β > c
f+d

.

Case 1 γ > γ∗: In this case, BRA(σR) = 1 for any σR. The unique fixed point of the best

response correspondences is σA = 1 and σR = 0.

Case 2 γ = γ∗: The strategy that makes the agent indifferent is σR = 0. For σR > 0, BRA(σR) =

1. But, σR > 0 cannot be a best response against σA = 1. Thus, the equilibrium

strategies are σA ∈ [1 − c
β(d+f)

, 1] and σR(D) = 0. As we assume that the agent is

truthful for sure when she is indifferent σA = 1 and σR = 0.

Case 3 γ < γ∗: The unique intersection of the best response correspondences in this case is

when σA = 1− c
β(d+f)

and σR = g−γβ(g+l)
(1−γ)β(g+l)

.
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B The proof of Theorem 1

Fix an arbitrary Nash equilibrium in public strategies; each positive probability public history

and posterior belief that are considered are going to be with respect to this Nash equilibrium.

Given an arbitrary Nash equilibrium, for each positive probability public history ht, we let

v(ht) denote the expected continuation value to the strategic regulator starting from ht. If T

has a positive probability under σA,t(h
t) and D has a positive probability under σR,t(h

t), then

v(ht;T,D) ≡ (1− δ)uR(T,D) + δ
∑
id

ρ(id | T,D)v(ht, id).

The definition for v(ht;σA,t(h
t), σR,t(h

t)) is done in the natural way.

The following lemma tells that if there is a positive probability history on which the agent

is truthful with probability one at some date, then the regulator must be lazy with probability

one on that history and date, too.

Lemma 2 Suppose that ht is a positive probability history where σA,t(h
t) = 1 (truthful with

probability one). Then, σR,t(h
t) = 0 (lazy with probability one).

Proof of Lemma 2. Given that the agent chooses σA,t(h
t) = 1 at ht, choosing diligent or

lazy generates the same distribution of public signals so that the continuation payoff v(ht, id)

will be the same. Since the one-period utility uR(T, L) = 0 > uR(T, L) = −c, we conclude

that σR,t(h
t) = 0 complying with the one-shot deviation principle.

This is the consequence of the fact that when the agent is truthful, being lazy and diligent

generates the same distribution of public signals and hence the same continuation payoffs

v(ht, id = 0). The next lemma suggests that there is no date on a positive probability history

on which the regulator is diligent with probability one with respect to a Nash equilibrium.

Lemma 3 There is no date t and positive probability history ht at which σR,t(h
t) = 1 (diligent

with probability one). In other words, σR,t(h
t) < 1 for any positive probability ht.

This is because as Lemma 2 says that when the agent is truthful, the regulator chooses

to be lazy. And, the agent chooses to be untruthful with some probability only if she expects

the regulator to be lazy with some probability on a Nash equilibrium.

Proof of Lemma 3. Suppose that there exist a Nash equilibrium with a positive probability

history ht at which σR,t(h
t) = 1. If the agent is truthful with probability one at ht, then the

regulator would have a one-shot deviation gain by switching to lazy since the distribution of

public signals, the posterior belief, and the continuation payoff would not change regardless of
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regulator’s action when the agent is truthful. The agent chooses to be untruthful with some

probability on a Nash equilibrium only when the belief γt−1(ht) at t − 1 is less than γ∗ and

the regulator chooses to be diligent by less than σ̄R = π∗−βγ
β(1−γ)

< 1.

Lemma 4 Let ht be any positive probability history where γt−1(ht) < γ∗. Then, there exists

some τ ≥ t and hτ that appends after ht for which σR,τ (h
τ ) > 0.

Proof of Lemma 4. Consider an arbitrary public history ht that is reached with positive

probability with respect to some Nash equilibrium. Suppose for a contradiction that for every

τ ≥ t and every hτ that comes after ht, σR,τ (h
τ ) = 0 (lazy with probability one at every date

starting from ht). Given γt−1(ht) < γ∗ and there will not be any detections after ht for every

τ ≥ t and history since σR,τ (h
τ ) = 0 by hypothesis, and thus the expected probability of

detection is going to be less than π∗ for every τ ≥ t and hτ . Then, all the myopic agents are

untruthful at every date and history following ht. Thus, the regulator’s expected continuation

payoff becomes v(hτ ) = −f from then on which is less than the minmax payoff −e, providing

us the desired contradiction.

This lemma suggests that every Nash equilibrium continuation path starting from history

ht must include the play of diligence with some probability given that γt−1(ht) < γ∗.

Lemma 5 Suppose that ht is a positive probability history on which detection occurs (id = 1)

at time t given that γ ≡ γt−1(ht) < γ∗. Then, 0 < σR,t(h
t) ≤ π∗−βγ

β(1−γ)
and the smallest posterior

belief after the detection has been observed denoted by Γ(γ) ≡ γt(h
t, id = 1) becomes

Γ(γ) =
γβ

γβ + (1− γ)βσ̄R
=
γβ

π∗

where σ̄R ≡ σ̄R(γ) = π∗−βγ
β(1−γ)

.

Proof of Lemma 5. First, note that in order to observe a detection at time t, the agent

must have been untruthful. For the agent to have chosen untruthfulness with some positive

probability at ht, the expected probability of detection must be lower than π∗. Given that the

belief at the beginning of time t at ht is γ ≡ γt−1(ht) < γ∗, this requires that σR,t(h
t) ≤ π∗−βγ

β(1−γ)
,

which is derived from (2). And, σR,t(h
t) must be greater than zero because otherwise there

would not be any detections. Lastly, it is easy to see from expression (3) that the smallest

posterior is obtained when σR,t(h
t) = σ̄R and equals to Γ(γ) = γβ

π∗
.

This result is the consequence of the fact that detection is possible only when the agent

is untruthful and the regulator is diligent (with some probability). But, for the agent to be
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untruthful, the strategic regulator should not be diligent more than some specified probability.

Thus, there is an upper bound on the diligence of the regulator for the agent to be untruthful

and the regulator must be using a mixed action at that history. The smallest possible posterior

after detection occurs is calculated with respect to this upper bound.

Proof of Theorem 1. First, note that if the prior belief satisfies γ0 ≥ γ∗, then there is a

unique Nash equilibrium on which the agents are always truthful and the regulator is always

lazy. As all the short-lived agents are truthful with probability one, the reputation for being

tough persists and the equilibrium payoffs are zero both for the strategic regulator and the

short-lived agents.

Now, suppose that γ0 < γ∗. Again, note that at any positive probability history ht where

γt−1(ht) ≥ γ∗, the agent is truthful and the regulator is lazy from then on. The reputation of

the regulator does not change when the agent is truthful and again it is not optimal for the

strategic regulator to be diligent in this situation. Then, the continuation payoff v(ht) of the

regulator is zero on those histories.

Then, we consider a positive probability history ht for which γ ≡ γt−1(ht) < γ∗ and the

agent is untruthful with some probability (since otherwise, by Lemma 2, the strategic regulator

is lazy and the stage game payoffs are all zero in those periods). This time, the reputation

(posterior belief about the regulator’s type) is updated according to expression (3) as allowed

by Remark 2. Recall that the agent is untruthful only if the expected probability of detection

is π(γ, σR,t(h
t)) ≤ π∗, which requires σR,t(h

t) to be less than or equal to σ̄R(γ) ≡ π∗−γβ
(1−γ)β

.

Then, by Lemma 5, we define the smallest posterior probability of a tough regulator after a

detection has been observed as: Γ(γ) = γβ
π∗

(where π∗ = g
g+l

). By Assumption 1, Γ(γ) > γ for

every γ ∈ (0, γ∗), i.e., Γ is strictly increasing and it is continuous.

Following the footsteps of Ely and Välimäki (2003), we construct a decreasing sequence

of cutoff beliefs pn such that p1 = γ∗ and pn = Γ−1(pn−1) for n > 1 and use an induction

on n to bound the payoffs attained in any Nash equilibria when γ exceeds pn. For the

induction hypothesis, suppose that there exists a lower bound V̂n(δ) with limδ→1 V̂n(δ) = 0

and V̂ (γ, δ) ≥ V̂n(δ) for all γ > pn. Note that this holds for n = 1, i.e., for γ > p1 = γ∗. We

assume this holds for n and want to show that holds for n + 1. Now, fix γ > pn+1. We need

to prove that limδ→1 V̂n+1(δ) = 0. As the maximum attainable payoff is zero, this will imply

that limδ→1 V̂ (γ, δ) = 0.

It suffices to consider a Nash equilibrium in which the agent is untruthful in the first period

with some probability, e.g., σA,t(h
t) < 1.37 Since the agent has been untruthful with some

37Take any Nash equilibrium in which the agents have been truthful with probability one until date s > t.
In these periods, the reputation of the regulator will stay the same regardless of her behavior. Thus, it is a
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probability, this implies that the strategic regulator is diligent with no more than σ̄R(γ). Then

this strategy must be a best-reply for the strategic regulator, i.e., the expected long-run payoff

from being lazy should be no less than that of being diligent. Meanwhile, by Lemma 4, for

any positive probability history where γ < γ∗, there exists a continuation history at which the

regulator is diligent with some probability (but not with probability 1 by Lemma 3). Take ht

to be that history at which σR,t(h
t) > 0 (note that this is consistent with σA(ht) < 1, if the

agent were to be truthful with probability one, by Lemma 2, the regulator would be lazy with

probability 1). Thus, we obtain the following constraint on continuation values at ht:

(1− δ)(−e) + δZD(γ) ≤ (1− δ)(−f) + δZL(γ) ≡ V̂n+1(δ) (9)

where ZD(γ) and ZL(γ) are the lower bounds on the expected continuation payoffs from

choosing action D and L, respectively.38 And, we can define V̂n+1(δ) := (1− δ)(−f) + δZL(γ).

When there is no detection, in the worst case senario, the posterior probability drops to

γ− = γ(1−β)
γ(1−β)+(1−γ)

at ht+1 and this happens with probability one when the regulator chooses to

be lazy. Let the minimum continuation payoff for γ− be V̂ (γ−, δ). Then, ZL(γ) ≡ V̂ (γ−, δ).

On the other hand, when the strategic regulator chooses to be diligent, there will be detection

with probability β and the posterior probability after a detection occurs is at least Γ(γ), which

is at least pn given γ > pn+1. Hence, we derive the following lower bound on ZD(γ):

βV̂n(δ) + (1− β)V̂ (γ−, δ) ≤ ZD(γ). (10)

Then, combining (9) and (10) allows us to get:

(1− δ)(−e) + δβV̂n(δ) + δ(1− β)V̂ (γ−, δ) ≤ (1− δ)(−f) + δV̂ (γ−, δ)

(1− δ)(f − e) + δβV̂n(δ) ≤ δβV̂ (γ−, δ)

which implies that V̂n(δ) ≤ V̂ (γ−, δ) since (f − e) > 0.

As V̂n+1(δ) := (1− δ)(−f) + δZL(γ) = (1− δ)(−f) + δV̂ (γ−, δ) and V̂n(δ) ≤ V̂ (γ−, δ), we

conclude that

(1− δ)(−f) + δV̂n(δ) ≤ V̂n+1(δ). (11)

best response for the regulator to be lazy during these periods. So, her payoff is zero. Then the continuation
play starting from date s is a Nash equilibrium with the same prior γ whose payoff can be no more than the
original game.

38If the agent were to be truthful with probability σA,t(h
t) = 1, choosing lazy is superior to diligent. Thus,

the constraint involves inequality instead of equality.
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By the induction hypothesis, the limit of the left-hand side of (11) is zero as δ approaches to

one. Thus, limδ→1 V̂n+1(δ) = 0, which implies limδ→1 V̂ (γ, δ) = 0 as desired for γ ≡ γt−1(ht) <

γ∗. Then, following ht, limδ→1 V̂ (γ, δ) = 0 for any γ ≡ γt−1(ht) > 0 since the choice of pn

and γ > pn is arbitrary and this holds for every γ ≥ infn pn where (pn)n∈IN is a decreasing

sequence that converges to zero. The regulator gets a payoff possible different than zero only

for finite number of periods up to ht. Thus, we can conclude that limδ→1 V̂ (γ0, δ) = 0 for any

prior belief γ0 > 0. This completes the proof.

C The proof of Theorem 2

First, we deal with the short-term game and the temporary equilibrium by taking W ∈ C+

as given. Then, the value function in the short-term game when the regulator is diligent and

lazy, respectively, can be given as:

WD(γ) = (1− δ){(1− σA)[βd− (1− β)f ]− c}+ δσAW (γ) (12)

+δ(1− σA)βW
(
γ+
)

+ δ(1− σA)(1− β)W
(
γ−
)
,

WL(γ) = −(1− δ)(1− σA)f + δσAW (γ) + δ(1− σA)W
(
γ−
)
. (13)

We would like to point out that the regulator is indifferent when WD(γ)−WL(γ) = 0, which

implies that (1−σA)β{(1−δ)(f+d)+δ[W (γ+)−W (γ−)]} = (1−δ)c. If WD(γ) > WL(γ), this

means that the regulator will choose to be diligent, so the expected probability of detection

would be π(γ) = β for any γ. If, on the other hand, WD(γ) < WL(γ), the regulator will be

lazy for sure, thus the expected probability of detection will be π(γ) = γβ. Therefore,

Lemma 6 Given W ∈ C+, an equilibrium of the short-term game corresponds to a detection

probability for the regulator as a function of his reputation, π : [0, 1] → [0, β] (his strategy

then can be deduced from (2)), and an implied strategy for the agent σA(π) that maximizes the

agent’s problem (1) at π, with an associated value function W̄ : [0, 1]→ [−f, 0] such that for

any γ ∈ [0, 1],

WD(γ) > WL(γ) implies that π(γ) = β,

WD(γ) = WL(γ) implies that γβ ≤ π(γ) ≤ β,

WD(γ) < WL(γ) implies that π(γ) = γβ,

and W̄ (γ) = max{WD(γ),WL(γ)} where WD(γ),WL(γ) are as in (12) and (13).
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Let us now define, for any given γ and W ,

WD(σA(π); γ,W ) = (1− δ){(1− σA)[βd− (1− β)f ]− c}+ δσAW (γ)

+ δ(1− σA)βW

(
γβ

π

)
+ δ(1− σA)(1− β)W

(
γ(1− β)

1− π

)
(14)

WL(σA(π); γ,W ) = −(1− δ)(1− σA)f + δσAW (γ) + δ(1− σA)W

(
γ(1− β)

1− π

)
(15)

where σA(π) solves the agent’s problem defined in (1) at π and let

F (σA(π); γ,W ) ≡ WD(σA(π); γ,W )−WL(σA(π); γ,W ) (16)

= (1− σA(π))β

{
(1− δ)(f + d) + δ

[
W

(
γβ

π

)
−W

(
γ(1− β)

1− π

)]}
− (1− δ)c.

For the subsequent arguments, we would like to remind that γ∗ = g
β(g+l)

and π∗ = g
g+l

.

Lemma 7 For any γ ∈ [γ∗, 1] and W ∈ C+, π(σR, γ) ≥ π∗ for any value of σR. Hence, at the

unique temporary equilibrium of the short-term game, σ̄A(π) = 1 solves the agent’s problem

in (1), F (σ̄A(π); γ,W ) = −(1 − δ)c < 0 and W̄ (γ) = max{WD(γ),WL(γ)} = WL(γ) with

σ̄R(γ) = 0. Moreover, γ+(γ) = γ−(γ) = γ and W̄ (γ) = 0 for any γ ∈ [γ∗, 1].

The proof can be easily shown by employing the definitions, γ∗, π∗, and using Lemma 6.

Lemma 8 For any γ ∈ [0, γ∗) and W ∈ C+, F (σA(π); γ,W ) is nonincreasing in π ∈ [0, β]

and strictly decreasing in σA(π). Moreover, there exists a unique temporary equilibrium of

the short-term game, given by mixed actions σ̄A(π∗) : (γ,W ) → (0, 1) that is continuous in

(γ,W ) and σ̄R(γ) = π∗−γβ
(1−γ)β

that induces the perceived detection probability π = π∗, which

together satisfy F (σ̄A(π∗); γ,W ) = 0 and the agent’s problem in (1). The associated posterior

probabilities are γ+(γ, σ̄R) = γβ
π∗

and γ−(γ, σ̄R) = γ(1−β)
1−π∗ .

Proof. Take any γ ∈ [0, γ∗) and W ∈ C+. For π = 0, the strategy that solves the agent’s

problem in (1) dictates that σA(π) = 0 and thus F (σA(π); γ,W ) > 0 by Assumption 2 and

by W being nondecreasing. And, for π = β, σA(π) = 1 solves the agent’s problem and the

corresponding F (σA(π); γ,W ) = −(1 − δ)c < 0. As F > 0 for σA = 0 and F < 0 for σA = 1

and F is continuous and strictly decreasing in σA, there exists unique σ̄A(π; γ,W ) ∈ (0, 1)

that ensures F (σ̄A(π); γ,W ) = 0. As F is continuous in (γ,W ) and σ̄A(π) is unique for a

given (γ,W ); σ̄A(π; γ,W ) is also continuous in (γ,W ).
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Next, we argue that σ̄A(π∗) ∈ (0, 1) and σ̄R(γ) constitute a unique temporary equilibrium.

Suppose for a contradiction that σ̄A(π) = 0 for some (γ,W ). Then, WD(σ̄A(π); γ,W ) >

WL(σ̄A(π); γ,W ) and σ̄R(γ) = 1. But, this implies that the perceived probability of detection

is β and thus σ̄A(π) = 0 does not solve the agent’s problem in (1). Suppose on the contrary

that σ̄A(π) = 1 for some (γ,W ). Then WL(σ̄A(π); γ,W ) > WD(σ̄A(π); γ,W ) and σ̄R(γ) = 0,

which suggests that π = γβ, and in turn would imply σ̄A(π; γ,W ) = 0 as γ < γ∗. Hence, we

conclude that σ̄A(π∗; γ,W ) ∈ (0, 1) and σ̄R(γ) = π∗−γβ
(1−γ)β

is the unique temporary equilibrium,

since for σ̄A(π) to be a completely mixed strategy, the detection probability must be set to

π∗ by the regulator employing the strategy σ̄R(γ) = π∗−γβ
(1−γ)β

. Lastly, the associated posterior

beliefs are calculated from (3) by using Bayes’ rule.

From hereafter, we refer to the temporary equilibrium strategy of the agent for a givenW as

σ∗A(γ,W ) and that of the regulator as σ∗R(γ) and define W̄ (γ,W ) := WD(σ∗A(γ,W ); γ,W ) =

WL(σ∗A(γ,W ); γ,W ) as the value function evaluated at the temporary equilibrium of the

short-term game for γ < γ∗. We want to show that W̄ is continuous and nondecreasing in γ,

which depend on the behavior of σ∗A(γ,W ) as well as W .39 As the value of W changes (in a

nondecreasing way) with a change in γ, we should consider both of the arguments of W̄ to

investigate whether it is nondecreasing in γ or not.

Lemma 9 W̄ (γ,W ) is continuous and nondecreasing in γ for any W ∈ C+.

Proof. As at σ∗A(γ,W ), F (σ∗A(γ,W ); γ,W ) = 0, both (i) W̄ (γ,W ) = WD(σ∗A(γ,W ); γ,W )

and (ii) W̄ (γ,W ) = WL(σ∗A(γ,W ); γ,W ) are true. Note that (ii) implies,

W̄ (γ,W ) = −(1− δ)(1− σ∗A(γ,W ))f + δW (γ−(γ)) + δσ∗A(γ,W )
[
W (γ)−W (γ−(γ))

]
. (17)

Multiplying (ii) by 1 − β > 0 and then subtracting this from (i) result in the following

expression for W̄ (γ,W ):

W̄ (γ,W ) = (1− δ)
(
1− σ∗A(γ,W )

)
d− (1− δ)c

β
+ δW (γ+(γ))− δσ∗A(γ,W )

[
W (γ+(γ))−W (γ)

]
.(18)

For any (γ1,W1) ≤ (γ2,W2); if σ∗A(γ2,W2) ≥ σ∗A(γ1,W1), expression (17) implies that W̄ is non-

decreasing in (γ,W ). This is because, σ∗A(γ,W ) ∈ (0, 1) is assumed to be nondecreasing and W

is nondecreasing in γ. As [W (γ)−W (γ−)] ≥ 0 for any W1,W2 and γ1, γ2, the right-hand side

of (17) is nondecreasing. Hence, W̄ (γ2,W2) ≥ W̄ (γ1,W1) when (γ2,W2) ≥ (γ1,W1). If, on the

other hand, we suppose that σ∗A(γ2,W2) < σ∗A(γ1,W1), then expression (18) will imply that W̄

39We would like to remind that W̄ is constant at zero for γ ≥ γ∗ for any W ∈ C+, thus it is continuous and
nondecreasing at these values.
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is nondecreasing. To see that, as this time, σ∗A(γ,W ) is assumed to be nonincreasing in γ and

[W (γ+)−W (γ)] ≥ 0 for any W1,W2 and γ1, γ2 as before, the right-hand side of (18) is nonde-

creasing which implies W̄ (γ2,W2) ≥ W̄ (γ1,W1) when (γ2,W2) ≥ (γ1,W1). Consequently, W̄

is nondecreasing in (γ,W ) (whether σ∗A(γ2,W2) ≥ σ∗A(γ1,W1) or σ∗A(γ2,W2) < σ∗A(γ1,W1)).

The continuity of W̄ in (γ,W ) is a direct implication of the continuity of σ∗A (γ,W ), which

is established by Lemma 8, and W ∈ C+.

Now, we can redefine the operator that maps the next period’s continuation value to today’s

with the equilibrium outcome of the short-term game as T (W ) : γ ∈ [0, 1] → W̄ (γ,W ). The

last step is to argue that T is a contraction that maps continuous and nondecreasing functions

on [0, 1] into itself. Lemma 9 shows that the operator T defined above maps C+ into C+.

Moreover, T (W + k) = T (W ) + δk for any constant k. Then, by Blackwell’s theorem, T is a

contraction mapping on a complete metric space (C+ with the sup norm); and hence, it has a

unique fixed point V . Finally, the equilibrium strategies and the value function V of Theorem

2 follow from Lemmas 7 and 8.

C.1 The proof of Corollary 1

Let the belief at the beginning of τ be γ ≡ γτ−1, the posterior probability when the regulator

chooses σ∗R(γ) = π∗−γβ
(1−γ)β

is derived from (3) and equals to γβ
π∗
> γ upon observing a detection.

After k consecutive detections starting at τ , we obtain γτ−1+k = γτ−1( β
π∗

)k. Since detection is

possible only when agent chooses U , which needs the posterior beliefs to be less than γ∗:

γτ−1+k ≤ γ∗ ⇒ γτ−1(
β

π∗
)k ≤ γ∗ which implies k ≤ log(γ∗)− log(γ)

log(β)− log(π∗)
.

D The proof of Theorem 3

The commitment strategy of the tough regulator, σ̂R, is simple (it is a constant function) and

thus it is public.40 Also, note that the agent’s best response to σ̂R, denoted by σ̂A, is the

regulator-preferred strategy as it involves a play of truthful action T with probability one in

every period after every history (hence, it is also public). On the other hand, for the strategic

regulator, σ̂R is not a best response to the agent’s best response to the commitment strategy

σ̂A; thus, it is not credible. The strategies σ̂R and σ̂A satisfy the conditions in Definition

5.1 and 5.2 of Cripps, Mailath, and Samuelson (2007), which state that the commitment

strategy of the regulator has no long-run credibility and long-lived agent’s best response to

the commitment strategy is unique on the equilibrium path.

40A behavior strategy is public if it is measurable with respect to the filtration induced by the public signals,
{Ht}∞t=0.
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Theorem 3 involves Nash equilibria constrained as follows: a given an arbitrarily small

α > 0, an α-Nash equilibrium is a Nash equilibrium with min{1− σ̃At, σ̃At} ≥ α for all t ∈ N.

The agent’s beliefs about her own future behavior

The following lemma shows that if there is a set of states with a positive measure on which the

agent plays truthfully with a very high probability in the long-run in an α-Nash equilibrium,

then, given any one of her private histories, there must be a subset of these states such that

there is a period after which the agent plays truthfully on average almost all the time in any

continuation game from that period onward.

Lemma 10 Suppose that there exists A ⊂ Ω with Q̃(A) > 0 such that for all ω ∈ A,

limt→∞ ‖σ̂A − Ẽ[σ̃At | HAt]‖ = α given an α-Nash equilibrium (σ̃A, σ̃R), for some arbitrar-

ily small α > 0. Then, there exists F ⊂ A with Q̃(F) > 0 such that, for any ξ > α, there

exists t̄α for which

Ẽ
[

sup
t′>t
‖σ̂A − Ẽ[σ̃At′ | HAt′ ]‖ | HAt

]
< ξ, ∀t ≥ t̄α (19)

for all ω ∈ F ; and for some ψ > α,

Q̃
(
α ≤ sup

t′>t
‖σ̂A − Ẽ[σ̃At′ | HAt′ ]‖ < ψ | HAt

)
→ 1, ∀t ≥ t̄α (20)

where the convergence is uniform on F .

Proof. By hypothesis, ‖σ̂A − Ẽ[σ̃At | HAt]‖ converges Q̃-almost surely to α on A. So, the

random variables Zt := supt′>t ‖σ̂A − Ẽ[σ̃At′ | HAt′ ]‖ also converge Q̃-almost surely to α on

A. Thus, on A, Ẽ[Zt | HAt] → α, Q̃-almost surely (by Lemma 4.24 Hart (1985)). Egorov’s

Theorem (Chung (1974)) then suggests that there exists F ⊂ A with Q̃(F) > 0 on which the

convergence of Ẽ[Zt | HAt] is uniform. This implies that, for any ξ > α, there exists t̄α such

that on F ,

α ≤ Ẽ[Zt | HAt] ≡ Ẽ
[

sup
t′>t
‖σ̂A − Ẽ[σ̃At′ | HAt′ ]‖ | HAt

]
< ξ, ∀t ≥ t̄.

Finally, the last expression in Lemma 10 follows from Chebyshev-Markov inequality. Fix

ψ > 0 so that ξ = εψ for some ε > 0. Since Zt has a finite mean and Zt ≥ α, Q̃(Zt ≥ ψ |
HAt) ≤ Ẽ[Zt|HAt]

ψ
< ξ

ψ
. As ψ > 0 and ξ = εψ, we obtain Q̃(Zt ≥ ψ) < ε, which indicates that

Q̃(α ≤ Zt < ψ | HAt) > 1− ε for all t > t̄α on F . This implies (20).
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The agent’s beliefs about the regulator’s future behavior

The next lemma states that if there is a set of states with a positive measure on which the

agent plays truthfully with very high probability on average in every continuation game after

some period (which is the unique best reply to the commitment strategy), then she must be

convinced to see the commitment action D in every continuation game from then on with a

high probability. The intuition for this relies on the uniqueness of the best response of the

agent against the regulator’s repeated strategy of playing D (i.e., the commitment strategy).

Lemma 11 Suppose that there exists F ⊂ Ω with Q̃(F) > 0 such that, for any ξ > 0 and

ψ > 0, there exists t̄α for which (19) and (20) stated in Lemma 10 hold for all ω ∈ F for a

given α-Nash equilibrium (σ̃A, σ̃R) with α > 0 arbitrarily small. Then, for some ζα > 0,

Q̃
(

sup
t′>t
‖σ̂R − E[σ̃Rt′ | HAt′ ]‖ < ζα | HAt

)
> 1− ζα, ∀t ≥ t̄α (21)

for all ω ∈ F .

Proof. Let Zt := supt′>t ‖σ̂A − Ẽ[σ̃At′ | HAt′ ]‖ and (19) and (20) hold by the hypothesis. For

any ε > 0 (so that ξ = εψ as given in Lemma 10), Q̃(Zt < ψ | HAt) > 1 − ε for all t > t̄α

on F . This means that the agent chooses the strategy that is the unique best response to

the commitment strategy of the regulator with a very high probability not only in the current

periods but in every continuation game after t > t̄α on F on the given α-Nash equilibrium.

Fix some s > 0 and a private history hAt, where hAt̄α is the initial segment of hAt, in F .

Since the agent is discounting (one can identify δα ∈ (0, 1) such that for all discount factors

strictly exceeding δα), there exists s′ > s and ζ > 0 such that for all t′ = t, ..., t + s′ and

hAt′ for which ‖σ̂R − E[σ̃Rt′ | hAt′ ]‖ < ζ, the continuation strategy σ̃A of the agent (after

the initial history hAt̄) agrees with σ̂A ≡ BRA(σ̂R) for the next s periods. In other words, if

the agent expects to see D with a very high probability for s′ number of periods after some

private history, then he would be playing T with a very high probability for s periods. Since

by hypothesis, σ̃A agrees with σ̂A for every t′ > t and for all t ≥ t̄α, ‖σ̂R − E[σ̃Rt′ | hAt′ ]‖ < ζ

must hold for all t′ > t and for all t ≥ t̄α. Then, one deduces

Q̃
(

sup
t′>t
‖σ̂R − E[σ̃Rt′ | HAt′ ]‖ < ζ | HAt

)
> 1− ζ, ∀t ≥ t̄α. (22)
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The regulator’s beliefs about the agent’s behavior (given a particular history)

Next step shows that the regulator eventually becomes convinced that the agent plays a

best response to the commitment strategy (i.e., T ) in the continuation game on a class of

private histories that involve the successive play of D. To become convinced about the agent’s

behavior and beliefs, he does not need to know her private history when he has been diligent.

To prove this result, we follow the footsteps of Cripps, Mailath, and Samuelson (2007,

Lemma 3); let the σ-algebra of the regulator who has played D up to (and not including)

period s be ĤRs. Then, regulator’s information set at time s (given this particular filtration

of private histories) if he were to know the private history of the agent at time t can be

described by ϕ(ĤRs,HAt), the smallest σ-algebra containing the σ-algebras ĤRs and HAt.

Lemma 12 For any given α-Nash equilibrium (σ̃A, σ̃R) with α > 0 arbitrarily small and for

any t > 0 and τ ≥ 0,

lim
s→∞

∥∥Ẽ[σ̃A,s+τ | ϕ(ĤRs,HAt)]− Ẽ[σ̃A,s+τ | ĤRs]
∥∥ = 0, Q̃− a.s.

Proof. We prove for τ = 0. The case of τ ≥ 1 can be proven by induction and making the

appropriate modifications in the proof of Lemma 3 of Cripps, Mailath, and Samuelson (2007)

provided in Appendix A.3. Suppose that K ⊂ At is a set of t-period agent action profiles

(a0, a1, ..., at−1), which also denotes the corresponding event. By Bayes’ rule, we can derive

the conditional probability of the event K given that the regulator has played diligent D, i.e.,

after the private history ĥR,s+1 ≡ (ĥRs, D, id) with id ∈ Id, as follows:

Q̃[K | ĥR,s+1] = Q̃[K | ĥRs, D, id] =
Q̃[K | ĥRs]Q̃[D, id | K, ĥRs]

Q̃[D, id | ĥRs]

=
Q̃[K | ĥRs]

∑
a∈A ρ(id | a,D)Ẽ[σ̃aA(hAs) | K, ĥRs]∑

a∈A ρ(id | a,D)Ẽ[σ̃aA(hAs) | ĥRs]
.

Now, we subtract Q̃[K | ĥRs] from both sides of the above equation to get

Q̃[K | ĥR,s+1] − Q̃[K | ĥRs]

=

Q̃[K | ĥRs]
∑

a∈A ρ(id | a,D)

(
Ẽ[σ̃aA(hAs) | K, ĥRs]− Ẽ[σ̃aA(hAs) | ĥRs]

)
∑

a∈A ρ(id | a,D)Ẽ[σ̃aA(hAs) | ĥRs]
.

Note that the term
∑

a∈A ρ(id | a,D)Ẽ[σ̃aA(hAs) | ĥRs] (equals βẼ[σ̃UA(hAs) | ĥRs] when id = 0

and Ẽ[σ̃UA(hAs) | ĥRs](1 − β) + Ẽ[σ̃TA(hAs) | ĥRs] ∗ 1 when id = 1) is strictly positive and less
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than or equal to one by assumption, for any given id ∈ Id. Hence,

∣∣Q̃[K | ĥR,s+1] − Q̃[K | ĥRs]
∣∣

≥ Q̃[K | ĥRs]
∣∣∣∣∑
a∈A

ρ(id | a,D)

(
Ẽ[σ̃aA(hAs) | K, ĥRs]− Ẽ[σ̃aA(hAs) | ĥRs]

)∣∣∣∣.
As each of the random variables {Q̃[K | ĤRs]}s is a martingale with respect to ({ĤRs}s, Q̃),

it converges to a non-negative limit as s → ∞. Thus, the LHS of the above inequality goes

to zero Q̃-a.s. Let

ΠA,Id =

[
0 β

1 (1− β)

]
, and

Ẽ[σ̃A(hAs) | K, ĥRs]− Ẽ[σ̃A(hAs) | ĥRs] =

(
Ẽ[σ̃TA(hAs) | K, ĥRs]− Ẽ[σ̃TA(hAs) | ĥRs]
Ẽ[σ̃UA(hAs) | K, ĥRs]− Ẽ[σ̃UA(hAs) | ĥRs]

)
.

to rewrite the RHS as

Q̃[K | ĤRs]

∥∥∥∥ΠA,Id ·
(
Ẽ[σ̃A(hAs) | K, ĥRs]− Ẽ[σ̃A(hAs) | ĥRs]

)∥∥∥∥.
As there exists a strictly positive constant x such that∥∥∥∥ΠA,Id ·

(
Ẽ[σ̃A(hAs) | K, ĥRs]− Ẽ[σ̃A(hAs) | ĥRs]

)∥∥∥∥
≥ x

∥∥∥∥(Ẽ[σ̃A(hAs) | K, ĥRs]− Ẽ[σ̃A(hAs) | ĥRs]
)∥∥∥∥

we get

lim
s→∞

Q̃[K | ĤRs]

∥∥∥∥Ẽ[σ̃A(hAs) | K, ĥRs]− Ẽ[σ̃A(hAs) | ĥRs]
∥∥∥∥ = 0

Q̃-a.s on K, where ϕ(ĤRs, K) is the smallest σ-algebra containing the σ-algebra ĤRs and

event K. Since, Q̃[K | ĤR∞](ω) ≥ Q̃[K | ĤRs](ω) > 0 for all s > t for Q̃-almost all ω ∈ K,

lim
s→∞

∥∥∥∥Ẽ[σ̃As | ϕ(ĤRs, K)]− Ẽ[σ̃As | ĤRs]

∥∥∥∥ = 0

Q̃-a.s on K. Since this is true for all K ∈ HAt, we obtain

lim
s→∞

∥∥∥∥Ẽ[σ̃As | ϕ(ĤRs,HAt)]− Ẽ[σ̃As | ĤRs]

∥∥∥∥ = 0
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Q̃− a.s., proving the desired result for τ = 0.

The agent’s beliefs about her own future behavior – revisited

The next result establishes that for any given α-Nash equilibrium with α > 0, there exists a

time period t̂α such that in any history following that period, the agent expects the strategic

regulator to be diligent (i.e., choose D) with a high probability.

In what follows, we restrict attention to histories in which the agent chooses U and by

abusing notation denote the resulting filtration by HAt.

Note that the reputation of the regulator does not change if the realization of the agent’s

completely mixed strategy is T in a given α-Nash equilibrium with α > 0. Moreover, the agent

plays U with at least α probability in any given private history of the agent. Thus, if there

exists an event (denoted by ω ∈ F as in Lemma 10) such that the strategic regulator plays

lazy L with some strictly positive probability in every continuation game after any period t,

then considering histories in which the agent plays U (on account of being constrained by

α-Nash concerns) along with R’s identification condition, Remark 2, empower us to employ

the merging argument of Cripps, Mailath, and Samuelson (2007). In these histories, in which

the strategic regulator’s behavior does not converge to playing D with a high probability, his

true type is going to be revealed to the agent in the long run.41 But, such histories would be

in contradiction with (21) of Lemma 11. And this makes us obtain the following:

Lemma 13 Suppose that (21) given in Lemma 11 is satisfied for all ω ∈ F for a given α-

Nash equilibrium (σ̃A, σ̃R) with α > 0 arbitrarily small. Then, there exists t̂α such that the

following holds for some ν > 0,

Q̃
(

sup
t′>t
‖σ̂R − Ẽ[σ̃Rt′ | HAt′ ]‖ < ν | HAt

)
> 1− ν, ∀t ≥ t̂α. (23)

The proof of this result, sketched above, employs the same arguments used for purposes

of identification as in the proof of Lemma 12 in line with the merging argument of Cripps,

Mailath, and Samuelson (2007), and hence, is omitted.

By Lemma 10, for any given α-Nash equilibrium (σ̃A, σ̃R) with α > 0 there is a time

t̄α after which the agent assigns very high probability to the event that all her continuation

41Note that the agent uses the information gathered along her private history while updating her beliefs
about the regulator’s type. The agent’s posterior belief at time t (that the regulator is tough) is given by the
HAt - measurable random variable γt ≡ Q(tough | HAt) : Ω → [0, 1]. At any equilibrium, γt is a bounded
martingale with respect to {HAt}t and measure Q. Therefore, γt converges Q-almost surely to a random
variable γ∞. Since Q̃ is absolutely continuous with respect to Q, any statement that holds Q-almost surely
also holds Q̃ - almost surely. Thus, γt also converges to Q̃ - almost surely to a random variable γ∞.
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strategies from then on are best replies to the commitment strategy of the regulator (given

that the conditions of the lemma are met). And thus, by Lemmas 11 and 13, the agent must be

believing that she is going to see the diligent behavior D with a high probability from then on

in every continuation game. Lemma 12 states that these beliefs of the agent about her future

behavior will eventually be known by the regulator (even if he cannot observe the agent’s

private history) given that he has indeed been playing diligently with a high probability (as

expected by the agent).

The agent’s beliefs about the regulator’s future behavior – revisited

To prove Theorem 3 with a contradiction, we suppose that there exists A ∈ Ω with Q̃(A) > 0

such that for all ω ∈ A, limt→∞ ‖σ̂A−Ẽ[σ̃At | HAt]‖ = α given an α-Nash equilibrium (σ̃A, σ̃R)

with α > 0 but arbitrarily small. Then, by Lemma 10, there exists F ⊂ A with Q̃(F) > 0

such that, there exists t̄α for which the agent assigns very high probability to the event that

all her continuation strategies from then on are best replies to the commitment strategy of the

regulator. For this to be optimal for the agent, Lemmas 11 and 13 establish that the agent

believes that the strategic regulator is going to be diligent from t ≥ max{t̄α, t̂α} on in every

continuation game with a very high probability on F . Lemma 12 states that these beliefs of

the agent about her future behavior will eventually be known to the strategic regulator who is

indeed diligent with a high probability (as expected by the agent). But, if the strategic type

of the regulator eventually expects the agent to always give a best reply to the commitment

strategy of the regulator in every continuation game, then the regulator would like to deviate

from the commitment strategy D as it is noncredible, i.e., not a best response to the best

response of the agent to the commitment strategy. Now, there seems to be a contradiction with

agent’s beliefs about the strategic regulator’s behavior (Lemma 13) on F and the regulator’s

behavior on a set G (to be explained below) where the regulator expects to see the agent give

a best response to the commitment strategy D and is expected to play D. But, one needs to

establish that G is a subset of F and also measurable for the agent. Instead, following Cripps,

Mailath, and Samuelson (2007), we show that G is close to a HAs - measurable set on which

the agent believes that all her future behavior is going to be a best response (restricted by α)

to the commitment strategy of the regulator.

Lemma 14 Let (σ̃A, σ̃R) be any given α-Nash equilibrium with α > 0 and sufficiently small

and suppose that F is the positive probability set of events stated in Lemmas 10 and 11; and

ν > 0 be the constant in Lemma 13. For any ξ > α (as in Lemma 10 given α and F) and

number of periods τ , there exists an event G and a time T (ξ, τ) such that for all s > T (ξ, τ),
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there exists Cs ∈ HAs and φ > 0 with

‖σ̂R − Ẽ[σ̃Rs | HAs]‖ < ν, Q̃− a.s. on Cs (24)

G ∪ F ⊂ Cs and Q̃(G) > Q̃(Cs)− φQ̃(F), (25)

and, on G, for any s′ = {s, s+ 1, ..., s+ τ}

Ẽ[σ̂As′ | ĤRs] > 1− 2
√
ξ. (26)

Proof. The proof uses arguments in Lemma 12 and modified version of Lemma 4 of Cripps,

Mailath, and Samuelson (2007).

Fix τ > 0. Take ξ > α let t̄α denote the threshold period stated in Lemma 10 for this ξ and

notice that the resulting set of events F is such that Q̃(F) tends to one as t ≥ t̄α increases.

Thus, there exists x < 1/5 such that ξ ∈ (α, (x Q̃(F))2). Regulator’s minimum estimate on

the probability of truthfulness over periods s, ..., s+ τ when his private history indicates ĤRs

can be expressed as fs ≡ mins≤s′≤s+τ Ẽ[σ̃As′(T ) | ĤRs] where T denotes the truthful action.

Note that fs > 1− 2
√
ξ is sufficient to show (26). The first step is to find a lower bound for

fs. For any t ≤ s, the triangle inequality implies

min
s≤s′≤s+τ

Ẽ[σ̃As′(T ) | ϕ(ĤRs,HAt)]− kts ≤ fs ≤ 1

where kts ≡ maxs≤s′≤s+τ
∣∣Ẽ[σ̃As′(T ) | ϕ(ĤRs,HAt)] − Ẽ[σ̃As′(T ) | ĤRs]

∣∣ for t ≤ s. By Lemma

12, lims→∞ k
t
s = 0, Q̃ - a.s. Let G0

t ≡ {ω : σ̃As(hAs) = 1− α, ∀s ≥ t}. Then,

fs ≥ Q̃
(
G0
t | ϕ(ĤRs,HAt)

)
− kts.

The sequence of random variables {Q̃(G0
t | ϕ(ĤRs,HAt))}s is a martingale with respect to the

filtration {ĤRs}, so it converges almost surely to gt ≡ Q̃(G0
t | ϕ(ĤR∞,HAt)). Hence,

1 ≥ fs ≥ gt − kts − lts (27)

where lts ≡ |gt − Q̃(G0
t | ϕ(ĤRs,HAt))| and lims→∞ l

t
s = 0, Q̃ - a.s.

The second step involves finding the sets Cs and an intermediate set (to be denoted by

F∗) that is used to determine the set G. First, for any t ≥ max{t̄α, t̂α} ≡ tα (the critical

periods from Lemmas 10 and 11 and Lemma 13), using condition (19) of Lemma 10 implying
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condition (23) of Lemma 13, we define the associated events

Kt ≡ {ω : Q̃(G0
t | HAt) > 1− ξ, ‖σ̂R − Ẽ[σ̃Rt | HAt]‖ < ν} ∈ HAt.

Let F st ≡
⋂s
τ=tKτ and Ft ≡

⋂∞
τ=tKτ . Note that lim inf Kt ≡

⋃∞
t=tα

⋂∞
τ=tKτ =

⋃∞
t=tα
Ft.

By Lemmas 10, 11, and 13, F ⊂ Kt for all t ≥ tα; thus, F ⊂ F st , F ⊂ Ft and F ⊂ lim inf Kt.
Also define Nt ≡ {ω : gt ≥ 1 −

√
ξ}, the measure of events that the strategic regulator

expects the agent to play T with probability 1− α exceeds 1−
√
ξ. Set Cs ≡ F s

tα ∈ HAt and

define an intermediate set F∗ by F∗ ≡ Ftα ∩Ntα . Since Cs ⊂ Ks, (24) holds (by Lemmas 10 -

13). And, as F∗ ∪F ⊂ Cs, the first part of (25) holds with F∗ in the role of G. By definition,

Q̃(Cs)− Q̃(F∗) = Q̃(Cs ∩ (Ftα ∩Ntα)C) = Q̃
(
(Cs ∩ (Ftα)C) ∪ (Cs ∩ (Ntα)C)

)
where the complement of a set X is denoted by (X)C. Since the event Cs ∩ (Ntα)C is a subset

of Ktα ∩ (Ntα)C, we have

Q̃(Cs)− Q̃(F∗) ≤ Q̃(Cs ∩ (Ftα)C) + Q̃(Ktα ∩ (Ntα)C). (28)

Next, we find the upper bounds for the two terms on the right hand side of (28).

First, note that Q̃(Cs ∩ (Ftα)C) = Q̃(F stα)− Q̃(Ftα) by definition. Since lims→∞ Q̃(F stα) =

Q̃(Ftα), there exists T ′ ≥ tα such that

Q̃(Cs ∩ (Ftα)C) <
√
ξ ∀s ≥ T ′. (29)

Also, as Q̃(G0
t | Kt) > 1 − ξ and Kt ∈ HAt, iterated expectations imply that 1 − ξ < Q̃(G0

t |
Kt) = Ẽ[gt | Kt]. Since gt ≤ 1, one gets

1− ξ < Ẽ[gt | Kt] ≤ (1−
√
ξ) Q̃((Nt)C | Kt) + Q̃(Nt | Kt)

= 1−
√
ξ Q̃((Nt)C | Kt).

This implies that Q̃((Nt)C | Kt) <
√
ξ. By taking t = tα, we get

Q̃(Ktα ∩ (Ntα)C) <
√
ξ. (30)

Using (29) and (30) in (28), Q̃(Cs)− Q̃(F∗) < 2
√
ξ for all s ≥ T ′. Given that F ⊂ Cs and

the bound on ξ, Q̃(F∗) > Q̃(F)− 2
√
ξ > (1− 2x)Q̃(F) > 0.
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Let T (ξ, τ) ≡ max{T ′, T ′′}. Since G ∪ F ⊂ F∗ ∪ F ⊂ Cs, the first part of (25) holds.

Now, we use the two steps to obtain G and the bound on fs. As Q̃(F∗) > 0 and ktαs +

ltαs converges almost surely to zero; by Egorov’s Theorem, there exists G ⊂ F∗ such that

Q̃(F∗ \ G) <
√
ξ and T ′′ > tα such that ktαs + ltαs <

√
ξ on G for all s ≥ T ′′. Therefore,

Q̃(G) > Q̃(F∗) −
√
ξ and as Q̃(F∗) > Q̃(F) − 2

√
ξ we see that Q̃(G) > Q̃(F) − 3

√
ξ and as

ξ < (xQ̃(F))2 we obtain Q̃(G) > (1− 3x)Q̃(F). Now, as there is φ such that φQ̃(F) > Q̃(F∗)
with φ > 1 − 2x we have that Q̃(Cs) − φQ̃(F) < Q̃(Cs) − Q̃(F∗) < 2

√
ξ < 2xQ̃(F) and we

wish to obtain that 2xQ̃(F) < (1 − 3x)Q̃(F). Thus, because that x ∈ (0, 1/5) we see that

Q̃(G) > (1 − 3x)Q̃(F) and Q̃(Cs) − φQ̃(F) < 2xQ̃(F) is satisfied. Thus, the second part of

(25) holds for all s > T (ξ, τ). And, notice that gtα ≥ 1−
√
ξ on G since G ⊂ Ntα . Thus, on G,

fs > 1− 2
√
ξ for all s > T (ζ, τ) by (27). This with the bound on ξ gives (26) and completes

the proof.

Next, we will establish that on the set G the strategic type of the regulator will not find

it optimal to play the commitment strategy. This will make the agent’s expectation of the

strategic regulator’s action move away from the commitment strategy on F through the rela-

tions established between the sets G, F and Cs in Lemma 14. And, this will contradict with

the expectations on HAs - measurable set F stated in Lemmas 10, 11, and 13.

The proof of Theorem 3

Let (ςR, ςA) be the stage game strategy profile that puts probability one on the commitment

action D and the best response to the commitment action T . Note that when the agent uses

any strategy that sufficiently close to ςA, say at most v̄ distant to ςA, playing ςR is suboptimal

by at least µ > 0. Then, for a given discount factor δ, there exists a sufficiently large τ such

that the loss of µ for one period is larger than any potential gain hold off on for τ periods.

Proof of Theorem 3. Suppose that there exists A ∈ Ω with Q̃(A) > 0 such that for all

ω ∈ A, limt→∞ ‖σ̂A− Ẽ[σ̃At | HAt]‖ = α for the given α-Nash equilibrium (σ̃A, σ̃R) with α > 0

and α sufficiently small. Then, fix F from Lemma 10 with ξ > α and t∗α = max{t̄α, t̂α, T (ξ, τ)}
(as specified in Lemmas 10 – 14). For ξ < v̄ and τ , let G and Cs be the events described in

Lemma 14 for s > T (ξ, τ). Consider the period s > T (ξ, τ) at some state in G. By (26), the

regulator, who would be playing D, expects to see a strategy within 2
√
ξ of ςA for the next τ

periods where ξ < v̄ (by choosing ξ sufficiently small which is feasible as α > 0 is sufficiently

small, one can ensure that 2
√
ξ < v̄). Playing ςR is suboptimal in period s since the most he

can gain from playing D is less than playing a best response to ςA for τ periods. Thus, on G,

the strategic type of the regulator would like to play D with zero probability, which essentially

is a contradiction. And, to get a contradiction in agent’s beliefs, we calculate a lower bound
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on the difference between ςR and the agent’s beliefs about the strategic type playing action D

in period s, Ẽ[σ̃Rs(D) | HAs] on the events in Cs (that contains F where the agent is truthful

after t > t∗α):

Ẽ
[∣∣ςR − Ẽ[σ̃Rs(D) | HAs]

∣∣1Cs] ≥ Ẽ
[(
ςR − Ẽ[σ̃Rs(D) | HAs]

)
1Cs
]

≥ Q̃(Cs)− Ẽ[σ̃Rs(D)1Cs ]

≥ Q̃(Cs)−
(
Q̃(Cs)− Q̃(G)

)
≥ Q̃(Cs)− φQ̃(F)

≥ (1− φ)Q̃(F).

The first inequality is just removing the absolute values. The second inequality applies

ςR(D) = 1 and uses the HAs - measurability of Cs. The third is the result of σ̃Rs(D) = 0

on G and σ̃Rs(D) ≤ 1 in the rest of the set with G ⊂ Cs ∈ HAs. The third and fourth fol-

lows from (25) in Lemma 14. Finally, the last one is by F ⊂ Cs. Since Ẽ
[∣∣ςR − Ẽ[σ̃Rs(D) |

HAs]
∣∣1Cs] > (1−φ)Q̃(F) for all s > t∗α and, by Lemma 13, on Cs, Ẽ[|ςR−Ẽ[σ̃Rs | HAs]|1Cs ] < ν,

we obtain the desired contradiction and hence concluding the proof.
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