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Summary 

CRISPR-Cas systems provide sequence-specific immunity against selfish genetic 

elements in prokaryotes. Now, two studies show that transposon-encoded variants can 

guide sequence-specific transposition. These findings have important practical 

implications but also raise questions of why and how this strategy would benefit 

transposons. 
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Although CRISPR-Cas systems are well known for their classical function as adaptive 

immune systems in bacteria and archaea [1], they can have other intriguing roles as 

well [2]. Microbiology textbooks will explain how CRISPR-Cas systems protect their 

host by inserting ‘spacer’ sequences from phages and plasmids into CRISPR arrays in 

order to defend the same lineage against re-infection, using Cas proteins loaded with 

processed CRISPR transcripts (crRNA) to detect and destroy the invading genome 

(Figure 1A). However, bioinformatic analyses have revealed the presence of CRISPR-

Cas systems encoded on some transposons, potentially with a role unrelated to host 

defense [3,4]. These suspicions were confirmed by two recent studies that teased apart 

how these CRISPR-Cas variants guide sequence-specific transposition [5,6] (Figure 

1B).  

 

Transposons (Tn) are DNA sequences with the ability to excise and insert themselves 

into new locations within a host genome or into other DNA molecules that are present 

in the same cell. Some transposons insert themselves randomly across the genome (a 

property used for creating mutant libraries), whereas others insert into a specific site 

that is usually conserved across host species. Tn7 is a well-studied transposon best 

characterized in Escherichia coli. Tn7 encodes two transposition pathways: one 

depends on the site-specific DNA-binding protein TnsD, which targets the attTn7 

insertion site found in many bacteria; the other utilizes the protein TnsE and allows for 

more random transposition biased towards plasmids, as it recognizes lagging-strand 

DNA synthesis during replication [7]. Recently, some Tn7-like transposons were found 

to encode CRISPR-Cas systems [3,4]. Intriguingly, these Tn7 variants lack TnsE 

homologues, and their associated CRISPR-Cas systems lack both the Cas proteins 

needed to acquire novel spacers and the nucleolytic activity to cleave targets. However, 

these ‘minimal’ systems retain the target recognition genes, suggesting that they may 

have been repurposed for guiding transposition to targets that are defined by the spacers 

in the CRISPR arrays [3,4].  

 

Two teams have now experimentally demonstrated exactly this, using independent 

model systems: Strecker et al [5] show that in cyanobacteria, a type V-K CRISPR 

effector complex guides the associated transposase towards its insertion site, and 

Klompe et al [6] show that a Vibrio cholerae transposon has co-opted a variant type I-

F CRISPR system to guide transposition. In both cases, crRNAs trigger transposon 
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integration downstream from the target site, leaving the original target site intact 

(Figure 1B). Integration itself is mediated by the Tn7 machinery, yielding the 

characteristic 5-bp duplication ‘scar’ of Tn7 insertion. Both CRISPR-guided systems 

therefore require tns genes that encode the transposase, namely the tnsB gene that 

catalyses the DNA insertion, the tnsC ATPase that regulates target-site selection, and a 

tnsD homologue, known as tniQ. In the transposon-encoded type I-F variant, three Cas 

proteins and a crRNA form a so-called ‘Cascade ribonucleoprotein complex’ [8,9] that 

directly interacts with TniQ, hence guiding the transposon machinery to DNA sites that 

have a sequence complementary to that of the crRNA spacer [6]. For the V-K variant, 

a similar interaction is predicted to occur between the Cas12k protein loaded with a 

tracrRNA and a crRNA [5]. 

 

The practical implications of this discovery are important: control over transposition 

target sites by simply changing the crRNA sequence means that transposon integration 

can easily be programmed using synthetic spacers. With both systems, the authors show 

high frequency CRISPR-guided integration in E. coli, with no need for selection. 

CRISPR-guided transposition might thus form an extremely useful expansion of the 

CRISPR toolbox already at our disposal. A key advantage over many of the existing 

tools is that it does not rely on cleavage and repair of genomic DNA, which risks 

introducing undesired mutations, for example due to off-target cleavage events [10].  

 

Apart from these applications, CRISPR-guided transposition is also fascinating from 

an evolutionary perspective. This strategy evolved independently at least three times in 

Tn7-like elements [3,4], suggesting that using CRISPR spacer information to select an 

integration site can be an adaptive strategy for transposons. The fact that this strategy 

is not ubiquitous, however, also suggests that it is costly under certain conditions. What 

would the costs and benefits of CRISPR-Cas guided transposition be? 

 

One hypothesis is that these Tn7-encoded CRISPR-Cas systems could rapidly acquire 

spacers in response to infections by mobile genetic elements in order to enhance their 

horizontal spread. However, as mentioned above, these are minimal CRISPR-Cas 

systems that lack the ability to insert new spacers, and the existing CRISPR arrays have 

a limited spacer repertoire, with typically only two spacers per array for the Type I-F 

CRISPR-Cas variants [3]. Yet, some of these spacers target mobile genetic elements 
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such as plasmids and phages, consistent with the idea that they may guide transposition 

into these elements in order to facilitate their horizontal transfer [4]. For transposons, 

hitchhiking in this way may be essential for their long-term success, especially for 

parasitic elements that do not benefit the host cells [11]. Indeed, preference for 

transposition towards mobile genetic elements has been observed: for example, the 

TnsE-dependent non-specific pathway of Tn7 transposition is heavily biased towards 

incoming conjugating plasmids [12] and filamentous phages [13]. Given that CRISPR-

guided Tn7 transposition is associated with the absence of TnsE homologues, it stands 

to reason that the ancestral non-specific transposition mechanism has been replaced by 

a CRISPR-Cas-dependent mechanism in which biased transposition into mobile genetic 

elements is based on the sequence specificity of the CRISPR memory [4].  

 

However, given that these CRISPR-Cas systems lack the genes needed to capture new 

spacers, the question remains how they identify rapidly evolving mobile genetic 

elements. Perhaps these CRISPR spacers target highly conserved sequences in these 

elements and therefore do not need to be updated? This seems unlikely, since most 

spacers do not match any sequences present in databases, but this view may change as 

more sequences of phages and plasmids become available. Alternatively, these systems 

may take advantage of a host-encoded CRISPR-Cas machinery (Figure 2) in two 

possible ways. First, host CRISPR adaptation enzymes may capture spacers and insert 

them into Tn7-encoded CRISPR arrays, as suggested by Strecker et al [5]. Second, host 

spacers might be used by the transposition machinery in trans. Host-encoded crRNA 

are intrinsically enriched for mobile genetic element sequences [14], and may therefore 

provide valuable information that can be exploited by the transposon to enhance its 

horizontal spread.  

 

However, relying on active host CRISPR systems for adaptation or transposition might 

be risky for Tn7-like elements, as there is the obvious danger that the mobile genetic 

element that has been selected for integration based on host-encoded spacers is at the 

same time being targeted for destruction by the host CRISPR system. This is 

particularly relevant given that the transposition event leaves the original target site 

intact (Figure 1B). The evolutionary success of CRISPR-associated transposition might 

in this scenario depend on imperfect targeting of mobile genetic elements by the host 

CRISPR system, for instance because of inhibition by anti-CRISPR proteins [15] or 
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because of mismatches between spacer and target sequences due to coevolution 

between mobile genetic elements and CRISPR-Cas immune systems. Mismatches in 

the spacer sequence reduce the efficiency of transposition significantly in the variant I-

F system [6]; however even low rates of transposition may still provide sufficient 

advantage to transposons to make it worthwhile, and at a strongly reduced risk of 

cleavage by the host CRISPR-Cas immune system [16,17]. Furthermore, transposition 

may in this model be naturally biased towards DNA elements with imperfect matches, 

since perfectly matching targets have a limited lifespan inside a cell.  

 

The ground breaking work of Strecker et al [5] and Klompe et al [6] provides key 

insights into the molecular biology and applications of CRISPR-guided transposons, 

however, future theoretical and experimental work will be critical to explain their 

existence in nature. For example, it will be fascinating to know if and when transposon-

encoded CRISPR arrays are updated in trans by host enzymes. It will also be equally 

important to know whether transposon-encoded CRISPR-Cas systems can be guided 

by host-derived crRNAs, and if so, what level of sequence dissimilarity in the crRNA 

repeat sequences is tolerated and how this affects transposition efficiency. Another 

point to consider is the effect of imperfect targeting by CRISPR-Cas, due to anti-

CRISPR mechanisms [18,19] or sequence mismatches [16,17]: do these mechanisms 

specifically inhibit CRISPR-mediated cleavage by host immune systems, or will they 

also interfere with CRISPR-guided transposition by transposon-encoded systems? 

These are important considerations as CRISPR-guided transposition might be 

particularly adaptive when the infected host cannot defend properly, analogous to a 

terminal investment strategy. Lastly, if CRISPR-guided transposition does indeed 

increase horizontal spread of the transposons via mobile genetic elements — and hence 

reduces dependence on vertical transmission in the host — does this select for more 

parasitic transposons? In general, horizontal transmission should select for greater 

parasitism when compared to vertical transmission [20], and if CRISPR-Cas enhances 

rates of horizontal transmission over that of transposons that rely solely on TnsE, they 

would be expected to drive evolution of more selfish transposons. Such experimental 

data will help to generate models that may shed light on the conditions where one would 

expect selection for and against CRISPR-guided transposition in hosts with or without 

CRISPR-Cas immune systems.  These models will need to take into consideration that 

spacers encoded by the host immune system may on the one hand provide a reliable 
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signal for successful mobile genetic elements, but on the other hand also provide a 

signal for imminent cleavage of that element’s genome and high levels of resistance in 

the wider population.  
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Figure 1. Model of CRISPR-mediated targeting for adaptive immunity and 

transposition. 

A) Model of Type I-F CRISPR-mediated adaptive immunity. Cas proteins mediate 

spacer acquisition. Mobile genetic elements carrying the target sequence are 

recognized by the Cascade-crRNA complex. Subsequent recruitment of a Cas 

nuclease triggers DNA cleavage. B) Model of Type I-F CRISPR-guided transposition. 

The transposon-encoded Cascade-crRNA complex recruits the Tn7 transposase to a 

target site on a mobile genetic element that is defined by the crRNA sequence. This 

triggers transposon integration within the mobile element, close to the target site.  
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Figure 2. Minimal CRISPR-Cas systems encoded by transposons could make use 

of host-encoded Cas proteins or CRISPR memory sequences. 

A) Host-encoded spacer acquisition enzymes could integrate new spacers into a 

CRISPR array that is located on the transposon — a functionality that is lacking from 

the minimal CRISPR-Cas systems of the transposon. B) CRISPR-guided transposition 

could use spacers from arrays that are part of the host CRISPR-Cas immune system as 

well as those encoded by the transposon CRISPR array. MGE, mobile genetic 

element. 

 


