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Abstract 

Microphthalmia, coloboma and cataract are part of a spectrum of developmental eye 

disorders in humans affecting ~12 per 100,000 live births. Currently, variants in over 100 

genes are known to underlie these conditions. However, at least 40% of affected individuals 

remain without a clinical genetic diagnosis, suggesting variants in additional genes may be 

responsible. Calpain 15 (CAPN15) is an intracellular cysteine protease belonging to the non-

classical Small Optic Lobe (SOL) family of calpains, an important class of developmental 

proteins, as yet uncharacterised in vertebrates. We identified five individuals with 

microphthalmia and/or coloboma from four independent families carrying homozygous or 

compound heterozygous predicted damaging variants in CAPN15. Several individuals had 

additional phenotypes including growth deficits, developmental delay and hearing loss. We 

generated Capn15 knockout mice that exhibited similar severe developmental eye defects, 

including anophthalmia, microphthalmia, and cataract, and diminished growth. We 

demonstrate widespread Capn15 expression throughout the brain and central nervous system, 
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strongest during early development, and decreasing postnatally. Together, these findings 

demonstrate a critical role of CAPN15 in vertebrate developmental eye disorders, and may 

signify a new developmental pathway. 

Introduction 

Developmental eye anomalies, including anophthalmia (absent eye), microphthalmia (small 

eye) and coloboma (disruption of the optic fissure closure), collectively known as AMC, are a 

genetically heterogeneous group of disorders affecting between 11.9 and 30 per 100,000 live 

births(1). Single gene alterations can underlie these conditions, the most frequent being in 

SOX2(2). To date, ~100 genes have been consistently associated with these phenotypes and 

are included in standard structural eye disorders diagnostic panels 

(https://panelapp.genomicsengland.co.uk/panels/509/). Data for congenital cataracts are 

similar, with an estimated prevalence of 1.91 to 4.24 per 10,000 children (3) and nearly 100 

genes considered diagnostic (https://panelapp.genomicsengland.co.uk/panels/230/). There is a 

degree of genetic overlap in the underlying causes of AMC and cataract, as seen with variants 

in GJA8 (4). However, at least 40% of individuals with AMC (depending on phenotype) 

remain without a genetic diagnosis (2, 5), indicating that additional unidentified genetic 

factors contribute to these conditions.  

Calpains are intracellular cysteine proteases(6) with important roles in development. There 

are four conserved families: Classical, PalB, Transformer (Tra), and Small Optic Lobe 

(SOL), with ‘Classical’ being the best characterized. All calpain isoforms have a conserved 

catalytic domain and each family is characterized by unique domains: a C-terminal penta-EF 
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hand domain in Classical calpains; a C-terminal C2 domain in Tra calpains; an N-terminal 

MIT domain and an additional C-terminal C2-like domain in PalB calpains, and an N-

terminal zinc finger domain that binds polyubiquitin(7) and a C-terminal SOL homology 

domain (SOLH) in SOL calpains(8, 9). 

Embryonic mice with a homozygous disruption of the murine Classical calpain small subunit 

gene Capn4 (causing disruption of the activities of Classical calpains Capn1 and Capn2) die 

midgestation, displaying defects in the cardiovascular system, hemorrhage, and accumulation 

of erythroid progenitors(10). Furthermore, pre-implantation embryonic lethality between the 

morula and blastocyst stage is observed in mice with a homozygous Capn2 deletion (11). 

Tra-3 (Transformer 3) calpain was first discovered in the nematode C. elegans, as a sex 

determination gene(12). Later, studies suggested that Tra-3 cleaves Tra-2, which then 

interacts with transcription factor Tra-1 both directly and indirectly to promote female 

development(13, 14). In addition, C. elegans with a single nucleotide polymorphism in Tra-3 

displayed a smaller body size when animals were grown at low temperature(15). In humans, 

variants in the orthologue of the Tra calpain (CAPN5) that hyperactivate its protease activity 

are associated with inflammatory vitreoretinopathy, hearing loss and developmental delay 

(16).  

An atypical calpain, CAPN15 (also known as SOLH or SOL calpain) is located on 

chromosome 16p13.3(17), a region previously implicated in inherited cataracts with 

microphthalmia(18). It was first characterized in the fruit fly Drosophila(19, 20), where loss 

of SOL calpain leads to a 50% reduction in the volume of the optic lobes due to degeneration 

and absence of certain classes of columnar neurons(20). In Aplysia, the orthologue of 
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CAPN15 is required for the induction of long-term plasticity implicated in non-associative 

memory, but not the long-term plasticity implicated in associative memory (21, 22).  

Using whole exome sequencing (WES) we identified five individuals from four independent 

families with likely pathogenic homozygous or compound heterozygous variants in CAPN15, 

displaying microphthalmia and/or coloboma plus additional phenotypes including growth 

delay. To characterize the role of CAPN15 in vertebrates, we generated a Capn15 knockout 

mouse. Capn15(-/-) mice displayed developmental eye anomalies including anophthalmia,

microphthalmia and cataract, as well as reduced body weight similar to our affected 

individuals. Our data shows that CAPN15 plays a critical role in eye development and growth 

in vertebrates. It is the first intracellular protease linked to AMC, indicating a new pathway 

and is an important gene to include on diagnostic gene panels for developmental eye 

disorders and cataract. 

Results  

Identification of five individuals with CAPN15 mutations and eye anomalies 

WES of 55 individuals with developmental eye disorders from a UK cohort (Supplemental 

Methods) identified one individual with unilateral microphthalmia and bilateral coloboma 

with a previously unreported homozygous missense variant in CAPN15 exon 13 

(NM_005632.2:c.2905G>A; NP_005623.1:p.(Gly969Ser); chr16:602863 [hg19]) (Individual 

1) (Figure 1A). Subsequently, four additional individuals with AMC spectrum disorders and

biallelic CAPN15 variants from three independent families were identified by WES. 

Individual 2, recruited to the Deciphering Developmental Disorders (DDD) project, was 

identified with compound heterozygous CAPN15 variants. The first variant was a paternally 

inherited missense variant in exon 8 (NM_005632:c.2159C>T; NP_005623.1:p.(Ser720Phe); 
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chr16:601394 [hg19]), absent from the gnomAD database 

(http://gnomad.broadinstitute.org/)(23). The second variant was a rare maternally inherited 

missense variant in exon 10 (rs762523863; NM_005632:c.2398C>T; 

NP_005623.1:p.(Arg800Trp); gnomAD minor allele frequency = 0.00001986) (chr16:602103 

[hg19]) (Figure 1B). Individual 3 carries a homozygous missense variant in CAPN15 exon 13 

(NM_005632.3:c.3083G>A; p.(Arg1028Lys); chr16: 603041 [hg19]) absent from the 

gnomAD database(23) (Figure 1C). Finally, individuals 4 and 5, siblings and offspring of 

distantly related parents, were ascertained through a Canadian cohort of 51 patients 

presenting with anomalies, with or without neurodevelopmental disorders (24). They harbour 

a homozygous missense variant in CAPN15 exon 6 (NM_005632.3:c.1838C>T; 

NP_005623.1:p.(Ser613Leu); chr16:599467 [hg19]) (Figure 1D). This variant is extremely 

rare, reported in only 3 individuals on the gnomAD database (minor allele frequency 

0.00001421), with no individuals with homozygosity for this variant observed. All five 

variants are predicted damaging by SIFT(25) and PolyPhen-2(26) and were validated by 

Sanger sequencing. In each case, the identified variants were inherited from asymptomatic 

heterozygous parents with no family history of eye anomalies. The siblings of Individual 1 

were found to be asymptomatic heterozygous carriers. No genotyping data is available for the 

unaffected sibling of Individuals 4 and 5. The segregation of disease with biallelic CAPN15 

variants in these five families confirms a recessive pattern of inheritance. No other likely 

pathogenic variants in known AMC genes were identified in these individuals by WES. 

Detailed phenotypic descriptions of each individual are provided in Table 1, Figure 2 and the 

Supplemental Results. All five affected individuals presented with AMC spectrum disorders; 

two individuals (1 and 2) had microphthalmia, four had coloboma (1, 3, 4, and 5), and 

Individual 1 also had a unilateral lens opacity (cataract). Interestingly, some individuals 

http://gnomad.broadinstitute.org/
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showed additional delay in growth and development. Three individuals showed delayed 

growth, including short stature (1, 2, and 4), low weight (1 and 2), reduced head 

circumference (1 and 2) and clinical microcephaly affecting Individual 4. Furthermore, 

Individuals 2, 4 and 5 presented with developmental delay, in addition to cognitive delay (2) 

and autism (2 and 5). Finally, three individuals (2, 4 and 5) were diagnosed with hearing loss 

and both Individuals 2 and 4 had simple external ear features. It is also interesting to note the 

presence of multiple miscarriages in Family 1.  

As the c.2905G>A (Individual 1) and c.3083G>A (Individual 3) variants affect the first and 

last nucleotides of CAPN15 exon 13, respectively, we investigated their impact on splicing. 

For c.2905G>A we generated cDNA from blood samples from Individual 1 and their parents. 

However, PCR and Sanger sequencing across exons 11-14 revealed no alteration in splicing 

(data available on request). Similarly, for Individual 3 we observed no impact on splicing 

after performing RTPCR on RNA extracted from LCLs derived from this patient (data 

available on request). 

Within CAPN15, all five variants are located within the C-terminal portion of the protein and 

affect amino acids conserved across multiple vertebrate species (Figure 3). However, only 

p.(Ser613Leu) (Individuals 4 and 5) and p.(Ser720Phe) (Individual 2) are located within an 

annotated region of the protein, both lying within the Calpain catalytic domain. As no 3D 

structure for CAPN15 is available, we used I-TASSER (27-29) to generate a predicted 

structure. Site Directed Mutator (SDM; http://marid.bioc.cam.ac.uk/sdm2/prediction) was 

applied to this model to predict the impact of the variants on CAPN15 stability (Table 2). 

This indicated that p.(Gly969Ser) and p.(Arg1028Lys) may decrease protein stability (G = 

-3.27 and -1.15, respectively), whereas p.(Ser613Leu) is predicted to increase stability (G

http://marid.bioc.cam.ac.uk/sdm2/prediction
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= 1.85). Interestingly, both of the mutations predicted to decrease CAPN15 stability are in the 

highly conserved SOLH domain that is present only in SOL calpains and whose structure and 

function is unknown. 

Capn15(-/-) mice have anophthalmia, microphthalmia and cataract

The protein encoded by the human CAPN15 gene (NP_005623.1) has 87.4% identity/90.9% 

similarity to the mouse orthologue NP_001334263 using EMBOSS Needle (30). Mouse 

embryonic stem cells with a lacZ-Neo cassette inserted into the Capn15 locus were obtained 

from the International Mouse Phenotyping Consortium (IMPC)(31) and used to generate 

Capn15 knockout mice (Supplemental Figure 1A). Disruption of Capn15 was confirmed by 

Western blotting of brain homogenates using an antibody raised against the C-terminal of the 

protein (Supplemental Figure 1B).   

In a cross of Capn15 heterozygous mice, the incidence of Capn15(-/-) pups was 12%,

significantly lower than the expected 25% (12%, p=1.28e-5, Chi Square test; WT n=52,

Capn15+/- n=155, Capn15-/- n=29). This indicates that homozygous loss of the gene results in

decreased viability, and is of further interest given the presence of multiple miscarriages in 

Family 1. Furthermore, Capn15(-/-) mice that were successfully weaned weighed 11% (+/-3%

SEM) less than their littermate WT or heterozygous mice (p=0.003 and p=0.0006, 

respectively. Student’s t-test; WT n=45, Capn15+/- n=71, Capn15-/- n=18), recapitulating the

delayed growth and development in several of our affected individuals (Figure 4A). Most 

significantly, homozygous Capn15 KO mice displayed a range of developmental eye 

disorders overlapping those observed in the 5 affected individuals with biallelic CAPN15 

variants. These included anophthalmia (18%), microphthalmia (26%) and cataract (31%) 

(Figure 4B-E). Less than 6% of heterozygous mice overall displayed developmental eye 
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disorders (anophthalmia 1%, microphthalmia 2%, and cataract in 2%). No significant 

difference was observed between the left and right eyes of adult Capn15 KO mice (>12 

weeks of age) (p=0.15) and there was no preference for bilateral or unilateral presentation. 

Therefore, after pooling left and right eyes, the presence of these phenotypes was 

significantly increased in Capn15 KO mice compared to heterozygous or WT mice 

(***p<0.0001; WT n=30, Capn15+/- n=160, Capn15-/- n=90 including offspring from parents

who were both Capn15-/-; Figure 4F). This difference in eye phenotype was present in mice at

6 and 12 weeks of age, suggesting that these anomalies were the result of aberrant 

development.   

Capn15 is highly expressed in the brain and eye 

To investigate the role of Capn15 in the brain during development, lacZ expression was 

examined in Capn15(lacZ-Neo) heterozygous mice. X-gal staining of sagittal sections of E12

embryos showed that Capn15 was primarily expressed in the outer layer of the central 

nervous system, in particular the mantle zone of the pallium and subpallium (forebrain), and 

the mantle zone of the rhombomere (hindbrain) (Figure 5A). At E18 Capn15 was expressed 

widely in the nervous system with high levels in the subventricular zone, immediately next to 

the ventricular zone. Expression was strongest in the deep cortical layer of the cerebral 

cortex, and neuroepithelium layer in the hippocampus, but not the pyramidal layer. By P3, 

Capn15 was ubiquitously expressed in the brain from the olfactory bulb to the cerebellum 

and also within the retina, particularly in the ganglion cell layer (Figure 5C-D). To further 

explore the pattern of expression over time, Capn15 protein expression in the rat brain was 

examined over time using immunoblotting. Here, expression was found to be highest during 

embryonic development (E14-E18 brains), decreasing significantly after birth (P0-adult) 

(Figure 5E, F).  
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Discussion 

Our data demonstrate the importance of the protease CAPN15 in mammalian eye and brain 

development. We identified likely pathogenic recessively inherited variants in five 

individuals with AMC and/or cataract and additional phenotypes including delayed growth 

and development. These phenotypes were recapitulated in a mouse model, with further data 

supporting expression of the gene during brain development.   

Our cases showed microphthalmia and/or coloboma, while 18% of knockout mice had the 

more severe anophthalmia. The milder phenotypic range displayed in the humans may be 

explained by all five variants being missense. These variants could impact protein function by 

destabilising protein structure, affecting the calpain catalytic activity, or its regulation by the 

SOLH domain. This is likely to be less damaging to overall function than the total loss of the 

gene in the mouse knockout. This may also account for the presence of AMC phenotypes at 

low frequency in heterozygous mice, which were not detected in humans heterozygous for 

the missense variants. Alternatively, it may reflect the small sample group of humans or 

interspecies variation. However, given the lack of a functional assay for CAPN15, it is 

difficult to determine whether the variability between mouse and human phenotypes and/or 

amongst the individuals carrying distinct missense changes is due to different effects of these 

variants on the protein. The penetrance of the eye phenotype in the mouse was also variable, 

even with a complete knockout, suggesting a complex relationship between the loss of 

CAPN15 and the eye phenotype. Therefore, screening of additional individuals with AMC 

would help to determine both the full phenotypic range associated with variants in this gene, 

as well as potential genotype-phenotype correlations. Furthermore, only Individual 1 had 

cataract, while 31% of mice had this phenotype. This may reflect ascertainment bias, as none 
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of the participants or cohorts included in this study was recruited on the basis of this 

phenotype. However, recent reports show that variants in GJA8, a gene associated with 

isolated cataract, are also a significant cause of microphthalmia, accounting for over 1% of 

cases of AMC in large cohorts (4). 

Developmental delay and hearing loss were present in three individuals with CAPN15 

variants. Our data shows strong embryonic expression of Capn15 in the brain, suggesting that 

it is important in neurodevelopment. Therefore, the CAPN15 variants may underlie these 

phenotypes as well as eye anomalies. Similarly, growth delay was observed in three 

individuals and the Capn15-/- mice also exhibited a significant growth deficit.

There is little known about the function of the SOL calpain family, of which CAPN15 is the 

sole human member. This family diverged from other calpain families before the origin of 

metazoans and is conserved in all metazoans, suggesting a fundamental role for the protein 

(9). Two of the identified variants are in conserved residues in the calpain catalytic domain 

present in all members of the calpain family, while a third variant lies adjacent to it. 

However, while the N-terminal of the SOL calpain has been shown to bind to poly-

ubiquitin(7), there have been no functional studies on the calpain or SOLH domain of this 

family of genes. In Drosophila, the large loss of neurons in the optic lobe was thought to be 

due to degeneration(20), but a role for Capn15 in early differentiation during development 

was not excluded. In Aplysia, SOL calpain is important for the induction of plasticity 

associated with non-associative learning(21), perhaps due to cleavage of Protein Kinase Cs 

(PKCs) into persistently active Protein Kinase Ms (PKMs)(7, 32). Further investigation of 

how Capn15 performs these functions may also shed light on its role during eye 

development. Furthermore, as other calpains function to regulate transcription through 
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regulated cleavage of transcription factors (33), and since many genes underlying ocular 

anomalies are transcription factors(2), investigation of the role CAPN15 plays in early 

developmental transcriptional pathways may also prove a valuable avenue of research.  

Together, our data meet criteria for inclusion of CAPN15 in clinical genetic diagnostic testing 

for AMC according to both the Clinical Genome Resource (ClinGen) 

(www.clinicalgenome.org)(34, 35) and Genomics England PanelApp 

(https://panelapp.genomicsengland.co.uk/#!Guidelines). Therefore, these data will contribute 

to improved care for AMC patients and their families. 

Conclusions 

We demonstrate for the first time the importance of CAPN15 in mammalian eye 

development, identifying likely pathogenic variants in five individuals with AMC from four 

families, supported by a mouse KO model and embryonic expression studies. These findings 

translate to clinical benefit by adding a new gene to clinical diagnostic testing, and potentially 

a new pathway in the increasingly complex network involved in human eye development.   

http://www.clinicalgenome.org/
https://panelapp.genomicsengland.co.uk/#!Guidelines
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Materials and Methods  

Ethics approval and consent to participate 

The UK cohort of 316 individuals with ocular anomalies was recruited as part of a national 

‘Genetics of Eye and Brain anomalies’ study (REC 04/Q0104/129). Informed consent was 

obtained according to the tenets of the Declaration of Helsinki. Individual 2 was recruited 

into the Deciphering Developmental Disorders (DDD) Study, which has UK Research Ethics 

Committee approval (10/H0305/83, granted by the Cambridge South REC, and GEN/284/12 

granted by the Republic of Ireland REC). For individual 3, informed written consent was 

obtained from all participants under an IRB approved protocol (KFSHRC RAC# 2070023).  

Individuals 4 and 5 are members of a Canadian study approved by the institutional ethics 

review board of Université de Sherbrooke (project 12–167). All participants or their legal 

guardians provided written consent. All studies on mice were approved by the Montreal 

Neurological Institute/McGill University Animal care and use committee protocol 2009–

5784 

Capn15 antibody 

Polyclonal antibodies were raised in rabbits against the carboxy terminal of Capn15 using 

the following epitope: CDVAGLHGPRPL. A cysteine residue was added to the N-terminal 

of the peptide to enhance coupling. Peptides were coupled to KLH-maleimide and 

SulfoLink coupling resin (Thermo Fisher Scientific) according to manufacturer’s 

instruction. After conjugation to KLH-maleimide, rabbits were injected and after four 

boosts the final serum was affinity purified on SulfoLink columns as previously 

described(36). 

Generation of a Capn15 KO mouse 
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We obtained embryonic stem cells with a lacZ-Neo cassette inserted into the mouse Capn15 

locus from the International Mouse Phenotyping Consortium (IMPC)(31). The strategy used 

by the consortium was to insert a cassette that provides a strong exon entry site coupled with 

a stop codon, with lacZ produced from internal ribosome entry site translation (31, 37). To 

remove this cassette, these mice were bred with mice that contain flippase (FLP) recombinase 

that recognizes a pair of FLP recombinase target (FRT) sequences that flank the genomic 

region containing this cassette leaving lox sites surrounding the calpain catalytic domain 

exons 4-6 (based on NCBI reference sequence NM_001347334.1). These mice were then 

bred against mice expressing germline Cre recombinase to remove the floxed exons and 

generate a KO line (Supplemental Figure 1). 

Dissections 

Adult mice were transcardially perfused with ice-cold phosphate-buffered saline (PBS) 

followed by 4% (wt/vol) ice-cold paraformaldehyde (PFA) in PBS. Brains were post-fixed 

in 4% PFA for 45min at 4oC, rinsed in PBS, and cryoprotected in 30% sucrose/PBS

overnight at 4oC. The following day, brains were embedded in Tissue-PlusTM O.C.T.

compound (Fisher Healthcare) and flash frozen in 2-methylbutane chilled in dry ice. The 

brains were kept at −80°C until further use. 

X-gal staining

Sections of 20μm were incubated overnight at 37°C in solution containing 80 mM 

Na2HPO4, 20 mM NaH2PO4, 2 mM MgSO4, 5 mM K₃[Fe(CN)₆], 5 mM K4[Fe(CN)₆], 0.2% 

NP-40, 0.1% sodium deoxycholate, and 1.5 mg/ml X-gal. Sections were rinsed in PBS, 

washed in ethanol (50% for 1min, 70% for 1min, 95% for 1min and 100% for 2X1min), 

cleared in xylene, and mounted with Permount (Thermo Fisher Scientific). 
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Western blotting 

Embryonic brains were homogenized manually in lysis buffer containing 25 mM Tris-HCl 

(pH 7.4), 150 mM NaCl, 6 mM MgCl2, 2 mM EDTA, 1.25% NP-40, 0.125% SDS, 25 mM 

NaF, 2 mM Na4P2O7, 1 mM dithiothreitol (DTT), 1 mM phenylmethylsulfonyl fluoride 

(PMSF), 20 mg/ml leupeptin, and 4 mg/ml aprotinin. Before loading, 5X sample buffer 

was added to the lysate and samples were incubated at 95oC for 5min. Proteins were

resolved by SDS-PAGE on Bis-Tris gel and transferred to nitrocellulose membrane (Bio-

Rad). The blots were blocked in TBST (TBS + 0.1% Tween) containing 4% skim milk for 

30min at room temperature and then incubated with primary antibodies overnight at 4oC.

After washing 3 times with TBST, the blots were incubated with HRP-conjugated secondary 

antibodies for 1 hour at RT, and washed again 3 times in TBST. The Western Lightning Plus- 

ECL kit (NEL103001EA; PerkinElmer LLC Waltham, MA USA) was used as per 

manufacturer’s instructions to detect protein bands. The primary antibody used was 

homemade rabbit anti-Capn15 antibody (1:1000) raised against the C-terminus of Capn15. 

The secondary antibody was horseradish peroxidase-conjugated goat anti-rabbit secondary 

antibody (1:5000). Antibodies were diluted in Tris buffered saline with Tween containing 4% 

skim milk powder.  

Eye phenotype quantification 

Mice eyes were examined and grouped as follows: seems normal, obvious cataract, small eye 

and no eye. This categorisation was performed for both eyes of each mouse. The analysis was 

performed without the knowledge of the genotype of the mice.  

Quantification of immunoblotting 
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Immunoblots were scanned and imaged using the public domain Image J program developed 

at the U.S. National Institute of Health (https://imagej.nih.gov/ij/). We calibrated our data 

with the uncalibrated optical density feature of NIH image, which transforms the data using 

the formula        , where x is the pixel value (0–254). We used the Ponceau image for 

each gel to normalize the amount of SOL calpain in brains at different ages to the amount of 

SOL calpain in E12-E14 brains run on the same gel. 

Whole Exome Sequencing 

A UK cohort of 316 individuals with ocular anomalies, principally AMC, was recruited as 

part of a national ‘Genetics of Eye and Brain anomalies’ study (REC 04/Q0104/129). 

Informed consent was obtained according to the tenets of the Declaration of Helsinki. 

Patients were screened by indication in known AMC genes. Fifty-five individuals from the 

cohort were screened by whole exome sequencing (WES) as described previously(38, 39). 

Individual 2 was recruited into the Deciphering Developmental Disorders (DDD) Study, 

which has UK Research Ethics Committee approval (10/H0305/83, granted by the Cambridge 

South REC, and GEN/284/12 granted by the Republic of Ireland REC).  

For individual 3, WES was performed as previously described (40).  Sanger sequencing and 

segregation analysis were completed. Informed written consent was obtained from all 

participants under an IRB approved protocol (KFSHRC RAC# 2070023).  

Individuals 4 and 5 are siblings who were identified through whole-exome sequencing of a 

Canadian cohort of 51 patients presenting dysmorphisms with or without neurodevelopmental 

disorders (24). 
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The following primers were used for sequencing: For Individual 1: Forward Primer 

CCATCATCCTGCTCACCGA and Reverse Primer GGCACGCTATCCTGGGTAC; For 

Individual 2 Exon 8: Forward Primer GCAACATGAAGGTGGACGAT and Reverse Primer 

AGCTGCCGTTCCAGGAGAAA; For Individual 2 Exon 10: Forward Primer 

GGAGGGCTTCCTATTATAGG and Reverse Primer AACACCAGGATGCACAGGTC and 

For Individual 3: Forward Primer GCAGGGGTCCCGAGA and Reverse Primer 

CAGACCGGCGACCTCT. 

cDNA and splicing studies 

Blood samples were collected from Individual 1 and her parents, RNA was extracted using a 

RNeasy Mini kit (Qiagen) and cDNA generated using a high capacity reverse transcriptase 

kit (Applied Biosystems). To examine the impact of the variant on splicing, forward and 

reverse PCR primers were designed mapping to exons 11 and 14, respectively (Forward: 

GTCAAGAAGTTCGTCAGCTG, Reverse: CTGTCCAGTCACTGAGGAAG). 
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Figure Legends 
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Figure 1. Pedigrees of the five Individuals with CAPN15 variants. Chromatograms of 

Sanger sequencing validation of the variants in affected individuals shown. Position of 

variant indicated in red. Note that sequencing for Individual 3 was performed from cDNA. 

(A) Individual 1 (B) Individual 2 (C) Individual 3 (D) Individuals 4 and 5.
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Figure 2. Phenotypes of Individuals 1, 3 and 4. (A) Right iris and chorioretinal coloboma, 

and left mild microphthalmia with an iris and chorioretinal coloboma involving the disc in 

Individual 1. (B, C) Inferonasal chorioretinal coloboma (B) and iris coloboma of the right eye 

(C) in Individual 3. (D) Bilateral iris and chorioretinal coloboma (more prominent in the left

eye), and dysmorphic features including left ptosis, left simple ear, and prominent columella 

in Individual 4. 

Figure 3. Schematic of CAPN15 showing the location of the variants identified in 

Individuals 1-5. Zinc fingers shown in red, the calpain catalytic domain in blue and the 

SOLH domain in green. The conservation of the affected amino acids in human, mouse, 

chicken, Xenopus and zebrafish is indicated. 
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Figure 4. Capn15 KO mice display growth and eye anomalies (A) Mean weights of 

Capn15 KO and Capn15 heterozygous mice after weaning normalized to the mean weight of 

WT mice. Error bars represent SEM. (B-E) Representative photographs of the eye 

phenotypes of Capn15 KO mice; normal (B), anophthalmia (C), microphthalmia (D) and 

cataract (E). (F) Comparison of the percentage of eye anomalies in WT, Capn15 
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heterozygous and Capn15 KO mice at more than 12 weeks of age. ** = p=0.003, *** = 

p=0.0006. 

Figure 5. Capn15 is enriched in rodent brain and eyes during early development. (A-D) 

X-gal staining of sections from E12, E18 and P3 Capn15(lacZ-Neo) heterozygous mice. Scale
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bar is 200μm.  (A) Sagittal section of whole embryo at E12 showing Capn15 expression in 

the mantle zones of the pallium, subpallium, and rhombomere. (B) Coronal section of the 

brain at E18 showing expression in the cerebral cortex, hippocampus. (C) Coronal section of 

the brain at P3 showing generalised expression, including the hippocampus. (D) Sagittal 

section of the eye at P3, highlighting expression in the ganglion cells of the retina. (E) 

Western blots using protein extracts from rat brains at E14, E18, P0, P30 and P≥60 showing 

decreasing Capn15 expression with increasing age. Experiment was performed in triplicate. 

(F) Quantification of Capn15 expression in rat brain. Capn15 expression was normalized to

E12-E14 brains; E12-E14 n=3, E16-E18 n=4, P0-P5 n=4, P30 n=2, and P≥60 n=3. Error bars 

represent SEM. Abbreviations: C (cortex), G (ganglion cell layer), Hi (hippocampus), Hy 

(hypothalamus), MZP (mantle zone of pallium), MZR (mantle zone of rhombomere), MZS 

(mantle zone of subpallium), P (photoreceptor cell layer). 

Table 1: Phenotypes of the five human individuals identified carrying homozygous or 

compound heterozygous CAPN15 variants. Individuals 4 and 5 are siblings. y (years). 

Individual 1 2 3 4 5 

Variant p.(Gly969Ser) p.(Ser720Phe) 

p.(Arg800Trp) 

p.(Arg1028Lys) p.(Ser613Leu) p.(Ser613Leu) 

Eye Unilateral 

microphthalmia, 

bilateral coloboma, 

unilateral lens 

opacity 

Bilateral 

microphthalmia, 

iridio-corneal 

adhesions 

Bilateral myopia, 

unilateral coloboma 

Bilateral coloboma, 

unilateral ptosis 

Unilateral 

coloboma 

Growth Poor weight gain Delayed Normal Short stature Normal 

Developmental 

delay 

Normal Cognitive delay, 

autism 

Normal Global delay Developmental 

delay, autism 

spectrum disorder 
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Head 

circumference 

19th % (3.5y) 5th % (14y) Normal Microcephaly Normal 

Hearing Normal Hearing loss Normal Deaf Deaf 

Other Laryngeal cleft, 

dysphonia, hirsute, 

sacral dimple 

Bicuspid aortic 

valve, horseshoe 

kidney, simple ears, 

unusually shaped 

small pituitary 

- Facial 

dysmorphism, 

imperforate anus, 

unilateral simple 

ear, prominent 

columella 

Imperforate anus 

with vaginal fistula, 

hemivertebrae 
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Table 2: Site Directed Mutator (SDM; http://marid.bioc.cam.ac.uk/sdm2/prediction) 

analysis of the impact of CAPN15 variants on protein stability. 

Variant G Stability 

p.S613L 1.85 Increased 

p.S720F 0.52 Increased 

p.R800W 0.24 Increased 

p.G969S -3.27 Reduced 

p.R1028K -1.15 Reduced 

http://marid.bioc.cam.ac.uk/sdm2/prediction

