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We report the experimental observation of a spatiotemporal Hong-Ou-Mandel (HOM) interference of
biphoton states of extremely high Schmidt number. Two-photon interference of 1500 spatial modes and a
total of more than 3 × 106 spatiotemporal modes is evidenced by measuring momentum spatial
coincidences, without any prior selection of the photons in time and space coincidence, between the
pixels of the far-field images of two strongly multimode spontaneous parametric down-conversion (SPDC)
beams propagating through a HOM interferometer. The outgoing SPDC beams are recorded on two
separate detector arrays operating in the photon-counting regime. The properties of HOM interference are
investigated both in the time and space domains. We show that the two-photon interference exhibits
temporal and two-dimensional spatial HOM dips with visibilities of 60% and widths in good agreement
with the spatiotemporal coherence properties of the biphoton state. Moreover, we demonstrate that maxima
of momentum spatial coincidences are evidenced within each image, in correspondence with these dips.

DOI: 10.1103/PhysRevX.10.031031 Subject Areas: Optics, Photonics, Quantum Physics

I. INTRODUCTION

Spatial entanglement of photon pairs in images offers
new opportunities to develop protocols for communication
and parallel treatment of quantum information of poten-
tially very high dimensionality. Although entangled photon
pairs of high Schmidt number are easily produced by
spontaneous parametric down-conversion (SPDC), the
manipulation and the detection of images with quantum
features is tricky. Fortunately, detector arrays with high
sensitivity such as the electron multiplying charge-coupled
device (EMCCD), the intensified charge-coupled device
(iCCD), or the single photon avalanche diode (SPAD) array
[1] are now widely used for quantum imaging experiments
[2], like demonstration of the Einstein-Podolsky-Rosen
(EPR) paradox in twin images [3–5], imaging of high-
dimensional spatial entanglement [6], ghost imaging [7,8],
quantum adaptive optics [9], quantum holography [10],
sub-shot-noise imaging [11,12], and quantum imaging with
undetected photons [13].
Among the whole experiments using entangled

pairs of photons, the famous experiment of two-photon

interference, now known as Hong-Ou-Mandel (HOM)
interference [14], is probably one of the most fascinating.
This groundbreaking experiment paved the way for a
multitude of experiments showing the richness of the
quantum properties of light and their application to original
communication protocols [15], to quantum teleportation
[16], and in the context of quantum information and
computation, e.g., in linear optical quantum computing
[17] and, more particularly, in boson sampling [18]. Most
of these experiments and protocols used the coherence time
properties of the biphoton state, and the measurements are
performed by means of bucket detectors and coincidence
counters gated in time. HOM interference is obtained if the
two photons involved are indistinguishable, whatever their
origin, meaning that extremely dissimilar light sources [19]
can be used if the corresponding modes are thoroughly
tailored. On the other hand, genuine multimode HOM
interference implies entanglement, as quoted by Lee et al.
[20], and SPDC remains the simplest way to produce
entangled photon pairs of high dimensionality. Recently,
Jachura et al. [21] extended the applications of the camera
systems to the observation of HOM interference with an
intensified scientific complementary metal-oxide-semicon-
ductor (sCMOS) camera, showing a maximum of coinci-
dences on the same region of interest (ROI) of the camera in
conditions corresponding to a minimum of the dip between
separate ROIs of the camera. Nevertheless, the input
photons were spatially filtered by traversing a single-mode
fiber to ensure a unique input spatial mode for each photon.
It is possible to imprint a phase profile on one of the
photons and to realize its hologram, as demonstrated by the
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same group [22]. Also in this experiment, only a spatial
mode per input port is involved, even if shaped. In the
experiments reported in Refs. [23,24], it was shown that a
tilt between the spatially monomode input beams results in
coincidence fringes that were detected by scanning a bucket
detector. On the other hand, two experiments demonstrated
multimode HOM interference. First, Walborn et al. [25]
showed that a HOM dip can be transformed in a HOM peak
by using either an antisymmetric pump beam or an
antisymmetric polarization vector of the entangled photon
pair. Second, Lee et al. employed bucket detectors and time
coincidence to characterize HOM interference from SPDC
limited by an aperture [20] or whose orbital angular
momentum (OAM) has been modified by an image rotator
[26], resulting in a maximum of about 40 spatial modes or
20 OAM modes.
Recently, using numerical simulations with realistic

parameters, we have shown how two cameras can be used
to detect two-dimensional (2D) spatial coincidences of
biphoton states of high dimensionality and to evidence
HOM interferences between the two outgoing images [27].
Thanks to this numerical model, we have demonstrated that
such a HOM interferometer allows the characterization of
the temporal as well as the 2D spatial coherence properties
of entangled photon pairs.
In this paper, we report the first experimental observation

of a fully spatiotemporal HOM interference of biphoton
states of high Schmidt number. Two-photon interferences
are evidenced by measuring the 2D momentum spatial
coincidences between the pixels of far-field images of twin
SPDC beams propagating through the HOM interferometer
without any prior selection of the photons in time and space
coincidence. The images are recorded onto two EMCCDs
operating in the photon-counting regime [28]. The use
of EMCCDs allows the detection of all photons of the
images and the measurement of spatial coincidences on the
whole set of photons. The properties of HOM interference
are investigated both in the time and space domains, as
proposed in Ref. [27]. Given the critical role played
by two-photon HOM interferences in most quantum
information and quantum technology schemes, our dem-
onstration that HOM interference can be obtained by
manipulating a very-high-dimensional entangled state
paves the way to very-high-dimensional quantum informa-
tion schemes using space and time variables.

II. EXPERIMENTAL SETUP AND METHOD

Figure 1(a) shows the experimental setup that closely
corresponds to the setup modelized in Ref. [27]. Strongly
multimode twin SPDC beams (i.e., biphoton states of high
Schmidt number) are generated in a noncollinear type-II
geometry in a 0.8-mm-long β-barium borate (β-BBO)
crystal pumped at 355 nm. The pump pulses are provided
by a passively Q-switched Nd:YAG laser (Δtpump ¼ 660 ps
FWHM pulse duration, 8-mW mean power, and 4-kHz

repetition rate). Because of the noncollinear interaction, the
twin beams are separated and propagate through the two
input ports of the HOM interferometer up to a beam splitter
(BS: R ¼ 50%, T ¼ 40%, losses 10%). In both arms, two
identical 1.5 magnification telescopes form the near-field
images of the BBO crystal inside the BS. Because of the
geometry of the interferometer [27] where SPDC beams
propagate in the horizontal plane, the reflected beams
experience a left-right symmetry with respect to the trans-
mitted beams in the near field as well as in the far field.
Before the BS, the polarization state of the idler beam is
controlled with a half-wave plate (HWP), in order to
measure spatial correlations when the polarization states
of the twin photons are horizontal-vertical (HV) or vertical-
vertical (VV). Then, the far field of the two outgoing
images is formed with 2f imaging systems on two separate
EMCCDs (ANDOR iXon Ultra 897), used in the photon-
counting regime [28]. Before detection, the photon pairs
emitted around the degeneracy are selected by narrow-band
interference filters (IF) centered at 709 nm (ΔλIF ≃ 5 nm,
FWHM bandwidth). Figures 1(b) and 1(c) show typical
far-field and near-field average images of the SPDC
beams through the HOM interferometer. The axes of the
far-field image are graduated in spatial frequency coordi-
nates νx;y, which are related to momentum coordinates
by qx;y ¼ 2πνx;y.
The control (by a delay line) of the time delay δt between

the input ports of the HOM interferometer gives access
to the coherence length. Meanwhile, the control of a 2D
transverse spatial frequency shift between the transmitted
and reflected beams at the output ports, by the rotations
δθBS and δϕBS of the BS, gives us access to the two
transverse coherence widths of the biphoton state. From
the far-field and near-field images of the SPDC beams
[Figs. 1(b) and 1(c)], the time duration of the pump pulse,
and the bandwidth of the IF, we estimate the standard
deviations of the SPDC beams in the spatial and temporal
domains as

σSPDCx ≃ σpump
x ≃ 0.35 mm

σSPDCy ≃ σpump
y ≃ 0.37 mm

σSPDCνx ≃ 34 mm−1

σSPDCνy ≃ 34 mm−1

σSPDCt ≃ σpump
t ≃ 400 ps

σSPDCνt ≃ σIFνt ≃ 1.8 THz: ð1Þ

In the context of entangled twin photons [29], the Schmidt
number is given along the dimension i (where i ¼ x, y, t)
by Ki ¼ 1

2
½σpump

i 2πσSPDCνi þ ð1=σpump
i 2πσSPDCνi Þ�. From the

experimental parameters [Eq. (1)], we have estimated the
Schmidt numbers for each dimension:
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Kx ≃ 37

Ky ≃ 40

Kt ≃ 2.3 × 103: ð2Þ

Finally, the full space-time dimensionality of the biphoton
state can be estimated as KxKyKt ≃ 3.4 × 106, which
confirms the extremely high dimensionality of the twin
photons involved in the HOM interference.
Figures 2(a) and 2(b) schematically illustrate the relative

positions and orientations of the far-field patterns of the
SPDC beams on both cameras, when they are either trans-
mitted or reflected by theBS. Because of the geometry of the
HOM interferometer [27], horizontal and vertical tilts of the
BS induce momenta shifts δq of the reflected beams, which

are related to 2D spatial frequency shifts δνxi ¼ δνxs ¼
2fδθBS and δνyi ¼ −δνys ¼ 2fδϕBS, where f is the focal
length of the last lenses before the EMCCDs. Using detector
arrays, the momentum spatial correlations between the
photons of a pair can be measured between images for
transmitted-transmitted (tt) and reflected-reflected (rr)
twin photons and also within single images for reflected-
transmitted (rt) and transmitted-reflected (tr) twin photons.
These different kinds of spatial correlations can be observed
by comparing Figs. 2(a) and 2(c) and Figs. 2(b) and 2(e)
for correlations within single images and by comparing
Figs. 2(a) and 2(d) for correlations between images.
First, let us consider the case where the transmitted

and reflected beams are perfectly superimposed on both
cameras (δq ¼ 0), perfectly synchronized (δt ¼ 0), and
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FIG. 1. (a) Experimental setup. (b,c) Average images in photon number of the far field and the near field of a single SPDC beam,
respectively.
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parallely polarized (VV configuration). For both reflected
(rr) and transmitted beams (tt), momentum correlations
are found between pixels of the two cameras corresponding
to opposite transverse momenta coordinates q1 and
q2 ¼ −q1 þ Δq, where Δq denotes the 2D momentum
correlation uncertainty. By calculating the normalized
cross-correlation between image 1 and the up-down and
left-right symmetric image 2, we obtain the spatial dis-
tribution of the momentum correlations as a function of the
2D momentum uncertainty: C12ðΔqÞ. For the rt and tr
beams, momentum correlations are found within each
image between the pixels that are symmetric with respect
to the horizontal axis, corresponding to transverse momenta
coordinates ðqx1; qy1Þ and ðqx1 þ Δqx;−qy1 þ ΔqyÞ for
camera 1 and ðqx2; qy2Þ and ðqx2 þ Δqx;−qy2 þ ΔqyÞ
for camera 2. For each image, measurements are performed
by calculating the normalized cross-correlation between the
upper-half and the up-down symmetric lower-half parts
of single images. In that case, we do not perform the
correlation calculation on the whole image because the
correlations between twin photons detected on the same
camera would be counted twice. Then, we obtain the spatial
distributions of the momentum correlations within each
image as a function of the 2D momentum uncertainty:
C11ðΔqÞ and C22ðΔqÞ. In all cases, the correlation dis-
tributions have the shape of 2D Gaussian functions with
standard deviations related to the spatial dimensionality of

the biphoton state. Now, let us consider the case where a
time delay and a momentum shift are imposed. In that case,
using the formalism proposed in Refs. [27,14], we can
establish the relations that give the spatial distributions of
momentum correlations as a function of δt and δq:

C12ðΔq; δt; δqÞ
¼ ½R2C0ðΔqþ δqxÞ þ T2C0ðΔq − δqxÞ�

×

�
1 −

2RT
R2 þ T2

e−ðδq2x=σ2qÞe−ðδq
2
y=σ

2
SPDCÞe−ðδt2=σ2t Þ

�

C11ðΔq; δt; δqÞ þ C22ðΔq; δt; δqÞ
¼ RT½C0ðΔqþ δqxÞ þ C0ðΔq − δqxÞ�
× ð1þ e−ðδq2x=σ2qÞe−ðδq2y=σ2SPDCÞe−ðδt2=σ2t ÞÞ: ð3Þ

Note that C0ðΔqÞ is the spatial distribution of momen-
tum correlations measured between twin images when the
BS is removed. According to these equations, we should
measure two correlation peaks centered along the horizon-
tal axis at a distance related to the horizontal spatial shift
and with amplitudes related to the spatial and temporal
shifts. As was demonstrated in Ref. [27], the standard
deviations of the spatial HOM dip depend of the coherence
width of the biphoton wave packet along the horizontal
dimension σq and of the phase-matching bandwidth σSPDC

(a) (b)

(c) (d) (e)

FIG. 2. (a,b) Diagrams illustrating, on both cameras, the relative positions of the far-field patterns of the signal and idler beams,
represented in red and green, respectively, when they are either transmitted (st, it) or reflected (sr, ir) as a function of the shifts
δνxi ¼ δνxs and δνyi ¼ −δνys induced by horizontal and vertical tilts of the BS, respectively. The solid and dotted circles correspond to
the transmitted beams and to the reflected beams, respectively. The origins of the axes are centered on the barycenters of the images. (c,e)
Up-down flip applied to images (a) and (b). (d) Left-right and up-down flips applied to image (b). Spatial correlations can be observed
within images symmetrically to the horizontal axes (C11 and C22) and between images symmetrically to the image barycenters (C12).
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along the vertical dimension. Here, σt is the standard
deviation of the temporal HOM dip. A 2D space integration
of Eq. (3), normalized by a 2D space integration of C0ðΔqÞ,
leads to the relative spatial correlations as a function of the
momentum shift and the time delay as follows:

R12ðδt; δqÞ ¼ R2 þ T2 − 2RTe−ðδq2x=σ2qÞe−ðδq2y=σ2SPDCÞe−ðδt2=σ2t Þ

R11ðδt; δqÞ þ R22ðδt; δqÞ
¼ 2RT × ð1þ e−ðδq2x=σ2qÞe−ðδq

2
y=σ

2
SPDCÞe−ðδt2=σ2t ÞÞ: ð4Þ

Equation (4) clearly shows that when twin photons are
indistinguishable, the drop in spatial correlations between
the two images (HOM dip) is accompanied by an increase
in spatial correlations within the individual images (HOM
maximum). Using the definition of the HOM dip visibility
[20]: V12 ¼ ½ðRmax

12 − Rmin
12 Þ=Rmax

12 � ¼ ½2RT=ðR2 þ T2Þ� and
defining the visibility of the HOM maximum as V11þ22¼
f½ðR11þR22Þmax− ðR11þR22Þ min�=½ðR11þR22Þmax�g¼ 1

2
,

visibilities of 98% of the HOM dip and 50% of the HOM
maximum are expected, considering the measured values of
R and T (R ¼ 50% and T ¼ 40%).

III. EXPERIMENTAL RESULTS

A. Temporal coherence measurements

The first experiment consists in measuring the temporal
coherence of the biphoton state. To this end, the signal and
the idler beams are spatially superimposed as precisely as
possible in the near-field and far-field domains. Then,

spatial-momentum correlations are measured, between
pairs of images as well as within single images, as a
function of the optical path delay between the two arms of
the HOM interferometer and as a function of the polari-
zation states HV and VV of the twin photons. Figure 3
shows the spatial-momentum correlation distributions
obtained when they are measured between image pairs
(C12) and within single images (C11, C22) and when the
time delay between the two arms of the interferometer is
null. These results are averaged over 500 pairs of images.
Figures 3(a)–3(c) are related to the HV polarization states,
and Figs. 3(d)–3(f) are related to the VV polarization
states. From these figures, we can observe that the three
correlation peaks have the same Gaussian-like shapes,
with standard deviations σνx ¼ 0.8� 0.2 mm−1 and σνy ¼
0.6� 0.2 mm−1, which means that spatial-momentum
correlations are measured with the same precision between
images or within single images. Then, we can roughly
estimate the spatial dimensionality of the biphoton state as
½ðσSPDCνx σSPDCνy Þ=ðσνxσνxÞ� ¼ ½342=ð0.8 × 0.6Þ� ⋍ 2400. This
result is of the same order of magnitude as the product of
the estimated Kx and Ky Schmidt numbers [Eq. (2)] and
confirms the high spatial dimensionality of the biphoton
states. By integrating the correlation peaks, we have
estimated the ratio of events corresponding to the detection
of photons by pairs between images and within single
images. When twin photons are cross-polarized (HV),
these ratios are 13%� 2% in C12 and 7%� 1% in C11

and C22. Thus, more or less half of the spatial-momentum
coincidences are recorded between the two images, and the
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FIG. 3. Average normalized spatial-momentum correlation distributions obtained when correlations are measured between image pairs
(C12) and within single images (C11, C22) when the optical path difference between the two arms of the interferometer is null. Note that
HV and VV indices are related to the polarization states of the twin photons.
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other half are equally distributed within the single images.
For the VV polarization states, the ratio in C12 decreases
to 5%� 1% and increases up to 10%� 1% in C11 and
8%� 1% in C22. Consequently, the decrease of the ratio of
spatial coincidences between images and its increase within
single images clearly demonstrates that a HOM interfer-
ence occurs for the biphoton state of high Schmidt number.
For HV and VV configurations, the sum of the correlation
ratios is somewhat smaller than the 25% ratio measured
between twin images without the BS, probably because of
the losses of the BS.
In order to estimate the coherence length of the biphoton

state, we havemeasured the variation of the relative ratios of
total photon-pair detection events in images as a function of
the time delay for VV polarization states. These relative
ratios [Eq. (4)] correspond to the number of detected photon
pairs measured between twin images as well as within single
images, divided by the number of detected photon pairs
without the BS. Results are depicted in Fig. 4. As expected,
while a HOM dip is clearly exhibited for correlations
between images, a HOM maximum is observed for corre-
lations within single images. From nonlinear fits, we
estimate the visibilities of the HOM dip to 58%� 10%
and of the HOMmaximum to 34%� 10%, which is smaller
than the expected visibilities (98% and 50%, respectively).
This discrepancy can be due to a number of causes:

(i) the asymmetry of the pump beam [Fig. 1(c)],
(ii) the asymmetry of the SPDC beams at the output

of the crystal, because of the walk-off in the crystal,
(iii) the cumulated geometric aberrations in the imaging

systems and some residual misalignment,
(iv) some difference in the magnification of the optical

systems in both arms.
Of all the causes listed that may reduce the visibility of the
HOM interference, geometric aberrations and residual

misalignments are probably the main causes. These defects
should be corrected by a better control of the alignment
procedure.All of these causes have effects on the spatialmap
of HOM interference (see Fig. 8). Note, however, that this
discrepancy cannot be due to the imperfect nature of
detectors, whatever its nature, because these detectors are
independent. The use of covariances, or correlations after
normalization, eliminates the accidental coincidences:
A positive covariance corresponds to the probability of
detection of a photon pair on both detectors, i.e., imperfect
HOM interference.
To conclude this section, we emphasize that we have

achieved simultaneous two-photon interference of 1500
spatial modes (i.e., over 1 order of magnitude more than in
the work of Lee et al. [20]) with 60% visibility. From the
nonlinear fits of the experimental data depicted by the
dotted curves in Fig. 4, we also estimate the standard
deviation of the Gaussian shape of these curves to
σt ¼ 133.1� 0.2 fs, which corresponds to a wavelength
standard deviation σλ¼ðλ2SPDC=2πcσtÞ¼2nm (λSPDC ¼
709 nm), in good agreement with the FWHM bandwidth
of the interferential filter. As EMCCD cameras have no
temporal resolution, temporal entanglement cannot be
measured directly. However, as the width of the temporal
HOM dip is related to the coherence time of the biphoton
state, we can estimate the temporal Schmidt number as
Kt ¼ 1

2
ðσpump

t =σtÞ ¼ 1
2
ð400 × 10−12=133 × 10−15Þ ≃ 1500,

which is of the same order of magnitude as the estimated
temporal Schmidt number [Eq. (2)].
The next experiment consists in measuring the variation

of the relative coincidence ratios R12 and R11 þ R22 as a
function of the angle between the polarization directions
of the twin beams, controlled by means of the HWP.
These experimental results, depicted in Fig. 5, clearly show
the typical modulation of the HOM interference versus the
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FIG. 4. Relative spatial correlation ratios as a function of the time delay between the two arms of the HOM interferometer when the
polarization states of the twin beams are VV. The red stars and blue squares correspond to correlations between twin images and within
single images, respectively. The dotted curves correspond to nonlinear fits of the experimental data. These curves exhibit a HOM dip and
a HOM maximum with visibilities of 58% and 34%, respectively.
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relative polarization directions of the twin photons with
visibilities V12 ¼ 59%� 10% and V11þ22 ¼ 32%� 10%,
respectively.

B. Spatial coherence measurements

To measure the 2D spatial coherence of the biphoton
state, the polarization states of the SPDC beams and the
time delay are adjusted to obtain the best polarization and
temporal indiscernability of the twin photons. From this
initial configuration, vertical and horizontal shifts (δνy, δνx)
between the reflected and transmitted beams are induced by
tilting the BS around its horizontal and vertical axes,
respectively (Fig. 1). Then, the variation of the relative
spatial correlation ratios between the twin images and
within single images is measured as a function of the spatial
frequency shifts. These experimental results are given in
Figs. 6 and 7.
In Fig. 6, we present images of the 2D momentum

correlation distributions C12ðΔqÞ, C11ðΔqÞ, and C22ðΔqÞ
for three different values of the vertical spatial frequency
shift: δνy ¼ −4.75, 0, and þ3.25 mm−1 [Figs. 6(b) to 6(j)].
As was predicted in Ref. [27], single spatial correlation
peaks are observed, and their positions do not depend on the
vertical spatial shift of the reflected beam. Indeed, because
of the geometry of the imaging system, vertical shifts of the
reflected beams are in opposite directions on each camera
(Fig. 2). Consequently, the spatial-momentum correlations
C12 between transmitted-transmitted or reflected-reflected
twin photons occur between opposite pixels of the twin
images with no shift of the symmetry center. Similarly,
the spatial-momentum correlations C11 and C22 between
transmitted-reflected or reflected-transmitted twin photons
are measured between symmetric pixels along the vertical
axis within single images of both cameras, also with the

same symmetry center. In that case, the effect of the vertical
shift only results in a variation of the relative total number of
spatial coincidences between images and within single
images [Fig. 6(a)], where R12 exhibits a spatial HOM dip
and where R11 þ R22 exhibits a HOM maximum with
visibilities V12 ¼ 60%� 10% and V11þ22 ¼ 39%� 10%,
respectively. From these curves, we estimate the standard
deviation of the dip, versus a vertical frequency shift δνy
induced by the rotation δϕBS of the BS, to 2.7� 0.3 mm−1,
which is larger than the standard deviation of the correlation
peaks in the far-field images along the vertical direction, i.e.,
versus the pixel coordinate Δνy. According to the geometry
of theHOMinterferometer, thewidth of the spatialHOMdip
along the vertical direction should be limited by the spatial
phase-matching bandwidth [Eq. (4)] for perfect focusing.
However, we have demonstrated in Ref. [27] that a small
defocusing between image planes reduces the vertical width
of the HOM dip. As a perfect superposition of the image
planes is experimentally difficult to achieve because of the
geometric aberrations of the imaging systems, the measured
standard deviation of the HOM dip along the vertical axis is,
in agreement with our previous numerical results, smaller
than the phase-matching bandwidth and greater than the
coherence width of the biphoton state.
In Fig. 7, we present the spatial-momentum correlation

distributions for three different values of the horizontal
spatial frequency shift: δνx ¼ �2 and 0 mm−1 [Figs. 7(b)
to 7(j)]. Contrary to the results for a vertical shift and in
good agreement with Ref. [27], the spatial-momentum
correlation distributions exhibit two correlation peaks
centered at �δνx. In C12, when δνx ≠ 0, the more intense
peak corresponds to the rr twin photons, and the other peak
corresponds to the tt twin photons. Indeed, the amplitude
difference between the two correlation peaks is due to the
difference between the reflection and transmission
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coefficients (R > T). Moreover, the distance between the
two correlation peaks corresponds to 2δνx. ForC11 andC22,
the two correlation peaks are of the same intensity because
correlations are calculated between the upper and the lower
parts of images where the transmitted and the reflected
photons are equally distributed over the area of the
detectors. Figure 7(a) shows the variation of the relative
total number of spatial coincidences between images and
within single images as a function of δνx, where R12

exhibits a spatial HOM dip and where R11 þ R22 exhibits
a HOM maximum with visibilities V12 ¼ 63%� 10%

and V11þ22 ¼ 41%� 10%, respectively. From these
curves, we estimate the standard deviations of the dip to
0.7� 0.1 mm−1, in good agreement with the standard
deviation of the correlation peak along the horizontal
direction. Figures 6(a) and 7(a) show vertical and horizon-
tal cross sections of the 2D HOM dip and HOMmaximum.
Two-dimensional mapping of the HOM dip [like in
Figs. 5(a) and 6 in Ref. [27] ] requires a high degree of
accuracy for the spatial frequency scanning and stability of
the setup during the necessarily long acquisition time.
These conditions have not yet been fulfilled in our setup.
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Among the different improvements of the experimental
setup to increase the visibility of the HOM interference,
more accurate and automated scanning of the BS should
allow us to obtain a 2D map of the HOM dip with good
resolution.
Finally, we present in Figs. 8(a)–8(f) the average

correlation maps of the intensity fluctuations calculated
between 4 × 4 binned pixels of 500 twin SPDC images
versus 1D and 2D spatial transverse coordinates qx and qy
(given in pixels), for crossed (HV) and parallel (VV)

polarizations, when the twin beams are spatially and
temporally superimposed (δq ¼ 0, δt ¼ 0, Fig. 3). While
the 1D maps give the classical representation of 1D
far-field spatial correlations between twin photons,
Figs. 8(c) and 8(f) show a first tentative of 2D resolution
of the spatial coincidences between twin photons in the
whole SPDC beam cross section. Figure 8(g) shows the
same 2Dmap obtained with a set of two images issued from
two different laser shots. Amplitudes of these maps are
normalized by the maximum of the 2D correlation map
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corresponding to the HV configuration [Fig. 8(c)]. From
these 2D maps, we have calculated the spatial distribution
of the fall of coincidences between the HV and VV maps
[Fig. 8(i)] and the fall obtained when correlating two
images issued from two different laser shots [Fig. 8(h)].
We see clearly that the HOM results are close to ideal near
the image center but poorer near the edges. To obtain these
images from 500 couples of experimental images, we
removed the random noise by first binning the pixels
4 × 4 and second convolving the mean correlation image
with a Gaussian kernel, whose integral corresponds to 44
binned pixels. Theses operations induce a strong loss of

resolution but are necessary to obtain reliable maps with
500 image pairs. In the Appendix, we present a calculation
that shows that the chosen resolution ensures a sufficient
signal-to-noise ratio in the images of Fig. 8.

IV. CONCLUSION

We have reported the first experimental observation
of fully spatiotemporal HOM interference of biphoton
states of extremely high Schmidt number. Two-photon
interference of 1500 spatial modes and more than
3 × 106 spatiotemporal modes is evidenced by measuring
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momentum spatial coincidences between pixels of far-field
images of two SPDC beams propagating through a HOM
interferometer. The output beams are detected with two
separate detector arrays operating in the photon-counting
regime. The properties of HOM interference are inves-
tigated in both the time and space domains. We show that
the two-photon interference exhibits temporal and 2D
spatial HOM dips with an average visibility of 60% and
widths in good agreement with the spatiotemporal coher-
ence properties of the biphoton state and the geometry of
the HOM interferometer. This relatively low visibility,
compared to the expected value, is probably due to geo-
metric aberrations of the imaging system. Moreover, we
also demonstrate that, using detectors arrays, 2D momen-
tum spatial coincidences are resolved between the two
output ports as well as within the two single-port images.
This method gives us access to the rates and the 2D
momentum correlation distributions of twin photons
detected in pairs between the two cameras and on each
camera. We also emphasize that the temporal coherence of
the biphoton state is measured with detectors that record
spatial coincidences on the whole set of photons, without
any prior selection of the photons in time and space
coincidence. Given the critical role played by two-photon
HOM interferences in most quantum information and
quantum technology schemes, our demonstration that
HOM interference can be obtained by manipulating a
very-high-dimensional entangled state paves the way to
very-high-dimensional quantum information schemes
using space and time variables. For example, the telepor-
tation protocol of Bouwmeester et al. [16] used a HOM
setup to perform the discrimination of the Bell states.
Hence, our experiment paves the way to the teleportation of
images, despite the fact that it can be proven [30] that a
purely linear system cannot be used to teleport a qudit,
where the d of qudit means a dimension greater than 2.
Nevertheless, a teleportation of a qutrit has recently been
reported [31] by using ancilla photons and a supplementary
dimension. Further investigation is necessary to understand
how to master spatial aspects of HOM interference in such
types of protocols. Because some cryptography protocols
use teleportation, applications to cryptography in multi-
mode fibers could follow. Another application concerns
communications in quantum computing [32].
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APPENDIX: SIGNAL-TO-NOISE RATIO
ESTIMATION

In this Appendix, we calculate the signal-to-noise ratio
obtained in the images of Fig. 8, first obtained by averaging
500 experimental images and then binning the pixels 4 × 4

and convolving the binned image by a Gaussian kernel.
Hence, the resolution cell in the 256 × 256-pixel images of
Fig. 8 contains P ¼ 23 × 23 pixels.
On each image, the threshold number of photons, 0 or 1,

follows a Bernouilli law of meanm (here,m ¼ 0.12) and of
variance mð1 −mÞ. For independent images, the true
covariance vanishes, but the estimator of covariance expe-
riences fluctuations. If we use N images and P pixels in
each image, which can be considered independent in this
calculation, the variance V of this estimator is given by
V ¼ ½m2 × ð1 −m2Þ=NP�. For m ¼ 0.12 photon=pixel,
N ¼ 500 images, and P ¼ 23 × 23 pixels, we obtain a
standard deviation V1=2 ¼ 2.31 × 10−4 photon=pixel.
On the other hand, the twin signal t can be estimated as

t¼ðm=P0Þ×13%¼5.8×10−4 photon=pixel, where 13% is
the ratio in C12 given above and P0 ¼ 27 pixels is the
normalized integral of the correlation peak. By binning the
pixels 4 × 4, this signal is, experimentally, multiplied by 10
because of the partial correlation between neighbor pixels,
while the standard deviation of the covariance is only
multiplied by 4 (see above, P divided by 16). This process
gives a signal-to-noise ratio of approximately 6 for the twin
signal [Fig. 8(c)] and of 3 for the HOM signal [Fig. 8(f)].
These results are the minimum ratios needed to observe a
clear spatially deterministic signal in the HOM signal,
which allows a first experimental map of its quality but with
a resolution that needs to be improved.

[1] G. Lubin, R. Tenne, I. M. Antolovic, E. Charbon, C.
Bruschini, and D. Oron, Quantum Correlation Measure-
ment with Single Photon Avalanche Diode Arrays, Opt.
Express 27, 32863 (2019).

[2] P.-A. Moreau, E. Toninelli, T. Gregory, and M. J. Padgett,
Imaging with Quantum States of Light, Nat. Rev. Phys. 1,
367 (2019).

[3] P.-A. Moreau, J. Mougin-Sisini, F. Devaux, and E. Lantz,
Realization of the Purely Spatial Einstein-Podolsky-Rosen
Paradox in Full-Field Images of Spontaneous Parametric
Down-Conversion, Phys. Rev. A 86, 010101(R) (2012).

[4] P.-A. Moreau, F. Devaux, and E. Lantz, Einstein-Podolsky-
Rosen Paradox in Twin Images, Phys. Rev. Lett. 113,
160401 (2014).

[5] E. Lantz, S. Denis, P.-A. Moreau, and F. Devaux, Einstein-
Podolsky-Rosen Paradox in Single Pairs of Images, Opt.
Express 23, 26472 (2015).

[6] M. P. Edgar, D. S. Tasca, F. Izdebski, R. E. Warburton, J.
Leach, M. Agnew, G. S. Buller, R. W. Boyd, and M. J.
Padgett, Imaging High-Dimensional Spatial Entanglement
with a Camera, Nat. Commun. 3, 984 (2012).

[7] P. A. Morris, R. S. Aspden, J. E. C. Bell, R. W. Boyd, and
M. J. Padgett, Imaging with a Small Number of Photons,
Nat. Commun. 6, 5913 (2015).

[8] S. Denis, P.-A. Moreau, F. Devaux, and E. Lantz, Temporal
Ghost Imaging with Twin Photons, J. Opt. 19, 034002
(2017).

IMAGING SPATIOTEMPORAL HONG-OU-MANDEL … PHYS. REV. X 10, 031031 (2020)

031031-11

https://doi.org/10.1364/OE.27.032863
https://doi.org/10.1364/OE.27.032863
https://doi.org/10.1038/s42254-019-0056-0
https://doi.org/10.1038/s42254-019-0056-0
https://doi.org/10.1103/PhysRevA.86.010101
https://doi.org/10.1103/PhysRevLett.113.160401
https://doi.org/10.1103/PhysRevLett.113.160401
https://doi.org/10.1364/OE.23.026472
https://doi.org/10.1364/OE.23.026472
https://doi.org/10.1038/ncomms1988
https://doi.org/10.1038/ncomms6913
https://doi.org/10.1088/2040-8986/aa587b
https://doi.org/10.1088/2040-8986/aa587b


[9] H. Defienne, M. Reichert, and J. W. Fleischer, Adaptive
Quantum Optics with Spatially Entangled Photon Pairs,
Phys. Rev. Lett. 121, 233601 (2018).

[10] F. Devaux, A. Mosset, F. Bassignot, and E. Lantz, Quantum
Holography with Biphotons of High Schmidt Number, Phys.
Rev. A 99, 033854 (2019).

[11] G. Brida, M. Genovese, and I. R. Berchera, Experimental
Realization of Sub-Shot-Noise Quantum Imaging, Nat.
Photonics 4, 227 (2010).

[12] E. Toninelli, M. P. Edgar, P.-A. Moreau, G. M. Gibson,
G. D. Hammond, and M. J. Padgett, Sub-Shot-Noise
Shadow Sensing with Quantum Correlations, Opt. Express
25, 21826 (2017).

[13] G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R.
Lapkiewicz, and A. Zeilinger, Quantum Imaging with
Undetected Photons, Nature (London) 512, 409 (2014).

[14] C. K. Hong, Z. Y. Ou, and L. Mandel, Measurement of
Subpicosecond Time Intervals between Two Photons by
Interference, Phys. Rev. Lett. 59, 2044 (1987).

[15] D. S. Simon, G. Jaeger, and A. V. Sergienko, Quantum
Metrology, Imaging, and Communication, Quantum Sci-
ence and Technology (Springer International, New York,
2017).

[16] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H.
Weinfurter, and A. Zeilinger, Experimental Quantum Tele-
portation, Nature (London) 390, 575 (1997).

[17] P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling,
and G. J. Milburn, Linear Optical Quantum Computing with
Photonic Qubits, Rev. Mod. Phys. 79, 135 (2007).

[18] B. T. Gard, K. R. Motes, J. P. Olson, P. P. Rohde, and J. P.
Dowling, in From Atomic to Mesoscale (World Scientific,
Singapore, 2015), pp. 167–192.

[19] Y.-H. Deng, H. Wang, X. Ding, Z.-C. Duan, J. Qin,
M.-C. Chen, Y. He, Y.-M. He, J.-P. Li, Y.-H. Li et al.,
Quantum Interference between Light Sources Separated by
150 Million Kilometers, Phys. Rev. Lett. 123, 080401
(2019).

[20] P. S. K. Lee and M. P. van Exter, Spatial Labeling in
a Two-Photon Interferometer, Phys. Rev. A 73, 063827
(2006).

[21] M. Jachura and R. Chrapkiewicz, Shot-by-Shot Imaging of
Hong-Ou-Mandel Interference with an Intensified sCMOS
Camera, Opt. Lett. 40, 1540 (2015).

[22] R. Chrapkiewicz, M. Jachura, K. Banaszek, and W.
Wasilewski, Hologram of a Single Photon, Nat. Photonics
10, 576 (2016).

[23] Z. Y. Ou and L. Mandel, Further Evidence of Nonclassical
Behavior in Optical Interference, Phys. Rev. Lett. 62, 2941
(1989).

[24] H. Kim, O. Kwon, W. Kim, and T. Kim, Spatial Two-
Photon Interference in a Hong-Ou-Mandel Interferometer,
Phys. Rev. A 73, 023820 (2006).

[25] S. P. Walborn, A. N. de Oliveira, S. Pádua, and C. H.
Monken, Multimode Hong-Ou-Mandel Interference, Phys.
Rev. Lett. 90, 143601 (2003).

[26] H. Di Lorenzo Pires, H. C. B. Florijn, and M. P. van Exter,
Measurement of the Spiral Spectrum of Entangled Two-
Photon States, Phys. Rev. Lett. 104, 020505 (2010).

[27] F. Devaux, A. Mosset, and E. Lantz, Stochastic Numerical
Simulations of a Fully Spatiotemporal Hong-Ou-Mandel
Dip, Phys. Rev. A 100, 013845 (2019).

[28] E. Lantz, J.-L. Blanchet, L. Furfaro, and F. Devaux, Multi-
imaging and Bayesian Estimation for Photon Counting with
EMCCDs, Mon. Not. R. Astron. Soc. 386, 2262 (2008).

[29] C. K. Law and J. H. Eberly, Analysis and Interpretation of
High Transverse Entanglement in Optical Parametric
Down Conversion, Phys. Rev. Lett. 92, 127903 (2004).

[30] J. Calsamiglia, Generalized Measurements by Linear Ele-
ments, Phys. Rev. A 65, 030301(R) (2002).

[31] Y.-H. Luo, H.-S. Zhong, M. Erhard, X.-L. Wang, L.-C.
Peng, M. Krenn, X. Jiang, L. Li, N.-L. Liu, and C.-Y. Lu,
Quantum Teleportation in High Dimensions, Phys. Rev.
Lett. 123, 070505 (2019).

[32] D. Llewellyn, Y. Ding, I. I. Faruque, S. Paesani, D. Bacco, R.
Santagati, Y. Qian, Y. Li, Y. Xiao, M. Huber, M. Malik, G. F.
Sinclair, X. Zhou, K. Rottwitt, J. L. O’Brien, J. G. Rarity, Q.
Gong, L. K. Oxenlowe, J. Wang, and M. G. Thompson,
Chip-to-Chip Quantum Teleportation and Multi-photon
Entanglement in Silicon, Nat. Phys. 16, 148 (2020).

DEVAUX, MOSSET, MOREAU, and LANTZ PHYS. REV. X 10, 031031 (2020)

031031-12

https://doi.org/10.1103/PhysRevLett.121.233601
https://doi.org/10.1103/PhysRevA.99.033854
https://doi.org/10.1103/PhysRevA.99.033854
https://doi.org/10.1038/nphoton.2010.29
https://doi.org/10.1038/nphoton.2010.29
https://doi.org/10.1364/OE.25.021826
https://doi.org/10.1364/OE.25.021826
https://doi.org/10.1038/nature13586
https://doi.org/10.1103/PhysRevLett.59.2044
https://doi.org/10.1038/37539
https://doi.org/10.1103/RevModPhys.79.135
https://doi.org/10.1103/PhysRevLett.123.080401
https://doi.org/10.1103/PhysRevLett.123.080401
https://doi.org/10.1103/PhysRevA.73.063827
https://doi.org/10.1103/PhysRevA.73.063827
https://doi.org/10.1364/OL.40.001540
https://doi.org/10.1038/nphoton.2016.129
https://doi.org/10.1038/nphoton.2016.129
https://doi.org/10.1103/PhysRevLett.62.2941
https://doi.org/10.1103/PhysRevLett.62.2941
https://doi.org/10.1103/PhysRevA.73.023820
https://doi.org/10.1103/PhysRevLett.90.143601
https://doi.org/10.1103/PhysRevLett.90.143601
https://doi.org/10.1103/PhysRevLett.104.020505
https://doi.org/10.1103/PhysRevA.100.013845
https://doi.org/10.1111/j.1365-2966.2008.13200.x
https://doi.org/10.1103/PhysRevLett.92.127903
https://doi.org/10.1103/PhysRevA.65.030301
https://doi.org/10.1103/PhysRevLett.123.070505
https://doi.org/10.1103/PhysRevLett.123.070505
https://doi.org/10.1038/s41567-019-0727-x

