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Abstract: The bandwidth theorem [Mathematische Annalen, 343(1):175–205, 2009] states
that any n-vertex graph G with minimum degree

( k−1
k + o(1)

)
n contains all n-vertex k-

colourable graphs H with bounded maximum degree and bandwidth o(n). We provide sparse
analogues of this statement in random graphs as well as pseudorandom graphs.

More precisely, we show that for p�
( logn

n

)1/∆ asymptotically almost surely each
spanning subgraph G of G(n, p) with minimum degree

( k−1
k +o(1)

)
pn contains all n-vertex

k-colourable graphs H with maximum degree ∆, bandwidth o(n), and at least Cp−2 vertices
not contained in any triangle. A similar result is shown for sufficiently bijumbled graphs,
which, to the best of our knowledge, is the first resilience result in pseudorandom graphs
for a rich class of spanning subgraphs. Finally, we provide improved results for H with
small degeneracy, which in particular imply a resilience result in G(n, p) with respect to the
containment of spanning bounded degree trees for p�

( logn
n

)1/3.

1 Introduction

A central topic in extremal graph theory is to determine minimum degree conditions which force a graph
G to contain a copy of some large or even spanning subgraph H. The prototypical example of such a
theorem is Dirac’s theorem [21], which states that if δ (G)≥ 1

2 v(G) and v(G)≥ 3, then G is Hamiltonian.
Analogous results were established for a wide range of spanning subgraphs H with bounded maximum
degree such as powers of Hamilton cycles, trees, or F-factors for any fixed graph F (see e.g. [32] for a
survey). One feature that all these subgraphs H have in common is that their bandwidth is small. The
bandwidth of a graph H is the minimum b such that there is a labelling of the vertex set of H by integers
1, . . . ,n with |i− j| ≤ b for every edge i j of H. And indeed, it was shown in [12] that a more general result
holds, which provides a minimum degree condition forcing any spanning bounded degree subgraphs of
small bandwidth.
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Theorem 1 (Bandwidth Theorem [12]). For every γ > 0, ∆≥ 2, and k ≥ 1, there exist β > 0 and n0 ≥ 1
such that for every n ≥ n0 the following holds. If G is a graph on n vertices with minimum degree
δ (G)≥

( k−1
k + γ

)
n and if H is a k-colourable graph on n vertices with maximum degree ∆(H)≤ ∆ and

bandwidth at most βn, then G contains a copy of H.

We remark that in contrast to the above mentioned earlier results for specific bounded degree spanning
subgraphs the minimum degree condition in this theorem has an error term γn, and it is known that this
cannot completely be omitted in this general statement. In that sense the minimum degree condition in
Theorem 1 is best-possible. It is also known that the bandwidth condition cannot be dropped completely
(see [12] for further explanations). Moreover, this condition does not limit the class of graphs under
consideration unreasonably, because many interesting classes of graphs have sublinear bandwidth. Indeed,
it was shown in [11] that for bounded degree n-vertex graphs, restricting the bandwidth to o(n) is
equivalent to restricting the treewidth to o(n) or forbidding linear sized expanding subgraphs, which
implies that bounded degree planar graphs, or more generally classes of bounded degree graphs defined
by forbidding some fixed minor have bandwidth o(n). Generalisations of Theorem 1 were obtained
in [9, 13, 27, 33].

In this paper we are interested in the transference of Theorem 1 to sparse graphs. Such transference
results recently received much attention, including for example the breakthrough result on the transference
of Turán’s theorem to random graphs by Conlon and Gowers [14] and Schacht [39]. The random graph
model we shall consider here is the binomial random graph G(n, p), which has n vertices, and each pair
of vertices forms an edge independently with probability p. We shall study the asymptotic appearance of
spanning subgraphs Hn in G(n, p) under adversarial edge deletions. We denote the sequence of graphs
we consider by H = (Hn), and, abusing notation slightly also often write H for the graph Hn, when it is
clear from the context what n is.

The appearance of large or spanning subgraphs of G(n, p) was studied since the early days of
probabilistic combinatorics and by now many important results were obtained. Gems include the theorem
of Riordan [38] which gives a very good, and in many cases tight, upper bound on the threshold for G(n, p)
to contain a general sequence of spanning graphs H = (Hn), and the Johansson–Kahn–Vu theorem [26]
on F-factors, which we state for the case F = Kk.

Theorem 2 (Johansson, Kahn and Vu [26]). For each k ≥ 3 there exists C > 0 such that the following
holds for p = p(n)≥Cn−2/k(logn)1/(k

2). Asymptotically almost surely, G(n, p) contains a Kk-factor, that
is, a collection of

⌊n
k

⌋
pairwise vertex-disjoint copies of Kk.

For a sequence of spanning graphs H = (Hn) with maximum degree ∆(H)≤ ∆, Riordan’s theorem
implies that G(n, p) asymptotically almost surely (a.a.s.), that is, with probability tending to 1 as n tends

to infinity, contains H as a subgraph if p · n
2

∆+1−
2

∆(∆+1) → ∞. This is not believed to be best possible.
Indeed, Theorem 2 states that the threshold for G(n, p) to contain a K∆+1-factor is n−2/(∆+1)(logn)1/(∆+1

2 ),
and it is conjectured in [23] that above this probability we also get any other sequence of spanning graphs
H = (Hn) with ∆(H)≤ ∆. This was proved, using Theorem 2, to be true for almost spanning graphs by
Ferber, Luh, and Nguyen [23].
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Theorem 3 (Ferber, Luh, and Nguyen [23]). For every ε > 0 and ∆ ≥ 1, and every sequence H =
(Hn) of graphs with v(H) ≤ (1− ε)n and ∆(H) ≤ ∆, the random graph G(n, p) a.a.s. contains H if
p ·n2/(∆+1)/(logn)1/(∆+1

2 )→ ∞.

Better bounds are available if we further know that the degeneracy of H is bounded by a constant
much smaller than ∆(H). The degeneracy of H is the smallest integer D such that any subgraph of H has
a vertex of degree at most D. Surprisingly, for this class of graphs H already Riordan’s theorem implies
an essentially optimal bound.

Corollary 4 (of Riordan’s theorem [38]). For every ∆ ≥ 1 and D ≥ 3, and every sequence H = (Hn)
of graphs with v(H) ≤ n and ∆(H) ≤ ∆ and degeneracy at most D, the random graph G(n, p) a.a.s.
contains H if p ·n1/D→ ∞.

This is best possible because a simple first moment calculation shows that if p ·n1/D→ 0 then G(n, p)
a.a.s. does not contain the D-th power of a Hamilton path, which is a D-degenerate graph with maximum
degree 2D.

Two features that both Riordan’s theorem and Theorem 2 (and consequently all results which rely on
them, such as Theorem 3 and Corollary 4) have in common is that their proofs are non-constructive, and
the proof techniques do not allow for so-called universality results. A graph G is said to be universal for
a family H of graphs if G contains copies of all graphs in H simultaneously. The random graph G(n, p)
is known to be universal for various families of graphs, but in almost all cases we only know an upper
bound on the threshold for universality, which we do not believe is the correct answer.

The reason why probabilistic existence results such as Corollary 4 do not imply universality is that in
G(n, p) the failure probability for containing any given spanning graph H without isolated vertices is at
least (1− p)n−1, the probability that a fixed vertex of G(n, p) is isolated. This probability is too large to
apply a union bound. Thus, to prove universality results, one needs to show that any graph G with some
collection of properties that G(n, p) a.a.s. possesses must contain any given H ∈H. Using this approach,
and improving on a series of earlier results, Dellamonica, Kohayakawa, Rödl and Ruciński [20] obtained
the following universality result for the family H(n,∆) of n-vertex graphs with maximum degree ∆.

Theorem 5 (Dellamonica, Kohayakawa, Rödl and Ruciński [20]). For all ∆≥ 3 there is C such that if
p≥C

( logn
n

)1/∆ then G(n, p) is a.a.s. universal for H(n,∆).

However, it is conjectured that universality and the appearance of a K∆+1-factor occur together, at the
threshold given in Theorem 3. A probability bound which is better, but still far from the conjectured truth,
was so far only established for almost spanning graphs by Conlon, Ferber, Nenadov and Škorić [17], who
showed that for ∆≥ 3, if p� n−1/(∆−1) log5 n then G(n, p) is a.a.s. universal for H

(
(1−o(1))n,∆)

)
. For

graphs with small degeneracy, again, the following better bound exists, but this also is far away from the
threshold in Corollary 4, which is a plausible candidate for the correct answer.

Theorem 6 (Allen, Böttcher, Hàn, Kohayakawa, Person [2]). For all ∆,D ≥ 1 there is C such that if
p≥C

( logn
n

)1/(2D+1) then G(n, p) is a.a.s. universal for all graphs in H(n,∆) with degeneracy at most D.

Very recently Conlon and Nenadov [16] established an essentially best possible bound on p for an
almost spanning analogue: They showed that G(n, p) is a.a.s. universal for all graphs in H

(
(1− ε)n,∆

)
with degeneracy at most D for p≥

( C log2 n
n log logn

)1/D.
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Furthermore, one may ask how robustly G(n, p) contains certain large subgraphs H. Questions of
this type were considered by Alon, Capalbo, Kohayakawa, Rödl, Ruciński and Szemerédi [5], and further
popularised by Sudakov and Vu [41], who introduced the term local resilience. Let P be a monotone
increasing graph property and let G be a graph in P. The local resilience of G with respect to P is
defined to be the minimum r ∈ R such that by deleting at each vertex v ∈V (G) at most r deg(v) edges
one can obtain a graph not in P. In this language, for example, Theorem 1 says that the local resilience
of Kn = G(n,1) with respect to being universal for all k-colourable graphs in H(n,∆) with sublinear
bandwidth is 1

k −o(1), and a sparse analogue asks for a similar local resilience result to hold a.a.s. for
G(n, p).

Lee and Sudakov [34] obtained a very strong local resilience result for Hamilton cycles. Improving
on [41], they showed that the local resilience of G(n, p) with respect to Hamiltonicity is a.a.s. at least
1
2 −o(1) when p = Ω

( logn
n

)
. This is optimal up to the constant factor, as below this probability G(n, p)

is itself a.a.s. not Hamiltonian. Triangle factors were investigated by Balogh, Lee and Samotij [7],
who proved that the local resilience of G(n, p) with respect to the containment of a triangle factor on
n−O

(
p−2
)

vertices is a.a.s. 1
3 −o(1) if p� ( logn

n )1/2. It was observed by Huang, Lee, and Sudakov [24]
that we cannot hope to cover all vertices in the host graph with triangles: Already for constant p it is easy
to delete all edges in the neighbourhood of Θ(p−2) vertices in G(n, p) without violating the resilience
condition. Very recently Noever and Steger [37] showed that the local resilience of G(n, p) with respect
to containing a (1−o(1))n-vertex squared cycle (a cycle with all edges between vertices at distance 2
added) is a.a.s. 1

3−o(1) provided p� n−1/2+o(1). Even more recently, Nenadov and Škorić [36] removed
the log-factor from the probability bound of [7]. These results are notable in that the bounds on p are
close to optimal: for p� n−1/2, a.a.s. most edges of G(n, p) are not in triangles and one can obtain a
triangle-free graph by deleting only a tiny fraction of edges at each vertex, so that the local resilience
of G(n, p) with respect to containing triangles is o(1). Furthermore, for p� n−1/2 the random graph
G(n, p) itself does not contain any (1−o(1))n-vertex squared cycle.

More general subgraphs H were considered by Huang, Lee and Sudakov [24], who proved an
analogue of the bandwidth theorem (Theorem 1) in G(n, p) with 0 < p < 1 constant (for subgraphs H
with certain vertices not in triangles). A version which works for much smaller probabilities p� ( logn

n )1/∆

in the special case of bipartite graphs H on (1−o(1))n vertices (with maximum degree ∆ and sublinear
bandwidth) was established in [10]. In [2, Theorem 1.9] the so-called sparse blow-up lemma is used
to prove a similar result for graphs H which are not necessarily bipartite. An even better bound on p
was obtained when we restrict the problem to the class of almost spanning trees H: Balogh, Csaba and
Samotij [6] proved that the local resilience of G(n, p) with respect to containing copies of all trees T on
(1−o(1))n vertices with ∆(T )≤ ∆ is asymptotically almost surely at least 1/2−o(1) if p� 1/n, which
is optimal. Finally, returning to H-factors, Conlon, Gowers, Samotij and Schacht [15] gave resilience
results for almost-spanning H-factors which work down to the optimal probability threshold, but leave a
linear number of vertices uncovered; Nenadov and Škorić [36] substantially improved this, but (for most
graphs) the number of vertices left uncovered in their result is still not the correct order of magnitude.

Our results.

We prove several sparse analogues of the bandwidth theorem (Theorem 1). Our first result is a version for
sparse random graphs, extending the resilience results of Huang, Lee and Sudakov [24], [10], and [2].
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Theorem 7. For each γ > 0, ∆ ≥ 2, and k ≥ 1, there exist constants β ∗ > 0 and C∗ > 0 such that the
following holds asymptotically almost surely for Γ = G(n, p) if p≥C∗

( logn
n

)1/∆. Let G be a spanning
subgraph of Γ with δ (G)≥

( k−1
k + γ

)
pn, and let H be a k-colourable graph on n vertices with ∆(H)≤ ∆,

bandwidth at most β ∗n, and with at least C∗p−2 vertices which are not contained in any triangles of H.
Then G contains a copy of H.

Observe that the bound on p achieved in this result matches the bound in the universality result in
Theorem 5. Hence, though we do not believe it to be optimal, improving it will most likely be hard.
Moreover, as explained in conjunction with Theorem 1, the minimum degree of G cannot be decreased,
nor can the bandwidth restriction be removed. As indicated above, it is also necessary that Θ(p−2)
vertices of H are not in triangles.

If in addition the subgraph H is also D-degenerate, we can prove a variant of Theorem 7 for
p� (logn/n)1/(2D+1). Again, this probability bound matches the one in the currently best universality
result for D-degenerate graphs given in Theorem 6. As before we require a certain number of vertices
which are not in triangles of H. But, due to technicalities of our proof method, in addition these vertices
are now also required not to be in four-cycles.

Theorem 8. For each γ > 0, ∆ ≥ 2, and D,k ≥ 1, there exist constants β ∗ > 0 and C∗ > 0 such that
the following holds asymptotically almost surely for Γ = G(n, p) if p ≥C∗

( logn
n

)1/(2D+1). Let G be a
spanning subgraph of Γ with δ (G)≥

( k−1
k + γ

)
pn and let H be a D-degenerate, k-colourable graph on n

vertices with ∆(H)≤ ∆, bandwidth at most β ∗n and with at least C∗p−2 vertices which are not contained
in any triangles or four-cycles of H. Then G contains a copy of H.

Since trees are 1-degenerate this implies a resilience result for trees when p� ( logn
n )1/3. This

probability bound is much worse than that obtained by Balogh, Csaba, and Samotij [6] for almost-
spanning trees, and unlikely to be optimal, but it is the first resilience result for bounded degree spanning
trees in G(n, p).

Finally, we also establish a sparse analogue of Theorem 1 in bijumbled graphs, one of the most widely
studied classes of pseudorandom graphs. A graph Γ is (p,ν)-bijumbled if for all disjoint sets X ,Y ⊆V (Γ)
we have ∣∣e(X ,Y )− p|X ||Y |

∣∣≤ ν
√
|X ||Y | .

This definition goes back to an equivalent notion introduced by Thomason [42] who initiated the study
of pseudorandom graphs. It is also related to the well investigated class of (n,d,λ )-graphs in that an
(n,d,λ )-graph is

(d
n ,λ
)
-bijumbled.

Only very recently a universality result similar to Theorem 5 was established for bijumbled graphs
in [2], where it was shown that (p,ν)-bijumbled graphs G with δ (G)≥ 1

2 pn and ν � pmax(4,(3∆+1)/2)n
are universal for H(n,∆). Our resilience result works for the same bijumbledness condition, though we
do not believe it to be optimal. Local resilience results in bijumbled graphs were so far only obtained
for special subgraphs H: Dellamonica, Kohayakawa, Marciniszyn, and Steger [19] considered cycles H
of length (1−o(1))n, the results of Conlon, Fox and Zhao [18] imply resilience for F-factors covering
(1−o(1))n vertices, and Krivelevich, Lee and Sudakov [31] established a resilience result for pancyclicity.
Hence, previous to this work only little was known about the resilience of bijumbled (or indeed any other
common notion of pseudorandom) graphs.
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Theorem 9. For each γ > 0, ∆≥ 2, and k≥ 1, there exists a constant c > 0 such that the following holds
for any p > 0. Given ν ≤ cpmax(4,(3∆+1)/2)n, suppose Γ is a

(
p,ν
)
-bijumbled graph, G is a spanning

subgraph of Γ with δ (G) ≥
( k−1

k + γ
)

pn, and H is a k-colourable graph on n vertices with ∆(H) ≤ ∆

and bandwidth at most cn. Suppose further that there are at least c−1 p−6ν2n−1 vertices in V (H) that are
not contained in any triangles of H. Then G contains a copy of H.

We remark that the requirement of C∗p−6ν2n−1 vertices of H not being in triangles comes from our
use of a so-called regularity inheritance lemma proved in [3]; this bound is not believed to be optimal
(see Section 11 for further details).

The proofs of our results rely on sparse versions of the so-called blow-up lemma. The blow-up lemma
is an important tool in extremal graph theory, proved by Komlós, Sárközy and Szemerédi [30] and was for
example instrumental in the proof of the bandwidth theorem and its analogue in G(n, p) for constant p by
Huang, Lee and Sudakov [24]. However it applies only to dense graphs. Several of the earlier resilience
results in sparse random graphs developed sparse blow-up type results handling special classes of graphs:
Balogh, Lee and Samotij [7] proved a sparse blow-up lemma for embedding triangle factors, and in [10] a
blow-up lemma for embedding almost spanning bipartite graphs in sparse graphs was used. Full versions
of the blow-up lemma in sparse random graphs and pseudorandom graphs were established only very
recently in [2]. We will use these here. We remark that a simple use of these blow-up lemmas gives
almost spanning versions of our main results (as already noted in [2]), and the main work here is to extend
this to spanning embedding results, which turns out to be much harder.

Further, we note that we actually prove somewhat stronger statements than Theorem 7, Theorem 8,
and Theorem 9 in the same sense in that a stronger statement than Theorem 1 was proven in [12]: we
allow H in fact to be (k + 1)-colourable, where the additional colour may only be assigned to very
few well distributed vertices (for details see, e.g., Theorem 25 below). Thus, for instance, even though
Theorem 7 only implies that the local resilience of G(n, p) with respect to Hamiltonicity is a.a.s. 1

2 −o(1)
when n is even, Theorem 25 implies it also for n odd.

Organisation.

The remainder of this paper is organised as follows. In Section 2 we introduce necessary definitions and
collect some known results which we need in our proofs. Next, in Section 3, we outline the proof of
the bandwidth theorem in sparse random graphs, Theorem 7, and state the four technical lemmas we
require. Their proofs are given in Sections 4–7, and the proof of Theorem 7 is presented in Section 8. We
provide the modifications required to obtain Theorem 8 in Section 9, and those required for Theorem 9 in
Section 10. Finally, Section 11 contains some concluding remarks, and Appendix A contains proofs of
a few results which are more or less standard but which we could not find in the form we need in the
literature.

2 Preliminaries

Throughout the paper log denotes the natural logarithm. We assume that the order n of all graphs
tends to infinity and therefore is sufficiently large whenever necessary. For reals a,b > 0 and integer
k ∈ N, we use the notation (a±b) = [a−b,a+b] and [k] = {1, . . . ,k}. Our graph-theoretic notation is
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standard and follows [8]. In particular, given a graph G its vertex set is denoted by V (G) and its edge
set by E(G). Let A,B ⊆ V be disjoint vertex sets. We denote the number of edges between A and B
by e(A,B). For a vertex v ∈ V (G) we write NG(v) for the neighbourhood of v in G and NG(v,A) :=
NG(v)∩A for the neighbourhood of v restricted to A in G. Given vertices v1, . . . ,vk ∈V (G) we denote
the joint neighbourhood of v1, . . . ,vk restricted to a set A by NG(v1, . . . ,vk;A) =

⋂
i∈[k] NG(vi,A). Finally,

we use the notation degG(v) := |NG(v)| and degG(v,A) := |NG(v,A)|, as well as degG(v1, . . . ,vk;A) :=
|NG(v1, . . . ,vk;A)| for the degree of v in G, the degree of v restricted to A in G and the size of the joint
neighbourhood of v1, . . . ,vk restricted to A in G. Finally, let degG(v) := |NG(v)| be the degree of v in G.
For the sake of readability, we do not intend to optimise the constants in our theorems and proofs.

Now we introduce some definitions and results of the regularity method as well as related tools that are
essential in our proofs. In particular, we state a minimum degree version of the sparse regularity lemma
(Lemma 13) and the sparse blow up lemma (Lemma 16). Both lemmas use the concept of regular pairs.
Let G = (V,E) be a graph, ε,d > 0, and p ∈ (0,1]. Moreover, let X ,Y ⊆V be two disjoint nonempty sets.
The p-density of the pair (X ,Y ) is defined as

dG,p(X ,Y ) :=
eG(X ,Y )
p|X ||Y |

.

For most of this paper, when we work with random graphs, we will be interested in the regularity
concept called lower-regularity. When we work with bijumbled graphs, on the other hand, we will need
the stronger concept regularity. The difference is that in the former we impose only lower bounds on
p-densities, whereas in the latter we impose in addition upper bounds. The main reason for this difference
is that our ‘regularity inheritance lemmas’ below have different requirements in random and in bijumbled
graphs; we do not otherwise make use of the extra strength of ‘regular’ as opposed to ‘lower-regular’.

We also need to define super-regularity, for which we require G to be a subgraph of a graph Γ, which
will be the random or bijumbled graph whose resilience properties we are establishing.

Definition 10 ((ε,d, p)-(super-)(lower-)regular pairs). Let G and Γ be graphs with G ⊆ Γ. The pair
(X ,Y ) is called (ε,d, p)G-lower-regular if for every X ′ ⊆ X and Y ′ ⊆ Y with |X ′| ≥ ε|X | and |Y ′| ≥ ε|Y |
we have dG,p(X ′,Y ′)≥ d− ε .

It is called (ε,d, p)G-regular if there exists d′ ≥ d such that for every X ′ ⊆ X and Y ′ ⊆ Y with
|X ′| ≥ ε|X | and |Y ′| ≥ ε|Y | we have dG,p(X ′,Y ′) = d′± ε .

If (X ,Y ) is either (ε,d, p)G-lower-regular or (ε,d, p)G-regular, and in addition we have

|NG(x,Y )| ≥ (d− ε)max
(

p|Y |,degΓ(x,Y )/2
)

and

|NG(y,X)| ≥ (d− ε)max
(

p|X |,degΓ(y,X)/2
)

for every x ∈ X and y ∈ Y , then the pair (X ,Y ) is called (ε,d, p)G-super-regular. When we use super-
regularity it will be clear from the context whether (X ,Y ) is lower-regular or regular.

Note that a regular pair is by definition lower-regular, though the converse does not hold. Furthermore,
although the definition of super-regularity of G contains a reference to Γ, at each place in this paper
where we use super-regularity, we will see that the first term in the maximum is larger than the second.
When it is clear from the context, we may omit the subscript G in (ε,d, p)G-(super-)regular which is
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used to indicate with respect to which graph a pair is (super-)regular. A direct consequence of the
definition of (ε,d, p)-lower-regular pairs is the following proposition about the sizes of neighbourhoods
in lower-regular pairs.

Proposition 11. Let (X ,Y ) be (ε,d, p)-lower-regular. Then there are less than ε|X | vertices x ∈ X with
|N(x,Y )|< (d− ε)p|Y |.

The next proposition asserts that altering the vertex sets in an (ε,d, p)-(lower-)regular pair slightly
does not destroy (lower-)regularity.

Proposition 12. Let (X ,Y ) be an (ε,d, p)-lower-regular pair in a graph G and let X̂ and Ŷ be two
subsets of V (G) such that |X4X̂ | ≤ µ|X | and |Y4Ŷ | ≤ ν |Y | for some 0 ≤ µ,ν ≤ 1. Then (X̂ ,Ŷ ) is
(ε̂,d, p)-lower-regular, where ε̂ := ε +2

√
µ +2

√
ν . Furthermore, if for any disjoint A,A′ ⊆V (G) with

|A| ≥ µ|X | and |A′| ≥ ν |Y | we have e(A,A′)≤ (1+µ +ν)p|A||A′|, and (X ,Y ) is (ε,d, p)-regular, then
(X̂ ,Ŷ ) is (ε̂,d, p)-regular.

We defer the proof of this to Appendix A.
In order to state the sparse regularity lemma, we need some more definitions. A partition V =

{Vi}i∈{0,...,r} of the vertex set of G is called an (ε, p)G-regular partition of V (G) if |V0| ≤ ε|V (G)|
and (Vi,Vi′) forms an (ε,0, p)G-regular pair for all but at most ε

(r
2

)
pairs {i, i′} ∈

([r]
2

)
. It is called an

equipartition if |Vi| = |Vi′ | for every i, i′ ∈ [r]. The partition V is called (ε,d, p)-(lower-)regular on a
graph R with vertex set [r] if (Vi,Vi′) is (ε,d, p)G-(lower-)regular for every {i, i′} ∈ E(R). The graph R is
referred to as the (ε,d, p)G-reduced graph of V, the partition classes Vi with i ∈ [r] as clusters, and V0
as the exceptional set. We also say that V is (ε,d, p)G-super-regular on a graph R′ with vertex set [r] if
(Vi,Vi′) is (ε,d, p)G-super-regular for every {i, i′} ∈ E(R′). Again, when we talk about reduced graphs or
super-regularity, whether we are using lower-regularity or regularity will be clear from the context. We
will however always specify whether a partition is regular or only lower-regular on R.

Analogously to Szemerédi’s regularity lemma for dense graphs, the sparse regularity lemma, proved
by Kohayakawa and Rödl [28, 29], asserts the existence of an (ε, p)-regular partition of constant size of
any sparse graph. We state a minimum degree version of this lemma, whose proof (following [10]) we
defer to Appendix A.

Lemma 13 (Minimum degree version of the sparse regularity lemma). For each ε > 0, each α ∈ [0,1],
and r0 ≥ 1 there exists r1 ≥ 1 with the following property. For any d ∈ [0,1], any p > 0, and any n-vertex
graph G with minimum degree α pn such that for any disjoint X ,Y ⊆V (G) with |X |, |Y | ≥ εn

r1
we have

e(X ,Y )≤
(
1+ 1

1000 ε2
)

p|X ||Y |, there is an (ε, p)G-regular equipartition of V (G) with (ε,d, p)G-reduced
graph R satisfying δ (R)≥ (α−d− ε)|V (R)| and r0 ≤ |V (R)| ≤ r1.

A key ingredient in the proof of our main theorem is the so-called sparse blow up lemma developed by
Hàn, Kohayakawa, Person, and two of the current authors in [2]. Given a subgraph G⊆ Γ = G(n, p) with
p� (logn/n)1/∆ and an n-vertex graph H with maximum degree at most ∆ with vertex partitions V and
W, respectively, the sparse blow up lemma guarantees under certain conditions a spanning embedding
of H in G which respects the given partitions. In order to state this lemma we need to introduce some
definitions.
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Definition 14 ((ϑ ,R′)-buffer). Let R′ be a graph on r vertices and let H be a graph with vertex partition
W= {Wi}i∈[r]. We say that the family W̃= {W̃i}i∈[r] of subsets W̃i ⊆Wi is an (ϑ ,R′)-buffer for H if

(i ) |W̃i| ≥ ϑ |Wi| for all i ∈ [r], and

(ii ) for each i ∈ [r] and each x ∈ W̃i, the first and second neighbourhood of x go along R′, i.e., for each
{x,y},{y,z} ∈ E(H) with y ∈Wj and z ∈Wk we have {i, j} ∈ E(R′) and { j,k} ∈ E(R′).

Let G and H be graphs on n vertices with partitions V= {Vi}i∈[r] of V (G) and W= {Wi}i∈[r] of V (H).
We say that V and W are size-compatible if |Vi| = |Wi| for all i ∈ [r]. If there exists an integer m ≥ 1
such that m≤ |Vi| ≤ κm for every i ∈ [r], then we say that (G,V) is κ-balanced. Given a graph R on r
vertices, we call (G,V) an R-partition if for every edge {x,y} ∈ E(G) with x ∈ Vi and y ∈ Vi′ we have
{i, i′} ∈ E(R).

We will actually need a little more than just an embedding of H into G respecting given partitions:
we will need to restrict the images of some vertices of H to subsets of the clusters of G. The following
definition encapsulates the properties we have to guarantee for the sparse blow-up lemma to obtain such
an embedding.

Definition 15 (Restriction pair). Let ε,d > 0, p ∈ [0,1], and let R be a graph on r vertices. Furthermore,
let G be a (not necessarily spanning) subgraph of Γ = G(n, p) and let H be a graph given with vertex
partitions V= {Vi}i∈[r] and W= {Wi}i∈[r], respectively, such that (G,V) and (H,W) are size-compatible
R-partitions. Let I = {Ix}x∈V (H) be a collection of subsets of V (G), called image restrictions, and
J = {Jx}x∈V (H) be a collection of subsets of V (Γ) \V (G), called restricting vertices. For each i ∈ [r]
we define Ri ⊆Wi to be the set of all vertices x ∈Wi for which Ix 6= Vi. We say that I and J are a
(ρ,ζ ,∆,∆J)-restriction pair if the following properties hold for each i ∈ [r] and x ∈Wi.

(RP 1) We have |Ri| ≤ ρ|Wi|.

(RP 2) If x ∈ Ri, then Ix ⊆
⋂

u∈Jx
NΓ(u,Vi) is of size at least ζ (d p)|Jx||Vi|.

(RP 3) If x ∈ Ri, then |Jx|+degH(x)≤ ∆ and if x ∈Wi \Ri, then Jx =∅.

(RP 4) Each vertex in V (G) appears in at most ∆J of the sets of J.

(RP 5) We have
∣∣⋂

u∈Jx
NΓ(u,Vi)

∣∣= (p± ε p)|Jx||Vi|.

(RP 6) If x ∈ Ri, for each xy ∈ E(H) with y ∈Wj,

the pair
(

Vi∩
⋂

u∈Jx

NΓ(u),Vj ∩
⋂

v∈Jy

NΓ(v)
)

is (ε,d, p)G-lower-regular.

Suppose V is an (ε,d, p)G-lower-regular partition of V (G) with reduced graph R, and let R′ be a
subgraph of R. We say (G,V) has one-sided inheritance on R′ if for every {i, j},{ j,k} ∈ E(R′) and every
v ∈ Vi the pair

(
NΓ(v,Vj),Vk

)
is (ε,d, p)G-lower-regular. Given a (ϑ ,R′)-buffer W̃, we say that (G,V)

has two-sided inheritance on R′ for W̃ if whenever there is a triangle wiw jwk ∈ H with wi ∈ W̃i, w j ∈Wj

and wk ∈Wk, it follows that for every v ∈Vi the pair
(
NΓ(v,Vj),NΓ(v,Vk)

)
is (ε,d, p)G-lower-regular.

Now we can finally state the sparse blow up lemma.
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Lemma 16 ([2, Lemma 1.21]). For each ∆, ∆R′ , ∆J , ϑ ,ζ ,d > 0, κ > 1 there exist εBL,ρ > 0 such that for
all r1 there is a CBL such that for p≥CBL(logn/n)1/∆ the random graph Γ = Gn,p asymptotically almost
surely satisfies the following.

Let R be a graph on r ≤ r1 vertices and let R′ ⊆ R be a spanning subgraph with ∆(R′) ≤ ∆R′ . Let
H and G ⊆ Γ be graphs given with κ-balanced, size-compatible vertex partitions W = {Wi}i∈[r] and
V= {Vi}i∈[r] with parts of size at least m≥ n/(κr1). Let I= {Ix}x∈V (H) be a family of image restrictions,
and J= {Jx}x∈V (H) be a family of restricting vertices. Suppose that

(BUL 1) ∆(H) ≤ ∆, for every edge {x,y} ∈ E(H) with x ∈Wi and y ∈Wj we have {i, j} ∈ E(R) and
W̃= {W̃i}i∈[r] is an (ϑ ,R′)-buffer for H,

(BUL 2) V is (εBL,d, p)G-lower-regular on R, (εBL,d, p)G-super-regular on R′, has one-sided inheritance
on R′, and two-sided inheritance on R′ for W̃,

(BUL 3) I and J form a (ρ,ζ ,∆,∆J)-restriction pair.

Then there is an embedding φ : V (H)→V (G) such that φ(x) ∈ Ix for each x ∈ H.

Observe that in the blow up lemma for dense graphs, proved by Komlós, Sárközy, and Szemerédi [30],
one does not need to explicitly ask for one- and two-sided inheritance properties since they are always
fulfilled by dense regular partitions. This is, however, not true in general in the sparse setting. The
following two lemmas will be very useful whenever we need to choose vertices whose neighbourhoods
inherit lower-regularity.

Lemma 17 (One-sided lower-regularity inheritance, [2]). For each εOSRIL,αOSRIL > 0 there exist ε0 > 0
and C > 0 such that for any 0 < ε < ε0 and 0 < p < 1 asymptotically almost surely Γ = G(n, p) has
the following property. For any disjoint sets X and Y in V (Γ) with |X | ≥ C max

(
p−2, p−1 logn

)
and

|Y | ≥Cp−1 logn, and any subgraph G of Γ[X ,Y ] which is (ε,αOSRIL, p)G-lower-regular, there are at most
Cp−1 log(en/|X |) vertices z ∈V (Γ) such that (X ∩NΓ(z),Y ) is not (εOSRIL,αOSRIL, p)G-lower-regular.

Lemma 18 (Two-sided lower-regularity inheritance, [2]). For each εTSRIL,αTSRIL > 0 there exist ε0 > 0 and
C > 0 such that for any 0< ε < ε0 and 0< p< 1, asymptotically almost surely Γ =Gn,p has the following
property. For any disjoint sets X and Y in V (Γ) with |X |, |Y | ≥C max{p−2, p−1 logn}, and any subgraph
G of Γ[X ,Y ] which is (ε,αTSRIL, p)G-lower-regular, there are at most C max{p−2, p−1 log(en/|X |)} vertices
z ∈V (Γ) such that

(
X ∩NΓ(z),Y ∩NΓ(z)

)
is not (εTSRIL,αTSRIL, p)G-lower-regular.

We close this section with some probabilistic tools. We start with the following useful observation.
Roughly speaking, it states that a.a.s. nearly all vertices in G(n, p) have approximately the expected
number of neighbours within large enough subsets.

Proposition 19. For each ε > 0 there exists a constant C > 0 such that for every 0 < p < 1 asymp-
totically almost surely Γ = G(n, p) has the following properties. For any disjoint X ,Y ⊆ V (Γ) with
|X | ≥Cp−1 logn and |Y | ≥Cp−1 log(en/|X |), we have e(X ,Y ) = (1±ε)p|X ||Y | and e(X)≤ 2p|X |2. Fur-
thermore, for every X ⊆V (Γ) with |X | ≥Cp−1 logn, the number of vertices v ∈V (Γ) with

∣∣|NΓ(v,X)|−
p|X |

∣∣> ε p|X | is at most Cp−1 log(en/|X |).
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Note that in most of this paper we will use the upper bound log(en/|X |)≤ logn when applying this
proposition, and Lemmas 17 and 18, valid since (in all applications) we have |X | ≥ e. We will only need
the full strength of these three results when proving the Lemma for G (Lemma 26).

In the proof of Proposition 19 we use the following version of Chernoff’s Inequalities (see e.g. [25,
Chapter 2] for a proof).

Theorem 20 (Chernoff’s Inequality, [25]). Let X be a random variable which is the sum of independent
Bernoulli random variables. Then we have for ε ≤ 3/2

P
[
|X−E[X ]|> εE[X ]

]
< 2e−ε2E[X ]/3 .

Furthermore, if t ≥ 6E[X ] then we have

P
[
X ≥ E[X ]+ t

]
≤ e−t .

Proof of Proposition 19. Since the statement of the proposition is stronger when ε is smaller, we may
assume that 0 < ε ≤ 1. We set C′ = 100ε−2 and C = 1000C′ε−1.

We first show that Γ = G(n, p) a.a.s. has the following two properties. For any disjoint A,B⊆V (Γ),
with |A| ≥C′p−1 logn and |B| ≥C′p−1 log(en/|A|), we have e(A,B) =

(
1± ε

2

)
p|A||B|. For any A⊆V (Γ),

we have e(A)≤ 4p|A|2+2|A| logn, and if |A| ≥C′p−1 logn then e(A)≤ 2p|A|2. Note that these properties
imply the first two conclusions of the proposition.

We estimate the failure probability of the first property using Theorem 20 and the union bound.
Assuming without loss of generality that |A| ≥ |B|, this probability is at most

∑
|A|,|B|≤n

(
n
|A|

)2

·2e−ε2 p|A||B|/12 ≤ 2n∑
|A|

( en
|A|

)2|A|
e−ε2C′|A| log(en/|A|)/12

< 2n∑
|A|

( en
|A|

)−2|A|
.

For the second property, observe that 4p|A|2 > 7p
(|A|

2

)
, so that for any given A by Theorem 20 we

have
P
[
e(A)≥ 4p|A|2 +2|A| logn

]
≤ e−2|A| logn = n−2|A| .

Taking a union bound over the at most n|A| choices of A given |A|, we see that the failure probability of
the second property is at most ∑

n
a=1 n−a.

Finally, the failure probability of the last property is at most

∑
|A|≥C′p−1 logn

n|A| ·2e−p(|A|2 )/3 ≤∑
|A|

2n|A|e−C′|A| logn/12 ≤ 2n−2 ,

and since all three failure probabilities tend to zero as n→ ∞, we conclude that a.a.s. G(n, p) enjoys both
properties.

Now suppose Γ has these properties, and let X ⊆V (Γ) have size at least Cp−1 logn. We first show
that there are at most C′p−1 log(en/|X |) vertices in Γ which have less than (1− ε)p|X | neighbours in X .
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If this were false, then we could choose a set Y of C′p−1 log(en/|X |) vertices in Γ which have less than
(1− ε)p|X | neighbours in X . By choice of C and since |X |> e, we have (1− ε)p|X | ≤

(
1− ε

2

)
p|X \Y |,

so we see that e(Y,X \Y )<
(
1− ε

2

)
p|Y ||X \Y |. This is a contradiction since |X \Y | ≥C′p−1 logn.

Next we show that there are at most 2C′p−1 log(en/|X |) vertices of Γ which have more than (1+
ε)p|X | neighbours in X . Again, if this is not the case we can let Y be a set of 2C′p−1 log(en/|X |) vertices
of Γ with more than (1+ε)p|X | neighbours in X . Now e(Y )≤ 4p|Y |2+2|Y | logn = 8C′|Y | log(en/|X |)+
2|Y | logn≤ 10C′|Y | logn, so there are at most |Y |/2 vertices in Y which have 40C′ logn or more neigh-
bours in Y . Let Y ′ ⊆ Y consist of those vertices with at most 40C′ logn neighbours in Y . For each v ∈ Y ′

we have
(1+ ε)p|X | ≤ deg(v;X)≤ deg(v;Y )+deg(v;X \Y ) ,

and so, by choice of C, each vertex of Y ′ has at least
(
1+ ε

2

)
p|X \Y | neighbours in X \Y . Since

|Y ′| ≥C′p−1 log(2en/|X |) and |X \Y | ≥ |X |/2 ≥C′p−1 logn, this is a contradiction. Finally, since by
choice of C we have 3C′p−1 logn <Cp−1 logn we conclude that all but at most Cp−1 log(en/|X |) vertices
of Γ have (1± ε)p|X | neighbours in X , as desired.

Now let N, m, and s be positive integers and let S and S′ ⊆ S be two sets with |S|= N and |S′|= m.
The hypergeometric distribution is the distribution of the random variable X that is defined by drawing s
elements of S without replacement and counting how many of them belong to S′. It can be shown that
Theorem 20 still holds in the case of hypergeometric distributions (see e.g. [25], Chapter 2 for a proof)
with E[X ] := ms/N.

Theorem 21 (Hypergeometric inequality, [25]). Let X be a random variable that follows the hypergeo-
metric distribution with parameters N, m, and s. Then for any ε > 0 and t ≥ εms/N we have

P
[
|X−ms/N|> t

]
< 2e−ε2t/3 .

We require the following technical lemma, which is a consequence of the hypergeometric inequality
stated in Theorem 21.

Lemma 22. For each η > 0 and ∆ there exists C such that the following holds. Let W ⊆ [n], let t ≤ 100n∆,
and let T1, . . . ,Tt be subsets of W. For each m≤ |X | there is a set S⊆W of size m such that

|Ti∩S|= m
|W |
|Ti|±

(
η |Ti|+C logn

)
for every i ∈ [t] .

Proof. Set C = 30η−2∆. Observe that for each i, the size of Ti∩S is hypergeometrically distributed. By
Theorem 21, for each i we have

P
[
|Ti∩S| 6= m

|W |
|Ti|±

(
η |Ti|+C logn

)]
< 2e−η2C logn/3 <

2
n1+∆

,

so taking the union bound over all i ∈ [t] we conclude that the probability of failure is at most 2t/n1+∆ ≤
200/n→ 0 as n→ ∞, as desired.

We shall also use McDiarmid’s Inequality.
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Lemma 23 (McDiarmid’s Inequality [35]). Let X1, . . . ,Xk be independent random variables, where Xi

takes values in a finite set Ai for each i ∈ [k]. Suppose that a function g : A1× . . .×Ak→ R satisfies for
each i ∈ [k]

sup
x1,...,xk,x̂i

|g(x1,x2, . . . ,xk)−g(x1,x2, . . . ,xi−1, x̂i,xi+1, . . . ,xk)| ≤ ci.

Then, for any ε > 0, we have

P
[
|E[g(X1, . . . ,Xk)]−g(X1, . . . ,Xk)| ≥ ε

]
≤ 2exp

{
− 2ε2

∑i∈[k] c2
i

}
.

3 Proof overview and main lemmas

Theorem 7 is a corollary of the following more general Theorem 25, which we prove in Section 8. We
require one preliminary definition.

Definition 24 (Zero-free colouring). Let H be a (k+ 1)-colourable graph on n vertices and let L be
a labelling of its vertex set by integers 1, . . . ,n of bandwidth at most βn. A proper (k+ 1)-colouring
σ : V (H)→{0, . . . ,k} of its vertex set is said to be (z,β )-zero-free with respect to L if any z consecutive
blocks contain at most one block with colour zero, where a block is defined as a set of the form
{(t−1)4kβn+1, . . . , t4kβn} with some t ∈ [1/(4kβ )], and a block with colour zero is a block in which
at least one vertex is coloured with zero.

Theorem 25. For each γ > 0, ∆≥ 2, and k ≥ 2, there exist constants β > 0, z > 0, and C > 0 such that

the following holds asymptotically almost surely for Γ = G(n, p) if p≥C
(

logn
n

)1/∆

. Let G be a spanning

subgraph of Γ with δ (G)≥
( k−1

k + γ
)

pn and let H be a graph on n vertices with ∆(H)≤ ∆ that has a
labelling L of its vertex set of bandwidth at most βn, a (k+ 1)-colouring that is (z,β )-zero-free with
respect to L and where the first

√
βn vertices in L are not given colour zero and the first βn vertices in

L include Cp−2 vertices that are not contained in any triangles of H. Then G contains a copy of H.

3.1 Proof overview

We now give a brief sketch of the proof of Theorem 25. Ultimately, our goal is to apply the sparse
blow-up lemma, Lemma 16, to find an embedding of H into G. Thus, the proof boils down to obtaining
the required conditions. But there is a catch: this is not as such possible, as for any lower-regular partition
of G there can be O(p−2) exceptional vertices which are ‘badly behaved’ with respect to the partition.
These vertices will never satisfy the conditions of the sparse blow-up lemma, and we will have to deal
with them beforehand. We will do this by ‘pre-embedding’ some vertices of H to cover the exceptional
vertices, and then apply the sparse blow-up lemma to complete the embedding of H into G, using image
restrictions to ensure we really obtain an embedding of H. Let us now fill in a few more details.

We start by obtaining, in the lemma for G, Lemma 26, a lower-regular partition of G into parts V0 and
Vi, j for i ∈ [r] (where r may be large but is bounded above by a constant) and j ∈ [k] with several extra
properties. The most important properties are that |V0|= O

(
p−2
)
, that the corresponding reduced graph,
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which we call Rk
r , on the vertex set [r]× [k] has high minimum degree and contains a so-called backbone

graph on which the partition does not merely provide lower-regular pairs but super-regular pairs, and
that all vertices outside V0 have inheritance properties with respect to all lower-regular pairs. Here, a
backbone graph has all edges between (i, j) and (i′, j′) with |i− i′| ≤ 1 and j 6= j′. One should think of
the backbone graph as consisting of copies of Kk (one for each i ∈ [r]) connected in a linear order; and
the high minimum degree of Rk

r ensures that each Kk extends to Kk+1 in Rk
r . In short, if the exceptional

vertices V0 did not exist, this partition, together with a corresponding partition of V (H), would be what
we need to apply the sparse blow-up lemma.

Passing over for now the inconvenient existence of V0, our next task is to find the corresponding
partition of V (H), for which we use the lemma for H, Lemma 27. The basic idea is then to split H
into intervals in the bandwidth order. We assign the first interval to the first Kk of the backbone graph
according to the given colouring of H, with the few vertices of colour zero assigned to a vertex extending
this clique of the backbone graph to Kk+1, and so on. Using the bandwidth property and zero-freeness of
the colouring one can do this in such a way as to obtain a graph homomorphism from H to Rk

r , which
is what we need. In addition, we need the number of vertices assigned to each (i, j) ∈V (Rk

r) to be very
close to |Vi, j|. We cannot guarantee exact equality, but we can get very close by making further use of
bandwidth, zero-freeness, and the fact that Kks in Rk

r extend to Kk+1s.

Now we have to deal with the exceptional set V0. We do this as follows. We choose a vertex v in the
exceptional set, and ‘pre-embed’ to it a vertex x picked from the first

√
βn vertices of L which is not in

any triangle of H. Using the common neighbourhood lemma, Lemma 28, we choose ∆ neighbours of v
which are ‘well-behaved’ with respect to the clusters Vi, j for some i∈ [r], and pre-embed the neighbours of
x to these vertices. The ‘well-behaved’ properties are what we need to generate image restrictions for the
second neighbours of x (which we will embed using the sparse blow-up lemma) satisfying the restriction
pair properties. We also need to change the assignment from the Lemma for H locally (up to a large but
constant distance from x) to accommodate this: the vertex x, and its first and second neighbours, might
have been assigned somewhere quite different previously. We repeat this until we have pre-embedded to
all exceptional vertices, and let H ′ and G′ be respectively the unembedded vertices of H and the vertices
of G to which we did not pre-embed.

At this point we have all the conditions we need to apply the sparse blow-up lemma to complete the
embedding, except that the partitions of H ′ and G′ we have do not quite have parts of matching sizes.
We use the balancing lemma, Lemma 29, to deal with this. The idea is simple: we take some carefully
selected vertices in clusters of G which are too big (compared to the assigned part of H) and move them
to other clusters, first in order to make sure that the total number of vertices in

⋃
iVi, j is correct for each j

(using the high minimum degree of Rk
r) and then (using the structure of the backbone graph) to give each

cluster the correct size.

At last, applying the sparse blow-up lemma, Lemma 16, we complete the embedding of H into G.

We note that this proof sketch glosses over some subtleties. In particular, at the two places where ‘we
choose’ vertices onto which to pre-embed, we have to be quite careful to choose vertices correctly so that
this strategy can be completed and we do not destroy good properties obtained earlier. We will return to
this point immediately before the proof of Theorem 25 in Section 8 to explain how we do this.
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3.2 Main lemmas

In this subsection we formulate the four main lemmas that we use in the proof of Theorem 25 mentioned
in the above overview. We defer the proofs of these lemmas to later sections. Before stating these lemmas,
we need some more definitions.

Let r,k ≥ 1 and let Bk
r be the backbone graph on kr vertices. That is, we have

V (Bk
r) := [r]× [k]

and for every j 6= j′ ∈ [k] we have {(i, j),(i′, j′)} ∈ E(Bk
r) if and only if |i− i′| ≤ 1.

Let Kk
r ⊆ Bk

r be the spanning subgraph of Bk
r that is the disjoint union of r complete graphs on k

vertices given by the following components: the complete graph Kk
r [{(i,1), . . . ,(i,k)}] is called the i-th

component of Kk
r for each i ∈ [r].

A vertex partition V′ = {Vi, j}i∈[r], j∈[k] is called k-equitable if
∣∣|Vi, j| − |Vi, j′ |

∣∣ ≤ 1 for every i ∈ [r]
and j, j′ ∈ [k]. Similarly, an integer partition {ni, j}i∈[r], j∈[k] of n (meaning that ni, j ∈ Z≥0 for every
i ∈ [r], j ∈ [k] and ∑i∈[r] j∈[k] ni, j = n) is k-equitable if |ni, j−ni, j′ | ≤ 1 for every i ∈ [r] and j, j′ ∈ [k].

The lemma for G says that a.a.s. Γ = G(n, p) satisfies the following property if p� (logn/n)1/2. For
any spanning subgraph G⊆ Γ with minimum degree a sufficiently large fraction of pn, there exists an
(ε,d, p)G-lower-regular vertex partition V of V (G) whose reduced graph Rk

r contains a clique factor Kk
r

on which the corresponding vertex sets of V are pairwise (ε,d, p)-super-regular. Furthermore, (G,V) has
one-sided and two-sided inheritance with respect to Rk

r , and the Γ-neighbourhoods of all vertices but the
ones in the exceptional set of V have almost exactly their expected size in each cluster. The proof of
Lemma 26 is given in Section 4.

Lemma 26 (Lemma for G). For each γ > 0 and integers k ≥ 2 and r0 ≥ 1 there exists d > 0 such that
for every ε ∈

(
0, 1

2k

)
there exist r1 ≥ 1 and C∗ > 0 such that the following holds a.a.s. for Γ = G(n, p)

if p ≥ C∗ (logn/n)1/2. Let G = (V,E) be a spanning subgraph of Γ with δ (G) ≥
( k−1

k + γ
)

pn. Then
there exists an integer r with r0 ≤ kr ≤ r1, a subset V0 ⊆ V with |V0| ≤ C∗p−2, a k-equitable vertex
partition V= {Vi, j}i∈[r], j∈[k] of V (G)\V0, and a graph Rk

r on the vertex set [r]× [k] with Kk
r ⊆ Bk

r ⊆ Rk
r ,

with δ (Rk
r)≥

( k−1
k + γ

2

)
kr, and such that the following are true.

(G 1) n
4kr ≤ |Vi, j| ≤ 4n

kr for every i ∈ [r] and j ∈ [k],

(G 2) V is (ε,d, p)G-lower-regular on Rk
r and (ε,d, p)G-super-regular on Kk

r ,

(G 3) both
(
NΓ(v,Vi, j),Vi′, j′

)
and

(
NΓ(v,Vi, j),NΓ(v,Vi′, j′)

)
are (ε,d, p)G-lower-regular pairs for every

{(i, j),(i′, j′)} ∈ E(Rk
r) and v ∈V \V0,

(G 4) |NΓ(v,Vi, j)|= (1± ε)p|Vi, j| for every i ∈ [r], j ∈ [k] and every v ∈V \V0.

Furthermore, if we replace (G 3) with the weaker

(G 3’)
(
NΓ(v,Vi, j),Vi′, j′

)
is an (ε,d, p)G-lower-regular pair for every {(i, j),(i′, j′)} ∈ E(Rk

r) and v ∈
V \V0,

then we have the stronger bound |V0| ≤C∗p−1.

ADVANCES IN COMBINATORICS, 2020:6, 60pp. 15

http://dx.doi.org/10.19086/aic
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After Lemma 26 has constructed a lower-regular partition V of V (G), the second main lemma deals
with the graph H that we would like to find as a subgraph of G. More precisely, Lemma 27 provides a
homomorphism f from the graph H to the reduced graph Rk

r given by Lemma 26 which has among others
the following properties. The edges of H are mapped to the edges of Rk

r , and the vast majority of the
edges of H are assigned to edges of the clique factor Kk

r ⊆ Rk
r . The number of vertices of H mapped to

a vertex of Rk
r only differs slightly from the size of the corresponding cluster of V. The lemma further

guarantees that each of the first
√

βn vertices of the bandwidth ordering of V (H) is mapped to (1, j) with
j being the colour that the vertex has received by the given colouring of H. In case H is D-degenerate the
next lemma also ensures that for every (i, j) ∈ [r]× [k], a constant fraction of vertices mapped to (i, j)
have each at most 2D neighbours.

Lemma 27 (Lemma for H). Given D,k,r ≥ 1 and ξ ,β > 0 the following holds if ξ ≤ 1/(kr) and
β ≤ 10−10ξ 2/(Dk4r). Let H be a D-degenerate graph on n vertices, let L be a labelling of its vertex set
of bandwidth at most βn and let σ : V (H)→{0, . . .k} be a proper (k+1)-colouring that is (10/ξ ,β )-
zero-free with respect to L, where the colour zero does not appear in the first

√
βn vertices of L.

Furthermore, let Rk
r be a graph on vertex set [r]× [k] with Kk

r ⊆ Bk
r ⊆ Rk

r such that for every i ∈ [r] there
exists a vertex zi ∈

(
[r]\{i}

)
× [k] with

{
zi,(i, j)

}
∈ E(Rk

r) for every j ∈ [k]. Then, given a k-equitable
integer partition {mi, j}i∈[r], j∈[k] of n with n/(10kr)≤ mi, j ≤ 10n/(kr) for every i ∈ [r] and j ∈ [k], there
exists a mapping f : V (H)→ [r]× [k] and a set of special vertices X ⊆V (H) such that we have for every
i ∈ [r] and j ∈ [k]

(H 1) mi, j−ξ n≤ | f−1(i, j)| ≤ mi, j +ξ n,

(H 2) |X | ≤ ξ n,

(H 3) { f (x), f (y)} ∈ E(Rk
r) for every {x,y} ∈ E(H),

(H 4) y,z ∈ ∪ j′∈[k] f−1(i, j′) for every x ∈ f−1(i, j)\X and xy,yz ∈ E(H),

(H 5) f (x) =
(
1,σ(x)

)
for every x in the first

√
βn vertices of L, and

(H 6) |{x ∈ f−1(i, j) : deg(x)≤ 2D}| ≥ 1
24D | f

−1(i, j)|.

Lemma 27 is a strengthened version of [13, Lemma 8]. The proof of [13, Lemma 8] is deterministic;
here we use a probabilistic argument to show the existence of a function f that also satisfies the additional
property (H 6), which is required for Theorem 8. However, we still borrow ideas from the proof of [13,
Lemma 8]. The proof of Lemma 27 will be given in Section 5.

During the pre-embeding, we embed a vertex x of H onto a vertex v of V0, and we also embed its
neighbours NH(x). This creates restrictions on the vertices of G to which we can embed the second
neighbours, and for application of Lemma 16 we need certain conditions to be satisfied. The next lemma
states that we can find vertices in NG(v), to which we will embed NH(x), satisfying these conditions.

Lemma 28 (Common neighbourhood lemma). For each d > 0, k ≥ 2, and ∆ ≥ 2 there exists α > 0
such that for every ε∗ ∈ (0,1) there exists ε0 > 0 such that for every r ≥ 1 and every 0 < ε ≤ ε0 there
exists C∗ > 0 such that the following is true. If p≥C∗ (logn/n)1/∆, then Γ = G(n, p) a.a.s. satisfies the
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following. Let G = (V,E) be a (not necessarily spanning) subgraph of Γ and {Vi}i∈[k]∪{W} a vertex
partition of a subset of V such that the following are true for every i, i′ ∈ [k].

(V 1) n
4kr ≤ |Vi| ≤ 4n

kr ,

(V 2) (Vi,Vi′) is (ε,d, p)G-lower-regular,

(V 3) |W | ≥ 10−10 ε4 pn
k4r4 , and

(V 4) |NG(w,Vi)| ≥ d p|Vi| for every w ∈W.

Then there exists a tuple (w1, . . . ,w∆) ∈
(W

∆

)
such that for every Λ,Λ∗ ⊆ [∆], and every i 6= i′ ∈ [k] we

have

(W 1) |
⋂

j∈Λ NG(w j,Vi)| ≥ α p|Λ||Vi|,

(W 2) |
⋂

j∈Λ NΓ(w j)| ≤ (1+ ε∗)p|Λ|n,

(W 3) |
⋂

j∈Λ NΓ(w j,Vi)|= (1± ε∗)p|Λ||Vi|, and

(W 4)
(⋂

j∈Λ NΓ(w j,Vi),
⋂

j∗∈Λ∗ NΓ(w j∗ ,Vi′)
)

is (ε∗,d, p)G-lower-regular if |Λ|, |Λ∗|< ∆ and either Λ∩
Λ∗ =∅ or ∆≥ 3 or both.

Let H ′ and G′ denote the subgraphs of H and G that result from removing all vertices that were
used in the pre-embedding process. As a last step before finally applying the sparse blow-up lemma, the
clusters in V

∣∣
G′ need to be adjusted to the sizes of Wi, j

∣∣
H ′ . The next lemma states that this is possible, and

that after this redistribution the regularity properties needed for Lemma 16 still hold.

Lemma 29 (Balancing lemma). For all integers k ≥ 1, r1,∆ ≥ 1, and reals γ,d > 0 and 0 < ε <
min{d,1/(2k)} there exist ξ > 0 and C∗ > 0 such that the following is true for every p≥C∗ (logn/n)1/2

and every 10γ−1 ≤ r ≤ r1 provided that n is large enough. Let Γ be a graph on the vertex set [n] and let
G = (V,E)⊆ Γ be a (not necessarily spanning) subgraph with vertex partition V= {Vi, j}i∈[r], j∈[k] that
satisfies n/(8kr)≤ |Vi, j| ≤ 4n/(kr) for each i ∈ [r], j ∈ [k]. Let {ni, j}i∈[r], j∈[k] be an integer partition of
∑i∈[r], j∈[k] |Vi, j|. Let Rk

r be a graph on the vertex set [r]× [k] with minimum degree δ (Rk
r)≥

(
(k−1)/k+

γ/2
)
kr such that Kk

r ⊆ Bk
r ⊆ Rk

r . Suppose that the partition V satisfies the following properties for each
i ∈ [r], each j 6= j′ ∈ [k], and each v ∈V .

(B 1) We have ni, j−ξ n≤ |Vi, j| ≤ ni, j +ξ n,

(B 2) V is
(

ε

4 ,d, p
)

G-lower-regular on Rk
r and

(
ε

4 ,d, p
)

G-super-regular on Kk
r ,

(B 3) both
(
NΓ(v,Vi, j),Vi, j′

)
and

(
NΓ(v,Vi, j),NΓ(v,Vi, j′)

)
are
(

ε

4 ,d, p
)

G-lower-regular pairs, and

(B 4) we have |NΓ(v,Vi, j)|=
(
1± ε

4

)
p|Vi, j|.

Then, there exists a partition V′ = {V ′i, j}i∈[r], j∈[k] of V such that the following properties hold for each
i ∈ [r], each j 6= j′ ∈ [k], and each v ∈V .
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(B 1’) We have |V ′i, j|= ni, j,

(B 2’) We have |Vi, j4V ′i, j| ≤ 10−10ε4k−2r−2
1 n,

(B 3’) V′ is (ε,d, p)G-lower-regular on Rk
r and (ε,d, p)G-super-regular on Kk

r ,

(B 4’) both
(
NΓ(v,V ′i, j),V

′
i, j′
)

and
(
NΓ(v,V ′i, j),NΓ(v,V ′i, j′)

)
are (ε,d, p)G-lower-regular pairs, and

(B 5’) For each 1≤ s≤ ∆ and vertices v1, . . . ,vs ∈ [n] we have∣∣NΓ(v1, . . . ,vs;Vi, j)4NΓ(v1, . . . ,vs;V ′i, j)
∣∣≤ 10−10

ε
4k−2r−2

1 degΓ(v1, . . . ,vs)+C∗ logn .

Furthermore, if for any two disjoint vertex sets A,A′ ⊆ V (Γ) with |A|, |A′| ≥ 1
50000kr1

ε2ξ pn we have
eΓ(A,A′) ≤

(
1+ 1

100 ε2ξ
)

p|A||A′|, and if ‘lower-regular’ is replaced with ‘regular’ in (B 2), and (B 3),
then we can replace ‘lower-regular’ with ‘regular’ in (B 3’) and (B 4’).

4 The lemma for G

In this section we prove the Lemma for G (Lemma 26), which borrows from the proof of [12, Proposi-
tion 17] and from the proof of [10, Lemma 9]. Our strategy is as follows. We first apply Lemma 13 to
obtain an equitable partition of V (G) within whose reduced graph we can find a backbone graph by Theo-
rem 1. We let Z1 be the vertices whose Γ-degrees are ‘wrong’ to this partition, or whose neighbourhoods
fail to inherit lower-regularity (plus a few extra to maintain k-equitability), and we remove the vertices Z1.
Now there may be some vertices in each cluster which destroy super-regularity on the clique factor of the
backbone graph. We redistribute these, and the exceptional set of the regular partition, to other clusters.
Now we would like to say we are finished, but the moving of vertices may have destroyed some of the
regularity inheritance, Γ-neighbourhood, and super-regularity properties we tried to obtain. However,
it is easy to check that a vertex only witnesses failure of these properties if exceptionally many of its
Γ-neighbours were moved from or to a cluster. We let Z2 be the set of all such vertices, and remove them.
We will see that Z2 is so small that its removal does not significantly affect the properties we want, so that
we can set V0 = Z1∪Z2 and we are done.

Proof of Lemma 26. We first fix the constants in the proof. Given γ > 0, k ≥ 2 and r0 ≥ 1, set d = γ

32 .
Let β and n0 be returned by Theorem 1 for input 1

2 γ , 3k and k. Let r′0 = max{n0,k/d,10k/β ,r0}.
Given ε ∈

(
0, 1

2k

]
, let 0 < ε∗ ≤ 10−10ε2γk−2 be small enough for both Lemmas 17 and 18 for input

1
2 ε and d. Let C be large enough for these applications of Lemmas 17 and 18, and also large enough for
Proposition 19 with input 1

1000

(
ε∗

k

)2.
Now Lemma 13, with input 1

k ε∗, k−1
k + γ and r′0 + k, returns r1. We set C∗ = 1000k3r5

1C/(ε∗)2.

Given p ≥ C∗
( logn

n

)1/2, the random graph G(n, p) a.a.s. satisfies the good events of Lemmas 17
and 18, and Proposition 19. We condition on Γ = G(n, p) satisfying these good events.

Given G⊆ Γ with δ (G)≥
( k−1

k + γ
)

pn, we apply Lemma 13, with input 1
k ε∗, k−1

k + γ , r′0 + k, and d,
to G. We may do this because G is a subgraph of Γ, and by choice of C∗ we have Cp−1 logn≤ ε∗n

kr1
, so that

the condition of Lemma 13 is satisfied because the good event of Proposition 19 holds for Γ. The result is
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a
(1

k ε∗, p
)
-lower-regular partition of V (G) into t ′ ∈ [r′0 +k,r1] equally sized clusters, with exceptional set

of size at most 1
k ε∗n, whose (ε∗,d, p)-reduced graph has minimum degree at least

( k−1
k + γ−d− 1

k ε∗
)
t ′.

We remove at most k− 1 of these clusters to the exceptional set, obtaining an (ε∗, p)-lower-regular
partition U of V (G) into kr equally sized clusters, where r′0 ≤ kr ≤ r1, with exceptional set U0 of size at
most ε∗n, whose (ε∗,d, p)-reduced graph Rk

r has minimum degree at least
( k−1

k + γ−d− 1
k ε∗
)
kr− k.

By choice of d and ε∗, and by choice of r′0, we have(k−1
k

+ γ−d− 1
k

ε
∗
)

kr− k ≥
(k−1

k
+

γ

2

)
kr .

Observe that Bk
r has bandwidth at most 2k < β r′0, and maximum degree less than 3k. Thus Theorem 1,

with input γ

2 , 3k, and k, in particular states that Rk
r contains a copy of Bk

r . We fix one such copy. We let its
vertices {(i, j)}i∈[r], j∈[k] label the vertices of Rk

r , and similarly let the cluster of U corresponding to the
vertex (i, j) of Bk

r be Ui, j for each i ∈ [r] and j ∈ [k]. The partition U is equitable, and thus in particular
k-equitable.

We now create Z1 as follows. We start with all vertices v of G for which there are (i, j) and (i′, j′) in
V (Rk

r), with {(i, j),(i′, j′)} an edge of Rk
r , such that either

(
NΓ(v,Ui, j),Ui′, j′

)
or
(
NΓ(v,Ui, j),NΓ(v,Ui′, j′)

)
is not

(1
2 ε,d, p

)
G-lower-regular. We add all vertices v of G for which there exists Ui, j with degΓ(v,Ui, j) 6=

(1± ε∗)p|Ui, j|, or for which degΓ(v,U0) > 2ε∗pn. Finally we add a minimum number of vertices to
obtain k-equitability of the sets

{
Ui, j \Z1

}
i∈[r], j∈[k]. Note that we have |Ui, j| ≥ n/(2kr1) for each i, j, and

we can estimate the number of vertices with more than 2ε∗pn neighbours in U0 by considering a superset
of U0 of size ε∗n. It follows that for each i, j we have log(en/|Ui, j|), log(en/|U0|) ≤ log(ekr1/ε∗). By
Lemma 17 and Lemma 18, and Proposition 19, we have

|Z1| ≤ 4kr2
1C max

{
p−2, p−1 log(ekr1/ε

∗)
}
≤ 8k2r3

1Cp−2/ε
∗ ≤ ε∗

kr1
n , (4.1)

where the factor k accounts for vertices removed to maintain k-equitability.
We now try to obtain super-regularity on the copy of Kk

r in Bk
r . For each i ∈ [r] and j ∈ [k] let Wi, j be

the vertices of Ui, j \Z1 which have less than (d−2ε∗)p|Ui, j′ | neighbours in Ui, j′ for some j′ 6= j. Because
(Ui, j,Ui, j′) is (ε∗,d, p)-lower-regular for each i ∈ [r] and j 6= j′ ∈ [k], we have |Wi, j| ≤ kε∗|Ui, j| for each
i ∈ [r] and j ∈ [k].

Now let W contain U0 \ Z1 together with all Wi, j for i ∈ [r] and j ∈ [k], and a minimum number
of additional vertices from V (G)\Z1 to obtain k-equitability of the sets

{
Ui, j \ (Z1∪W )

}
i∈[r], j∈[k]. By

construction, we have |W | ≤ ε∗n+ kr · kε∗ n
kr ≤ 2kε∗n.

Given any w ∈W , because w 6∈ Z1 we have

degΓ(w,U0)≤ 2ε
∗pn and degΓ(w,Ui, j)≤ (1+ ε

∗)p|Ui, j|

for each i ∈ [r] and j ∈ [k]. Now let us consider the edges of G leaving w. At most 2ε∗pn of these go to
U0, and by definition at most 2d pn go to sets Ui, j such that degG(w,Ui, j)≤ 2d p|Ui, j|. Since degG(w)≥( k−1

k + γ
)

pn, at least
( k−1

k + γ

2

)
pn edges leaving w go to sets Ui, j with degG(w,Ui, j)≥ 2d p|Ui, j|. Since

|Ui, j| ≤ 1
kr n, in particular there are at least(

k−1
k + γ

2

)
pn

(1+ ε∗)p n
kr
≥
(k−1

k
+

γ

4

)
kr
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sets Ui, j with i ∈ [r] and j ∈ [k] such that degG(w,Ui, j)≥ 2d p|Ui, j|. It follows that there are at least γ

4 r
indices i ∈ [r] such that degG(w,Ui, j)≥ 2d p|Ui, j| for each j ∈ [k].

We now assign to each w ∈W sequentially an index c(w) ∈ [r]× [k]. For each w, we choose
c(w) = (i, j) as follows. The index i is chosen minimal in [r] such that degG(w,Ui, j′)≥ 2d p|Ui, j′ | for each
j′ ∈ [k], but at most 100

r kε∗γ−1n vertices w′ ∈W have so far been assigned c(w′) = (i, j′) for any j′ ∈ [k].
We choose j ∈ [k] minimising the number of vertices w′ ∈W with c(w) = (i, j). Because |W | ≤ 2kε∗n,
this assignment is always possible.

Next, for each i ∈ [r] and j ∈ [k], we let V ′i, j consist of Ui, j \ (Z1∪Wi, j), together with all w ∈W such
that c(w) = (i, j). By construction, we have

|Ui, j4V ′i, j| ≤ |Z1|+ |Wi, j|+
100

r
kε
∗
γ
−1n≤ 1000k2

ε
∗
γ
−1|Ui, j| .

Finally, we let Z2 be the vertices v ∈ V (G) \ Z1 with degΓ(v,Ui, j4V ′i, j) ≥ 2000k2ε∗γ−1 p|Ui, j| for
some i ∈ [r] and j ∈ [k], together with a minimum number of additional vertices of V (G)\Z1 to obtain
k-equitability of the sets Vi, j := V ′i, j \Z2. We set V0 = Z1∪Z2. We claim that V = {Vi, j}i∈[r], j∈[k] is the
desired partition of V (G)\V0.

Note that the sets V ′i, j and V ′i, j′ differ in size by at most one for any i ∈ [r] and j, j′ ∈ [k], by our
construction of the assignment c. We apply Proposition 19 to estimate the number of vertices v ∈
V (G) \Z1 with degΓ(v,Ui, j4V ′i, j) ≥ 2000k2ε∗γ−1 p|Ui, j| by considering a superset of Ui, j4V ′i, j of size
1000k2ε∗γ−1|Ui, j| ≥ ε∗n/r1. By Proposition 19 we thus have

|Z2| ≤ r1 +Ckr1 p−1 log(er1/ε
∗)≤ 4Ckr2

1 p−1/ε
∗ ≤ ε∗

kr1
pn . (4.2)

This gives
|Ui, j4Vi, j| ≤ |Ui, j4V ′i, j|+ |Z2| ≤ 2000k2

ε
∗
γ
−1|Ui, j| . (4.3)

Now given any v∈V (G)\V0, for each i∈ [r] and j ∈ [k], because v 6∈ Z2 we have degΓ(v,Ui, j4V ′i, j)≤
2000k2ε∗γ−1 p|Ui, j|. We thus have

degΓ(v,Ui, j4Vi, j)≤ 2000k2
ε
∗
γ
−1 p|Ui, j|+ |Z2| ≤ 3000k2

ε
∗
γ
−1 p|Ui, j| , (4.4)

and because v 6∈ Z1 we have degΓ(v,Ui, j) = (1± ε∗)p|Ui, j|, and hence by (4.3)

degΓ(v,Vi, j) =
(
1±10000k2

ε
∗
γ
−1)p|Vi, j| . (4.5)

Adding up (4.1) and (4.2), we conclude

|V0| ≤ 8k2r3
1Cp−2/ε

∗+4Ckr2
1 p−1/ε

∗ ≤C∗p−2 , (4.6)

as desired. The partition V= {Vi, j}i∈[r], j∈[k] is by construction k-equitable, and the graph Rk
r has minimum

degree
( k−1

k + γ

2

)
kr as desired.

For each i ∈ [r] and j ∈ [k] we have |Ui, j|= (1± ε∗) n
kr , and so (4.3) and our choice of ε∗ give (G 1).

Next, if {(i, j),(i′, j′)} is an edge of Rk
r , then G is (ε∗,d, p)-lower-regular on (Ui, j,Ui′, j′) by construc-

tion. By (4.3), Proposition 12, and our choice of ε∗, G is (ε,d, p)-lower-regular on (Vi, j,Vi′, j′). Given
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i ∈ [r] and j 6= j′ ∈ [k], let v be a vertex of Vi, j. Observe that since v ∈ Vi, j, either we have v ∈Ui, j, in
which case, since v 6∈W we have degG(v,Ui, j′)≥ (d−2ε∗)p|Ui, j′ |, or v is in W and has c(v) = (i, j), in
which case degG(v,Ui, j′)≥ d p|Ui, j′ |. By (4.3) and (4.4) we have

degG(v,Vi, j′)≥ (d−2ε
∗)p|Ui, j′ |−3000k2

ε
∗
γ
−1 p|Ui, j′ | ≥ (d− ε)p|Vi, j′ | ,

giving (G 2).
If {(i, j),(i′, j′)} ∈ E(Rk

r), then for any v ∈V (G)\V0, since v 6∈ Z1, the pairs
(
NΓ(v,Ui, j),Ui′, j′

)
and(

NΓ(v,Ui, j),NΓ(v,Ui′, j′)
)

are
(1

2 ε,d, p
)

G-lower-regular. Using (4.3) and (4.4), Proposition 12 and our
choice of ε∗, we conclude (G 3).

Finally, (G 4) follows from (4.5) and our choice of ε∗.
Note that if we alter the definition of Z1, removing the condition on

(
NΓ(v,Ui, j),NΓ(v,Ui′, j′)

)
, then

we do not need to use Lemma 18 and the bound in (4.1) improves to |Z1| ≤ 8k2r3
1Cp−1/ε∗. Thus, if we

only require (G 3’), we obtain |V0| ≤C∗p−1 as claimed.

5 The lemma for H

In this section we present the proof of Lemma 27. The proof idea is as follows. First, given the zero-free
labelling L and (k+1)-colouring σ of H, we split L into the blocks of the definition of zero-freeness.
We partition the blocks into r ‘sections’ of consecutive blocks, such that the i-th section contains about
∑ j∈[k] mi, j vertices, and furthermore such that the ‘boundary vertices, namely the first and last βn vertices
of each section, do not receive colour zero. Now it is easy to check that assigning the vertices of colour j
in the i-th section to (i, j) for each i ∈ [r] and j ∈ [k], and the vertices of colour zero in the i-th section
to zi, is a graph homomorphism. However it can be very unbalanced, since different colours in [k] may
be used with very different frequencies in each section. To fix this, we replace σ with a new colouring
σ ′, which we obtain as follows. We partition each section into ‘intervals’ of consecutive blocks, and for
each interval except the last in each section, we pick a random permutation of [k]. We will show that
there is a colouring σ ′ such that all but the first few vertices of each interval are coloured according to the
permutation applied to σ , with vertices of colour zero staying coloured zero. We use this colouring σ ′ in
place of σ to define the mapping f . We let X consist of all vertices whose distance is two or less to either
boundary vertices, vertices near the start of an interval, or colour zero vertices.

To complete the proof, we show that so few vertices receive colour zero that they do not much affect
the desired conclusions. Now the mapping f is in expectation balanced, and using Lemma 23 we can
show that it is also with high probability close to balanced. It is also easy to check that, since H is
D-degenerate, in the i-th section of L there are many vertices of degree at most 2D. In expectation these
are distributed about evenly over the

{
(i, j)

}
j∈[k] by f , and again McDiarmid’s inequality shows that with

high probability the same holds. These two observations give us (H 1) and (H 6), while the other four
desired conclusions hold by construction.

Proof of Lemma 27. For given D ≥ 1, set α = 1/(24D). Let k,r ≥ 1 and ξ ,β > 0 be given, where
ξ ≤ 1/(kr) and β ≤ 10−10ξ 2/(Dk4r). Let H and Kk

r ⊆ Bk
r ⊆ Rk

r be graphs as in the statement of the
lemma. Let L be the given labelling of V (H) of bandwidth at most βn. We denote the set of the first√

βn vertices of L by F . Let σ : V (H)→{0, . . .k} be the given proper (k+1)-colouring of V (H) that is
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(10/ξ ,β )-zero-free with respect to L and such that σ(F)⊆ [k]. Also, let z1, . . . ,zn be vertices such that
zi ∈

(
[r]\{i}

)
× [k] with

{
zi,(i, j)

}
∈ E(Rk

r) for every i ∈ [r] and j ∈ [k]. Finally, set b = k/
√

β .
Let {mi, j}i∈[r], j∈[k] be the given k-equitable integer partition of n with n/(10kr) ≤ mi, j ≤ 10n/(kr)

for every i ∈ [r] and j ∈ [k].
Let us now introduce the notation that we use in this proof. Recall that for every t ∈

[
1/(4kβ )

]
the

i-th block is defined as
Bt := {(t−1)4kβn+1, . . . , t4kβn}.

Next we split the labelling L into r sections, where the first and the last block of each section are zero-free.
Each section is partitioned into intervals, each of which but possibly the last one consists of b blocks.

Since σ is (10/ξ ,β )-zero-free with respect to L, we can choose indices 0 = t0 ≤ t1 ≤ . . .≤ tr−1 ≤
tr = 1/(4kβ ) such that Bti and Bti+1 are zero-free blocks for every i ∈ [r] and

ti

∑
t=1
|Bt | ≤

i

∑
t=1

∑
j∈[k]

mt, j < 12kβn+
ti

∑
t=1
|Bt |.

Since mi, j ≥ n/(10kr)> 12kβn, indices t0, . . . , tr are distinct. For every i ∈ [r] we define the i-th section
Si as

ti⋃
t=ti−1+1

Bt .

This means by the choice of the indices t0, . . . , tr that the first and last block of each section are zero-free.
Since {mi, j}i∈[r], j∈[k] is a k-equitable partition, we have in particular

1
k
(|Si|−12kβn)≤ mi, j ≤

1
k

(
|Si|+12kβn

)
. (5.1)

The last βn vertices of the blocks Bti and the first βn vertices of the blocks Bti+1 are called boundary
vertices of H. Notice that colour zero is never assigned to boundary vertices by σ . For each i ∈ [r], we
split Si into si := d(ti− ti−1−1)/be intervals, where each of the first (si−1) intervals is the concatenation
of exactly b blocks and the last interval consists of ti− ti−1− 1− b(si− 1) ≤ b blocks. Therefore, for
every i ∈ [r], we have

si(b−1)4kβn+1≤ |Si| ≤ sib4kβn. (5.2)

Using Equation (5.1), b = k/
√

β , and n/(10kr)≤mi, j ≤ 10n/(kr) we get, for every i ∈ [r], the following
bounds on si

1

100rk2
√

β
≤ si ≤

10

rk2
√

β
.

We denote the intervals of the i-th section by Ii,1, . . . , Ii,si . Let Bsw
i,` denote the union of the first two blocks

of each interval Ii,`. All of these blocks but Bsw
i,1 and Bsw

i,si
will be used to switch colours within parts of H.

Notice that we have |Bsw
i,` |= 8kβn and, since σ is (10/ξ ,β )-zero-free with respect to L, at least one of

the two blocks of Bsw
i,` is zero-free. We will not use Bsw

i,1 and Bsw
i,si

to switch colours because we will need
that the boundary vertices do not receive colour zero.

For every i ∈ [r] and every ` ∈ {2, . . . ,si−1}, we choose a permutation πi,` : [k]→ [k] uniformly at
random.
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The next claim ensures that we can use zero-free blocks to obtain a proper colouring of the vertex set
such that vertices before the switching block are coloured according to the original colouring and the
colours of the vertices after the switching block are permuted as wished. A proof can be found in [13].

Claim 30 ([13]). Let σ : [n]→ {0, . . . ,k} be a proper (k + 1)-colouring of H, let Bt be a zero-free
block and let π be any permutation of [k]. Then there exists a proper (k+ 1)-colouring σ ′ of H with
σ ′(x) = σ(x) for all x ∈

⋃
i<t Bi and

σ
′(x) =

{
π(σ(x)) if σ(x) 6= 0
0 otherwise

for all x ∈
⋃

i>t Bi.

We use Claim 30 to switch colours at the beginning of each interval except for the first and last
interval of each section. More precisely, we switch colours within the sets Bsw

i,` so that the colouring
of the remaining vertices in the interval Ii,` matches πi,`. Note that we can indeed use Bsw

i,` to do the
switching since one of the two blocks in Bsw

i,` is zero-free. In particular, we get a proper (k+1)-colouring
σ ′ = σ ′

(
π1,2, . . . ,πr,sr−1

)
: V (H)→ {0, . . .k+ 1} of H that fulfils the following. For every x ∈ I1,1 we

have
σ
′(x) = σ(x),

for each i ∈ [r] and ` ∈ {2, . . . ,si−1} and every x ∈ Ii,` \Bsw
i,` we have that

σ
′(x) =

{
πi,`
(
σ(x)

)
if σ(x) 6= 0

0 otherwise

and for each i ∈ [r] and every x ∈ Ii,si ∪ Ii+1,1 (where Ir+1,1 :=∅) we have that

σ
′(x) = πi,si−1

(
σ(x)

)
.

While σ ′ is well-defined on the sets Bsw
1,2, . . . ,B

sw
r,sr−1 by Claim 30, the definition on these sets is rather

complicated as it is depends on which of the two blocks in Bsw
i,` is zero-free and on the colourings before

and after the switching. However, the precise definition on these sets is not important for the remainder
of the proof. Hence, we omit it here. Observe that σ ′ never assigns colour zero to boundary vertices.

Using σ ′ we now define f = f
(
π1,2, . . . ,πr,sr−1

)
: V (H)→ [r]× [k] as follows. For each i ∈ [r] and

x ∈ Si we set

f (x) :=

{(
i,σ ′(x)

)
if σ ′(x) 6= 0

zi otherwise,

where zi ∈
(
[r]\{i}

)
× [k] is the vertex defined in the statement of the lemma. Let X consist of all vertices

at distance two or less from a boundary vertex of L, from a vertex in any Bsw
i,` , or from a colour zero

vertex. We now show that f and X satisfy Properties (H 2)–(H 5) with probability 1 and Properties (H 1)
and (H 6) with high probability. In particular, this implies that the desired f and X exist.
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We start with Property (H 1). For each i ∈ [r] let

S∗i := Si \

 ⋃
`∈[si]

Bsw
i,` ∪ Ii,1∪ Ii,si


be the set of all vertices in Si except for the first and last interval and the first two blocks of each interval
of Si. We will also make use of the following restricted function

f ∗ = f ∗
(
π1,2, . . . ,πr,sr

)
:= f

∣∣⋃
i∈[r] S∗i

.

The basic idea of the proof of Property (H 1) is to determine bounds on | f ∗−1(i, j)| that hold with positive
probability and then deduce the desired bounds on | f−1(i, j)|. Since the permutations πi,` were chosen
uniformly at random, we have by definition of f ∗ that the expected number of vertices mapped to
(i, j) ∈ [r]× [k] by f ∗ is

E
[
| f ∗−1(i, j)|

]
=

1
k

[
(si−2)(b−2)4kβn−

∣∣{x ∈ S∗i : σ(x) = 0}
∣∣]

+
∣∣ ⋃

ι∈[r]\{i}
{x ∈ S∗ι : σ(x) = 0 and zι = (i, j)}

∣∣ .
In particular, the following bounds on the expected value of | f ∗−1(i, j)| hold.

E
[
| f ∗−1(i, j)|

]
≤ (si−2)(b−2)4βn+

ξ

10
n (5.3)

and

E
[
| f ∗−1(i, j)|

]
≥ (1−ξ/10)(si−2)(b−2)4βn≥ (si−2)(b−2)4βn− ξ

10
n. (5.4)

If one replaced a permutation πi,` by some other permutation π̃ : [k]→ [k], then | f ∗−1(i, j)| would
change by at most (b−2)4kβn. Hence, by McDiarmid’s Inequality (Lemma 23) we have

P
[∣∣(si−2)(b−2)4βn−| f ∗−1(i, j)|

∣∣≥ ξ

5
n
]

(5.3),(5.4)
≤

P
[∣∣E[| f ∗−1(i, j)]−| f ∗−1(i, j)|

∣∣≥ ξ

10
n
]
≤ 2exp

{
− ξ 2n2

50(si−2)
(
(b−2)4kβn

)2

}
. (5.5)

Taking the union bound over all j ∈ [k] and using si ≤ 10/(rk2
√

β ) and b = k/
√

β as well as
β ≤ 10−10ξ 2/(Dk4r) yields

P
[∣∣(si−2)(b−2)4βn−| f ∗−1(i, j)|

∣∣≥ ξ

5
n for all j ∈ [k]

]
≤ 2k exp

{
− ξ 2r

8000k2
√

β

}
≤ 2ke−k < 1.
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Observe that | f ∗−1(i, j)| is independent of the choices for πi′,` if i′ 6= i. Hence, with positive probability
we have, for every i ∈ [r] and j ∈ [k], that

(si−2)(b−2)4βn− ξ

5
n≤ | f ∗−1(i, j)| ≤ (si−2)(b−2)4βn+

ξ

5
n.

From the definition of f ∗ it follows that | f−1(i, j)| ≥ | f ∗−1(i, j)| and

| f−1(i, j)| ≤ | f ∗−1(i, j)|+ |Ii,1|+ |Ii,si |+
si−1

∑
`=2
|Bsw

i,` |+
∣∣∣{x ∈

⋃
ι∈[r]\{i}

Sι \S∗ι : σ
′(x) = 0 and zι = (i, j)

}∣∣∣.
Using si ≤ 10/(rk2

√
β ) and b = k/

√
β and β ≤ 10−10ξ 2/(Dk4r), with positive probability we have for

every i ∈ [r] and j ∈ [k] that

| f−1(i, j)| ≥ | f ∗−1(i, j)| ≥ (si−2)(b−2)4βn− ξ

5
n

≥ (si−2)(b−2)4βn− ξ

5
n+
(

8(si +b)βn− 4
5

ξ n
)

≥ sib4βn+16βn−ξ n
(5.2)
≥ 1

k

(
|Si|+16kβn

)
−ξ n

(5.1)
≥ mi, j−ξ n.

On the other hand,

| f−1(i, j)| ≤ | f ∗−1(i, j)|+ |Ii,1|+ |Ii,si |+
si−1

∑
`=2
|Bsw

i,` |

+
∣∣∣{x ∈

⋃
ι∈[r]\{i}

Sι \S∗ι : σ
′(x) = 0 and zι = (i, j)

}∣∣∣
≤ (si−2)(b−2)4βn+

ξ

5
n+8bkβn+(si−2)8kβn+

ξ

10
n

≤ 1
k

(
(si−2)(b−2)4kβn

)
+ξ n

≤ 1
k
(|Si|−12kβn)+ξ n

(5.1)
≤ mi, j +ξ n,

which shows that Property (H 1) holds with positive probability.
By definition of X , since L is a βn-bandwidth ordering, any vertex in X is at distance at most 2βn

in L from a boundary vertex, a vertex of some Bsw
i,` , or from a vertex assigned colour zero. Because

there are r sections, the boundary vertices form r−1 intervals each of length 2βn, and so at most 6rβn
vertices of H are at distance 2 or less from a boundary vertex. There are ∑i∈[r] si intervals and hence
∑i∈[r] si switching blocks each of size 8kβn. As si ≤ 10/(rk2

√
β ) for every i ∈ [r], there are at most

(4+8k)βn ·10/(k2
√

β ) vertices at distance 2 or less from a vertex of some switching block. Similarly,
because L is (10/ξ ,β )-zero-free, in any consecutive 10/ξ blocks at most one contains vertices of colour
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zero, and hence at most (8+4k)βn vertices in any such 10/ξ consecutive blocks are at distance 2 or less
from a vertex of colour zero. Thus we have

|X | ≤ 6rβn+(4+8k)βn

(
10

k2
√

βn

)
+(8+4k)βn

(
n

4kβn ·10/ξ
+1
)
≤ 6rβn+

1
4

ξ n+
1
3

ξ n≤ ξ n ,

which gives (H 2).
Since σ ′ is a proper colouring, and boundary vertices are not adjacent to colour zero vertices, by

definition, f restricted to the boundary vertices is a graph homomorphism to Bk
r . On the other hand, on

each section Si, again since σ ′ is a proper colouring and since
{
(i, j)

}
j∈[k]∪{zi} forms a clique in Rk

r , f

is a graph homomorphism to Rk
r . Since L is a βn-bandwidth ordering, any edge of H is either contained

in a section or goes between two boundary vertices, and we conclude that f is a graph homomorphism
from H to Rk

r , giving (H 3).
Now, given i ∈ [r] and j ∈ [k], and x ∈ f−1(i, j)\X , if {x,y} and {y,z} are edges of H, then y and z

are at distance two or less from x in H. In particular, by definition of X neither y nor z is either a boundary
vertex, in any Bsw

i,` , or assigned colour zero. Since boundary vertices appear in intervals of length 2βn in
L, and L is a βn-bandwidth ordering, it follows that y and z are both in Si. Furthermore, suppose x ∈ Ii,`
for some `. By definition x 6∈ Bsw

i,` . Because Bsw
i,` and Bsw

i,`+1 (if the latter exists) are intervals of length
8kβn, both y and z are also in Ii,` \Bsw

i,` , and in particular both y and z are in
⋃

j′∈[k] f−1(i, j′), giving (H 4).

Since
√

βn ≤ b4kβn ≤ |I1,1| and σ ′(x) 6= 0 for each x in the first
√

βn vertices of L, it follows
directly from the definition of f that f (x) =

(
1,σ(x)

)
, which shows Property (H 5).

Finally, we show that Property (H 6) holds with positive probability. Let i ∈ [r] and j ∈ [k]. We define
the random variable Ei, j := |{x ∈ f ∗−1(i, j) : deg(x)≤ 2D}|. Since H is D-degenerate and L is a labelling
of bandwidth at most βn we have

e
(
S∗i ,V (H)

)
≤ D|S∗i |+D4βn≤ D

(
1+1/(4D)

)
|S∗i |.

Hence, it must hold that |{x ∈ S∗i : deg(x) ≥ 2D + 1}|(2D + 1) ≤ 2D
(
1 + 1/(4D)

)
|S∗i |. This yields

|{x ∈ S∗i : deg(x)≤ 2D}| ≥ |S∗i |/(6D) and therefore

E[Ei, j]≥
1

6kD
|S∗i | ≥

1
6D

(si−2)(b−2)4βn.

By applying Chernoff’s Inequality (Theorem 20) and using Equations (5.1) and (5.2) as well as α =
1/(24D) we get

P
[∣∣{x ∈ f−1(i, j) : deg(x)≤ 2D}

∣∣< α| f−1(i, j)|
] (H 1)
≤ P

[
Ei, j < α(sib4βn+2ξ n)

]
≤ P

[
Ei, j < 2α

(
(si−2)(b−2)4βn

)]
≤ P

[
Ei, j <

1
2
E[Ei, j]

]
< 2exp

{
−(si−2)(b−2)4βn

72

}
.

Taking the union bound over all i∈ [r] and j ∈ [k] yields that Property (H 6) holds with positive probability.
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6 The common neighbourhood lemma

In order to prove Lemma 28 we need the following version of the Sparse Regularity Lemma, allowing
for a partition equitably refining an initial partition with parts of very different sizes. Given a partition
V (G) =V1 ·∪ · · · ·∪Vs, we say a partition {Vi, j}i∈[s], j∈[t] is an equitable (ε, p)-regular refinement of {Vi}i∈[s]
if |Vi, j|= |Vi, j′ |±1 for each i ∈ [s] and j, j′ ∈ [t], and there are at most εs2t2 pairs (Vi, j,Vi′, j′) which are
not (ε,0, p)-regular.

Lemma 31. For each ε > 0 and s ∈ N there exists t1 ≥ 1 such that the following holds. Given any
graph G, suppose V1 ·∪ · · · ·∪Vs is a partition of V (G). Suppose that e(Vi)≤ 3p|Vi|2 for each i ∈ [s], and
e(Vi,Vi′)≤ 2p|Vi||Vi′ | for each i 6= i′ ∈ [s]. Then there exist sets Vi,0 ⊆Vi for each i ∈ [s] with |Vi,0|< ε|Vi|,
and an equitable (ε, p)-regular refinement {Vi, j}i∈[s], j∈[t] of {Vi \Vi,0}i∈[s] for some t ≤ t1.

The proof is standard, following Scott’s method [40]. We defer it to Appendix A.
To prove Lemma 28, we work as follows. First, we choose a regularity parameter ε∗∗0 and apply

Lemma 31 with ε∗∗0 and the initial partition V1 \W, . . . ,Vk \W,W . From this partition, all we need is a part
W ′ ⊆W and parts V ′i ⊆Vi \W for each i ∈ [k], such that each pair (W ′,V ′i ) is (ε∗∗0 ,d/2, p)-lower-regular,
which we find by averaging. We now choose our vertices w1, . . . ,w∆ sequentially (in Claim 32), such that
the desired (W 1)–(W 4) hold for all subsets of the so far chosen vertices at each stage. This is in spirit
very much like the usual dense case ‘Key Lemma’ sequential embedding of vertices using regularity, but
in the sparse setting here we need to work somewhat harder and use the regularity inheritance lemmas to
show that we can choose vertices which give us lower-regular pairs for future embedding (rather than this
being automatic from the slicing lemma, as it is in the dense case).

Thus, the proof mainly amounts to showing that the number of vertices which break one of the desired
properties and which we therefore cannot choose is always much smaller than |W ′|. In order to show
this for (W 1) we need to maintain some extra properties, specifically sizes of G- and Γ-neighbourhoods
of chosen vertices within each V ′i , and that these Γ-neighbourhoods of chosen vertices in each V ′i form
lower-regular pairs with W ′.

Note that the way we choose our various regularity parameters amounts to ensuring that, even after
∆−1 successive applications of regularity inheritance lemmas, we still have sufficient regularity for our
argument. Furthermore, it is important to note that the choice of ε∗∗0 does not have anything to to with ε∗

or ε0, rather it affects only the returned value of α .

Proof of Lemma 28. First we fix all constants that we need throughout the proof. Given d > 0, k ≥ 1,
and ∆≥ 2, let ε∗∗

∆
:= 8−∆ 1

(k+1)2

(d
8

)∆
. Now, for each j = 1, . . . ,∆ sequentially, choose ε∗∗

∆− j ≤ ε∗∗
∆− j+1 not

larger than the ε0 returned by Lemma 17 for input ε∗∗
∆− j and d

2 .
Now, Lemma 31 with input ε∗∗0 and s = k+1 returns t1 ≥ 1. We set

α :=
1

2t1

(d
4

)∆

.

Next, given ε∗ > 0, let ε∗
∆−1,∆−1 := ε∗, and let ε∗j,∆ = ε∗

∆, j = 1 for each 1≤ j ≤ ∆. For each ( j, j′) ∈
[∆]2 \{(1,1)} in lexicographic order sequentially, we choose

ε
∗
∆− j,∆− j′ ≤min{ε∗∆− j+1,∆− j′ ,ε

∗
∆− j,∆− j′+1,ε

∗
∆− j+1,∆− j′+1}
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not larger than the ε0 returned by Lemma 17 for both input ε∗
∆− j+1,∆− j′ and d, and for input ε∗

∆− j,∆− j′+1
and d, and not larger than the ε0 returned by Lemma 18 for input ε∗

∆− j+1,∆− j′+1 and d.
We choose ε0 small enough such that (1+ ε0)

∆ ≤ 1+ ε∗ and (1− ε0)
∆ ≥ 1− ε∗. Given r ≥ 1 and ε

with 0 < ε ≤ ε0, suppose that C is large enough for each of these calls to Lemmas 17 and 18, and for
Proposition 19 with input ε0. Finally, we set

C∗ = 1012k4t1r4
ε
−422∆C .

Given p≥C∗
( logn

n

)1/∆, a.a.s. the good events of each of the above calls to Lemma 17 and 18, and
to Proposition 19 and Lemma 31, occur. We condition from now on upon these events occurring for
Γ = G(n, p).

Let G = (V,E) be a subgraph of Γ. Suppose {Vi}i∈[k] and W satisfy the conditions of the lemma. We
first apply Lemma 31, with the promised input parameters ε∗∗0 and s = k+1, to G[V1∪·· ·∪Vk∪W ], with
input partition {Vi \W}i∈[k] ∪{W}. We can do this because Cp−1 logn < 10−10 ε4 pn

k4r4 , so that the good
event of Proposition 19 guarantees that the conditions of Lemma 31 are satisfied. This returns a partition
refining each set of {Vi \W}i∈[k] ∪{W} into 1 ≤ t ≤ t1 clusters together with a small exceptional set.
Let W ′ ⊆W be a cluster which is in at most 2kε∗∗0 t pairs with clusters in

(
V1∪ ·· ·∪Vk

)
\W which are

not (ε∗∗0 , p)G-lower-regular. Such a cluster exists by averaging. By Proposition 19 and (V 1), at most
4(k+ 1)ε∗∗0 p 4n

r |W
′| edges lie in the pairs between W ′ and the Vi which are not lower-regular, and by

Proposition 19 and (V 3) at most 2p|W ||W ′|< ε∗∗0 p n
r |W

′| edges leaving W ′ lie in W . By (V 4), for each
i ∈ [k] each w ∈W ′ has at least d p|Vi| neighbours in Vi, and hence there are at least d p

2 |Vi||W ′| edges from
W ′ to Vi \W which lie in (ε∗∗0 , p)G-lower-regular pairs. By averaging, for each i ∈ [k] there exists a cluster
V ′i of the partition such that (W ′,V ′i ) is (ε∗∗0 ,d/2, p)G-lower-regular. For the remainder of the proof, we
will only need these k+1 clusters from the partition.

Notice that for every i ∈ [k] we have

|Vi| ≥ |V ′i | ≥
n

8kt1r
≥ 1

8kt1r
(C∗)2 p−2 logn≥C∗p−2 logn

and

|W ′| ≥ 10−11 ε4 pn
t1k4r4 ≥ 10−11 ε4

t1k4r4 (C
∗)2 p−1 logn≥C∗p−1 logn (6.1)

both by the choice of C∗ and p.
We choose the ∆-tuple (w1, . . . ,w∆) inductively, using the following claim.

Claim 32. For each 0≤ `≤ ∆ there exists an `-tuple (w1, . . . ,w`) ∈
(W ′

`

)
such that the following holds.

For every Λ,Λ∗ ⊆ [`], and every i 6= i′ ∈ [k] we have

(L 1)
(⋂

j∈Λ NΓ(w j,V ′i ),W
′) is (ε∗∗|Λ|,

d
2 , p)G-lower-regular if |Λ|< ∆,

(L 2) |
⋂

j∈Λ NG(w j,V ′i )| ≥
(d

4

)|Λ|p|Λ||V ′i |,
(L 3) |

⋂
j∈Λ NΓ(w j)| ≤ (1+ ε0)

|Λ|p|Λ|n,

(L 4) |
⋂

j∈Λ NΓ(w j,V ′i )|= (1± ε0)
|Λ|p|Λ||V ′i |,
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(L 5) |
⋂

j∈Λ NΓ(w j,Vi)|= (1± ε0)
|Λ|p|Λ||Vi|, and

(L 6)
(⋂

j∈Λ NΓ(w j,Vi),
⋂

j∗∈Λ∗ NΓ(w j∗ ,Vi′)
)

is (ε∗|Λ|,|Λ∗|,d, p)G-lower-regular if
|Λ|, |Λ∗|< ∆ and either ∆≥ 3 or Λ∩Λ∗ =∅ or both.

We prove this claim by induction on `. Recall that if Λ = /0 then
⋂

j∈Λ NΓ(w j,V ′i ) is by definition
equal to V ′i , and that [0] = /0.

Proof of Claim 32. For the base case `= 0, observe that (L 1) follows from our choice of W ′ and the V ′i .
For every i, j ∈ [k], the pair (Vi,Vj) is (ε,d, p)G-lower-regular by (V 2), and since ε ≤ ε∗0,0 this gives (L 6).
The remaining three properties (L 2), (L 4) and (L 5) are tautologies for `= 0.

For the inductive step, suppose that for some 0 ≤ ` < ∆ there exists an `-tuple (w1, . . . ,w`) ∈
(W ′

`

)
satisfying (L 1)–(L 6). We now find a vertex w`+1 ∈W ′ such that the (`+ 1)-tuple (w1, . . . ,w`+1) still
satisfies (L 1)–(L 6). We do this by determining, for each of these five conditions, an upper bound on
the number of vertices in W ′ that violate them and show that the sum of these upper bounds is less than
|W ′|− `.

Suppose Λ⊆ [`] satisfies |Λ|< ∆−1, and suppose i ∈ [k]. By the choice of C and p we have for every
i ∈ [k]

∣∣⋂
j∈Λ

NΓ(w j,V ′i )
∣∣ (L 4)

≥ (1− ε0)
|Λ|p|Λ||V ′i |

|Λ|<∆−1
≥ (1− ε0)

∆−2 p∆−2 n
8ktr

≥Cp−2 logn . (6.2)

We also have |W ′| ≥C∗p−1 logn by (6.1) and
(⋂

j∈Λ NΓ(w j,V ′i ),W
′) is an (ε∗∗|Λ|,d/2, p)G-lower-regular

pair by (L 1). Since the good event of Lemma 17 with input ε∗∗|Λ|+1 and d
2 occurs, there exist at most

Cp−1 logn vertices w in W ′ such that(⋂
j∈Λ

NΓ(w j,V ′i )∩NΓ(w),W ′
)
=

(⋂
j∈Λ

NΓ(w j,V ′i )∩NΓ(w,V ′i ),W
′
)

is not (ε∗∗|Λ|+1,
d
2 , p)G-lower-regular. Summing over all possible choices of Λ⊆ [l] and i ∈ [k], there are at

most 2∆k2Cp−1 logn vertices w in W ′ such that (w1, . . . ,wl,w) does not satisfy (L 1).
Moving on to (L 2), let Λ⊆ [`] and i ∈ [k] be given. We have∣∣⋂

j∈Λ

NG(w j,V ′i )
∣∣ (L 2)

≥
(d

4

)|Λ|
p|Λ||V ′i | and

∣∣⋂
j∈Λ

NΓ(w j,V ′i )
∣∣ (L 4)

≤ (1+ ε0)
|Λ|p|Λ||V ′i | .

By choice of ε0 and ε∗∗|Λ|, we thus have
∣∣⋂

j∈Λ NG(w j,V ′i )
∣∣ ≥ ε∗∗|Λ|

∣∣⋂
j∈Λ NΓ(w j,V ′i )

∣∣. Now by (L 1), the

pair
(
W ′,

⋂
j∈Λ NΓ(w j,V ′i )

)
is
(
ε∗∗|Λ|,

d
2 , p
)

G-lower-regular, and thus the number of vertices w ∈W ′ such
that ∣∣NG(w,V ′i )∩

⋂
j∈Λ

NG(w j,V ′i )
∣∣< (d

4

)|Λ|+1
p|Λ|+1|V ′i |
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is at most ε∗∗|Λ||W
′| ≤ ε∗∗

∆
|W ′|. Summing over the choices of Λ ⊆ [`] and i ∈ [k], the number of w ∈W ′

violating (L 2) is at most 2∆kε∗∗
∆
|W ′|.

For (L 4), given Λ⊆ [`] and i ∈ [k], by (L 4) we have∣∣⋂
j∈Λ

NΓ(w j,V ′i )
∣∣= (1± ε0)

|Λ|p|Λ||V ′i | ,

and by choice of ε0 and p, in particular
∣∣⋂

j∈Λ NΓ(w j,V ′i )
∣∣ ≥ Cp−1 logn. Since the good event of

Proposition 19 occurs, the number of vertices w ∈W ′ such that
∣∣NΓ(w,V ′i )∩

⋂
j∈Λ NΓ(w j,V ′i )

∣∣ is either
smaller than (1−ε0)

|Λ|+1 p|Λ|+1|V ′i | or larger than (1+ε0)
|Λ|+1 p|Λ|+1|V ′i | is at most 2Cp−1 logn. Summing

over the choices of Λ ⊆ [`] and of i ∈ [k], we conclude that at most 2∆+1kCp−1 logn vertices of W ′

violate (L 4). Since n ≥ |Vi| ≥ |V ′i |, the same calculation shows that a further at most 2∆+1kCp−1 logn
vertices of W ′ violate (L 5), and at most 2∆+1kCp−1 logn vertices of W ′ violate (L 3).

Finally, we come to (L 6). Suppose we are given Λ,Λ′ ⊆ [`] and distinct i, i′ ∈ [k]. Suppose that
|Λ| ≤ ∆− 2 and |Λ′| ≤ ∆− 1. We wish to show that for most vertices w ∈W ′, the pair

(
NΓ(w,Vi)∩⋂

j∈Λ NΓ(w j,Vi),
⋂

j∈Λ NΓ(w j,V ′i )
)

is
(
ε∗|Λ|+1,|Λ′|,d, p

)
G-lower-regular, and furthermore, if ∆ ≥ 3 and

|Λ′| ≤ ∆−2, that the pair(
NΓ(w,Vi)∩

⋂
j∈Λ

NΓ(w j,Vi),NΓ(w,Vi′)∩
⋂
j∈Λ

NΓ(w j,V ′i )
)

is
(
ε∗|Λ|+1,|Λ′|+1,d, p

)
G-lower-regular.

By (L 5), and by choice of ε0, C and p, we have∣∣⋂
j∈Λ

NΓ(w j,Vi)
∣∣≥ (1− ε0)

|Λ|p|Λ||Vi| ≥Cp|Λ|−∆ logn and

∣∣ ⋂
j∈Λ′

NΓ(w j,Vi′)
∣∣≥ (1− ε0)

|Λ′|p|Λ
′||Vi′ | ≥Cp|Λ

′|−∆ logn .

By (L 6), the pair
(⋂

j∈Λ NΓ(w j,Vi),
⋂

j∈Λ NΓ(w j,V ′i )
)

is
(
ε∗|Λ|,|Λ′|,d, p

)
G-lower-regular. Since the good

event of Lemma 17 with input ε∗|Λ|+1,|Λ′| and d occurs, there are at most Cp−1 logn vertices w of W ′ such
that

(
NΓ(w,Vi)∩

⋂
j∈Λ NΓ(w j,Vi),

⋂
j∈Λ NΓ(w j,V ′i )

)
is not

(
ε∗|Λ|+1,|Λ′|,d, p

)
G-lower-regular. Furthermore,

if |Λ′| ≤ ∆−2, then since the good event of Lemma 18 with input ε∗|Λ|+1,|Λ′|+1 and d occurs, there are at
most Cp−2 logn vertices w of W ′ such that(

NΓ(w,Vi)∩
⋂
j∈Λ

NΓ(w j,Vi),NΓ(w,Vi′)∩
⋂
j∈Λ

NΓ(w j,V ′i )
)

is not
(
ε
∗
|Λ|+1,|Λ′|,d, p

)
G-lower-regular.

Observe that if ∆ = 2 the property (L 6) does not require this pair to be lower-regular. Summing over the
choices of Λ,Λ′ ⊆ [`] and i, i′ ∈ [k], we conclude that if ∆ = 2 then at most 22∆k2Cp−1 logn vertices w of
W ′ cause (L 6) to fail, while if ∆≥ 3, at most 22∆k2C(p−1 + p−2) logn vertices w of W ′ violate (L 6).

Summing up, if ∆ = 2 then at most

2∆k2Cp−1 logn+2∆kε
∗∗
∆ |W ′|+3 ·2∆+1kCp−1 logn+22∆k2Cp−1 logn (6.3)
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vertices w of W ′ cannot be chosen as w`+1. By choice of C∗ and ε∗∗
∆

, and by choice of p, this is at most
1
2 |W

′|, so that there exists a vertex of W ′ which can be chosen as w`+1, as desired. If on the other hand
∆≥ 3, then at most

2∆k2Cp−1 logn+2∆kε
∗∗
∆ |W ′|+3 ·2∆+1kCp−1 logn+22∆k2C(p−1 + p−2) logn (6.4)

vertices of W ′ cannot be chosen as w`+1. Again by choice of C∗, ε∗∗
∆

and p, this is at most 1
2 |W

′|, and
again we therefore can choose w`+1 satisfying (L 1)–(L 6) as desired. �

Finally, let us argue why the lemma is a consequence of Claim 32. Let (w1, . . . ,w∆) ∈
(W ′

∆

)
be a tuple

satisfying (L 1)–(L 6). By (L 2), for any Λ⊆ [`] and i ∈ [k] we have∣∣∣⋂
j∈Λ

NG(w j,Vi)
∣∣∣≥ (d

4

)|Λ|
p|Λ||V ′i | ≥

(d
4

)∆

p|Λ|
|Vi|
2t1
≥ α p|Λ||Vi| ,

as required for (W 1). Properties (W 2), (W 3) and (W 4) are respectively (L 3), (L 5) and (L 6), by choice
of ε0.

7 The balancing lemma

The statement of Lemma 29 gives us a partition of V (G) with parts
(
Vi, j
)

i∈[r], j∈[k], and a collection of

‘target integers’
(
ni, j
)

i∈[r], j∈[k], with each ni, j close to |Vi, j|, and with ∑ni, j = ∑ |Vi, j|. Our aim is to find a

partition of V (G) with parts
(
V ′i, j
)

i∈[r], j∈[k] such that |V ′i, j|= ni, j for each i, j. This partition is required to
maintain similar regularity properties as the original partition, while not substantially changing common
neighbourhoods of vertices.

There are two steps to our proof. In a first step, we correct global imbalance, that is, we find a partition
Ṽ which maintains all the desired properties and which has the property that ∑i |Ṽi, j|= ∑i ni, j for each
j ∈ [k]. To do this, we identify some j∗ such that ∑i |Vi, j∗ | > ∑i ni, j∗ and j′ such that ∑i |Vi, j′ | < ∑i ni, j′ .
We move ∑i |Vi, j∗ |−ni, j∗ vertices from V1, j∗ to some cluster Vi′, j′ , maintaining the desired properties, and
repeat this procedure until no global imbalance remains.

In a second step, we correct local imbalance, that is, for each i = 1, . . . ,r−1 sequentially, and for
each j ∈ [k], we move vertices between Ṽi, j and Ṽi+1, j, maintaining the desired properties, to obtain the
partition V′ such that |V ′i, j|= ni, j for each i, j. Observe that because Ṽ is globally balanced, once we know
|V ′i, j|= ni, j for each i ∈ [r−1] and each j ∈ [k] we are guaranteed that |V ′r, j|= nr, j for each j ∈ [k].

The proof of the lemma then comes down to showing that we can move vertices and maintain the
desired properties. Because we start with a partition in which Vi, j is very close to ni, j for each i and j, the
total number of vertices we move in any step is at most the sum of the differences, which is much smaller
than any ni, j. The following lemma shows that we can move any small (compared to all ni, j) number of
vertices from one part to another and maintain the desired properties.

Lemma 33. For all integers k,r1,∆≥ 1, and reals d > 0 and 0< ε < 1/2k as well as 0< ξ < 1/(100kr3
1),

there exists C∗ > 0 such that the following holds for all sufficiently large n.
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Let Γ be a graph on vertex set [n], and let G be a not necessarily spanning subgraph. Let
X ,Z1, . . . ,Zk−1 ⊆V (G) be pairwise disjoint subsets, each of size at least n/(16kr1), such that (X ,Zi) is
(ε,d, p)G-lower-regular for each i. Then for each 1≤ m≤ 2r2

1ξ n, there exists a set S of m vertices of X
with the following properties.

(SM 1) For each v ∈ S we have degG(v;Zi)≥ (d− ε)p|Zi| for each i ∈ [k−1], and

(SM 2) for each 1≤ s≤ ∆ and every collection of vertices v1, . . . ,vs ∈ [n] we have

degΓ(v1, . . . ,vs;S)≤ 100kr3
1ξ degΓ(v1, . . . ,vs;X)+

1
100

C∗ logn .

Proof. Given k, r1, ∆, d, ξ and ε , let C be returned by Lemma 22 for input ξ and ∆. We set C∗ = 100C.
Given Γ, G and X , Y , Z1, . . . ,Zk−1, let X ′ be the set of vertices v ∈ X such that degG(v;Zi)≥ (d− ε)p|Zi|
for each i ∈ [k−1]. Because each pair (X ,Zi) for i ∈ [k−1] is (ε,d, p)G-lower-regular, we have |X ′| ≥
|X |− kε|X | ≥ |X |/2.

We now apply Lemma 22, with input ξ , ∆, W = X ′ and the sets Ti being the sets NΓ(v1, . . . ,vs;X ′) for
each 1≤ s≤ ∆ and v1, . . . ,vs ∈ [n], to choose a set S of size m≤ 2r2

1ξ n≤ |X ′| in X ′. We then have

degΓ(v1, . . . ,vs;S)≤
(

2r2
1ξ n
|X ′|

+ξ

)
degΓ(v1, . . . ,vs;X ′)+C logn

≤ 100kr3
1ξ degΓ(v1, . . . ,vs;X)+

1
100

C∗ logn ,

where the final inequality is by choice of C∗, and since |X ′| ≥ |X |/2 ≥ n/(32kr1). Thus the set S
satisfies (SM 2), and since S⊆ X ′ we have (SM 1).

We now prove the balancing lemma.

Proof of Lemma 29. Given integers k,r1,∆≥ 1 and reals γ,d > 0 and 0 < ε < min{d,1/(2k)}, we set

ξ = 10−15
ε

4d/(k3r5
1).

Let C∗1 be returned by Lemma 33 with input k, r1, ∆, d, ε/4 and ξ , and let C∗2 be returned by Lemma 33
with input k, r1, ∆, d, 3ε/4 and ξ . We set C∗ = max{C∗1 ,C∗2}.

Now suppose that p ≥C∗
( logn

n

)1/2, that 10γ−1 ≤ r ≤ r1, and that graphs Γ and G, a partition V of
V =V (G), and graphs Rk

r , Bk
r and Kk

r on [r]× [k] as in the statement of Lemma 29 are given.
First stage (global imbalance):
We use the following algorithm.
In each step where we select S, we make use of Lemma 33 to do so, with input k, r1, ∆, d, and ε/4,

with X =V1, j∗ and with the Z1, . . . ,Zk−1 being the Vi′, j′′ with j′′ 6= j′.
We claim that the algorithm completes successfully, in other words that each of the choices is possible,

and that Lemma 33 is always applicable. In each While loop, since ∑i, j |Vi, j|− ni, j = 0 and since the
While condition is satisfied, j∗ satisfies ∑i∈[r] |Vi, j∗ |−ni, j∗ > 0.

Observe that the While loop is run at most k times, since at the end of the While loop in which we
selected some j = j∗ we have ∑i∈[r] |Vi, j∗ |−ni, j∗ = 0 and therefore we do not select j as either j∗ or j′
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Algorithm 1: Global balancing

while ∃ j ∈ [k] such that ∑i∈[r] |Vi, j|−ni, j 6= 0 do
Choose j∗ ∈ [k] maximising ∑i∈[r] |Vi, j∗ |−ni, j∗ ;
Choose i′ > 1 such that Vi′, j is not changed and (V1, j∗ ,Vi′, j) is

(
ε

4 ,d, p
)

G-lower-regular ∀ j ∈ [k];
Choose j′ ∈ [k] such that ∑i∈[r] |Vi, j′ |−ni, j′ < 0 ;
Select S⊆V1, j∗ with |S|= ∑i∈[r] |Vi, j∗ |−ni, j∗ ;
Set V1, j∗ :=V1, j∗ \S and Vi′, j′ =Vi′, j′ ∪S ;
Flag V1, j∗ and Vi′, j′ as changed ;

end

in future iterations. It follows that the number of Vi, j flagged as changed never exceeds 2k. Now the
set V1, j∗ has degree at least

(
k−1+ γk

2

)
r in Rk

r , and so there are at least γkr/2 indices i ∈ [r] such that
V1, j∗ is adjacent to each Vi, j in Rk

r . Since γkr/2 > 3k, in particular we can choose i′ such that V1, j∗ is
adjacent to each Vi′, j in Rk

r and no Vi′, j is flagged as changed. It follows that each pair (V1, j∗ ,Vi′, j) is(
ε

4 ,d, p
)

G-lower-regular and thus it is possible to choose i′. It is possible to choose j′ since the While
condition holds. Finally, we need to show that Lemma 33 is always applicable with the given parameters.
In each application, the sets denoted X ,Z1, . . . ,Zk−1 are parts of the partition V (so they were not changed
by the algorithm yet). It follows that each set has size at least n/(8kr)> n/(16kr1). Since V is

(
ε

4 ,d, p)-
lower-regular on Br

k, the pairs (X ,Z1), . . . ,(X ,Zk−1) are
(

ε

4 ,d, p)-lower-regular as required. Finally, by
choice of j∗ we see that the sizes of the sets S we select in each step are decreasing, so it is enough to
show that in the first step we have |S| ≤ rξ n, which follows from (B 1). Thus Lemma 33 is applicable in
each step, and we conclude that the algorithm indeed completes. We denote the resulting vertex partition
by Ṽ= {Ṽi, j}i∈[r], j∈[k].

Claim 34. We have the following properties.

(P 1) For each i ∈ [r] and j ∈ [k] we have
∣∣|Ṽi, j|−ni, j

∣∣≤ 2rξ n,

(P 2) Ṽ is
(

ε

2 ,d, p
)

G-lower-regular on Rk
r and

(
ε

2 ,d, p
)

G-super-regular on Kk
r ,

(P 3) For each i ∈ [r], j ∈ [k] and 1≤ s≤ ∆ and v1, . . . ,vs ∈ [n] we have

|NΓ(v1, . . . ,vs,Ṽi, j)4NΓ(v1, . . . ,vs,Vi, j)| ≤ 100kr3
1ξ degΓ

(
v1, . . . ,vs;V (G)

)
+

1
100

C∗ logn .

Proof. Observe that vertices were removed from or added to each Vi, j to form Ṽi, j at most once in the
running of Algorithm 1, and the number of vertices added or removed was at most rξ n. Since |Vi, j|
satisfies (B 1), we conclude that (P 1) holds. Furthermore, the vertices added to or removed from Vi, j

satisfy (SM 2) and therefore (P 3) holds.
Since each set Vi, j has size at least n/(8kr), we can apply Proposition 12 with µ = ν = 8kr2ξ to each

edge of Rk
r , concluding that Ṽ is

(
ε

2 ,d, p
)

G-lower-regular on Rk
r since ε

4 +4
√

8kr2ξ < ε

2 . Now for any
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i ∈ [r] and j ∈ [k], consider v ∈ Ṽi, j. If v 6∈Vi, j, then we applied Lemma 33 to select v, and when we did
so no Vi, j′ was flagged as changed by Algorithm 1. Thus by (SM 1) we have

degG(v;Ṽi, j′) = degG(v;Vi, j′)≥
(

d− ε

4

)
p|Vi, j′ |=

(
d− ε

4

)
p|Ṽi, j′ |

for each j′ 6= j, since Vi, j is then flagged as changed and thus Vi, j′ = Ṽi, j′ for each j′ 6= j. If on the other
hand v ∈Vi, j, then by (B 2) we started with degG(v;Vi, j′)≥

(
d− ε

4

)
p|Vi, j′ |. By (SM 2) and (B 4), we have

degG(v;Ṽi, j′)≥
(

d− ε

4

)
p|Vi, j′ |−

ε2

1000kr1

(
1+

ε

4

)
p|Vi, j′ |−

1
100

C∗ logn≥
(

d− ε

2

)
p|Ṽi, j′ | ,

where the final inequality follows by choice of n sufficiently large and since |Ṽi, j′ | ≤ |Vi, j′ |+ rξ n ≤(
1+ εd

100

)
|Vi, j′ |. We conclude that Ṽ is

(
ε

2 ,d, p
)
-super-regular on Kk

r , giving (P 2). �

Second stage (local imbalance):
We use Algorithm 2 to correct the local imbalances in Ṽ.

Algorithm 2: Local balancing

foreach i = 1, . . . ,r−1 do
foreach j = 1, . . . ,k do

if |Ṽi, j|> ni, j then
Select S⊆ Ṽi, j with |S|= |Ṽi, j|−ni, j ;
Set Ṽi, j := Ṽi, j \S and Ṽi+1, j := Ṽi+1, j ∪S ;

end
else

Select S⊆ Ṽi+1, j with |S|= ni, j−|Ṽi, j| ;
Set Ṽi+1, j := Ṽi+1, j \S and Ṽi, j := Ṽi, j ∪S ;

end
end

end

Again, in each step when we select S we make use of Lemma 33 to do so. If we select S from Ṽi, j,
then we use input k, r1, d, 3ε/4 and ξ with X = Ṽi, j and the sets Z1, . . . ,Zk−1 being Ṽi+1, j′ for j′ 6= j. If
on the other hand we select S from Ṽi+1, j, then we use input k, r1, d and 3ε/4, with X = Ṽi+1, j and the
sets Z1, . . . ,Zk−1 being Ṽi, j′ for j′ 6= j.

We claim that Lemma 33 is always applicable. To see that this is true, observe first that the number
of vertices which we move between any Ṽi, j and Ṽi+1, j in a given step is by (P 1) bounded by 2k2r2ξ n.
We change any given Ṽi, j at most twice in the running of the algorithm, so that in total at most 4k2r2ξ n
vertices are changed. In particular, we maintain |Ṽi, j| ≥ n/(16kr1) throughout, and, by Proposition 12,
with input µ = ν = 4r2ξ n

n/(16kr1)
< 100r3

1kξ , and using (P 2), we maintain the property that any pair in Rk
r ,

and in particular any pair in Bk
r , is

(3ε

4 ,d, p
)
-lower-regular throughout. This shows that Lemma 33 is
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always applicable, and therefore the algorithm completes and returns a partition V′. We claim that this is
the desired partition. We need to check that (B 1’)—(B 5’) hold.

Since for each j ∈ [k] we have ∑i |V ′i, j|= ∑i |Ṽi, j|= ∑i ni, j, and since |V ′i, j|= ni, j for each i ∈ [r−1]
and j ∈ [k], we conclude that |V ′i, j|= ni, j for all i and j, giving (B 1’).

For the first part of (B 3’), we have justified that we maintain
(3ε

4 ,d, p
)

G-lower-regularity on Rk
r

throughout the algorithm. For the second part, we need to show that for each i ∈ [r] and j 6= j′ ∈ [k], and
each v ∈ V ′i, j, we have degG(v;V ′i, j′) ≥ (d− ε)p|V ′i, j′ |. If v ∈ Ṽi, j, then by (P 2) we have degG(v;Ṽi, j′) ≥(
d− ε

2

)
p|Ṽi, j′ |. We change Ṽi, j′ at most twice to obtain V ′i, j′ , both times by adding or removing vertices

satisfying (SM 2). As in the proof of Claim (P 3) above, using (B 4) and (P 3) we obtain degG(v;Ṽi, j′)≥
(d− ε)p|V ′i, j| as desired. If v 6∈ Ṽi, j, then it was added to the set Ṽi, j by Algorithm 2, and Ṽi, j′ was
changed at most twice thereafter. Again, using (SM 1), (SM 2), (B 4) and (P 3) we obtain degG(v;Ṽi, j′)≥
(d− ε)p|V ′i, j| as desired.

Now (B 2’) holds since the total number of vertices moved in Algorithm 1 is at most k2rξ n, in
Algorithm 2 at most 4k2r2ξ n vertices are changed in each cluster, and by choice of ξ . To see that (B 4’)
holds, observe that by (B 4), (P 3) and (SM 2) we have

∣∣NΓ(v;Vi, j)∆NΓ(v;V ′i, j)
∣∣≤ ε2

100kr1
degΓ

(
v;V (G)

)
+

1
10

C∗ logn≤ ε2

50
degΓ(v;Vi, j)

where the final inequality follows by choice of p and of n sufficiently large. Using (B 3), we can apply
Proposition 12, with µ = ν = ε2

50 , to deduce (B 4’).
For (B 5’), observe that for any given i ∈ [r] and j ∈ [k] we change Ṽi, j at most twice in the running of

Algorithm 2, both times either adding or removing a set satisfying (SM 2). By (P 3) and choice of ξ , we
conclude that (B 5’) holds.

Finally, suppose that for any two disjoint vertex sets A,A′ ⊆V (Γ) with |A|, |A′| ≥ 1
50000kr1

ε2ξ pn we
have eΓ(A,A′)≤

(
1+ 1

100 ε2ξ
)

p|A||A′|. In each application of Proposition 12 we have µ,ν ≥ 1
50 ε2ξ , and,

and if we have ‘regular’ in place of ‘lower-regular’ in (B 2), and (B 3), we always apply Proposition 12
to a regular pair with sets of size at least ε

1000kr1
pn, so it returns regular pairs for (B 3’), and (B 4’), as

desired.

8 The Bandwidth Theorem in random graphs

Before embarking on the proof, we first recall from the proof overview (Section 3.1) the main ideas.
Given G, we first use the lemma for G (Lemma 26) to find a lower-regular partition of V (G), with an
extremely small exceptional set V0, and whose reduced graph Rk

r contains a spanning backbone graph
Bk

r , on whose subgraph Kk
r the graph G is super-regular and has one- and two-sided inheritance. Given

this, and H together with a (z,β )-zero-free (k+1)-colouring, we use the lemma for H (Lemma 27) to
find a homomorphism f from V (H) to Rk

r almost all of whose edges are mapped to Kk
r and in which

approximately the ‘right’ number of vertices of H are mapped to each vertex of Rk
r . At this point,

if V0 were empty, and if the ‘approximately’ were exact, we would apply the sparse blow-up lemma
(Lemma 16) to obtain an embedding of H into G.
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Our first aim is to deal with V0. We do this one vertex at a time. Given v ∈V0, we choose x ∈V (H)
from the first βn vertices of the supplied bandwidth order L which is not in any triangles. We embed
x to v. We then embed the neighbours of x to carefully chosen neighbours of v, which we obtain using
Lemma 28. Here we use the fact that NH(x) is independent. This then fixes a clique of Kk

r to which N2
H(x)

must be assigned, and gives image restrictions in the corresponding parts of the lower-regular partition
for these vertices. Since N2

H(x) may have been assigned by f to some quite different clique in Kk
r , we

have to adjust f to match. This we can do using the fact, which follows from our assumptions on L, that
x is far from vertices of colour zero.

Now the idea is simply to repeat the above procedure, choosing vertices of V (H) to pre-embed which
are widely separated in H, until we pre-embedded vertices to all of V0. We end up with a homomorphism
f ∗ from what remains of V (H) to Rk

r . It is easy to check that this homomorphism still maps about the right
number of vertices of H to each vertex of Rk

r , simply because V0 is small. We now apply the Balancing
Lemma (Lemma 29) to correct the sizes of the clusters to match f ∗, and complete the embedding of H
using the Sparse Blow-up Lemma (Lemma 16).

There are two difficulties with this idea, the ‘subtleties’ mentioned in the proof overview (Section 3.1).
First, if ∆ = 2 we might have |V0| � pn, so that we should be worried that at some stage of the pre-
embedding we choose v ∈V0 and discover most or all of its neighbours have already been pre-embedded
to. It turns out to be easy to resolve this: we choose each v ∈V0 not arbitrarily, but by taking those which
have least available neighbours first. We will show that this is enough to avoid the problem.

More seriously, because we perform the pre-embedding sequentially, we might use up a significant
fraction of NG(w) for some w ∈V (G) in the pre-embedding, destroying super-regularity of G on Kk

r , or
we might use up a significant fraction of some common neighbourhood which defines an image restriction
for the sparse blow-up lemma. In order to avoid this, before we begin the pre-embedding we fix a set
S ⊆ V (G) whose size is a very small constant times n, chosen using Lemma 22 to not have a large
intersection with any NG(w) or with any Γ-common neighbourhood of at most ∆ vertices of Γ (which
could define an image restriction). We perform the pre-embedding as outlined above, except that we
choose our neighbours of each v within S. This procedure is guaranteed not to use up neighbourhood sets
guaranteed by super-regularity or image restriction sets, since these sets are all contained in V \V0 and
even using up all of S would not be enough to do damage.

Proof of Theorem 25. Given γ > 0, ∆≥ 2 and k ≥ 2, let d be returned by Lemma 26, with input γ , k and
r0 := 10γ−1. Let α be returned by Lemma 28 with input d, k and ∆. We set D = ∆, and let εBL > 0 and
ρ > 0 be returned by Lemma 16 with input ∆, ∆R′ = 3k, ∆J = ∆, ϑ = 1

100D , ζ = 1
4 α , d and κ = 64. Next,

putting ε∗ = 1
8 εBL into Lemma 28 returns ε0 > 0. We choose ε = min

(
ε0,d, 1

4D ε∗, 1
100k

)
. Putting ε into

Lemma 26 returns r1. Next, Lemma 29, for input k, r1, ∆, γ , d and 8ε , returns ξ > 0. We assume without
loss of generality that ξ ≤ 1/(10kr1), and set β = 10−12ξ 2/(∆k4r2

1). Let µ = ε2

100000kr . Finally, suppose
C∗ is large enough for each of these lemmas, for Lemma 16, for Proposition 19 with input ε , and for
Lemma 22 with input εµ2 and ∆.

We set C = 1010k2r2
1ε−2ξ−1∆2r1+20µ−∆C∗, and z = 10/ξ . Given p ≥ C

( logn
n

)1/∆, a.a.s. G(n, p)
satisfies the good events of Lemma 16, Lemma 26 and Lemma 28, and Proposition 19, with the stated
inputs. Suppose that Γ = G(n, p) satisfies these good events.

Suppose G⊆ Γ is any spanning subgraph with δ (G)≥
( k−1

k + γ
)

pn. Let H be a graph on n vertices
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with ∆(H)≤ ∆, and L be a labelling of vertex set V (H), of bandwidth at most βn, such that the first βn
vertices of L include Cp−2 vertices that are not contained in any triangles of H, and such that there exists
a (k+1)-colouring that is (z,β )-zero-free with respect to L, and the colour zero is not assigned to the
first

√
βn vertices.

Applying Lemma 26 to G, with input γ , k, r0 and ε , we obtain an integer r with 10γ−1 ≤ kr ≤ r1, a
set V0 ⊆V (G) with |V0| ≤C∗p−2, a k-equitable partition V= {Vi, j}i∈[r], j∈[k] of V (G)\V0, and a graph Rk

r

on vertex set [r]× [k] with minimum degree δ (Rk
r)≥

( k−1
k + γ

2

)
kr, such that Kk

r ⊆ Bk
r ⊆ Rk

r , and such that

(G 1a) n
4kr ≤ |Vi, j| ≤ 4n

kr for every i ∈ [r] and j ∈ [k],

(G 2a) V is (ε,d, p)G-lower-regular on Rk
r and (ε,d, p)G-super-regular on Kk

r ,

(G 3a) both
(
NΓ(v,Vi, j),Vi′, j′

)
and

(
NΓ(v,Vi, j),NΓ(v,Vi′, j′)

)
are (ε,d, p)G-lower-regular pairs for every

{(i, j),(i′, j′)} ∈ E(Rk
r) and v ∈V \V0, and

(G 4a) |NΓ(v,Vi, j)|= (1± ε)p|Vi, j| for every i ∈ [r], j ∈ [k] and every v ∈V \V0.

Given i ∈ [r], because δ (Rk
r) > (k− 1)r, there exists v ∈ V (Rk

r) adjacent to each (i, j) with j ∈ [k].
This, together with our assumptions on H, allow us to apply Lemma 27 to H, with input D, k, r, 1

10 ξ

and β , and with mi, j := |Vi, j|+ 1
kr |V0| for each i ∈ [r] and j ∈ [k], choosing the rounding such that the

mi, j form a k-equitable integer partition of n. Since ∆(H) ≤ ∆, in particular H is ∆-degenerate. Let
f : V (H)→ [r]× [k] be the mapping returned by Lemma 27, let Wi, j := f−1(i, j), and let X ⊆V (H) be
the set of special vertices returned by Lemma 27. For every i ∈ [r] and j ∈ [k] we have

(H 1a) mi, j− 1
10 ξ n≤ |Wi, j| ≤ mi, j +

1
10 ξ n,

(H 2a) |X | ≤ ξ n,

(H 3a) { f (x), f (y)} ∈ E(Rk
r) for every {x,y} ∈ E(H),

(H 4a) y,z ∈
⋃

j′∈[k] f−1(i, j′) for every x ∈ f−1(i, j)\X and xy,yz ∈ E(H), and

(H 5a) f (x) =
(
1,σ(x)

)
for every x in the first

√
βn vertices of L.

Lemma 27 actually gives a little more, which we do not require for this proof. We let F be the first βn
vertices of L. By definition of L, in F there are at least Cp−2 vertices whose neighbourhood in H is
independent.

Next, we apply Lemma 22, with input εµ2 and ∆, to choose a set S⊆V (G) of size µn. We let the Ti

of Lemma 22 be all sets which are common neighbourhoods in Γ of at most ∆ vertices of Γ, together
with the sets Vi, j for i ∈ [r] and j ∈ [k]. The result of Lemma 22 is that for any 1 ≤ ` ≤ ∆ and vertices
u1, . . . ,u` of V (G), we have∣∣∣S∩ ⋂

1≤i≤`
NΓ(ui)

∣∣∣= (1± εµ)µ
∣∣∣ ⋂

1≤i≤`
NΓ(ui)

∣∣∣± εµ p`n , and∣∣S∩Vi, j
∣∣≤ 2µ|Vi, j| for each i ∈ [r] and j ∈ [k],

(8.1)

where we use the fact p≥C
( logn

n

)1/∆ and choice of C to deduce C∗ logn < εµ p∆n.
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Algorithm 3: Pre-embedding

Set t := 0 ;
while V0 \ im(φt) 6= /0 do

1 Let vt+1 ∈V0 \ im(φt) minimise
∣∣(NG(v)∩S

)
\ im(φt)

∣∣ over v ∈V0 \ im(φt) ;
Choose xt+1 ∈ F with NH(x) independent, with dist

(
xt+1,dom(φt)

)
≥ 2r+20 ;

Let NH(xt+1) = {y1, . . . ,y`} ;
2 Choose w1, . . . ,w` ∈

(
NG(v)∩S

)
\ im(φt) ;

φt+1 := φt ∪{xt+1→ vt+1}∪{y1→ w1}∪ · · ·∪{y`→ w`} ;
t := t +1 ;

end

Our next task is to create the pre-embedding that covers the vertices of V0. We use the following
algorithm, starting with φ0 the empty partial embedding. Suppose this algorithm does not fail, terminating
with t = t∗. The final φt∗ is an embedding of some vertices of H into V (G) which covers V0 and is
contained in V0 ∪ S. Before we specify how exactly we choose vertices at line 2, we justify that the
algorithm does not fail. In other words, we need to justify that at every time t there are vertices of F
whose neighbourhood is independent and which are not close to any vertices in dom(φt), and that at
every time t, the set

(
NG(v)∩S

)
\ im(φt) is big. For the first, observe that since |V0| ≤C∗p−2, we have

dom(φt)≤C∗∆p−2 at every step. Thus the number of vertices at distance less than 2r+20 from dom(φt)
is at most (

1+∆+ · · ·+∆
2r+19)C∗∆p−2 < 2C∗∆2r+20 p−2

which by choice of C is smaller than the number of vertices in F with NH(x) independent. For the
second part, suppose that at some time t we pick a vertex v such that

∣∣(NG(v)∩ S
)
\ im(φt)

∣∣ < 1
4 µ pn.

For each t− 1
100(∆+1)µ pn≤ t ′ < t, we have

∣∣(NG(v)∩S
)
\ im(φt ′)

∣∣< 3
10 µ pn, yet at each of these times

v is not picked, so that the vertex picked at each time has at most as many uncovered neighbours
in S as v. Let Z be the set of vertices chosen at line 1 in each of these time steps. Then for each
z ∈ Z we have

∣∣(NG(v)∩ S
)
\ im(φt)

∣∣ ≤ 3
10 µ pn. But since δ (G) > 1

2 pn, by (8.1) and choice of ε we
have

∣∣NG(z)∩ S
∣∣ ≥ 2

5 µ pn, so
∣∣NG(z)∩ im(φt)

∣∣ ≥ 1
10 µ pn for each z ∈ Z. By choice of C, we have

|Z|= 1
100(∆+1)µ pn≥C∗p−1 logn. Since |im(φ)| ≤ (∆+1)|V0| ≤ 1

100 µn, by choice of C, this contradicts
the good event of Proposition 19.

We have justified that Algorithm 3 completes, and indeed that at each time we reach line 2 there are
at least 1

4 µ pn vertices of
(
NG(v)∩S

)
\ im(φ) to choose from. In order to specify how to choose these

vertices, we need the following claim.

Claim 35. Given any set Y of 1
4 µ pn vertices of V (G), there exists W ⊆ Y of size at least 1

8r µ pn and an
index i∈ [r] with the following property. For each w∈W and each j ∈ [k], we have |NG(w,Vi, j)| ≥ d p|Vi, j|.

Proof. First let Y ′ be obtained from Y by removing all vertices y∈Y such that either |NΓ(y,V0)| ≥ ε pn, or
for some i∈ [r] and j ∈ [k] we have

∣∣NΓ(y,Vi, j)
∣∣ 6= (1±ε)p|Vi, j|. Because the good event of Proposition 19

occurs, the total number of vertices removed is at most 2krC∗p−1 logn < 1
2 |Y |, where the inequality is

by choice of C. Now given any y ∈ Y ′, if for each i ∈ [r] there is j ∈ [k] such that
∣∣NG(y,Vi, j)

∣∣< d p|Vi, j|,
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then, since the {Vi, j} are k-equitable, we have |NG(y)| ≤ ε pn+d pn+(1+ ε) k−1
k pn+ r <

( k−1
k + γ

)
pn,

a contradiction. We conclude that for each y ∈ Y ′ there exists i ∈ [r] such that |NG(y,Vi, j)| ≥ d p|Vi, j| for
each j ∈ [k]. We let W be the vertices of Y ′ giving a majority choice of i. �

Now at each time t, in line 2 of Algorithm 3, we choose the vertices w1, . . . ,w` as follows. Let
Y =

(
NG(vt)∩ S

)
\ im(φt). Let it ∈ [r] be an index, and W ⊆ Y be a set of size 1

8r µ pn, such that∣∣NG(w,Vit , j)
∣∣≥ d pn|Vit , j| for each j ∈ [k], whose existence is guaranteed by Claim 35. By construction,

and by our choice of µ , we can apply Lemma 28 with input d, k, ∆, ε∗, r and ε , with the clusters
{

Vit , j
}

j∈[k]

as the
{

Vi
}

i∈[k], and inputting a subset of W of size 10−10 ε4 pn
k4r4 as requried for (V 3). This last is possible

by choice of µ . To verify the conditions of Lemma 28, observe that (V 1) follows from (G 1a), (V 2)
from (G 2a), and (V 4) from Claim 35. We obtain a ∆-tuple of vertices in W satisfying (W 1)–(W 4). We
let w1, . . . ,w` be the first ` vertices of this tuple.

Let H ′ = H−dom(φt∗). We next define image restricting vertex sets and create an updated homo-
morphism f ∗ : V (H ′)→ [r]× [k]. For each x ∈V (H)\dom(φt∗), let Jx = φt∗

(
NH(x)∩dom(φt∗)

)
. Now,

since the vertices {xt}t∈[t∗] are by construction at pairwise distance at least 2r+20, in particular for each
y ∈ V (H ′) with Jy 6= /0 the vertex y is at distance two from one xt , and at distance greater than r+ 10
from all others. Let j ∈ [k] such that f (y) = (1, j). Then we set f ∗(y) := (it , j). Next, for each t ∈ [t∗]
and each z ∈V (H) at distance 3, . . . , it +1 from xt , we set f ∗(z) as follows. Recall that f (z) = (1, j) for
some j ∈ [k]. We set f ∗(z) =

(
it +2−dist(xt ,z), j

)
. Because the {xt} are at pairwise distance at least

2r+20, no vertex is at distance r+5 or less from any two xt and xt ′ , so that f ∗ is well-defined. Because
Rk

r contains Bk
r , the f ∗ we constructed so far is a graph homomorphism. Furthermore, for each xt the set of

vertices z at distance it +1 from xt are in the first
√

βn vertices of L, and so by (H 5a) satisfy f ∗(z) = f (z).
We complete the construction of f ∗ by setting f ∗(z) = f (z) for each remaining z ∈ V (H) \ dom(φt∗).
Because f is a graph homomorphism, f ∗ is also a graph homomorphism whose domain is V (H ′). For
each i ∈ [r] and j ∈ [k], let W ′i, j be the set of vertices w ∈V (H ′) with f ∗(w) ∈Vi, j, and let X ′ consist of X
together with all vertices of H ′ at distance r+10 or less from some xt with t ∈ [t∗]. The total number of
vertices z ∈V (H) at distance at most r+10 from some xt is at most 2∆r+10|V0|< 1

100 ξ n. Since Wi, j4W ′i, j
contains only such vertices, we have

(H 1b) mi, j− 1
5 ξ n≤ |W ′i, j| ≤ mi, j +

1
5 ξ n,

(H 2b) |X ′| ≤ 2ξ n,

(H 3b) { f ∗(x), f ∗(y)} ∈ E(Rk
r) for every {x,y} ∈ E(H ′), and

(H 4b) y,z ∈
⋃

j′∈[k]W
′
i, j′ for every x ∈W ′i, j \X ′ and xy,yz ∈ E(H ′).

where (H 2b), (H 3b) and (H 4b) hold by (H 2a) and definition of X ′, by definition of f ∗, and by (H 4a)
and choice of X ′ respectively.

Furthermore, we have

(G 1a) n
4kr ≤ |Vi, j| ≤ 4n

kr for every i ∈ [r] and j ∈ [k],

(G 2a) V is (ε,d, p)G-lower-regular on Rk
r and (ε,d, p)G-super-regular on Kk

r ,
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(G 3a) both
(
NΓ(v,Vi, j),Vi′, j′

)
and

(
NΓ(v,Vi, j),NΓ(v,Vi′, j′)

)
are (ε,d, p)G-lower-regular pairs for every

{(i, j),(i′, j′)} ∈ E(Rk
r) and v ∈V \V0, and

(G 4a) |NΓ(v,Vi, j)|= (1± ε)p|Vi, j| for every i ∈ [r], j ∈ [k] and every v ∈V \V0.

(G 5a)
∣∣Vf ∗(x)∩

⋂
u∈Jx

NG(u)
∣∣≥ α p|Jx||Vf ∗(x)| for each x ∈V (H ′),

(G 6a)
∣∣Vf ∗(x)∩

⋂
u∈Jx

NΓ(u)
∣∣= (1± ε∗)p|Jx||Vf ∗(x)| for each x ∈V (H ′), and

(G 7a)
(
Vf ∗(x)∩

⋂
u∈Jx

NΓ(u),Vf ∗(y)∩
⋂

v∈Jy
NΓ(v)

)
is (ε∗,d, p)G-lower-regular for each xy ∈ E(H ′).

(G 8a)
∣∣⋂

u∈Jx
NΓ(u)

∣∣≤ (1+ ε∗)p|Jx|n for each x ∈V (H ′),

Properties (G 1a) to (G 4a) are repeated for convenience. Properties (G 5a), (G 6a) and (G 8a), are trivial
when Jx = /0, and are otherwise guaranteed by Lemma 28. Finally (G 7a) follows from (G 2a) when
Jx,Jy = /0, and otherwise is guaranteed by Lemma 28.

For each i ∈ [r] and j ∈ [k], let V ′i, j =Vi, j \ im(φt∗), and let V′ = {V ′i, j}i∈[r], j∈[k]. Because Vi, j \V ′i, j ⊆ S
for each i ∈ [r] and j ∈ [k], using (8.1) and Proposition 12, and our choice of µ , we obtain

(G 1b) n
6kr ≤ |V

′
i, j| ≤ 6n

kr for every i ∈ [r] and j ∈ [k],

(G 2b) V′ is (2ε,d, p)G-lower-regular on Rk
r and (2ε,d, p)G-super-regular on Kk

r ,

(G 3b) both
(
NΓ(v,V ′i, j),V

′
i′, j′
)

and
(
NΓ(v,V ′i, j),NΓ(v,V ′i′, j′)

)
are (2ε,d, p)G-lower-regular pairs for every

{(i, j),(i′, j′)} ∈ E(Rk
r) and v ∈V \V0, and

(G 4b) |NΓ(v,V ′i, j)|= (1±2ε)p|Vi, j| for every i ∈ [r], j ∈ [k] and every v ∈V \V0.

(G 5b)
∣∣V ′f ∗(x)∩⋂u∈Jx

NG(u)
∣∣≥ 1

2 α p|Jx||V ′f ∗(x)|,

(G 6b)
∣∣V ′f ∗(x)∩⋂u∈Jx

NΓ(u)
∣∣= (1±2ε∗)p|Jx||V ′f ∗(x)|, and

(G 7b)
(
V ′f ∗(x)∩

⋂
u∈Jx

NΓ(u),V ′f ∗(y)∩
⋂

v∈Jy
NΓ(v)

)
is (2ε∗,d, p)G-lower-regular.

(G 8b)
∣∣⋂

u∈Jx
NΓ(u)

∣∣≤ (1+2ε∗)p|Jx|n for each x ∈V (H ′),

We are now almost finished. The only remaining problem is that we do not necessarily have
|W ′i, j|= |V ′i, j| for each i ∈ [r] and j ∈ [k]. Since |V ′i, j|= |Vi, j|±2∆r+10|V0|= mi, j±3∆r+10|V0|, by (H 1b)
we have |V ′i, j|= |W ′i, j|±ξ n. We can thus apply Lemma 29, with input k, r1, ∆, γ , d, 8ε , and r. This gives
us sets V ′′i, j with |V ′′i, j|= |W ′i, j| for each i ∈ [r] and j ∈ [k] by (B 1’). Let V′′ = {V ′′i, j}i∈[r], j∈[k]. Lemma 29
guarantees us the following.

(G 1c) n
8kr ≤ |V

′′
i, j| ≤ 8n

kr for every i ∈ [r] and j ∈ [k],

(G 2c) V′′ is (4ε∗,d, p)G-lower-regular on Rk
r and (4ε∗,d, p)G-super-regular on Kk

r ,

(G 3c) both
(
NΓ(v,V ′′i, j),V

′′
i′, j′
)

and
(
NΓ(v,V ′′i, j),NΓ(v,V ′′i′, j′)

)
are (4ε∗,d, p)G-lower-regular pairs for every

{(i, j),(i′, j′)} ∈ E(Rk
r) and v ∈V \V0, and
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(G 4c) we have (1− 4ε)p|V ′′i, j| ≤ |NΓ(v,V ′′i, j)| ≤ (1+ 4ε)p|V ′′i, j| for every i ∈ [r], j ∈ [k] and every v ∈
V \V0.

(G 5c)
∣∣V ′′f ∗(x)∩⋂u∈Jx

NG(u)
∣∣≥ 1

4 α p|Jx||V ′′f ∗(x)|,

(G 6c)
∣∣V ′′f ∗(x)∩⋂u∈Jx

NΓ(u)
∣∣= (1±4ε∗)p|Jx||V ′f ∗(x)|, and

(G 7c)
(
V ′′f ∗(x)∩

⋂
u∈Jx

NΓ(u),V ′′f ∗(y)∩
⋂

v∈Jy
NΓ(v)

)
is (4ε∗,d, p)G-lower-regular.

Here (G 1c) comes from (G 1b) and (B 2’), while (G 2c) comes from (B 3’) and choice of ε . (G 3c) is guar-
anteed by (B 4’). Now, each of (G 4c), (G 5c) and (G 6c) comes from the corresponding (G 4b), (G 5b)
and (G 6b) together with (B 5’). Finally, (G 7c) comes from (G 7b) and (G 8b) together with Proposi-
tion 12 and (B 5’).

For each x ∈ V (H ′) with Jx = /0, let Ix = V ′′f ∗(x). For each x ∈ V (H ′) with Jx 6= /0, let Ix = V ′′f ∗(x) ∩⋂
u∈Jx

NG(u). Now W′ and V′′ are κ-balanced by (G 1c), size-compatible by construction, partitions of
respectively V (H ′) and V (G) \ im(φt∗), with parts of size at least n/(κr1) by (G 1c). Letting W̃i, j :=
W ′i, j \X ′, by (H 2b), choice of ξ , and (H 4b), {W̃i, j}i∈[r], j∈[k] is a

(
ϑ ,Kk

r
)
-buffer for H ′. Furthermore

since f ∗ is a graph homomorphism from H ′ to Rk
r , we have (BUL 1). By (G 2c), (G 3c) and (G 4c)

we have (BUL 2), with R = Rk
r and R′ = Kk

r . Finally, the pair (I,J) =
(
{Ix}x∈V (H ′),{Jx}x∈V (H ′)

)
form

a
(
ρ, 1

4 α,∆,∆
)
-restriction pair. To see this, observe that the total number of image restricted vertices

in H ′ is at most ∆2|V0| < ρ|Vi, j| for any i ∈ [r] and j ∈ [k], giving (RP 1). Since for each x ∈ V (H ′)
we have |Jx|+degH ′(x) = degH(x) ≤ ∆ we have (RP 3), while (RP 2) follows from (G 5c), and (RP 5)
follows from (G 6c). Finally, (RP 6) follows from (G 7c), and (RP 4) follows since ∆(H)≤ ∆. Together
this gives (BUL 3). Thus, by Lemma 16 there exists an embedding φ of H ′ into G\ im(φt∗), such that
φ(x) ∈ Ix for each x ∈V (H ′). Finally, φ ∪φt∗ is an embedding of H in G, as desired.

With Theorem 25 in hand, we can now present the proof of Theorem 7.

Proof of Theorem 7. Given γ , ∆, and k, let β > 0, z > 0, and C > 0 be returned by Theorem 25 with input
γ , ∆, and k. Set β ∗ := β/2 and C∗ :=C/β . Let H be a k-colourable graph on n vertices with ∆(H)≤ ∆

such that there exists a set W of at least C∗p−2 vertices in V (H) that are not contained in any triangles
of H and such that there exists a labelling L of its vertex set of bandwidth at most β ∗n. By the choice
of C∗ we find an interval I ⊆ L of length βn containing a subset F ⊆W with |F |=Cp−2. Now we can
rearrange the labelling L to a labelling L′ of bandwidth at most 2β ∗n = βn such that F is contained
in the first βn vertices in L′. Then, by Theorem 25 we know that Γ = G(n, p) satisfies the following
a.a.s. if p≥C(logn/n)1/∆ and in particular if p≥C∗(logn/n)1/∆. If G is a spanning subgraph of Γ with
δ (G)≥

(
(k−1)/k+ γ

)
pn, then G contains a copy of H, which finishes the proof.

9 Lowering the probability for degenerate graphs

As with Theorem 7, we deduce Theorem 8 from the following more general statement.
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Theorem 36. For each γ > 0, ∆≥ 2, D≥ 1 and k≥ 1, there exist constants β > 0, z > 0, and C > 0 such
that the following holds asymptotically almost surely for Γ = G(n, p) if p≥C

( logn
n

)1/(2D+1). Let G be a
spanning subgraph of Γ with δ (G)≥

( k−1
k + γ

)
pn and let H be a graph on n vertices with ∆(H)≤ ∆ and

degeneracy at most D, that has a labelling L of its vertex set of bandwidth at most βn, a (k+1)-colouring
that is (z,β )-zero-free with respect to L and where the first

√
βn vertices in L are not given colour zero

and the first βn vertices in L include Cp−2 vertices that are not in any triangles or copies of C4 in H.
Then G contains a copy of H.

The proof of Theorem 36 is quite similar to that of Theorem 25. We provide only a sketch, highlighting
the differences. (For more details and background on this result see [22].) The most important of these
differences are that we do not use Lemma 28 in the pre-embedding, and that we use a version of
Lemma 16 whose performance is better for degenerate graphs. In order to state this, we need the
following definitions. Given an order τ on V (H) and a family J of image restricting vertices, we define
πτ(x) := |Jx|+

∣∣{y ∈ NH(x) : τ(y)< τ(x)}
∣∣. Now the condition on τ we need for our enhanced blow-up

lemma is the following.

Definition 37 ((D̃, p,m)-bounded order). Let H be a graph given with buffer sets W̃ and a restriction
pair I= {Ii}i∈[r] and J= {Ji}i∈[r]. Let W̃ =

⋃
W̃. Let τ be an ordering of V (H) and W e ⊆V (H). Then τ

is a (D̃, p,m)-bounded order for H, W̃, I and J with exceptional set W e if the following conditions are
satisfied for each x ∈V (H).

(ORD 1) Define

D̃x :=


D̃−2 if there is yz ∈ E(H) with y,z ∈ NH(x) and τ(y),τ(z)> τ(x)
D̃−1 else if there is y ∈ NH(x) with τ(y)> τ(x)
D̃ otherwise .

We have πτ(x) ≤ D̃x, and if x ∈ N(W̃ ) even πτ(x) ≤ D̃x − 1. Finally, if x ∈ W̃ we have
deg(x)≤ D̃.

(ORD 2) One of the following holds:

• x ∈W e,

• πτ(x)≤ 1
2 D̃,

• x is not image restricted and every neighbour y of x with τ(y)< τ(x) satisfies τ(x)−τ(y)≤
pπτ (x)m.

(ORD 3) If x ∈ N(W̃ ) then all but at most D̃− 1−maxz6∈W e πτ(z) neighbours y of x with τ(y) < τ(x)
satisfy τ(x)− τ(y)≤ pD̃m.

To obtain the best probability bound, one should choose τ to minimise D̃. In the proof of Theorem 36
we will take τ to be an order witnessing D-degeneracy, W e will contain all image restricted vertices, and
we will choose buffer sets containing vertices of degree at most 2D+1. One can easily check that this
allows us to choose D̃ = 2D+1.
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Lemma 38 ([2, Lemma 1.23]). For all ∆ ≥ 2, ∆R′ , ∆J , D̃, α,ζ ,d > 0, κ > 1 there exist ε,ρ > 0 such
that for all r1 there is a C such that for

p≥C
(

logn
n

)1/D̃

the random graph Γ = Gn,p a.a.s. satisfies the following.
Let R be a graph on r ≤ r1 vertices and let R′ ⊆ R be a spanning subgraph with ∆(R′)≤ ∆R′ . Let H

and G⊆ Γ be graphs with κ-balanced, size-compatible vertex partitions W= {Wi}i∈[r] and V= {Vi}i∈[r],
respectively, which have parts of size at least m≥ n/(κr1). Let W̃= {W̃i}i∈[r] be a family of subsets of
V (H), I = {Ix}x∈V (H) be a family of image restrictions, and J = {Jx}x∈V (H) be a family of restricting
vertices. Let τ be an order of V (H) and W e ⊆V (H) be a set of size |W e| ≤ ε pmaxx∈We πτ (x)n/r1. Suppose
that

(DBUL 1) ∆(H)≤ ∆, (H,W) is an R-partition, and W̃ is an (α,R′)-buffer for H,

(DBUL 2) (G,V) is an (ε,d, p)-lower-regular R-partition, which is (ε,d, p)-super-regular on R′, has
one-sided inheritance on R′, and two-sided inheritance on R′ for W̃,

(DBUL 3) I and J form a (ρ,ζ ,∆,∆J)-restriction pair.

(DBUL 4) τ is a (D̃, p,εn/r1)-bounded order for H, W̃, I, J with exceptional set W e.

Then there is an embedding ψ : V (H)→V (G) such that ψ(x) ∈ Ix for each x ∈ H.

Sketch proof of Theorem 36. We set up constants quite similarly as in the proof of Theorem 25. Specifi-
cally, given γ > 0, ∆≥ 2, D and k ≥ 2, let d be returned by Lemma 26, with input γ , k and r0 := 10γ−1.
Let α = d

2 . Let D̃ = 2D+1. Now let εBL > 0 and ρ > 0 be returned by Lemma 38 with input ∆, ∆R′ = 3k,
∆J = ∆, D̃′, ϑ = 1

100D , ζ = 1
4 α , d and κ = 64. Let ε∗ = 1

8 εBL, and then Lemma 17, for input ε∗ and d,
returns ε1 > 0. Let ε0 > 0 be small enough both for Lemma 18 with input ε∗ and d, and for Lemma 17
with input ε1 and d.

We choose ε = min
(
ε0,d, 1

4D ε∗, 1
2k

)
. Putting ε into Lemma 26 returns r1. Next, Lemma 29, for input

k, r1, ∆, γ , d and 8ε , returns ξ > 0. We assume without loss of generality that ξ ≤ 1/(10kr1), and set
β = 10−12ξ 2/(∆k4r2

1). Let µ = ε2

100000kr . Finally, suppose C∗ is large enough for each of these lemmas,
for Lemma 16, for Proposition 19 with input ε , and for Lemma 22 with input εµ2 and ∆.

We set C = 1010k2r2
1ε−2ξ−1∆2r1+20µ−1C∗, and z = 10/ξ . Given p≥C

( logn
n

)1/(2D+1), a.a.s. G(n, p)
satisfies the good events of Lemma 38, Lemma 26, Lemma 17 and Lemma 18, and Proposition 19, with
the stated inputs. Suppose that Γ = G(n, p) satisfies these good events.

Let G be a spanning subgraph of Γ with δ (G)≥
( k−1

k + γ
)

pn. Let H be any graph on n vertices with
∆(H) ≤ ∆, and let L be a labelling of V (H) of bandwidth at most βn whose first βn vertices include
Cp−2 vertices that are not contained in any triangles or four-cycles of H, and such that there exists a
(k+1)-colouring that is (z,β )-zero-free with respect to L, and the colour zero is not assigned to the first√

βn vertices. Furthermore, let τ be a D-degeneracy order of V (H).
Next, as in the proof of Theorem 25, we apply Lemma 26 to G, obtaining a partition of V (G) with the

properties (G 1a)–(G 4a). Note that if D = 1, in place of (G 3a) we will ask only for the weaker condition
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(G 3’)
(
NΓ(v,Vi, j),Vi′, j′

)
is an (ε,d, p)G-lower-regular pair for every

{
(i, j),(i′, j′)

}
∈ E(Rk

r) and v ∈
V \V0,

and thus for D = 1 we have |V0| ≤C∗p−1, while for D≥ 2 we have |V0| ≤C∗p−2.
Next, we apply Lemma 27 to obtain a partition of V (H). We use the same inputs as in the proof

of Theorem 25, with the exception that D is now given in the statement of Theorem 36 rather than
being set equal to ∆. The result is a function f : V (H)→ V (Rk

r) and a special set X with the same
properties (H 1a)–(H 5a), and in addition

(H 6a) |{x ∈ f−1(i, j) : deg(x)≤ 2D}| ≥ 1
24D | f

−1(i, j)|.

We now continue following the proof of Theorem 25, using Lemma 22 with input εµ2 and D+1
(rather than εµ2 and ∆), to choose a set S satisfying (8.1) for each 1≤ `≤ D+1 and vertices u1, . . . ,u`
of V (G). We use the same pre-embedding Algorithm 3, with the exception that we choose vertices
at line 2 differently. As before, given vt+1 ∈ V0 \ im(φt), we use Claim 35 to find a set W ⊆ NG(vt+1)
of size at least 1

8r µ pn and an index i ∈ [r] such that for each w ∈W we have
∣∣NG(w,Vi, j)

∣∣ ≥ d p|Vi, j|
for each j ∈ [k]. However, rather than applying Lemma 28, we let w1, . . . ,w` be distinct vertices of W
which satisfy (G 5a)–(G 8a). We now justify that this is possible. We choose the w1, . . . ,w` successively.
Since xt+1 is not contained in any triangle or four-cycle of H, we have |Jx| ≤ 1 for each x ∈ V (H), so
that (G 5a) is automatically satisfied. By Proposition 19, (G 6a) and (G 8a) are satisfied for all but at most
2C∗kr1 p−1 logn vertices of W . It remains to show that we can obtain (G 7a), which we do as follows. For
s ∈ [`], when we come to choose ws, we insist that for any

{
(i, j),(i′, j′)

}
∈ E(Rk

r), the following hold.
First,

(
NΓ(ws,Vi, j),Vi′, j′

)
is (ε1,d, p)G-lower-regular. Second,

(
NΓ(ws,Vi, j),NΓ(ws,Vi′, j′)

)
is (ε∗,d, p)G-

lower-regular. Third, for each 1≤ t ≤ s−1,
(
NΓ(ws,Vi, j),NΓ(wt ,Vi′, j′)

)
is (ε∗,d, p)G-lower-regular. The

conditions of respectively Lemma 17, Lemma 18, and Lemma 17 are in each case satisfied (in the last
case by choice of wt) and thus in total at most 3C∗k2r2

1 max{p−2, p−1 logn} vertices of W are prohibited.
Since 5C∗k2r2

1 max{p−2, p−1 logn}< |W |
2 < ` by choice of C, at each step there is a valid choice of ws.

Since for each x ∈V (H ′) we have |Jx| ≤ 1, this construction guarantees (G 7a).
We now return to following the proof of Theorem 25. We obtain V′ by removing the images of

pre-embedded vertices, and V′′ by applying Lemma 29. Note that here (B 5’) may be trivial, that is,
the error term C∗ logn may dominate the main term when s is large, but we only require it for s = 1 to
obtain (G 1c)–(G 7c).

Finally, we are ready to apply Lemma 38 to complete the embedding. We define (I,J) as in the proof of
Theorem 25. We however let W̃i, j consist of the vertices of W ′i, j \X whose degree is at most 2D. By (H 6a)

there are at least 1
100D |W

′
i, j| of these, so that W̃ is a (ϑ ,Kk

r )-buffer, giving (DBUL 1). Now (DBUL 2)
follows from (G 2c) and (G 3c). Finally, (I,J) is a (ρ, 1

4 α,∆,∆)-restriction pair, giving (DBUL 3), exactly
as in the proof of Theorem 25. However now we need to give an order τ ′ on V (H ′) and a set W e ⊆V (H ′).
The former is simply the restriction of τ to V (H ′), and the set W e consists of all vertices x ∈V (H) with
|Jx|> 0.

We now verify the remaining conditions of Lemma 38. We claim |W e| ≤ ∆2|V0| ≤ ε pmaxx 6∈We πτ ′ (x)n/r1.
Observe that πτ ′(x)≤ πτ(x)+ |Jx| ≤ D+1. For D = 1, we have |V0| ≤C∗p−1, and by choice of C the
desired inequality follows. For D ≥ 2, we have |V0| ≤ C∗p−2, and again by choice of C we have the
desired inequality.
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The last condition we must verify is (DBUL 4), that τ ′ is a (D̃, p,εn/r1)-bounded order. For any
vertex x of H ′, we have πτ ′(x) ≤ πτ(x)+ 1 ≤ D+ 1, and furthermore for all vertices not in W e we
have πτ ′(x) = πτ(x) ≤ D. To verify (ORD 1), first note that by construction the vertices of

⋃
W̃ have

degree at most 2D≤ D̃. Further, observe that if D = 1 then H ′ contains no triangles, and D̃ = 3 = D+2.
Since vertices in N

(⋃
W̃
)

are by construction not image restricted, so are not in W e, this is as required
for (ORD 1). If on the other hand D≥ 2 then D̃≥ D+3, and again the conditions of (ORD 1) are met.
Next, if x 6∈W e then πτ ′(x)≤ D, so that (ORD 2) holds. Finally, observe that maxz6∈W e πτ ′(z)≤ D, and
vertices x ∈ N

(⋃
W̃
)

by construction have πτ ′(x) = πτ(x)≤ D, so that (ORD 3) holds.
We can thus apply Lemma 38 to embed H ′ into G′, completing the embedding of H into G as

desired.

The proof of Theorem 8 from Theorem 36 follows the deduction of Theorem 7 from Theorem 25,
and we omit it.

10 The Bandwidth Theorem in bijumbled graphs

Again, Theorem 9 is a consequence of the following.

Theorem 39. For each γ > 0, ∆≥ 2, and k≥ 1, there exists a constant c > 0 such that the following holds
for any p > 0. Given ν ≤ cpmax(4,(3∆+1)/2)n, suppose Γ is a

(
p,ν
)
-bijumbled graph, G is a spanning

subgraph of Γ with δ (G) ≥
( k−1

k + γ
)

pn, and H is a k-colourable graph on n vertices with ∆(H) ≤ ∆

and bandwidth at most cn. Suppose further that H has a labelling L of its vertex set of bandwidth at most
cn, a (k+1)-colouring that is (z,c)-zero-free with respect to L, and where the first

√
cn vertices in L are

not given colour zero, and the first cn vertices in L include c−1 p−6ν2n−1 vertices in V (H) that are not
contained in any triangles of H. Then G contains a copy of H.

The proof of Theorem 39 is a straightforward modification of that of Theorem 25. Rather than
repeating the entire proof, we sketch the modifications which have to be made. Again, for more details
and background on this result see [22].

Since we are working with bijumbled graphs, we need to work with regular pairs, rather than lower-
regular pairs, at all times. In order to use this concept, and to work with bijumbled graphs, we need
versions of Lemmas 16, 17, and 18, and Proposition 19, which work with regular pairs and with Γ a
bijumbled graph rather than a random graph. We also need the following easy proposition, which lower
bounds the possible ν for a (p,ν)-jumbled graph with p > 0.

Proposition 40. Suppose 16
n < p < 1− 16

n . There does not exist any (p,ν)-bijumbled n-vertex graph
with ν ≤min

(√
pn/32,

√
(1− p)n/32

)
.

Proof. Suppose that Γ is a (p,ν)-bijumbled graph on n vertices with p≤ 1
2 . If Γ contains 1

2 n vertices of
degree at least 4pn, then we have e(Γ)≥ pn2, and letting A,B be a maximum cut of Γ, by bijumbledness
we have

1
2

pn2 ≤ e(A,B)≤ p|A||B|+ν
√
|A||B| ≤ 1

4 pn2 +
1
2

νn ,

and thus ν ≥ pn/2≥
√

pn/32.
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If on the contrary Γ contains at least 1
2 n vertices of degree less than 4pn, then let A be a set of 1

8p such
vertices, and B a set of n

4 vertices with no neighbours in A. By bijumbledness, we have

0≥ p|A||B|−ν
√
|A||B|= n

32
−ν
√

n/(32p)

and thus ν ≥
√

pn/32. The same argument applied to Γ proves the p≥ 1
2 case.

The following sparse blow-up lemma for jumbled graphs is proved in [2].

Lemma 41 ([2, Lemma 1.25]). For all ∆≥ 2, ∆R′ , ∆J , α,ζ ,d > 0, κ > 1 there exist ε,ρ > 0 such that
for all r1 there is a c > 0 such that if p > 0 and

β ≤ cpmax(4,(3∆+1)/2)n

any (p,β )-bijumbled graph Γ on n vertices satisfies the following.
Let R be a graph on r ≤ r1 vertices and let R′ ⊆ R be a spanning subgraph with ∆(R′) ≤ ∆R′ . Let

H and G ⊆ Γ be graphs given with κ-balanced, size-compatible vertex partitions X = {Xi}i∈[r] and
V= {Vi}i∈[r], respectively, which have parts of size at least m≥ n/(κr1). Let X̃= {X̃i}i∈[r] be a family
of subsets of V (H), I= {Ix}x∈V (H) be a family of image restrictions, and J= {Jx}x∈V (H) be a family of
restricting vertices. Suppose that

(JBUL 1) ∆(H)≤ ∆, (H,X) is an R-partition, and X̃ is an (α,R′)-buffer for H,

(JBUL 2) (G,V) is an (ε,d, p)-regular R-partition, which is (ε,d, p)-super-regular on R′, and has
one-sided inheritance on R′, and two-sided inheritance on R′ for X̃,

(JBUL 3) I and J form a (ρ p∆,ζ ,∆,∆J)-restriction pair.

Then there is an embedding ψ : V (H)→V (G) such that ψ(x) ∈ Ix for each x ∈ H.

There are three differences between this result and Lemma 16. First, we assume a bijumbledness
condition on Γ, rather than that Γ is a typical random graph. Second, we require regular pairs in place of
lower-regular pairs. Third, the number of vertices we may image restrict is much smaller. We will see
that these last two restrictions do not affect our proof substantially.

Next, in [3], the following regularity inheritance lemmas for bijumbled graphs are proved.

Lemma 42 ([3, Lemma 3]). For each ε ′,d > 0 there are ε,c > 0 such that for all 0 < p < 1 the following
holds. Let G⊆ Γ be graphs and X ,Y,Z be disjoint vertex sets in V (Γ). Assume that

• (X ,Z) is (p,cp3/2
√
|X ||Z|)-bijumbled in Γ,

• (X ,Y ) is
(

p,cp2(log2
1
p)
−1/2

√
|X ||Y |

)
-bijumbled in Γ, and

• (X ,Y ) is (ε,d, p)G-regular.

Then, for all but at most at most ε ′|Z| vertices z of Z, the pair
(
NΓ(z)∩X ,Y

)
is (ε ′,d, p)G-regular.
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Lemma 43 ([3, Lemma 4]). For each ε ′,d > 0 there are ε,c > 0 such that for all 0 < p < 1 the following
holds. Let G⊆ Γ be graphs and X ,Y,Z be disjoint vertex sets in V (Γ). Assume that

• (X ,Z) is (p,cp2
√
|X ||Z|)-bijumbled in Γ,

• (Y,Z) is (p,cp3
√
|Y ||Z|)-bijumbled in Γ,

• (X ,Y ) is (p,cp5/2
(

log2
1
p

)− 1
2
√
|X ||Y |)-bijumbled in Γ, and

• (X ,Y ) is (ε,d, p)G-regular.

Then, for all but at most ε ′|Z| vertices z of Z, the pair
(
NΓ(z)∩X ,NΓ(z)∩Y

)
is (ε ′,d, p)G-regular.

The following two lemmas, which more closely resemble Lemmas 17 and 18, are corollaries.

Lemma 44. For each εOSRIL,αOSRIL > 0 there exist ε0 > 0 and C > 0 such that for any 0 < ε < ε0 and
0 < p < 1, if Γ is any (p,ν)-bijumbled graph the following holds. For any disjoint sets X and Y in V (Γ)
with |X | ≥Cp−3ν and |Y | ≥Cp−2ν , and any subgraph G of Γ[X ,Y ] which is (ε,αOSRIL, p)G-regular, there
are at most Cp−3ν2|X |−1 vertices z ∈V (Γ) such that (X ∩NΓ(z),Y ) is not (εOSRIL,αOSRIL, p)G-regular.

Lemma 45. For each εTSRIL,αTSRIL > 0 there exist ε0 > 0 and C > 0 such that for any 0 < ε < ε0 and
0 < p < 1, if Γ is any (p,ν)-bijumbled graph the following holds. For any disjoint sets X and Y in
V (Γ) with |X |, |Y | ≥Cp−3ν , and any subgraph G of Γ[X ,Y ] which is (ε,αTSRIL, p)G-regular, there are at
most Cp−6ν2/min

(
|X |, |Y |

)
vertices z ∈V (Γ) such that

(
X ∩NΓ(z),Y ∩NΓ(z)

)
is not (εTSRIL,αTSRIL, p)G-

regular.

Note that the bijumbledness requirements of this lemma are such that if Y and Z are sets of size Θ(n),
then X must have size Ω

(
p−6ν2n−1

)
. This is where the requirement of Theorem 39 for vertices of H not

in triangles comes from.
Finally, we give a bijumbled graphs version of Proposition 19. We defer its proof, which is standard,

and similar to that of Proposition 19, to Appendix A.

Proposition 46. For each ε > 0 there exists a constant C > 0 such that for every p> 0, any graph Γ which
is (p,ν)-jumbled has the following property. For any disjoint X ,Y ⊆V (Γ) with |X |, |Y | ≥ ε−1 p−1ν , we
have e(X ,Y ) = (1± ε)p|X ||Y |, and e(X)≤ 2p|X |2. Furthermore, for every Y ⊆V (Γ) with |Y | ≥Cp−1ν ,
the number of vertices v ∈V (Γ) with

∣∣|NΓ(v,Y )|− p|Y |
∣∣> ε p|Y | is at most Cp−2ν2|Y |−1.

Now, using these lemmas, we can prove bijumbled graph versions of Lemmas 26 and 28, and use
these to complete the proof of Theorem 39. All these proofs are straightforward modifications of those in
the previous sections. Briefly, the modifications we make are to replace ‘lower-regular’ with ‘regular’ in
all proofs, to replace applications of lemmas for random graphs with the bijumbled graph versions above,
and to recalculate some error bounds.

The only one of our main lemmas which changes in an important way is the following Lemma for G.

Lemma 47 (Lemma for G, bijumbled graph version). For each γ > 0 and integers k ≥ 2 and r0 ≥ 1
there exists d > 0 such that for every ε ∈

(
0, 1

2k

)
there exist r1 ≥ 1 and c,C∗ > 0 such that the following

holds for any n-vertex (p,ν)-bijumbled graph Γ with ν ≤ cp3n and p > 0. Let G = (V,E) be a spanning
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subgraph of Γ with δ (G) ≥
( k−1

k + γ
)

pn. Then there exists an integer r with r0 ≤ kr ≤ r1, a subset
V0 ⊆ V with |V0| ≤C∗p−6ν2n−1, a k-equitable vertex partition V = {Vi, j}i∈[r], j∈[k] of V (G)\V0, and a
graph Rk

r on the vertex set [r]× [k] with Kk
r ⊆ Bk

r ⊆ Rk
r , with δ (Rk

r) ≥
( k−1

k + γ

2

)
kr, and such that the

following are true.

(G 1) n
4kr ≤ |Vi, j| ≤ 4n

kr for every i ∈ [r] and j ∈ [k],

(G 2) V is (ε,d, p)G-regular on Rk
r and (ε,d, p)G-super-regular on Kk

r ,

(G 3) both
(
NΓ(v,Vi, j),Vi′, j′

)
and

(
NΓ(v′,Vi, j),NΓ(v′,Vi′, j′)

)
are (ε,d, p)G-regular pairs for every edge

{(i, j),(i′, j′)} ∈ E(Rk
r), every v ∈V \ (V0∪Vi, j) and v′ ∈V \ (V0∪Vi, j ∪Vi′, j′),

(G 4) we have (1− ε)p|Vi, j| ≤ |NΓ(v,Vi, j)| ≤ (1+ ε)p|Vi, j| for every i ∈ [r], j ∈ [k] and every v ∈V \V0.

The change here, apart from replacing ‘lower-regular’ with ‘regular’, and working in bijumbled
graphs, is that V0 may now be a much larger set. Nevertheless, the proof is basically the same.

Sketch proof of Lemma 47. We begin the proof as in that of Lemma 26, setting up the constants in
the same way, with the exception that we replace Lemmas 17 and 18 with Lemmas 44 and 45, and
Proposition 19 with Proposition 46. We require C to be sufficiently large for Lemmas 44 and 45, and for
Proposition 46. We define C∗ = 100k2r3

1C/ε∗ as in the proof of Lemma 26, and set

c = 10−5(ε∗)3(kr1)
−3(C∗)−1 .

We now assume Γ is (p,ν)-bijumbled rather than random, with ν ≤ cp3n. In particular, by choice of
c this implies that

10k2r2
1Cp−2

ν
2n−1 ≤ ε

∗pn and 10k2r3
1Cp−6

ν
2n−1 ≤ ε

∗n . (10.1)

We obtain a regular partition, with a reduced graph containing Bk
r , exactly as in the proof of Lemma 26,

using Proposition 46 in place of Proposition 19 to justify the use of Lemma 13. The next place where
we need to change things occurs in defining Z1, where we replace ‘lower-regular’ with ‘regular’, and
in estimating the size of Z1. Using Lemmas 44 and 45, and Proposition 19 with Proposition 46, we
replace (4.1) with

|Z1| ≤ kr2
1Cp−6

ν
2n−1 + kr2

1Cp−3
ν

2n−1 +2kr1Cp−2
ν

2n−1 ≤ 4kr2
1Cp−6

ν
2n−1 (10.1)

≤ ε∗

kr1
n .

Note that the final conclusion is as in (4.1).
We can now continue following the proof of Lemma 26 until we come to estimate the size of Z2,

where we use Proposition 46 and replace (4.2) with

|Z2| ≤ r1 + kr1Cp−2
ν

2n−1 (10.1)

≤ ε∗

kr1
pn .

Again, the final conclusion is as in (4.2).

ADVANCES IN COMBINATORICS, 2020:6, 60pp. 48

http://dx.doi.org/10.19086/aic


THE BANDWIDTH THEOREM IN SPARSE GRAPHS

The next change we have to make is in estimating the size of V0, when we replace (4.6) with

|V0| ≤ |Z1|+ |Z2| ≤ 4kr2
1Cp−6

ν
2n−1 + r1 + kr1Cp−2

ν
2n−1 ≤C∗p−6

ν
2n−1 .

Finally, we need regular pairs in (G 2) and (G 3). We obtained regular pairs from Lemma 13 and
in the definition of Z1, so that we only need Proposition 12 to return regular pairs. We always apply
Proposition 12 to pairs of sets of size at least ε∗pn

r1
, altering them by a factor ε∗. Now Proposition 46

shows that if X and Y are disjoint subsets of Γ with |X |, |Y | ≤ (ε∗p)−1ν , then eΓ(X ,Y )≤ (1+ε∗)p|X ||Y |,
as required. By choice of c, we have (ε∗p)−1ν ≤ (ε∗)2 pn/r1, so that the condition of Proposition 12 to
return regular pairs is satisfied.

The other one of our main lemmas which requires change, Lemma 28, only requires changing
‘lower-regular’ to ‘regular’ and replacing the random graph with a bijumbled Γ. This does require some
change in the proof, as we then use the bijumbled graph versions of various lemmas, whose error bounds
are different.

Lemma 48 (Common neighbourhood lemma, bijumbled graph version). For each d > 0, k ≥ 1, and
∆ ≥ 2 there exists α > 0 such that for every ε∗ ∈ (0,1) there exists ε0 > 0 such that for every r ≥ 1
and every 0 < ε ≤ ε0 there exists c > 0 such that the following is true. For any n-vertex (p,cp∆+1n)-
bijumbled graph Γ the following holds. Let G = (V,E) be a (not necessarily spanning) subgraph of Γ

and {Vi}i∈[k]∪{W} a vertex partition of a subset of V such that the following are true for every i, i′ ∈ [k].

(G 1) n
4kr ≤ |Vi| ≤ 4n

kr ,

(G 2) (Vi,Vi′) is (ε,d, p)G-regular,

(G 3) |W | ≥ ε pn
16kr2 , and

(G 4) |NG(w,Vi)| ≥ d p|Vi| for every w ∈W.

Then there exists a tuple (w1, . . . ,w∆) ∈
(W

∆

)
such that for every Λ,Λ∗ ⊆ [∆], and every i 6= i′ ∈ [k] we

have

(W 1) |
⋂

j∈Λ NG(w j,Vi)| ≥ α p|Λ||Vi|,

(W 2) |
⋂

j∈Λ NΓ(w j)| ≤ (1+ ε∗)p|Λ|n,

(W 3) (1− ε∗)p|Λ||Vi| ≤ |
⋂

j∈Λ NΓ(w j,Vi)| ≤ (1+ ε∗)p|Λ||Vi|, and

(W 4)
(⋂

j∈Λ NΓ(w j,Vi),
⋂

j∗∈Λ∗ NΓ(w j∗ ,Vi′)
)

is (ε∗,d, p)G-regular if |Λ|, |Λ∗|< ∆ and either Λ∩Λ∗=∅
or ∆≥ 3 or both.

The main modifications we make to the proof of Lemma 28 are to replace Lemmas 17 and 18
with Lemmas 44 and 45, and Proposition 19 with Proposition 46, and to replace all occurrences of
‘lower-regular’ with ‘regular’. We sketch the remaining modifications below.
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Sketch proof of Lemma 48. We begin the proof by setting constants as in the proof of Lemma 28, but
appealing to Lemmas 44 and 45, and Proposition 46, rather than their random graph equivalents.

We set c = 10−202−2∆ε5(Ct1kr)−4. Suppose ν ≤ cp∆+2n, and that Γ is an n-vertex (p,ν)-bijumbled
graph rather than a random graph.

In order to apply Lemma 31 to G, we need to observe that its condition is satisfied by Proposi-
tion 46 and because ε−1 p−1ν < 10−10 ε4 pn

k4r4 by choice of c. The same inequality justifies further use of
Proposition 46 to find the desired W ′. Estimating the size of W ′, we replace (6.1) with

|W ′| ≥ 10−11 ε4 pn
t1k4r4 ≥ 105Cp−2

ν , (10.2)

where the final inequality is by choice of c.
We only need to change the statement of Claim 32 by replacing ‘lower-regular’ with ‘regular’ in (L 1)

and (L 6). However we need to make rather more changes to its inductive proof. The base case remains
trivial. In the induction step, we need to replace (6.2) with∣∣⋂

j∈Λ

NΓ(w j,V ′i )
∣∣≥ (1− ε0)

∆−2 p∆−2 n
8tr
≥ 105Cp−4

ν ,

where the final inequality is by choice of c. This, together with |W ′| ≥ 105Cp−2ν from (10.2), justifies
that we can apply Lemma 44. We obtain that at most 2∆k2Cp−3ν2 8krt1

n vertices w in W violate (L 1).
The estimate on the number of vertices violating (L 2) does not change.
For (L 4), we need to observe that

∣∣⋃
j∈Λ NΓ(w j,V ′i )

∣∣= (1±ε0)
|Λ|p|Λ||V ′i |, and in particular by choice

of ε0 and c this quantity is at least Cp−1ν . Then Proposition 46 then gives that at most 2∆+1kCp−2ν2 8krt1
n

vertices destroy (L 4), and the same calculation gives the same bound for the number of vertices violat-
ing (L 5) and (L 3).

Finally, for (L 6), we need to use the inequality (1− ε0)
∆−1 p∆−1 n

4kr ≥Cp−2ν , which holds by choice
of c, to justify that Lemmas 44 and 45 can be applied as the corresponding random graph versions are in
Lemma 28. We obtain quite different bounds from these lemmas, however. If ∆ = 2, then we only use
Lemma 44, with an input regular pair having both sets of size at least n

4kr , so that the number of vertices
violating (L 6) in this case is at most 22∆k2Cp−3ν2 4kr

n . If ∆ ≥ 3, we use both Lemma 44 and 45. The
set playing the rôle of X in Lemma 44 has size at least (1− ε0)

∆−2 p∆−2 n
4kr , while we apply Lemma 45

with both sets of the regular pair having at least this size. As a consequence, the number of vertices
violating (L 6) is at most 22∆+1k2Cp−6ν2(1− ε0)

2−∆ p2−∆ 4kr
n for the case ∆≥ 3.

Putting this together, for the case ∆ = 2 we replace (6.3) with the following upper bound for the
number of vertices w ∈W ′ which cannot be chosen as w`+1.

2∆k2Cp−3
ν

2 8krt1
n

+2∆kε
∗∗
∆ |W ′|+3 ·2∆+1kCp−2

ν
2 8krt1

n
+22∆k2Cp−3

ν
2 4kr

n

By choice of c and ε∗∗
∆

, this quantity is at most 1
2 |W

′|, completing the induction step for ∆ = 2. For ∆≥ 3,
we replace the upper bound (6.4) with

2∆k2Cp−3
ν

2 8krt1
n

+2∆kε
∗∗
∆ |W ′|+3 ·2∆+1kCp−2

ν
2 8krt1

n
+22∆+1k2Cp−6

ν
2(1− ε0)

2−∆ p2−∆ 4kr
n
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which by choice of c,ε0 and ε∗∗
∆

is at most 1
2 |W

′|, completing the induction step for ∆≥ 3.
We conclude that the modified Claim 32 continues to hold, and this implies the statement of Lemma 48

as in the proof of Lemma 28.

The proof of Theorem 39 is similar to that of Theorem 25. Again, we sketch the modifications.

Sketch proof of Theorem 39. We begin as in the proof of Theorem 25, setting up constants as there, but
replacing Lemma 26 with Lemma 47, Lemma 28 with Lemma 48, Lemma 16 with Lemma 41, and
Proposition 19 with Proposition 46. In addition to the constants defined in the proof of Theorem 25 we
require 0 < c≤ 10−50ε8µρξ 2(∆kr1C)−10 to be small enough for Lemmas 47 and 48.

Now, instead of assuming Γ to be a typical random graph, suppose ν ≤ cpmax{4,(3∆+1)/2}n, and let Γ

be an n-vertex (p,ν)-bijumbled graph. By Proposition 40 we have

p≥C∗
( logn

n

)1/2
. (10.3)

We continue following the proof of Theorem 25. We now assume the first βn vertices of L include
Cp−6ν2n−1 vertices that are not contained in any triangles of H. We appeal to Lemma 47 rather than
Lemma 26 to obtain a partition of V (G). This partition has |V0| ≤C∗p−6ν2n−1 (which is different to
the upper bound in the proof of Theorem 25), but still satisfies (G 1a) and (G 4a), and (G 2a) and (G 3a)
when ‘lower-regular’ is replaced by ‘regular’ in both statements.

The application of Lemma 27 is identical. The application of Lemma 22 is also identical, and the
deduction of (8.1) is still valid by (10.3). The pre-embedding is also identical, except that we replace
each occurrence of C∗max{p−2, p−1 logn} with C∗p−6ν2n−1, and that we replace the application of
Proposition 19 justifying that at each visit to Line 1 we have at least 1

4 µ pn choices with an application of
Proposition 46. To verify the condition of the latter, and to see that this yields a contradiction we use the
inequality |Z| ≥ 1

100(∆+1)µ pn≥ 2C∗p−2ν2 8r
εn , which holds by choice of c.

Moving on, we justify Claim 35 by observing that εn
4kr1
≥Cp−1ν , which allows us to apply Proposi-

tion 46 in place of Proposition 19, and that 2krC∗p−2ν2 4kr1
εn ≤

|Y |
2 , both inequalities following by choice

of c.
Now Lemma 48, in place of Lemma 28, finds w1, . . . ,w`. Our construction of f ∗, and its prop-

erties, is identical, while Lemma 48 gives (G 1a)–(G 8a), with ‘lower-regular’ replaced by ‘regular’
in (G 2a), (G 3a) and (G 7a). The deduction of (G 1b)–(G 8b) is identical, except that we use the ‘regular’
consequence of Proposition 12. To justify this, observe that each time we apply Proposition 12, we apply
it to a regular pair with sets of size at least (1− ε∗)p∆−1 n

4kr by (G 1a) and (G 6a), and we change the
set sizes by a factor (1±2µ), so that Proposition 46 gives the required condition. To check this in turn,
we need to observe that 2µ(1− ε∗)p∆−1 n

4kr ≥ 100µ−1 p−1ν , which follows by choice of c. We can thus
replace ‘lower-regular’ with ‘regular’ in (G 2b), (G 3b) and (G 7b).

Next, we still have 3∆r+10|V0| ≤ 1
10 ξ n, so that |V ′i, j| = |W ′i, j|± ξ n is still valid for each i ∈ [r] and

j ∈ [k]. This, together with (10.3), Proposition 46, and the inequality 1
50000kr1

ε2ξ pn≤ 100ε−2ξ−1 p−1ν ,
justifies that we can apply Lemma 29 to obtain (G 1c)–(G 6c), with ‘lower-regular’ replaced by ‘regular’
in (G 2c) and (G 3c). Finally, to obtain (G 7c) with ‘lower-regular’ replaced by ‘regular’, we use Proposi-
tion 12, with the condition to output regular pairs guaranteed by the inequality 10−20ε4k−3r−3

1 p∆−1n≥
1020ε−4k3r3

1Cp−1ν , which follows by choice of c, and Proposition 46.
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Finally, we verify the conditions for Lemma 41. The only point where we have to be careful is with
the number of image restricted vertices. The total number of image restricted vertices in H ′ is at most
∆2|V0| ≤ ∆2C∗p−6ν2n−1, which by choice of c and by (G 1c) is smaller than ρ p∆|Vi, j| for any i ∈ [r] and
j ∈ [k], justifying that (I,J) is indeed a (ρ p∆, 1

4 α,∆,∆)-restriction pair. The remaining conditions of
Lemma 41 are verified as in the proof of Theorem 25, and applying it we obtain an embedding φ of H ′

into G\ im(φt∗), so tha φ ∪φt∗ is the desired embedding of H into G.

Finally, the deduction of Theorem 9 from Theorem 39 is essentially the same as that of Theorem 7
from Theorem 25, and we omit it.

11 Concluding remarks

11.1 General spanning subgraphs

Our main theorems place restrictions on the graphs H with respect to whose containment random or
pseudorandom graphs have local resilience. As was shown by Huang, Lee and Sudakov [24], such
restrictions are necessary. Given ε > 0, if Γ is either a typical random graph G(n, p) or a pseudorandom
graph with density p, and p is sufficiently small, then one can delete edges from Γ in order to remove all
triangles at a given vertex v, without deleting more than ε pn edges at any vertex. Thus if H is any graph
all of whose vertices are in triangles, if p = o(1) the local resilience of Γ with respect to containment of
H is o(1).

This leads to the question: if we instead restrict G, requiring in addition to the conditions of Theorem 7
that G contains a positive proportion of the copies of K∆+1 in Γ at each vertex, is it true that G will
contain any k-colourable, bounded degree spanning subgraph H with sublinear bandwidth without
further restriction? We study this question in a forthcoming companion note to this paper, together with
Schnitzer [1].

11.2 Optimality of Theorem 7

Recall that Huang, Lee and Sudakov [24] proved that the restriction on H that C∗p−2 vertices should not
be in triangles is necessary for all p. For p constant, they proved a version of Theorem 7, but the number
of vertices in H they require to have independent neighbourhood grows as a tower type function of p−1,
and they also require these vertices to be well-distributed in the bandwidth order, so that our result is
strictly stronger than theirs.

On the other hand, we do not believe that the lower bound on p in Theorem 7 is optimal. For ∆ = 2,
the statement is certainly false for p� n−1/2, since then G(n, p) has a.a.s. local resilience o(1) with
respect to containing even one triangle. It seems likely that the statement is true down to this point, a log
factor improvement on our result. For ∆ = 3, the statement as written is false for p� n−1/3. Briefly, the
reason for this is that in expectation a vertex is in O

(
p6n3

)
copies of K4 in G(n, p), and (with some work)

this implies that there is a.a.s. a subgraph of G(n, p) with minimum degree very close to pn and p−5n−1

vertices not in copies of K4. For p� n−1/3, p−5n−1� p−2, so that we would also have to insist on many
vertices of H not being in copies of K4 to accommodate this. Generalising this, we obtain the following
conjecture.
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Conjecture 49. For each γ > 0, ∆≥ 2, and k ≥ 1, there exist constants β ∗ > 0 and C∗ > 0 such that the
following holds asymptotically almost surely for Γ = G(n, p) if p≥C∗n−2/(∆+2). Let G be a spanning
subgraph of Γ with δ (G)≥

( k−1
k + γ

)
pn and let H be a k-colourable graph on n vertices with ∆(H)≤ ∆,

bandwidth at most β ∗n, there are at least C∗p−2 vertices in V (H) that are not contained in any triangles
of H, and at least C∗p−(∆+2)(∆−1)/2n2−∆ vertices in V (H) which are not in K∆+1. Then G contains a copy
of H.

This conjecture seems to be hopelessly out of reach with our current state of knowledge. We cannot
even prove that G(n, p) itself is universal for graphs on n

2 vertices with maximum degree ∆. The best
current result in this direction is due to Conlon, Ferber, Nenadov and Škorić [17], who show that for ∆≥ 3,
if p� n−1/(∆−1) log5 n then G(n, p) is a.a.s. universal for graphs on

(
1−o(1)

)
n vertices of maximum

degree ∆, finally breaking the n−1/∆ barrier which is reached by several papers, but still far from the
conjectured truth. It is possible that their methods could be used to prove a version of Theorem 7 for
almost-spanning H in sparser random graphs, but this does not appear to be straightforward.

11.3 Optimality of Theorem 8

The ‘extra’ restriction we place in Theorem 8, of having many vertices of H which are neither in triangles
nor four-cycles, is an artifact of our proof. It would be possible to remove the stipulation regarding
four-cycles—one can prove a version of Lemma 28 capable of embedding vertices in a degeneracy order.
However this comes at the cost of a worse lower bound on p. It seems likely that one would be able to
obtain a result for p�

( logn
n

)1/(2D+2), but we did not check the details.

As with Theorem 7, we expect that the bound p≥
( logn

n

)1/(2D+1) in Theorem 8 is far from the truth:
again the exponent is most likely a factor of roughly 2 too small. Again, however, proving such a
statement in general seems hopeless. Nevertheless, in one interesting case we can substantially improve
on Theorem 8. Specifically, if H is an F-factor for some fixed F , then we can follow the proof of
Theorem 8, but set D̃ = D+3. We can do this because we choose a degeneracy order on H in which the
copies of F are segments. We obtain a version of Theorem 8 in which H is required to be an F-factor,
where F is D-degenerate, but the lower bound on p improves to p ≥C∗

( logn
n

)1/(D+3). This is still not
optimal, but at least the exponent is asymptotically optimal as D grows, rather than being off by a factor
of two in the limit. For some specific F one can improve this bound further; moreover for F-factors one
can slightly improve on Lemma 38 (see the concluding remarks of [2]).

11.4 Optimality of Theorem 9

The requirement of C∗p−6ν2n−1 vertices of H not in triangles comes from Lemma 43. This lemma is
proved in [3], where it is conjectured that the bijumbledness requirement is not optimal. What exactly the
optimal result should be is not clear. When |X |= |Y |= |Z|= n

3 , a construction of Alon [4] shows that(
p,cp2n

)
-bijumbledness is necessary for some c > 0, but in our application we are interested in Y and Z

being of order n, and X much smaller.
We also do not believe that the bijumbledness requirement of Theorem 9 is optimal. This requirement

comes from Lemma 41, and it is suggested there that the statement could still hold given only
(

p,cp∆+C
)
-

bijumbledness for some C. Such an improvement there would immediately improve the results here
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correspondingly. It is generally conjectured that substantial further improvement is not possible, in the
strong form that it is likely that for some C > 0 and all ∆ there exists c > 0 such that for all large n an
n-vertex

(
p,cp∆−C

)
-bijumbled graph exists which does not contain K∆+1 at all.

Appendix

A Tools

We collect in this appendix proofs of results which are more or less standard but which we could not find
in the form we require in the literature. We begin by showing that small alterations to regular pairs give
us regular pairs.

Proof of Proposition 12. Let A ⊆ X̂ and B ⊆ Ŷ such that |A| ≥ ε̂|X̂ | and |B| ≥ ε̂|Ŷ | be given. Define
A′ := A∩X and B′ := B∩Y and note that

|A′| ≥ |A|−µ|X | ≥ ε̂|X̂ |−µ|X | ≥ ε̂(1−µ)|X |−µ|X | ≥
(
ε̂−2

√
µ
)
|X | ≥ ε|X |

by the definition of ε̂ . Analogously, one can show that |B′| ≥ ε|Y |. Since (X ,Y ) is an (ε,d, p)-regular
pair, we know that dp(A′,B′)≥ d− ε . Furthermore, we have

|A′| ≥ |A|−µ|X | ≥ |A|−µ
|A|
ε̂
≥
(
1−
√

µ
)
|A|

and by an analogous calculation we get |B′| ≥
(
1−
√

ν
)
|B|. For the number of edges between A and B

we get

e(A,B)≥ e(A′,B′)≥ (d− ε)p|A′||B′| ≥ (d− ε)p
(
1−
√

µ
)(

1−
√

ν
)
|A||B|

≥
(
d− ε−2

√
µ−2

√
ν
)

p|A||B| ≥ (d− ε̂)p|A||B|.

Therefore we have
dp(A,B)≥ d− ε̂,

which finishes the proof.
Now suppose that (X ,Y ) is (ε,d, p)-fully-regular. Let d′ be such that dp(A′,B′) = d′± ε for any

A′ ⊆ X and B′ ⊆Y with |A′| ≥ ε|X | and |B′| ≥ ε|Y |. Let A⊆ X̂ and B⊆ Ŷ with |A| ≥ ε̂|X̂ | and |B| ≥ ε̂|Ŷ |
be given. As above, we obtain e(A,B)≥ (d′− ε̂)p|A||B|. We also have

e(A,B)≤ e(A′,B′)+ e(A′,B\B′)+ e(A\A′,B)

≤ (d′+ ε)p|A′||B′|+(1+µ +ν)p|A′|ν |B|+(1+µ +ν)pµ|A||B|
≤ (d′+ ε̂)|A||B| ,

so that (X̂ ,Ŷ ) is (ε,d, p)-fully-regular, as desired.

Next, we prove the Sparse Regularity Lemma variant Lemma 31, whose proof follows [40].
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Proof of Lemma 31. Given ε > 0 and s, let L = 100s2ε−1. Let n1 = 1, and for each j ≥ 2 let n j =
10000ε−1n j2sn j . Let t1 = n1000ε−5(L2+16Ls2)+1.

We define the energy of a pair of disjoint sets P,P′ contained in respectively Vi and Vi′ to be

E(P,P′) :=
|P||P′|min

(
dp(P,P′)2,2Ldp(P.P′)−L2

)
|Vi||Vi′ |

.

Note that this quantity is convex in dp(P,P′). Now given a partition P refining {Vi}i∈[s], we define the
energy of P to be

E(P) := ∑
{P,P′}⊆P

E(P,P′) .

We now construct a succession of partitions P j+1 for each j ≥ 1, refining P1 := {Vi}i∈[s]. We claim that
for each j, the following hold.

(R 1) P j partitions Vi into between n j and
(
1+ 1

100 ε
)
n j sets, of which the largest n j are equally sized.

(R 2) E(P)≥ 1
1000 ε5 j.

We stop if P j is
(1

2 ε, p
)
-regular. If not, we apply the following procedure.

For each pair of P j which is not
(1

2 ε,0, p
)
-regular, we take a witness of its irregularity, consisting of

a subset of each side of the pair. We let P′j be the union of the Venn diagrams of all witness sets in each
part of P j. Since P j is not

(1
2 ε, p

)
-regular, there are at least 1

2 εs2n2
j pairs which are not

(1
2 ε,0, p

)
-regular.

By choice of L and by (R 1), at least 1
4 εs2n2

j of these pairs have density not more than 1
2 L. By the defect

Cauchy-Schwarz inequality, just from refining these pairs we conclude that E(P′j) ≥ E(P j)+
1

1000 ε5.
Note that, by convexity of E(P,P′) in dp(P,P), refining the other pairs does not affect E(P′j) negatively.

We now let P j+1 be obtained by splitting each set of P′j within each Vi into sets of size 1000−ε

1000n j+1
|Vi|

plus at most one smaller set. Again by Jensen’s inequality, we have E(P j+1) ≥ E(P′j), giving (R 2).
Since P′j partitions each Vi into at most n j2sn j = 1

10000 εn j+1, the total number of smaller sets is at most
1

10000 εn j+1. This gives (R 1).
Now observe that for any partition P refining P1, we have E(P) ≤ L2 +16Ls2. It follows that this

procedure must terminate with j ≤ 1000ε−5(L2 +16Ls2)+1. The final P j is thus
(1

2 ε, p
)
-regular. For

each i ∈ [s], let Vi,0 consist of the union of all but the largest n j parts of P j. Let P be the partition of⋃
i∈[s]Vi \Vi,0 given by P j. This is the desired equitable (ε, p)-regular refinement of {Vi \Vi,0}i∈[s].

Using Lemma 31 (purely in the interests of self-containment, as we could also use the results of [28]),
we now prove Lemma 13.

Proof of Lemma 13. Given ε > 0 and r0, without loss of generality we assume ε ≤ 1
10 . Let t1 be returned

by Lemma 31 for input 1
1000 ε2s−1 and s = 100r0ε−1. Let r1 = st1.

Given α > 0, let G be an n-vertex graph with minimum degree α pn. Let {Vi}i∈[s] be an arbitrary
partition of V (G) into sets of as equal as possible size. By assumption, we have e(Vi,Vi′)≤ 2p|Vi||Vi′ |
for each i 6= i′. Furthermore, if Vi is a part with e(Vi)≥ 3p|Vi|2, then taking a maximum cut A,A′ of Vi

we have e(A,A′)≥ 3
2 p|Vi|2. Enlarging the smaller of A and A′ if necessary, we have a pair of sets both

of size at most |Vi| between which there are at least 3
2 p|Vi|2 edges, again contradicting the assumption
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of Lemma 13. Thus G satisfies the conditions of Lemma 31 with input 1
1000 ε2s−1 and s. Applying that

lemma, we obtain a collection {Vi,0}i∈[s] of sets, and an (ε, p)-regular partition P of
⋃

i∈[s]Vi \Vi,0 which
partitions each Vi \V0 into t ≤ t1 sets. Note that s≤ |P| ≤ r1 by construction.

Now let V ′0 be the union of the Vi,0 for i∈ [s], any sets W ∈P that lie in more than 1
4 εst pairs which are

not ( 1
1000 ε, p)-regular, and at most two vertices from each set W ∈P in order that the partition of V (G)\V ′0

induced by P is an equipartition. Because the total number of pairs which are not ( 1
1000 ε, p)-regular is

at most 1
1000 ε2s−1(r0t)2, the number of such sets in any given Vi is at most 1

100 εt, so |V ′i,0| has size at
most 1

50 ε|Vi|, and the number of parts of P in Vi \V ′i,0 is larger than t
2 . Thus the partition P′ of V (G)\V ′0

induced by P is an (ε, p)-regular equipartition of V (G)\V ′0, and we have |V ′0| ≤ εn.
We claim that this partition P′ has all the properties we require. It remains only to check that for each

d ∈ [0,1], the d-reduced graph of P′ has minimum degree at least (α−d− ε)t ′. Suppose that P is a part
of P′. Now we have e(P) ≤ 3p|P|2, since otherwise, as before, a maximum cut A,A′ of P has at least
3
2 p|P|2 < 1

20 ε p|P|n edges, yielding a contradiction to the assumption on the maximum density of pairs of
G. By construction, P lies in at most 1

2 εt ′ pairs which are not (ε, p)-regular, and these contain at most
(1+ 1

10 ε)p|P|
(1

2 εt ′|P|
)
< 3

4 ε p|P|n edges of G. We conclude that at least α p|P|n− 7
8 ε p|P|n edges of G

leaving P lie in (ε, p)-regular pairs of P′. Of these, at most d p|P|n can lie in pairs of density less than
p, so that the remaining at least

(
α−d− 7

8 ε
)

p|P|n edges lie in (ε,d, p)-regular pairs. If so many edges
were in less than (α−d− ε)t ′ pairs leaving P, this would contradict our assumption on the maximum
density of G, so that we conclude P lies in at least (α − d− ε)t ′ pairs which are (ε,d, p)-regular, as
desired.

Proof of Proposition 46. Given ε > 0, set C′ = 100ε−2 and C = 200C′ε−1. Suppose that Γ is (p,ν)-
bijumbled.

First, given disjoint X ,Y ⊆ V (Γ) with |X |, |Y | ≥ ε−1 p−1ν , (p,ν)-bijumbledness of Γ we have
e(X ,Y ) = p|X |||Y | ± ν

√
|X ||Y |, and we need only verify that ν

√
|X ||Y | ≤ ε p|X ||Y |, which follows

from the lower bound on |X |, |Y |.
For the second property, let (A,B) be a maximum cut of X . We have e(A,B)≥ 1

2 e(X), and |A||B| ≤
1
4 |X |

2. By (p,ν)-bijumbledness of Γ, we conclude

e(X)≤ 2e(A,B)≤ 2p|A||B|+2ν
√
|A||B| ≤ 1

2
p|X |2 +ν |X |

so that it is enough to verify ν |X | ≤ p|X |2, which duly follows from the lower bound on |X |.
Now let Y ⊆ V (Γ) have size at least Cp−1ν . We first show that there are at most C′p−2ν2|Y |−1

vertices in Γ which have less than (1− ε)p|Y | neighbours in Y . If this were false, then we could choose a
set X of C′p−2ν2|Y |−1 vertices in Γ which have less than (1− ε)p|Y | neighbours in Y . Since by choice
of C we have (1− ε)p|Y | ≤

(
1− ε

2

)
p|Y \X |, we see that e(X ,Y \X)<

(
1− ε

2

)
p|X ||Y \X |. Since

ν
√
|X ||Y |= ν

√
C′p−2ν2 =

√
C′ν2 p−1 <

ε

2
p|X ||Y \X |

this is a contradiction to (p,ν)-bijumbleness of Γ.
Next we show that there are at most 2C′p−2ν2|Y |−1 vertices of Γ which have more than (1+ ε)p|Y |

neighbours in Y . Again, if this is not the case we can let X be a set of 2C′p−2ν2|Y |−1 vertices of Γ with
more than (1+ ε)p|Y | neighbours in Y .
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If there are more than 1
2 |X | vertices of X with more than 1

2 ε p|Y | neighbours in X , then we have
e(X) ≥ 1

8 ε p|X ||Y |. Taking a maximum cut A,B of X , we have e(A,B) ≥ 1
16 ε p|X ||Y |, and by (p,ν)-

bijumbledness of Γ we therefore have

1
16

ε p|X ||Y | ≤ p|A||B|+ν
√
|A||B| ≤ 1

4
p|X |2 + 1

2
ν |X | ,

and since |X | ≤ 1
100 ε|Y |, we conclude |Y | ≤ 100ε−1 p−1ν , a contradiction to the choice of C.

We conclude that there are 1
2 |X | vertices X ′ of X have at most 1

2 ε p|Y | neighbours in X , and hence at
least

(
1+ 1

2 ε
)

p|Y | neighbours in Y \X . By (p,ν)-bijumbledness of Γ we have

1
2
|X |
(

1+
1
2

ε

)
p|Y | ≤ e(X ′,Y \X)≤ 1

2
p|X ||Y |+ν

√
1
2

p|X ||Y | ,

from which we have εC′p−1ν2 ≤ 2
√

C′ν2 p−1, a contradiction to the choice of C′.
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Math. Stud., vol. 144, North-Holland, Amsterdam, 1987, pp. 307–331. 5

AUTHORS

Peter Allen
London School of Economics,
Department of Mathematics,
Houghton Street,
London WC2A 2AE, UK
p d allen lse ac uk

Julia Böttcher
London School of Economics,
Department of Mathematics,
Houghton Street,
London WC2A 2AE, UK
j boettcher lse ac uk

Julia Ehrenmüller
Technische Universität Hamburg,
Institut für Mathematik,
Am Schwarzenberg-Campus 3,
21073 Hamburg, Germany
julia ehrenmueller gmail com

Anusch Taraz
Technische Universität Hamburg,
Institut für Mathematik,
Am Schwarzenberg-Campus 3,
21073 Hamburg, Germany
taraz tuhh de

ADVANCES IN COMBINATORICS, 2020:6, 60pp. 60

http://dx.doi.org/10.19086/aic

	1 Introduction
	2 Preliminaries
	3 Proof overview and main lemmas
	3.1 Proof overview
	3.2 Main lemmas

	4 The lemma for G
	5 The lemma for H
	6 The common neighbourhood lemma
	7 The balancing lemma
	8 The Bandwidth Theorem in random graphs
	9 Lowering the probability for degenerate graphs
	10 The Bandwidth Theorem in bijumbled graphs
	11 Concluding remarks
	11.1 General spanning subgraphs
	11.2 Optimality of Theorem 7
	11.3 Optimality of Theorem 8
	11.4 Optimality of Theorem 9

	A Tools

