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A systematic review of the effectiveness of machine learning for 

predicting psychosocial outcomes in acquired brain injury: which algorithms 

are used and why?  
 

Abstract 
Clinicians working in the field of acquired brain injury (ABI, an injury to the brain sustained after birth) are 

challenged to develop suitable care pathways for an individual client’s needs. Being able to predict 

psychosocial outcomes after ABI would enable clinicians and service providers to make advance decisions and 

better tailor care plans. Machine learning (ML, a predictive method from the field of artificial intelligence) is 

increasingly used for predicting ABI outcomes. This review aimed to examine the efficacy of using ML to make 

psychosocial predictions in ABI, evaluate the methodological quality of studies, and understand researchers’ 

rationale for their choice of ML algorithms. Nine studies were reviewed from five databases, predicting a 

range of psychosocial outcomes from stroke, traumatic brain injury and concussion. Eleven types of ML were 

employed with a total of 75 ML models. Every model was evaluated as having high risk of bias, unable to 

provide adequate evidence for predictive performance due to poor methodological quality. Overall, there was 

limited rationale for the choice of ML algorithms and poor evaluation of the methodological limitations by 

study authors. Considerations for overcoming methodological shortcomings are discussed, along with 

suggestions for assessing the suitability of data and suitability of ML algorithms for different ABI research 

questions.  

 

Word count: 207 

 

Keywords 
Machine learning; brain injury; stroke; predictive research; systematic review 
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Introduction 

The variation in psychosocial outcomes after an acquired brain injury (ABI, an injury to the brain sustained 

after birth including stroke and traumatic brain injury [TBI]), challenges health and social care services to 

provide advice and guidance to the person, their family, and for socioeconomic implications. Being able to 

accurately predict psychosocial outcomes at a future time-point after ABI would serve timely resource 

allocation and risk management, as well as being able to adapt interventions for known risk factors to 

maximise the likelihood of more favourable outcomes.  

Machine learning (ML) is an evolving methodology in clinical research, offering a possible solution to 

limitations with traditional methods of modelling.  Supervised ML learns from the data how to best predict the 

outcome in question (Hastie, Tibshirani, & Friedman, 2009; Ch 2). Whilst ML was predominantly employed by 

data scientists and statisticians, it is becoming an increasingly popular approach for clinicians and clinical 

researchers to consider its use for tackling the large and complex data sets typical of routine clinical data.  

The clinical applications of ML have expanded from medical and genetic research, to psychological research 

questions. Predicting psychosocial outcomes, such as the likelihood of developing mood disorders or being 

able to return to work after an ABI, typically have a higher degree of subjectivity than medical outcomes, and 

the measurement around such variables can include higher proportions of noise (Mascolo, 2016). Despite 

growing popularity, how well ML performs at predicting such outcomes in ABI is unknown.  

To date there has been no review or guidance for using ML to predict psychosocial outcomes in ABI, however 

a previous systematic review has shown superior power for ML methodologies to predict neurosurgical 

outcomes (Senders et al., 2018). Unfortunately, as no risk of bias (ROB) assessment was completed for the 

review it greatly limits the applicability of their findings. In recent years, guidance has been developed for 

prediction research (e.g. Moons, Altman, Reitsma, et al., 2015; Wolff et al., 2019), allowing thorough 

evaluation of prediction models. Without such guidance, common data mistakes can lead to biased results. By 

evaluating psychosocial ABI research, clinicians will benefit from being able to understand the efficacy of using 

ML algorithms across ABIs and consider the suitability of ML for data sets commonly available within services 

and work towards developing accurate prediction tools to assist clinical decision making.  

Objectives 

This systematic review aimed to evaluate research employing ML to develop models for the prediction of 

psychological, social and/or functional outcomes after ABI.  
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In particular, this review set out to answer: 

1.) How effective is ML for making psychosocial predictions for people with ABI? 

2.) Which ML algorithms are most commonly used? 

3.) What is the rationale for the choice of ML algorithms, as stated by the study authors? 

Method 

Protocol and registration  

The protocol of this systematic review was written in accordance with PRISMA-P (Moher et al., 2015) and 

registered on PROSPERO on 15/July/2019, registration number CRD42019140546 [available from:   

https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=140546].  This review has been written 

in accordance with PRISMA (Liberati et al., 2009). 

Eligibility criteria  

Research reports were included with an English language version available in a peer-reviewed journal. All 

reports up until the search date of 22/July/2019 were initially considered for the review. Due to the large 

number of eligible studies identified, studies were then limited to those published between 1st January 2016 

and 22nd July 2019 to cover articles published after the Transparent Reporting of a multivariable prediction 

model for Individual Prognosis Or Diagnosis (TRIPOD) guidance (Moons et al., 2015).  

Participants 

Studies included participants with a diagnosis of ABI, such as TBI (mild, moderate or severe) or stroke. This 

review included people of any age, gender, or geographical location. Studies which included conditions other 

than ABI (e.g. other types of physical trauma or neurodegenerative conditions) in the same analysis with 

people with ABI were excluded. 

 

Exposures and Comparators 

Studies were included with at least one psychosocial predictor in the final model. Psychosocial was defined as 

a measure of psychological or behavioural factors (e.g. cognition, mental health, challenging behaviours), or 

social factors (e.g. participation, accommodation status, employment). Studies were excluded where 

predictors were all biological (e.g.  physical measurements, vital signs, or neuroimaging), or primarily all 

impairment based (e.g. Glasgow Coma Scale [GCS], Teasdale & Jennett, 1974). The comparator was the 

absence of the exposure (predictor), or lower levels of the exposure where measured on a dimensional scale. 
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Outcomes of interest 

Studies predicting a psychosocial outcome were included, with psychosocial defined as above.  Studies were 

excluded where predictors and outcomes were measured at the same time-point (e.g. questionnaire items 

predicting questionnaire outcome). This review excluded outcomes designed specifically for disciplines other 

than psychology (e.g. speech and language therapy measures, physiotherapy measures), measures which are 

primarily impairment based (e.g. GCS), or neurological (e.g. neuroimaging, cerebrospinal fluid). 

 

Study design 

Studies were required to be observational designs which reported the development of a supervised ML model.  

ML was defined as “algorithms [which search] through a large space of candidate programs, guided by training 

experience, to find a program that optimizes the performance metric.” (Bzdok, Krzywinski, & Altman, 2017 p. 

1119). An ML technique is ‘supervised’ if it uses known outcome data as part of model learning. Studies 

reporting the application of a previously developed model and which did not include model development 

results were excluded.   

Search and Study selection 

Published literature was reviewed from Medline (PubMed), Web of Science, EMBASE (OVID interface, 1990 

onwards), CINAHL and PsycINFO (EBSCOhost interface, 1990 onwards), up until the date of 22/July/2019. The 

full search strategy is presented in Appendix 1.2 on page 56. The search results were managed in the author’s 

EndNote library (www.myendnoteweb.com). Duplicates were removed during database extraction, then titles 

were screened to remove papers that were not eligible. This screening process was repeated for abstracts and 

lastly full texts. A second reviewer independently repeated this process for 50 records at the title/abstract 

stage, and 10 records at the full text stage to check for consistency, showing 100% concordance.  

Data collection process  

A data extraction template was developed to extract relevant data from eligible studies combined from the 

Joanna Briggs Institute critical appraisal checklist for cohort studies (Briggs, 2017), TRIPOD (Moons et al., 

2015), and additional items specific to the review questions. A full list of extracted data items is available in 

Appendix 1.3 (pg. 57). The form was piloted by the primary author for 5 studies, then amended with two 

additional items. The final data extraction template was used by the primary author for all studies, and the 

second reviewer independently for 3 studies giving consistency of 93.1%, with discrepancies resolved by 

discussion.  

Risk of bias in individual studies  

The Prediction model Risk Of Bias ASsessment Tool (PROBAST, Wolff et al., 2019) was used at study level to 

evaluate bias for each presented ML model in each article, completed by the first author for all included 
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articles and by the second reviewer independently for 3 records to check for consistency. Inter-rater 

agreement was 91.7%, indicating high consistency. Differences in opinion were discussed until consensus was 

reached. 

Summary measures and synthesis of results  

A narrative synthesis was performed, presented in text and tables. To address the first review question 

performance metrics are reported both for the internal validation models and if applicable, the external 

validation model, with the area under the receiver operating characteristic curve (AUC, also known as the c-

index) being the primary metric of choice. Alternative metrics are reported for some studies. Performance 

metrics of models were then evaluated as being reliable or unreliable dependent on the ROB ratings of the 

models. To address the second review question, the frequency of the algorithms used by researchers are 

reported. For the third review question, the rationale of the author’s choice of methodology was summarised. 

The findings of these three questions are then used to provide considerations for designing an ML study for 

predicting psychosocial outcomes in ABI for future researchers. 

Results  

Study selection 

Figure 1 shows the flow diagram of the search procedure and the results.  

Study characteristics 
A total of nine studies were included for the systematic review. Six were from the United States (Bergeron et 

al., 2019; Cnossen et al., 2017; Gupta et al., 2017; Hirata et al., 2016; Stromberg et al., 2019; Walker et al., 

2018), one from Finland (Huttunen et al., 2016), one from Japan (Nishi et al., 2019), and one from Iran (Shafiei 

et al., 2017). A brief review of study design and analysis by study is included in Table 1. 
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Figure 1 PRISMA flow diagram of the study selection process 

 

 

Abbreviations: ABI= acquired brain injury; ML= machine learning 

 

One study predicted outcomes after concussive incidents (1611 incidents with multiple concussions per 

person, Bergeron et al., 2019), and the remaining eight predicted outcomes from 64,325 people with ABI in 

total, including cerebrovascular accident (Gupta et al., 2017, Hirata et al., 2016, Huttunen et al., 2016, Nishi et 

al., 2019), mild TBI (Cnossen et al., 2017, Shafiei et al., 2017), and moderate to severe TBI (Stromberg et al., 

2019, Walker et al., 2018). Two studies used the same database (Stromberg et al., 2019, Walker et al., 2018), 

and therefore the same participants were likely in both studies. Outcomes included post-concussive 

Figure 1: PRISMA flow diagram of the study selection process 
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symptoms (Bergeron et al., 2019; Cnossen et al., 2017), functional outcome (Gupta et al., 2017, Nishi et al., 

2019, Walker et al., 2018), indicators of mood and psychological symptoms (Hirata et al., 2016, Huttunen et 

al., 2016, Shafiei et al., 2017), and employment (Stromberg et al., 2019).  

Table 1 Characteristics of studies included in systematic review 

Study ABI 
population 

Outcome Sample size Analysis 
design 

ML methodology Validation 
procedures  

1. 
Bergeron 
et al 
(2019) 

Concussion Time to 
symptom 
resolve  

1611 
concussive 
incidents 

Classification NB, SVM, KNN, 
DTs (C4.5D and C4.5N), RF 
(with 100 and 500 trees), 
ANNs (multilayer 
perceptron and radial 
basis function network) 

10-fold cross 
validation, 1 
segment 
reserved for 
internal 
validation 

2. Cnossen 
et al 
(2017) 

Mild TBI GCS 
13-15 

Post-concussive 
symptoms 
(cognitive, 
somatic and 
psychological 
subscales, and 
severity) 

277 Regression RLR (lasso) Bootstrap with 
100 samples 

3. Gupta 
et al 
(2017) 

Intracerebral 
haemorrhage 

Functional 
outcome at 3 
and 12 months 

365 (3 
months) 321 
(12 months) 

Classification 
and 
regression 

RF for feature selection 
and then traditional linear 
and logistic regression  

External 
validation  

4. Hirata 
et al 
(2016) 

Stroke Depression 17,132 Classification RF Within random 
forest uses “out 
the bag,” an 
embedded 
validation 
procedure, but 
no cross-
validation 

5. 
Huttunen 
et al 
(2016) 

Aneurysmal 
subarachnoid 
haemorrhage 

Antidepressant 
use 

940 Classification DT None 

6. Nishi et 
al (2019) 

Acute stroke 
from large 
vessel 
occlusion who 
received 
mechanical 
thrombectomy 

Good clinical 
outcome 

387 
development, 
115 external 
validation 

Classification RLR, SVM and RF 10-fold nested 
cross validation 
and external 
validation 

7. Shafiei 
et al 
(2017) 

Mild TBI GCS 
13-15 

Psychological 
symptoms 

100 Classification ANN back-propagation 
algorithm 

50/50 train test 
cross validation 
repeated 300 
times 

8. 
Stromberg 
et al 
(2018) 

TBI (moderate 
to severe) 

Current 
competitive 
employment at 
1, 2 and 5 years 

7867 (1 year) 
6783 (2 year) 
4927 (5 year) 

Classification DT 
 

85/15 training 
test split with 
no cross 
validation 

9. Walker 
et al 
(2018) 

Non-
penetrating TBI 
(moderate to 
severe) 

Global outcome 
at 1, 2 and 5 
years 

10,125 (1 
year) 8,821 (2 
year) 6,165 (5 
year) 

Classification DT  85/15 training 
test split with 
no cross 
validation 

 
 
Abbreviations: ABI= Acquired brain injury; ANN= Artificial neural network; DT= Decision tree; GCS= Glasgow coma score; KNN= K-
Nearest Neighbours; ML= Machine learning; NB= Naïve Bayes; RF= Random forest; RLR= Regularised logistic regression; SVM= Support 
vector machine; TBI= Traumatic brain injury  



Reviewing machine learning in ABI 
 

14 
 

Across the nine studies there were a total of 11 types of ML: regularised logistic regression (RLR), support 

vector machine (SVM), decision trees (DT), naïve Bayes (NB), K-nearest neighbours (KNN), random forest (RF), 

artificial neural networks (ANNs, including multilayer perceptron, back propagation and radial basis function 

network), lasso regularisation with linear regression, and random forest used for feature selection with logistic 

regression. Algorithm descriptions can be found in Appendix 1.4 on pg. 59. Two studies compared more than 

one type of ML algorithm  (Bergeron et al., 2019, Nishi et al., 2019), and five studies examined more than one 

time point or outcome (Bergeron et al., 2019, Cnossen et al., 2017, Gupta et al., 2017, Stromberg et al., 2019, 

Walker et al., 2018), giving a total of 75 ML models analysed. 

Quality of the evidence  
Quality ratings of the 75 models were aggregated by study since each model received the same score within 

each study (reported in Table 2), with the rationale for ROB scores in appendix 1.5 on pg. 61. Across the 

studies reviewed, each of the 75 ML models scored as being high ROB, with the main source of bias being the 

analysis. Every study failed to appropriately evaluate the developed models with use of calibration metrics, 

meaning the model’s performance for individual probabilities is unknown. One study reported no model 

evaluation statistics for performance, discrimination or calibration (Huttunen et al., 2016). Other common 

causes for high ROB were improper handling of missing data, not using appropriate techniques to account for 

model optimism and overfitting (such as internal nested cross-validation or bootstrapping), and poor reporting 

for how models performed after post-hoc refinement.   

Only one study was high ROB for predictors and outcome (Bergeron et al., 2019), and three studies did not 

provide enough information to make a conclusion for either participant selection or variable handling (Shafiei 

et al., 2017, Stromberg et al., 2019, Walker et al., 2018). The other studies were well designed with regard to 

participant sources and measures to answer their research questions but failed to support their conclusions 

due to introducing bias from either the conduct or reporting of their analysis.  

How effective is ML for making psychosocial predictions for people with ABI? 

A summary of the performance metrics of the models along with the related ROB reliability ratings of the 

findings are included in Table 3. Models with an AUC of 0.80 or above are considered to show ‘good’ 

performance, between 0.70-0.79 as fair, and below 0.70 as poor (Safari, Baratloo, Elfil, & Negida, 2016). For 

linear algorithms, whilst it is a heavily disputed subject, an approximate rule for interpretation of R 2 is 0.75 for 

a substantial effect, 0.5 for moderate, and 0.25 for weak (Cruz-Cunha, 2013). However, due to the unreliability 

of each model from the ROB ratings, this review was unable to conclude which ML algorithm was most 

effective for predicting psychosocial outcomes.  Considerations for choosing an ML algorithm are presented in 

the discussion.  
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Table 2 Summary of aggregated Risk of Bias ratings using PROBAST (Wolff et al., 2019) by study (n=75 total risk of bias ratings) 

Study 

Number of 
models 

evaluated 
with 

PROBAST 

Participants Predictors Outcome Analysis ROB 
conclusion 
for overall 

assessment 
1.1 1.2 Overall 2.1 2.2 2.3 Overall 3.1 3.2 3.3 3.4 3.5 3.6 Overall 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 Overall 

1. Bergeron 
et al (2019) 

N=60 Y PY Low N NI Y High PN PY N NI PN PY High Y NI NI NI Y N/A N Y N/A High High 

2. Cnossen 
et al (2017) 

N=1 
 

Y Y Low Y Y Y Low Y Y Y Y Y Y Low PY Y N Y Y N/A N Y PY High High 

3. Gupta et 
al (2017) 

N=2 Y Y Low Y Y Y Low Y Y Y Y Y Y Low PY Y N N Y Y N N PY High High 

4. Hirata et 
al (2016) 

N=1 Y PY Low Y NI Y Low Y Y Y Y PY Y Low Y PY Y N Y N/A N N N/A High High 

5. Huttunen 
et al (2016) 

N=1 Y Y Low PY PY Y Low Y Y Y Y Y Y Low Y NI Y PY Y N/A N N PY High High 

6. Nishi et 
al (2019) 

N=3 Y Y Low PY Y Y Low Y Y Y Y PY Y Low PY Y Y N Y N/A N Y NI High High  

7. Shafiei et 
al (2017) 

N=1 Y Y Low PY Y Y Low Y Y Y Y NI Y Unclear PN NI PY PY Y N/A N PN N/A High High 

8. 
Stromberg 
et al (2018) 

N=3 Y Y Low Y NI Y Unclear PY Y Y PY PY Y Low Y Y PY N Y N/A N N NI High High 

9. Walker 
et al (2018) 

N=3 Y Y Low Y NI Y Unclear Y Y Y Y PY Y Low Y Y N N Y N/A N Y NI High High 

 

PROBAST findings are aggregated by study since each model in each study had the same risk of bias ratings  

Abbreviations: N= information sufficient to conclude high ROB; NI= No information to assess ROB; PN= Information provided is not sufficient to confirm high ROB, but due to other important 

information high ROB can be inferred; PY= Sufficient information has not been provided to conclude low ROB but due to design or other important information low ROB can be inferred; ROB= 

Risk of bias; Y= Sufficient information provided to conclude low ROB for the item 
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Table 3 Summary of performance metrics and reliability of findings using machine learning to predict 

psychosocial outcomes in acquired brain injury 

Machine learning 
algorithms  

Performance metrics 
Results are area under the curve (AUC) unless otherwise stated 

Overall 
risk of 
bias  Model development  Internal validation 

External 
validation 

C
la

ss
if

ic
at

io
n

  
  

Regularised logistic 
regression 

1.) n/a 
2.) Two models 
developed ranging 
from 0.74-0.76 
6.) n/a 

1.) Six models ranging from 
0.63-0.69 
2.) n/a 
6.) 0.86 
 

1.) n/a 
2.) n/a 
6.) 0.90 

1.) High 
2.) High 
6.) High 

Support vector 
machine 

1.) n/a 
6.) n/a 

1.) Six models ranging from 
0.63-0.69 
6.) 0.86 
 

1.) n/a 
6.) 0.89 

1.) High 
6.) High 

Decision trees 1.) n/a 
5.) n/a 
8.) Three models 
developed ranging 
from 0.70-0.77 
9.) Three models 
developed ranging 
from 0.70-0.73 

1.) Twelve models ranging 
from 0.59-0.64 for C4.5D 
algorithms and 0.60-0.67 for 
C4.5N algorithms 
5.) n/a 
8.) Three models ranging 
from 0.73-0.77 
9.) Three models developed 
ranging from 0.69-0.73 

1.) n/a 
5.) n/a 
8.) n/a 
9.) n/a 
 

1.) High 
5.) High 
8.) High  
9.) High 

Naïve Bayes 1.) n/a 1.) Six models ranging from 
0.66-0.74 

1.) n/a 1.) High 
 

K-nearest neighbours  1.) n/a 1.) Six models ranging from 
0.64-0.69 

1.) n/a 1.) High 
 

Random forest 1.) n/a  
4.) n/a 
6.) n/a 
 

1.) Twelve models ranging 
from 0.66-0.73 for 100-tree 
models, and 0.66-0.74 for 
500-tree models 
4.) Accuracy 69% (specificity 
70% and sensitivity 64%) 
6.) 0.85 

1.) n/a  
4.) n/a 
6.) 0.87 
 

1.) High 
4.) High 
6.) High 

Random Forest 
feature selection, 
used with logistic 
regression 

3.) Two models 
developed ranging 
from 0.89-0.89 

3.) n/a 3.) Two models 
developed 
ranging from 
0.75-0.84 

3.) High 
 

A
rt

if
ic

ia
l n

e
u

ra
l 

n
e

tw
o

rk
s Multilayer 

perceptron 
1.) n/a 1.) Six models ranging from 

0.63-0.67 
1.) n/a 1.) High 

 

Back 
propagation 

7.) n/a 7.) 86.9 7.) n/a 7.) High 
 

Radial basis 
function 
network 

1.) n/a 1.) Six models ranging from 
0.61-0.71 

1.) n/a 1.) High 
 

R
e

gr
es

si
o

n
 Least absolute 

shrinkage and 
selection operator 
regularisation with 
linear regression 

2.) 21% of the variance 2.) 14% of the variance  2.) n/a 2.) High 
 

 

1. Bergeron et al (2019); 2. Cnossen et al (2017); 3. Gupta et al (2017); 4. Hirata et al (2016); 5. Huttunen et al (2016); 6. Nishi et al 

(2019); 7. Shafiei et al (2017); 8. Stromberg et al (2018); 9. Walker et al (2018) 
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Which ML algorithms are most commonly used? 

DT methodology was most commonly used for predicting psychosocial outcomes in the field of ABI over 

recent years with four studies using the technique (Bergeron et al., 2019, Huttunen et al., 2016, Stromberg et 

al., 2019, Walker et al., 2018), followed by RF (Bergeron et al., 2019, Hirata et al., 2016, Nishi et al., 2019) and 

RLR (Bergeron et al., 2019, Cnossen et al., 2017, Nishi et al., 2019) with three studies each, then SVM 

(Bergeron et al., 2019, Nishi et al., 2019)  and ANNs (Bergeron et al., 2019; Shafiei et al., 2017) with two 

studies each. 

What is the rationale for the choice of ML algorithms, as stated by the study authors? 

The rationale for the authors’ choices in ML algorithms are presented in Table 4. There was no reported 

information for NB, radial basis function network, multilayer perceptron, or KNN, as not all authors included a 

detailed rationale for their choices of ML algorithms (Bergeron, 2019, Huttunen et al., 2016). For example, 

Bergeron and colleagues (2019) opted to compare ten different algorithms due to the absence of published 

guidance for suitability of different algorithms, and Nishi et al (2019) chose three commonly used algorithms, 

although with the further rationale that they benefited from ranking of features.  

Of the nine studies, only one (Cnossen et al., 2017) provided an a priori consideration for whether the type of 

analysis was suitable for their data (whether sample size was appropriate for the algorithm to minimise risk of 

overfitting). One study (Gupta et al., 2017) conducted a post-hoc power analysis, however since the findings 

scored at high ROB the power analysis would also be unreliable. A further four did consider the possible 

implications of sample size in their limitations (Cnossen et al., 2017, Nishi et al., 2019, Stromberg et al., 2019, 

Walker et al., 2018). Only four of the nine studies critically evaluated the ML methodology in their limitations, 

as reported in Table 4. Some of these reported limitations are considered in the discussion of this review as to 

how these could have been overcome by more suitable study design, analysis and model evaluation. 
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Table 4 Rationale and limitations of ML algorithms as provided by the authors of reviewed studies 

Machine 

Learning 

algorithm 

Rationale for author choice of 

algorithm 

Limitations as stated by study 

authors 

Regularisation 

with logistic or 

linear regression 

 

Regularisation (lasso) gives less extreme ß 

values which improves external validity 

(Cnossen et al., 2017). 

Coefficient ranking allows for 

understanding the contribution of each 

feature, and deals with feature selection, 

multicollinear variables and overfitting 

better than statistical regression models 

(Nishi et al., 2019). 

Lasso regularisation as used by Cnossen 

et al (2017) focussed on overall fit of the 

predictors, meaning poorly contributing 

predictors could still be included in their 

model.  

Support vector 

machine 

 

Allows for understanding the contribution 

of each feature (Nishi et al., 2019). 

None reported. 

Decision trees 

 

Easily interpreted by clinicans due to 

similar decision making process allowing 

greater clinical utility than ensemble 

methods (Stromberg et al., 2019). 

Predictors are identified by branching logic 

allowing flexible predictions (Walker et al., 

2018). 

Decision tree methodology may have 

limited predictive power compared to 

statistical regression (Stromberg et al., 

2019, Walker et al., 2018). 

Branching is limited by sample size in 

terminal nodes, and its data-driven 

nature means different models may not 

be consistent (Stromberg et al., 2019). 

Random forest 

 

Feature selection is a strength with less 

decision-making error than traditional 

statistical methods (Gupta et al., 2017; 

Hirata et al., 2016). 

Allows for understanding the contribution 

of each feature (Nishi et al., 2019). 

None reported. 

Artificial neural 

networks, Back 

propagation  

 

Are not limited by parametric formulas 

allowing greater flexibility and more 

complexity (Shafiei et al., 2017). 

Increasing hidden layer nodes can 

contribute to overfitting to the training 

data. Also does not benefit from feature 

ranking, is interpretationally complex, 

and computationally time consuming 

(Shafiei et al., 2017). 

 
Limitations and strengths reported in this table are from information presented in the original articles. Where limitations can be 
overcome by study design this is mentioned in the discussion of this review. 

 

Discussion 

The primary aim of this systematic review was to evaluate the efficacy of using ML to predict psychosocial 

outcomes after ABI, however no study reviewed had reliable findings when assessed for ROB to allow a 
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conclusion. Whilst this might make ML seem like a daunting method for clinicians, bias tended to be 

introduced from improper analysis design relevant for ML and traditional predictive methods alike. The 

most common data and analysis shortcomings included improper model evaluation without assessment of 

calibration for nine out of nine studies, followed by six of nine with either inadequate reporting or 

improper handling of missing data, five studies not fully accounting for model optimism or overfitting, and 

four studies having excluded people inappropriately from the analysis. The resulting high ROB meant that 

this review was unable to answer the primary review question of which algorithms are most effective for 

predicting psychosocial outcomes in ABI.  

DT methodology was the most popular choice for psychosocial ABI research over the review dates, being 

easy to interpret and lending well to clinical decision making. As noted above, the application of the 

technique was unfortunately too poor to allow conclusions to be drawn regarding its efficacy. Stromberg 

and colleagues (2019) note as a limitation to DTs that when models are repeated, they are prone to 

modelling the data differently. This is actually true for all ML techniques (each time learning from the 

data). In order to overcome this limitation, models should be thoroughly internally validated, a process 

where multiple models are developed, and the results are averaged to minimise risk of overfitting and 

adjust for model optimism. 

To reduce bias, internal validation procedures with numerous repeats of model development (e.g. cross-

validation or bootstrapping) give a more stable and reliable fit to the training data (Wolff et al., 2019). 

Three of the four DT studies reviewed here employed improper techniques to internally validate their 

models (such as splitting the dataset once where 85% of the data was used for model development and 

the remaining 15% reserved for validation, without repeating the process), leading to models which are 

likely overly optimistic and without reliable predictor branching (Huttunen et al., 2016, Stromberg et al., 

2019, Walker et al., 2018). The other DT study did employ a 10-fold cross-validation procedure (Bergeron 

et al., 2019), however it is unclear if this was a nested cross validation to fully minimise risk of overfitting. 

The unfortunate result means the produced models are unreliable for clinicians to be able to apply the DT 

to clinical cases (the ultimate goal of clinical predictive modelling), being unable to make use of this easily 

interpretable and time-efficient method for clinical decisions.  

As well as DT methodology, RF, RLR and SVM were commonly used approaches for psychosocial ABI 

research, which collectively allow for prioritisation of predictors in order of importance (with RLR and RF 

having embedded feature selection). Feature ranking serves obvious benefits for clinicians working with 

ABI, allowing easy identification of risk factors for poor outcomes and, after further investigation, possibly 

even serving as targets for intervention. ANNs were also used more frequently for predicting psychosocial 

outcomes (Bergeron., et al, 2019, Shafiei et al., 2017). ANNs however are often described as being a “black 
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box” when it comes to interpretation, informing little regarding predictors of value (Zhang et al., 2018). 

Methods with embedded feature selection may therefore be preferable for many of the research 

questions ABI clinicians have, inspecting a wider range of features for predictive power than is possible 

with traditional statistical methods. 

Further common sources of ROB came from excluding people for missing the outcome of interest in 

predictive models, which can introduce bias if missing-not-at-random (Wolff et al., 2019). Two studies 

addressed this ROB by exploring differences between those with and without outcome data, showing no 

significant differences (Cnossen et al., 2017, Gupta et al., 2017). This benefits readers’ understanding, 

knowing how response bias could impact on results and therefore how reliable the algorithm might be for 

new clinical cases.  

Additionally, every study reviewed here failed to evaluate ML models by calibration. Calibration 

assessment can inform of likely over- or underfitting to consider how the models will perform in new 

samples. If models are poorly calibrated, findings may be inaccurate for new predictions. This omission in 

predictive modelling is not unique to ABI research: a previous prediction systematic review found that 

around 80% of studies did not assess calibration (Christodoulou et al., 2019). Together, these limitations of 

poor calibration assessment, inadequate validation procedures, and infrequent exploration around 

outcomes not-missing-at-random mean these models provide little evidence for their benefit for future 

clinical decision making.  

Finally, authors often provided minimal information for their choice of ML algorithms. This may be because 

guidance around ML for psychosocial predictions in ABI has previously been limited. Among all studies 

reviewed, only one study reported an a priori decision about the suitability of their data for the algorithm 

(Cnossen et al., 2017). Although some ML algorithms handle high-dimensional datasets better than 

traditional statistical modelling, such as with embedded feature selection, not every ML algorithm is 

suitable for every dataset. Just like traditional statistical modelling, ML algorithms cope differently with 

sample size to dimension ratio, and noise in predictor variables (Guo, Graber, McBurney, & 

Balasubramanian, 2010). Whilst ML is often put forward as being a methodology with less concern of 

overfitting and better capability for dealing with multicollinear and multidimensional data than traditional 

statistical techniques (Iniesta, Stahl, & McGuffin, 2016), ML is not immune to these problems. 

Consideration of appropriateness of the analysis for the data, as well as thorough model evaluation are still 

required as part of study design to determine efficacy.  

Limitations of the review 

Whilst this review benefits from being the first to systematically review ML for making psychosocial 

predictions in ABI, there are several limitations. Firstly, papers in this review were restricted to those 
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published from 2016. This was because the TRIPOD statement (Moons et al., 2015) was not released until 

2015 so it is likely there was a change in publication quality in articles published after. Additionally, for 

using PROBAST (Wolff et al., 2019) it is advised that a statistical expert fully reviews the articles, however 

this was not possible within the scope of this work. Finally, our screening and rating method was 

completed for only a percentage of total articles by both raters. There is the possibility of some differing 

opinions, but this should mostly be minimised due to the high interrater concordance.  

Conclusions 

Overall, this review was unable to provide a conclusion as to which ML algorithm was most suitable for 

psychosocial ABI research, however it has demonstrated current poor methodological quality and a lack of 

rationale for use of ML algorithms by clinical researchers. Researchers should consider which ML 

algorithms will be most suitable for the purpose of the research question and type of data, such as 

whether their research question would benefit understanding of important predictors (such as with RLR or 

RF), or whether an easily interpretable method would be beneficial for translation to clinical practice (such 

as DTs). Greater a priori decisions for the suitability of the data for different algorithms (such as 

appropriate sample sizes and power calculations, analysis of missing data, and suitable validation methods 

for data size), as well as post-hoc model evaluation by calibration, discrimination, and where possible 

external validation, will greatly increase the quality and reliability for the application of ML for new clinical 

predictions. Clearly, moving to a more systematically planned application of ML rather than a “try it and 

see” approach is needed to ensure the method and study design are able to answer the research questions 

for future applications.  
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Plain English Summary of Major Research Project 
 

Title: Predicting psychosocial outcomes at the time of discharge from inpatient neurorehabilitation for 

acquired brain injury: Development and internal validation of machine learning models 

Background: Acquired brain injury (ABI) is an injury to the brain after birth, such as a stroke or a blow to the 

head. ABI can cause significant lifestyle changes for the person affected and their family members. 

Rehabilitation inpatient programmes have been developed for people with severe ABI, which aim to improve 

their functioning and help them adapt to living with a brain injury. After discharge from rehabilitation, the 

level of functioning can vary from person to person, with differing levels of support needed for living 

arrangements, work and recreational activities (known as psychosocial outcomes).  

 

Machine learning (ML) is a type of data analysis for making predictions. ML methods overcome some of the 

limitations that traditional predictive statistics have. ABI rehabilitation centres generate large volumes of data, 

which ML might be able to use to make more accurate predictions than other methods. This could give us a 

better idea of likely psychosocial outcomes when people are later discharged, allowing us to plan care 

packages in advance.   

 

Aims and questions: This study aimed to compare ML models with traditional statistical techniques to predict 

psychosocial outcomes after discharge from inpatient rehabilitation. In particular, the study questioned 

whether one of three ML methods, or a statistical method would perform better at predicting five different 

psychosocial outcomes.  

 

Methods: A database was developed of people who had been admitted and discharged from Graham 

Anderson House, a Glasgow-based inpatient rehabilitation centre, between 2009 and March 2020. The data 

gathered from admission assessments were used as predictors in analyses using three types of ML and one 

type of traditional statistics to predict five outcomes. The main outcome was the likelihood a person could live 

independently after discharge. These models were evaluated to determine which method had the most 

superior predictive power.  

 

Main Findings: The analyses showed that a type of ML, called random forest, had better performance than the 

traditional statistical method for predicting every outcome. For each of the four outcomes that could be 

analysed in this study, the random forest method had at least a 70% chance of being correct. One outcome of 

interest (quality of life) did not have enough available data and so was not analysed. 
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Conclusions: Although these prediction models require some further evaluation before they could be used in 

clinical practice, being able to predict what a person’s likely outcomes will be from the time of admission will 

be helpful for clinicians and social care workers to make advance decisions about people’s care plans. This 

would help to reduce any unnecessary delays to funding or living arrangements. Being able to understand 

more about what contributes to good outcomes could also mean that rehabilitation programmes might be 

able to be tailored better to support people with ABI to maximise their independence.  

 

Word count: 483 
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Predicting psychosocial outcomes at the time of discharge from inpatient 

neurorehabilitation for acquired brain injury: Development and internal 

validation of machine learning models 

 

Abstract 

Acquired brain injury (ABI) can be a life changing condition, affecting housing, independence, and 

employment. Machine learning (ML) is increasingly used as a method to predict ABI outcomes, however 

improper model evaluation poses a potential bias to initially promising findings (Chapter One). This study 

aimed to evaluate, with transparent reporting, three common ML classification methods. Regularised logistic 

regression with elastic net, random forest and linear kernel support vector machine were compared with 

unregularised logistic regression to predict good psychosocial outcomes after discharge from ABI inpatient 

neurorehabilitation using routine cognitive, psychometric and clinical admission assessments. Outcomes were 

selected on the basis of decision making for care packages: accommodation status, functional participation, 

supervision needs, occupation and quality of life. The primary outcome was accommodation (n = 164), with 

models internally validated using repeated nested cross-validation. Random forest was statistically superior to 

logistic regression for every outcome with areas under the receiver operating characteristic curve (AUC) 

ranging from 0.81 (95% confidence interval 0.77-0.85) for the primary outcome of accommodation, to its 

lowest performance for predicting occupation status with an AUC of 0.72 (0.69-0.76). The worst performing 

ML algorithm was support vector machine, only having statistically superior performance to logistic regression 

for one outcome, supervision needs, with an AUC of 0.75 (0.71-0.80). Unregularised logistic regression models 

were poorly calibrated compared to ML indicating severe overfitting, unlikely to perform well in new samples.  

Overall, ML can predict psychosocial outcomes using routine psychosocial admission data better than other 

statistical methods typically used by psychologists.  

Word count: 248 
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Introduction  

The incidence of acquired brain injury (ABI, an injury to the brain sustained after birth) is increasing, 

contributing to approximately 1000 daily UK hospital admissions (Menon & Bryant, 2019), with outcomes 

varying greatly by the timing and intensity of interventions (Cullen, Chundamala, Bayley, & Jutai, 2007). 

Moderate to severe ABI often requires high-intensity care from inpatient rehabilitation centres. Even with 

individualised rehabilitation programmes, long term outcomes for people with ABI remain variable (Ponsford 

et al., 2014; Rassovsky et al., 2015). 

Healthcare providers are challenged to provide care pathways so that housing, functional, and occupational 

needs are met at the time of discharge. Functional independence forms the basis of decision making for the 

required level of care, with average UK personal budgets after inpatient neurorehabilitation varying from 

averages of £306/week for low dependency needs to £1349/week for high dependency needs (Turner-Stokes, 

Williams, Bill, Bassett, & Sephton, 2016). Accurately predicting support needs would ensure resources are 

allocated efficiently and cost-effectively. 

Previous research using traditional statistical methods indicates psychosocial data may be valuable for 

predicting outcomes after ABI inpatient neurorehabilitation. Neuropsychological measures have been shown 

to be strongly associated with functional productivity after rehabilitation using longitudinal methodology 

(Green et al., 2008), suggesting these may therefore have predictive value. As a contrast however, few 

demographic variables were found to be associated with long term functional outcomes after TBI (Ponsford, 

Draper & Schonberger, 2008). Using traditional logistic regression (LR), returning home after discharge from 

inpatient stroke neurorehabilitation was predicted using a range of psychosocial and neurological variables 

(Frank, Conzelmann, & Engelter, 2010) finding an area under the curve (AUC) of 0.86 (95% confidence interval 

[CI] 0.84-0.88). Without the use of model validation techniques however, these performance metrics are likely 

inflated.  Together, these studies suggest variation in predictive value of psychosocial assessment data. 

Traditional regression algorithms are not capable of modelling high numbers of variables for risk of modelling 

sample noise, a phenomenon known as overfitting, posing problems to clinicians to know what assessment 

data will be valuable to use to inform of long-term outcomes.  

Predictive models in clinical practice are often limited by statistical methods employed with findings unable to 

be replicated or generalised to clinical settings (Dwyer, Falkai, & Koutsouleris, 2018; Ioannidis, 2016). Routine 

clinical data often have high proportions of missingness and violate traditional regression assumptions, such as 

having collinear and skewed datasets. To overcome these challenges datasets are heavily cleaned for analysis, 

excluding participants with missing data or using inappropriate predictor selection methods resulting in biased 

models (Wolff et al., 2019).  

Machine learning (ML), a branch of artificial intelligence, has previously predicted improvement after inpatient 

rehabilitation with model validation finding AUC values of 0.85-0.93 for different ML algorithms (Marcano-

Cedeño et al., 2013). ML learns from the data how to best fit predictor variables to future or unknown events. 
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ML has better capacity to deal with multidimensional, missing and multicollinear data, typical of routine 

clinical data (Iniesta et al., 2016). With ML one can make use of pre-existing data sets more representative of 

true population characteristics, offering an alternative method for predicting outcomes with greater power 

and less concern of overfitting (Yarkoni & Westfall, 2017). 

Neurorehabilitation centres undertake comprehensive assessments offering invaluable information for 

predictive modelling. Employing ML to model these data may offer greater accuracy and inform clinicians 

what clinical assessment data are useful for predicting probable outcome. Previous ML research in the field of 

ABI has however been limited by a lack of model evaluation (systematic review, Chapter One), showing that 

models need to be validated and evaluated by power, discrimination and calibration to ensure ML is meeting 

the research aims.  

Aims 
This study aimed to examine the effectiveness of ML methods for predicting psychosocial outcomes after ABI 

inpatient neurorehabilitation using routine psychometric, cognitive, demographic and medical history 

admission assessments. Given the expected variability for outcomes and algorithms (as summarised in 

Chapter One), this research aimed to evaluate the efficacy of regularised logistic modelling with elastic net 

(RLR), random forest (RF), linear kernel support vector machine (SVM) and traditional LR modelling for 

predicting accommodation status and other categorical psychosocial outcomes after discharge from inpatient 

neurorehabilitation. Models with an AUC of 0.8 or above (Safari et al., 2016), a calibration slope near 1 (Calster 

et al., 2016), and a sample size to indicate appropriate power by an a priori power analysis will be considered 

to show ‘good’ performance. For continuous outcomes, an R-squared value above 0.75 would be considered 

as substantial, and between 0.25-0.75 for moderate effect size (Cruz-Cunha, 2013).  

Primary research questions 
1. Is it possible to predict accommodation status at discharge better than chance using baseline 

demographic, clinical, cognitive and psychometric measures from admission? 

2. Was ML (RLR, RF or SVM) or traditional (unregularised) LR more superior at predicting accommodation 

status?  

3. Which features are superior predictors for accommodation status? 

Additional research questions 
4. Is it possible for ML to predict level of participation better than chance at discharge? 

5. Is it possible for ML to predict level of supervision better than chance at discharge? 

6. Is it possible for ML to predict occupational functioning better than chance at discharge? 

7. Is it possible for ML to predict quality of life (QoL) better than chance 6-months after discharge? 

8. Is it possible to predict length of admission with a moderate R-squared of 0.25-0.75 using regularised 

linear regression or traditional linear regression?  
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Methods  

Design  

This study used a retrospective single-centre cohort design.  

Participants  

Participant data were sourced from Graham Anderson House (GAH), a Brain Injury Rehabilitation Trust (BIRT) 

inpatient neurorehabilitation centre in Glasgow, United Kingdom. Inclusion criteria for the service are a 

diagnosis of moderate to severe ABI requiring inpatient rehabilitation (including ABI caused by 

cerebrovascular accident, traumatic injury, anoxic brain injury or infection), aged 16 or over, and for needs not 

better met by another service (e.g. alcohol-related brain damage service). 

Database inclusion and exclusion criteria  

A research database was constructed from routine clinical data at GAH. Participants were included in the 

database who were admitted and discharged from GAH between service opening (2009) and data extraction 

(12th March 2020). Participants were excluded from the database if they were prematurely discharged (e.g. 

self-discharge, death or transfer to another service). If participants were readmitted, data from their initial 

assessment and discharge was used and readmission data excluded. For each model participants were 

excluded if they were missing the outcome variable of interest.  

Ethics  

Ethical approval was provided by West of Scotland Research Ethics Committee 1 on 24/02/2020 (20/WS/0026; 

appendix 2.1 pg. 62). Management approval was provided by The Disabilities Trust on 24/10/2019 (appendix 

2.2. pg. 66). At admission to GAH service users provide their consent for their anonymised data to be used for 

service evaluation projects. Access to patient records was required for on-site database development, with 

BIRT Caldicott approval granted on 10/01/2020 (appendix 2.3 pg. 67) and Greater Glasgow and Clyde NHS 

Caldicott approval on 06/01/2020 (appendix 2.4 on pg. 68). A research database was developed with 

participant data fully anonymised and stored in line with ethical approval and data protection regulations.  

Measures 
Participant data included routine clinical information collected and recorded prospectively from admission at 

GAH, to discharge assessments, and finally follow-up assessments 6-months after discharge. Assessment data 

were collected by trained members of the clinical team including clinical and assistant psychologists for 

neuropsychological assessments. 

Outcome measures 

Five psychosocial outcome measures were selected describing functioning in key areas following discharge 

(accommodation, participation, supervision, occupation, and service user-rated QOL) and a sixth outcome of 

length of admission. The primary outcome for the study was accommodation status since clinical opinion 

within the service believed this is service users’, and families’ primary concern at admission. The five 
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psychosocial outcomes were dichotomised by favourable or poor outcomes (Table 5) with favourable 

outcomes coded ‘Yes’ and poor coded ‘No.’  Decisions on dichotomisation of target variables were agreed by 

EM, BO’N and BC based on clinical judgement of meaningful categories before analysis. Models were 

developed to predict favourable clinical outcomes. Length of admission in weeks was kept as a continuous 

measure to be more clinically relevant. 

Predictors 

Variables were selected on the basis of a literature review for predictors with likely significant predictive 

power for psychosocial outcomes and availability within routine records. Candidate predictors included 

cognitive and psychometric measures recorded at admission, injury-related factors, demographics, and other 

medical history. A full list of candidate predictors and data processing are available in Appendix 2.5 on pg. 69, 

with a total of 30 candidate variables (represented in the models by 38 parameters after dummy coding). 

Where predictors from different measures needed to be converted into a common metric (e.g. memory scores 

from different batteries), decisions were made by EM, BO’N and BC based on clinical knowledge of 

neuropsychological instruments.  

Analysis 

Data analysis for model development and validation was performed with R Programming version 3.6.2 using 

the ‘caret’ package (Kuhn, 2019), “glmnet,” “randomForest,” and “e1071.” A comparison of predictor variables 

between participants with and without available data on the primary outcome of accommodation was 

performed using IBM SPSS statistics version 26 to explore potential bias for exclusion by outcome. Categorical 

predictor variables between groups were compared with chi-squared tests, and continuous data compared 

with independent t-tests or Mann Whitney U test depending on data distribution. P-value corrections were 

employed using false discovery rate (FDR) adjustments using an online calculator [available from 

https://www.sdmproject.com/utilities/?show=FDR]. The complete R code and SPSS syntax is available at 

https://github.com/EmmaMawdsley/Predicting-brain-injury-outcomes-with-machine-learning.  

An a priori power analysis was completed with the R package ‘pROC’ (Robin et al., 2019). Based on an 

estimated ratio of good:poor outcome of 4:1 for accommodation status (the primary outcome), from 

preliminary service data prior to conducting this research, to have 80% power to detect a significant effect at 

p<0.05 (two-sided), the minimum sample size required for analysis would be 27 for a superior AUC of 0.85, or 

58 for a good AUC of 0.75. 

 

 

  

https://www.sdmproject.com/utilities/?show=FDR
https://github.com/EmmaMawdsley/Predicting-brain-injury-outcomes-with-machine-learning
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Table 5 Outcome measures 

 

Data processing 

Pre-processing of data included removal of zero or near-zero variance predictors and highly correlated 

predictors (>70% correlation). For the primary (research questions 1-3) and secondary analyses (research 

questions 4-8), missing data on predictor variables were imputed using k=5 nearest neighbours (KNN) for 

variables with ≥80% complete data (variables with <80% complete data were omitted from the models). KNN 

is a non-parametric imputation method that involves matching a missing data point to its nearest K related 

cases based on other predictor variables (Beretta & Santaniello, 2016) with the outcome data removed. For 

Outcome measure  Favourable 
outcome 

Poor outcome 

Accommodation status 

Measured by either the Accommodation Scale within BIRT Independent 

Living Scale (BILS, Michael Oddy, Haye, & Goodson, 2018), or the 

Accommodation Rating Scale within Community Disposition Ratings 

(CDR-ARS, Eames, 1999) measured at patient’s discharge. Scores range 

from 0-11 for the BILS and 0-10 for the CDR-ARS (with higher scores 

indicating greater accommodation support).  

Scores ≤6: ‘independent 

or community 

supported housing.’  

Scores ≥7: 

‘residential/hospital 

accommodation.’ 

Participation in functional tasks 

The Participation subscale of the Mayo-Portland Adaptability Inventory 

(Bellon, Malec, & Kolakowsky-Hayner, 2012) measured at discharge, 

converted into standardised scores as per instrument manual (with 

higher scores indicating more severe functional disability). 

T-scores ≤49: ‘a good 

outcome or mild to 

moderate disability.’ 

T-scores ≥50: ‘moderate 

to severe disability.’ 

Level of supervision 

The Supervision Rating Scale (SRS, Boake, 1996) measured at discharge 

with total scores ranging from 0-13 (with higher scores indicating 

greater supervision requirement).  

Scores ≤7: ‘part time or 

no supervision.’ 

Scores ≥8: ‘full time 

direct supervision.’ 

Occupational functioning 

Measured by either the Occupational Participation Scale, within the 

BILS, or The Occupation Rating Scale within the CDR (CDR-ORS, Eames, 

1999) at discharge with total scores ranging from 0-9 for the BILS and 0-

8 for the CDR-ORS (with higher scores indicating less occupational 

activity). 

Scores ≤6: ‘productive 

occupational activity.’ 

Scores of ≥7: 

‘recreational/non-

occupational activity.’ 

Quality of Life  

The EuroQoL Instrument (EQ5D, EuroQoL Group., 2010) a patient-rated 

measure for QoL from 0-100 (with higher scores indicating greater QOL), 

administered at the 6-month follow-up.  

Dichotomised by the 

sample median with 

scores ≥75 representing 

a good outcome. 

Scores ≤74 representing 

a poorer outcome. 

Outcome measure Continuous outcome 

Length of admission 

The number of weeks between admission and discharge.  

Admission length was kept as a continuous 

outcome.  
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additional sensitivity analyses, missing data on variables with ≥50% complete data were imputed with KNN 

and included in the models (variables with <50% complete data were omitted). 

Model development and validation 

For dichotomous outcomes, RLR, RF and SVM algorithms (determined as suitable for predicting psychosocial 

outcomes in ABI, with the additional benefit of embedded feature selection for RLR and RF as described in 

Chapter One) were evaluated with the AUC and calibration slope being the primary performance metrics. For 

models with continuous outcomes, regularised linear regression with elastic net was evaluated by R-squared 

and root mean square error (RMSE) as primary performance metrics (with higher R-squared and lower RMSE 

indicating better performance). A description of each method can be found in Appendix 2.6 on pg. 73.  

Models were initially developed using 5-fold cross-validation repeated ten times. Those with promising 

predictive ability by evaluation metrics and power were then internally validated using 5-fold repeated nested 

cross-validation (nested CV) repeated twenty times for the inner loop and five times for the outer loop 

whereby 80% of the data was used for training, with the remaining 20% of the data (chosen randomly each 

time) reserved for model validation (Figure 2). This was across 100 hyperparameter combinations for RLR, and 

ten hyperparameter combinations for RF and SVM (due to differences in the algorithms). The nested CV was 

performed on the best combination of hyperparameters chosen from the inner loop, with the AUC calculated 

by combining the results in sequence to reduce the likelihood of model optimism and overfitting. A 

permutation test was performed for each AUC to test the significance level of the obtained result, corrected 

with FDR. The final model was then assessed for calibration by the calibration slope (a plot of the observed 

outcomes and model predictions; only the slope is interpreted as the intercept is not relevant for internal 

validation). A perfectly calibrated model will have a slope of 1, with higher metrics indicating underfitting and 

lower metrics for overfitting (Calster et al., 2016).
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Adapted with permission from 

Samuel Leighton  

Abbreviations and definitions:  

α = alpha, elastic net penalty 

AUC= area under the curve 

cost = SVM tuning parameter 

CV = cross validation 

λ = lambda, elastic net tuning 

parameter 

mtry = number of variables 

available at each split of the tree 

node in RF 

RF=random forest 

RLR=regularised logistic regression 

SVM=support vector machine 

 

Figure 2 Overview of analysis and internal validation procedure repeated for each method with each outcome 
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Unregularised logistic and linear regression models were also constructed (for dichotomous and 

continuous outcomes, respectively) for comparison against the RLR, RF and SVM models. The 

unregularised regression models are similar to traditional regression models with the exception of nested 

cross-validation which tunes the parameters to give less optimistic performance during the nested CV 

procedure as described above. For the binary outcomes, the resulting AUCs for LR, RLR, RF and SVM were 

compared for statistical differences using the Delong test (DeLong, DeLong, & Clarke-Pearson, 1988), with 

p-values corrected for multiple analyses using FDR adjustment.  

Predictor analysis 

For RLR and RF, predictors identified through embedded feature selection were ranked by variable 

importance after internal validation. This analysis was not performed with SVM as it does not have 

embedded feature selection. For RLR, an additional analysis was performed for feature stability to show 

which features were selected across all of the models developed in the nested-cross validation stage (using 

the method reported  in Nogueira, Sechidis, & Brown, 2017). Stability assessments were unable to be 

performed for RF and SVM due to different methods for feature selection for RF and no embedded feature 

selection for SVM.  

Results 

Sample characteristics  

284 service users were discharged from GAH of whom 235 met the inclusion and exclusion criteria. 

Participants were excluded on a model by model basis if they were missing the outcome, resulting in 164 

participants (69.8%) with the primary outcome of accommodation (Figure 3). A comparison of the 

distribution of predictor variables between those with and without the accommodation outcome is shown 

in Table 6, showing no significant between group differences on predictor variables.  
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Figure 3 Flow chart of included participants for analysis of each outcome 

 

 

 

GAH= Graham Anderson House; QOL= quality of life  

 

Service users included in the 

database 

(n=235) 

 

Excluded (n=49) 
premature discharge=41 

  readmission=5 
Error in service 

records=3 
 

Service users admitted and 

discharged from GAH 

(n=284) 

Excluded from each analysis 

due to missing outcome 

variable 

(Accommodation n=71) 

(Participation n=115) 

(Supervision n=68) 

(Occupation n=71) 

(QOL n=197) 

(Length of admission n=33) 

 

 

Service users included for 

analysis 

(Accommodation n=164) 

(Participation n=120) 

(Supervision n=167) 

(Occupation n=164) 

(QOL n=38) 

(Length of admission n=202) 
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Table 6 Distribution of candidate predictors between patients with and without the primary outcome of 

accommodation 

Candidate predictor 
  

Statistic 
Patients excluded 
by outcome (n = 

71) 

Patients included 
in analysis (n = 

164) 

P value 
(corrected 
with FDR) 

Gender, Female   N (%) 17 (23.9) 26 (15.9) 0.29 

Age at injury   Mean (SD) 44.3 (16.7) 44.0 (15.7) 0.91 

Age at admission   Mean (SD) 46.3 (15.1) 46.9 (13.8) 0.88 

Days between injury and 
admission 
  

Mean (SD) 988.7 (1962.2) 952.6 (2321.5) 0.91 

Diagnosis  CVA N (%) 11 (15.7) 18 (11.3) 0.11 

  Hypoxia   9 (12.9) 16 (10.1)   

  Infection   6 (8.6) 4 (2.5)   

  Neoplasm   2 (2.9) 0 (0)   

  TBI   31 (44.3) 101 (63.5)   

  Other     11 (15.7) 20 (12.6)   

Preinjury psychosis, Yes 
  

N (%) 4 (5.6) 7 (4.3) 0.81 

Drug dependence, Yes 
  

N (%) 19 (27.1) 27 (19.6) 0.38 

Alcohol abuse, Yes 
  

N (%) 28 (40.6) 71 (51.4) 0.29 

Multiple trauma, Yes 
  

N (%) 10 (17.9) 31 (32.3) 0.17 

Other medical condition, Yes N (%) 31 (56.4) 52 (58.4) 0.88 

SIMD Rank 2020   Median (IQR) 1407.50 (591-3589) 1746.5 (665-3795) 0.83 

HADS  Anxiety Median (IQR) 6.78 (2-11) 7 (3-11) 0.68 

Depression  Median (IQR) 5.6 (2-8) 6 (3-8) 0.68 

Total MPAI Mean (SD) 75.7 (13.0) 70.1 (16.4) 0.11 

MPAI subscales Abilities  Median (IQR) 55 (50-59) 51 (46-57) 0.11 

Adjustment  Median (IQR) 56.5 (54-59) 55 (52-58) 0.21 

Participation  Median (IQR) 59 (53-65) 55 (49-62) 0.11 

WAIS VCI  Mean (SD) 77.0 (13.4) 80.7 (15.0) 0.32 

 PRI  Mean (SD) 76.2 (10.0) 80.3 (13.1) 0.20 

 WMI  Median (IQR) 77.5 (66-87) 83 (74-92) 0.11 

 PSI  Median (IQR) 66.5 (56-71) 68 (59-76) 0.54 

 FSIQ  Mean (SD) 70.4 (11.9) 74.9 (11.7) 0.17 
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Abbreviations: CVA= Cerebrovascular accident; FDR= False discovery rate; HADS = Hospital Anxiety and Depression 
Scale; IQR= interquartile range;  MPAI= Mayo Portland Adaptability Inventory; N= Number of participants; TBI= 
Traumatic brain injury; SD= Standard deviation; SIMD= Scottish Index of Multiple Deprivation; WAIS= Wechsler Adult 
Intelligence Scale (FSIQ= Full scale IQ; PRI= Perceptual reasoning index; PSI= Processing speed index; VCI= Verbal 
comprehension index; WMI= Working memory index). 
 

The frequencies of favourable and poorer binary outcomes are reported in Table 7. For the continuous 

outcome of length of admission (n=202), the sample median was 27 weeks, interquartile range (IQR) 

between 13.8 and 51.0 weeks.  

Table 7 Observed frequencies of favourable and poorer outcomes 

  
Accommodation Participation Supervision Occupation 

Quality of 
life 

Favourable outcome  140 (85.4%) 90 (75%) 135 (80.8%) 68 (41.5%) 20 (52.6%) 

Poorer outcome 24 (14.6%) 30 (25%) 32 (19.2%) 96 (58.5%) 18 (47.4%) 

 

Predicting psychosocial outcomes  
Comparisons between the different models’ predictive ability after internal validation are shown in Table 

8. ML results for sensitivity analyses with predictor imputation with ≥50% complete data are reported in 

appendix 2.7 on pg. 75. For primary and secondary analyses, LR performance varied between AUC values 

of 0.62-0.71 for the different outcomes, compared to RLR (0.65-0.79), RF (0.72-0.81) and SVM (0.61-0.77). 

Due to the low numbers of respondents for the QOL measure 6-months after discharge, QOL models were 

underpowered to detect a significant effect and therefore not further evaluated.  

Candidate predictor 
 

Statistic 

Patients 
missing 

outcome (n = 
71) 

Patients 
included in 

analysis (n = 
164) 

P value 
(corrected 
with FDR) 

Executive 
functioning  
  
  
  
  

Impaired N (%) 27 (60) 74 (55.6) 0.61 

Borderline   6 (13.3) 20 (15.0)   

Low Average   1 (2.2) 15 (11.3)   

Average   10 (22.2) 22 (16.5)   

High Average   1 (2.2) 2 (1.5)   

Memory quotient score 
  

Median (IQR) 67.4 (58-72) 66 (59-76) 0.61 

Neuropsychological 
data availability 
  
  

Full data 
Some data 
No data 

N (%) 29 (40.8) 
20 (28.2) 
22 (31.0) 

72 (43.9) 
71 (43.3) 
21 (12.8) 

0.11 
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Table 8 Performance metrics including area under the curve, 95% confidence intervals, calibration slope, 

and p-value after permutation testing for predicting psychosocial outcomes 

Outcome 
Sample 

size 
Method AUC 95% CI 

Calibration 
(slope) 

Permutation 
p value 

(with FDR 
corrections) 

Accommodation 164 

LR 0.63 0.52-0.74 0.01 0.002 

RLR 0.79 0.74-0.83 0.99 <0.001 

RF 0.81 0.77-0.85 0.90 <0.001 

SVM 0.77 0.71-0.82 1.13 <0.001 

Participation 120 

LR 0.67 0.61-0.72 0.22 <0.001 

RLR 0.73 0.68-0.78 1.37 <0.001 

RF 0.73 0.68-0.78 1.04 <0.001 

SVM 0.72 0.67-0.77 0.84 <0.001 

Supervision 167 

LR 0.73 0.68-0.78 0.40 <0.001 

RLR 0.77 0.72-0.81 1.10 <0.001 

RF 0.81 0.77-0.85 0.89 <0.001 

SVM 0.75 0.71-0.80 1.01 <0.001 

Occupation 164 

LR 0.65 0.61-0.69 0.41 <0.001 

RLR 0.65 0.61-0.69 0.62 <0.001 

RF 0.72 0.69-0.76 1.14 <0.001 

SVM 0.61 0.58-0.65 0.80 <0.001 

Quality of life 38 RLR 0.73 0.63-0.83 0.22 <0.001 
 

 

AUC= Area under the receiver operator curve; CI= Confidence intervals; FDR= False discovery rate; LR= logistic regression; RLR= 

regularised logistic regression; RF= random forest; SVM= support vector machine 

 

Psychosocial predictions using ML had fair to good performance by AUC and calibration, and LR had fair 

performance by AUC but poor calibration, severely overfitting. ML models, particularly RLR, indicated 

occasional under and over-fitting to the sample data although less extreme than LR. RF was the only ML 

algorithm showing a consistent pattern of superior performance than LR for each psychosocial outcome. 

Delong’s test for a significant difference between AUCs is shown in Table 9, with RF performing 

significantly better than LR for all four binary outcomes that were internally validated, and with RLR 

statistically superior to LR for three of the four outcomes. SVM was statistically superior for LR for 

predicting supervision, although LR was statistically superior to SVM for predicting occupation. 

Best performing predictors for psychosocial outcomes 
The top five clinical data variables used in RLR and RF models (after internal validation) are reported in 

Table 10. Stability analyses after nested cross-validation were performed for RLR to inform which 

predictors were stable across nested cross-validation and the resulting means of coefficients are shown in 

Appendix 2.8 on pg. 76.    
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Table 9 Significance values using Delong’s test to compare ROC curves adjusted with FDR corrections 

 

Accommodation RLR RF SVM 

LR 0.03* 0.01* 0.06 

RLR  0.1 0.5 

RF    0.6 

Participation RLR RF SVM 

LR <0.001** 0.008** <0.001** 

RLR  1 0.84 

RF    0.84 

Supervision RLR RF SVM 

LR <0.001** <0.001** 0.05* 

RLR  0.03* 0.1 

RF   0.004** 

Occupation RLR RF SVM 

LR 0.5 <0.001** <0.001** 

RLR  <0.001** <0.001** 

RF    <0.001** 

 

 

* p<0.05 ** p<0.01 

FDR= false discovery rate; LR= logistic regression; RLR= regularised logistic regression; ROC=receiver operating 

characteristic curve; RF= random forest; SVM= support vector machine 

 

 

Predicting length of admission  

Models were developed for predicting length of admission comparing regularised linear regression with 

elastic net (0.07 R₂, 49.65 RMSE) and unregularised linear regression (0.05 R₂, 52.76 RMSE) for ≥80% 

complete data imputation.  These results suggest poor model performance therefore models were not 

further evaluated.  
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Table 10 Top five predictors for favourable psychosocial outcomes for RF and RLR identified from embedded 

feature selection.  

Outcome RF  RLR 

A
cc

o
m

m
o

d
at

io
n

  1. Adjustment (MPAI) 
2. Neuropsychological data 

availability  
3. Days between injury and 

admission 
4. Age at admission 
5. SIMD rank  

1. Neuropsychological data 
availability  

2. Adjustment (MPAI) (-) 
3. Diagnosis (other) (-) 
4. Diagnosis (TBI) 
5. Abilities (MPAI) (-) 

P
ar

ti
ci

p
at

io
n

 1. Days between injury and 
admission  

2. Adjustment (MPAI)  
3. Abilities (MPAI) 
4. Age at admission  
5. Neuropsychological data 

availability   

1. Neuropsychological data 
availability  

2. Abilities (MPAI) (-) 
3. Adjustment (MPAI) (-) 
4. Gender (female)  
5. Executive functioning  
 

Su
p

er
vi

si
o

n
 1. Abilities (MPAI) 

2. Adjustment (MPAI) 
3. Days between injury and 

admission  
4. Age at admission 
5. SIMD rank 

1. Neuropsychological data 
availability  

2. Adjustment (MPAI) (-) 
3. Abilities (MPAI) (-) 
4. Diagnosis (Hypoxia) (-) 
5. Days between injury and 

admission (-) 
 

O
cc

u
p

at
io

n
 1. Days between injury and 

admission 
2. Age at admission  
3. Abilities (MPAI) 
4. SIMD rank 
5. Adjustment (MPAI)  

1. Gender (female) 
2. Neuropsychological data 

availability  
3. Abilities (MPAI) (-) 
4. Diagnosis (other) (-) 
5. Age at admission (-) 

 

 

 

MPAI= Mayo Portland Adaptability Inventory; RF= random forest; RLR= regularised logistic regression; SIMD= Scottish Index of Multiple 

Deprivation; TBI=Traumatic brain injury   

(-) under RLR show negative relationships; algorithms for RF do not show negative relationships as there are no coefficients  

 

Discussion  
The main aim of this study was to examine the effectiveness of using ML algorithms to predict favourable 

psychosocial outcomes after ABI inpatient neurorehabilitation using routinely collected psychometric, 

cognitive, clinical and demographic predictors. Three ML classification methods (RLR, RF, and SVM) were 

compared for four psychosocial outcomes (accommodation, participation, supervision and occupation at the 

time of discharge). Planned analyses for QOL 6-months after discharge were underpowered to detect a 

significant effect. Every evaluated model performed better than chance for predicting each outcome. ML 

models, particularly RF and RLR, had fair to good performance (Safari et al., 2016), and every ML model had 

better calibration than LR indicating ML models will perform better for prediction in new samples. This study 

also aimed to predict length of admission comparing linear regression with and without elastic net 
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regularisation, however both methods had a poor fit to the data suggesting psychosocial functioning may not 

be important determinants of length of admission for ABI.   

Across all outcomes RF consistently showed superior performance than LR, as well as being superior to the 

other ML algorithms for predicting supervision and occupation. RF is an ensemble method of many weak 

learners, randomly generating a “forest” of decision trees which could increase RF’s likelihood of fitting a good 

prediction.  RF has evidenced capacity to handle complex data, such as skewed and unbalanced class 

distributions (Guo et al., 2010) and high dimensional noise in features (Guo & Balasubramanian, 2012) which 

could underlie its superiority in this study. Psychological assessments often include a degree of subjectivity or 

response bias, leading to greater variation and higher degrees of noise than many medical variables. RF’s 

capacity to deal with these challenges may make it a superior method for complex psychosocial datasets.   

Feature selection methods embedded in RF and RLR are main benefits of these ML algorithms over other ML 

methods which can be more complex to interpret, such as SVM or artificial neural networks (Nadkarni, 2016). 

RF and RLR frequently showed two subscales of the MPAI (adjustment, a measure of mood and interpersonal 

difficulties, and abilities, a measure of a person’s cognitive and physical functioning), and neuropsychological 

data availability (an indicator of the extent to which a person underwent neuropsychological testing), as 

important predictors of a range of psychosocial outcomes at the time of discharge. As well as aiding our 

knowledge of strong predictors of outcomes, identifying these may help inform why people have poorer 

outcomes and may indicate other avenues for intervention. Further investigation of predictors is however 

required as embedded feature selection doesn’t provide significance levels or confidence intervals, and 

identified features may be proxies for other important variables not otherwise measured (Shmueli, 2010).  

Neuropsychological data availability interestingly had greater predictive power than any of the individual 

neuropsychological test results. Frequent reasons for a person not having a full neuropsychological battery are 

challenging behaviours or very severe impairment. A person’s status as having less neuropsychological data 

could have been proxy for these difficulties not otherwise captured. Alternatively, more neuropsychological 

tests administered could better tailor the person’s rehabilitation to their needs, leading to more favourable 

outcomes. Together with the strong predictors of better adjustment and abilities, the former interpretation 

might be likely that more neuropsychological tests are administered when a person has greater emotional 

stability, higher cognitive functioning and less interpersonal conflict, in turn contributing to more favourable 

outcomes. It makes clinical sense that these characteristics would make it more likely for a person to return 

home or to employment after moderate to severe brain injury.  

Models built for predicting QOL 6-months after discharge had an inadequate sample size, resulting in lack of 

statistical power. As such, the internal validation procedures would have reduced the variance in predictors 

and biased results. Additionally, the QOL measure was likely subject to response bias given only around 16% of 
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discharged patients chose to complete the measure, providing an optimistic group median of 75/100 (with 

higher scores indicating greater self-rated quality of life). It is likely that representative samples would show a 

lower median QOL rating. Future research would benefit from a larger sample size to explore how ML 

performs at modelling psychosocial predictors for QOL after ABI. This would be of benefit as it may identify 

areas suitable for intervention.  

Strengths and limitations 
This study has a strength showing that with transparent reporting and robust methods, overcoming challenges 

described in Chapter One, ML methods RF and RLR have superior predictive power for psychosocial outcomes 

from a highly heterogeneous dataset with a range of ABIs. Models were properly internally validated to 

account for model optimism and evaluated by discrimination, calibration and power. Internally validated LR in 

this study demonstrated how statistical techniques typically used by psychologists may not be reliable for 

novel predictions. Calibration assessment indicated extreme overfitting for LR, likely leading to lower 

performing models in new samples. There was some indication of under- and overfitting for some ML models, 

however much less extreme than LR. External validation in a new dataset would be beneficial for 

generalisability. As GAH continues to discharge patients there is the possibility of a temporal validation cohort, 

or geographically with an alternative BIRT centre.  

Limitations to the current dataset which, if improved, could further benefit models’ predictive ability in future 

research. Firstly, this study was limited to features available from routine clinical assessment, meaning 

features previously identified as strong psychosocial predictors such as education history or length of post-

traumatic amnesia (e.g. Stromberg et al., 2019), were unable to be modelled in this study due to inconsistent 

recording in service records. Including these predictors in future models would likely strengthen predictive 

performance. Secondly, whilst this study performed an a-prior power analysis, predictive models are at lower 

risk of bias when the number of participants to the number of candidate predictor parameters are at least 

twenty events per variable (Wolff et al., 2019). Unfortunately, this guidance wasn’t published at the time of 

study design and power analysis, and so there is risk of models being underpowered due to the available 

sample size. Finally, routine clinical data has high degrees of missingness for certain clinical variables. Whilst 

our sensitivity analyses are promising for similar results to the primary and secondary analyses, the imputation 

strategy could have contributed to less accurate results. Multiple imputation may have been a more reliable 

strategy than KNN, which relies on single imputation, however due to the number of algorithms and 

complexity of the nested CV, multiple imputation would have been computationally intensive.  

Conclusions 
This study shows promising preliminary findings for predicting psychosocial outcomes after discharge from 

inpatient ABI neurorehabilitation based on routine admission data using ML. These datasets are typical of 

clinical data suggesting ML is a useful skill for clinicians. RF had superior performance for modelling 
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psychosocial data with better calibration than unregularised LR, although external validation in a novel dataset 

is required to increase reliability of the findings.  Future use of ML modelling techniques could inform 

treatment planning and appropriate care pathways after discharge from ABI neurorehabilitation to be more 

efficient and cost-effective.  
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Appendix 1.2. Search strategy for OVID interface 
 

(machine*learning OR neural network* OR support vector machine OR multilayer perceptron OR random 

forest OR lasso OR ridge OR kernel OR Bayesian network OR classification tree OR regression tree OR 

relevance vector machine OR nearest neighbo*r OR probability estimation tree OR elastic net OR ensemble 

OR penali*ed OR regulari*ed OR bagging OR boosted OR boosting OR fuzzy OR na*ve bayes OR deep learning 

OR genetic algorithm*)  

   

AND 

 

(head injur* OR brain injur* OR stroke OR brain h*emorrhage OR head trauma OR brain trauma OR concussion 

OR TBI OR ABI OR HI OR mTBI OR cerebrovascular accident OR CVA OR subarachnoid h*emorrhage)  

  

AND 

 

(Educat* OR school* OR behavio*r* OR psychosocial* OR psychologi* OR neuropsychologi* OR problem solv* 

OR cogniti* OR executive OR memory OR attention* OR social OR stress OR (quality adj5 life) OR QoL 

OR hrqol OR depress* OR anxi* OR psychiatr* OR mental health OR well*being OR living OR 

accommodation OR independen* OR support* OR residen* OR placement OR destination OR domestic 

OR famil* OR relation* OR employ* OR work* OR occupation* OR job* OR affect* OR mood OR emotion* OR 

function* OR instrumental OR activ* OR ADL OR IADL)  

 

Human/   

 

  



Appendices: Systematic Review 

57 
 

Appendix 1.3. Data extraction template  
 

• Bibliographic details  

• Includes people with a diagnosis of ABI?  

• Has a separate analysis has been included for ABI?  

• Type of ABI  

• If applicable, are comparator groups from the same population? 

• Study design   

• Were the exposures similarly measured between groups, or with all participants?  

• Was the exposure measured in a valid and reliable way?   

• Were confounding factors identified?  

• Were strategies to deal with confounding factors stated?  

• Were methods for missing data used and what?   

• Were the outcomes measured in a valid and reliable way?  

• Was the follow up time reported?  

• Was follow up complete?  

• If follow up was not complete, were the reasons to loss to follow up described and explored?  

• Were strategies to address incomplete follow up utilized?  

• What method of machine learning was used?  

• Was the rationale for the type of ML algorithm described?   

• Was an a priori power analysis performed?     

• Were feature selection methods used?  

• What performance metrics were used for model performance? E.g. AUC  

• Were the reported metrics for model performance appropriate for the type of ML algorithm?     

• What was the result of the performance metric for each algorithm/model reported? Record 

development and validation metrics.    

• If more than one type of ML algorithm was used, which one had the most superior performance? 

• Was the model validated in the study?     

• If the model was validated, which validation methods were used?  

• Were limitations of ML techniques discussed?  

• If ML limitations were discussed, what were they?     

• Relevant reported limitations to power of study?  

• Sample size  

• Sample demographics  
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• Country  

• Conflicts of interest  

• Funding source 
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Appendix 1.4. Machine learning algorithm definitions  
 

Machine learning 
algorithms  

 
Definition 

 

C
la

ss
if

ic
at

io
n

  
  

Regularised logistic regression A classification algorithm whereby coefficient weights are learned using 
an iterative method with adjustments within a linear algorithm before 
being transformed to predict a binary outcome using the sigmoid, or 
logistic function (Nadkarni, 2016). 

Support vector machine Most commonly used as a classification algorithm whereby vectors are 
mapped into a high dimensional space to construct a linear decision 
surface (Cortes & Vapnik, 1995), with the goal of separating two decision 
categories. 

Decision trees Decision trees classify predictors by their values amongst a series of 
decision branches, until ending with a fairly homogenous class of the 
target variable (Rokach & Maimon, 2008). 

Naïve Bayes A probability model based on Bayesian theory, where features are naïve 
in the sense that they assume independence from other features in a 
given class (Rish, 2001).  

K-nearest neighbours (5NN) Commonly used as a classification algorithm where new values are 
predicted based on their results of other, similar instances (or 
neighbours). It is common to take the results of more than one 
neighbour (k) for class determination (Cunningham & Delany, 2020).  

Random forest An ensemble algorithm where large number of decision trees are grown, 
each with a random split of training data from the original data with 
replacement, using random feature selection/node splits. After which 
each tree votes for the most popular class at input 𝑥 (Breiman, 2001). 
The goal here is to produce a stronger model than single decision trees 
alone.  

Artificial neural networks Non-linear classification methods which make no underlying 
assumptions to limit their fit to the data (Zhang, 2000). A series of 
interconnected nodes are linked between predictors and output in a 
similar way as a neural network in the human brain.  

R
eg

re
ss

io
n

 Least absolute shrinkage and 
selection operator (lasso) 
regularisation with linear 
regression  

In the regression equation, lasso sets certain coefficients to 0, with the 
goal of increasing prediction accuracy while maintaining interpretability 
(Tibshirani, 1996). 

Random Forest feature 
selection, used with linear 
regression 

Features identified by random forest (as described previously) are used 
to enhance performance of statistical regression algorithms. 
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Appendix 1.5. Rationale for risk of bias ratings by study from an aggregated synthesis of each 

prediction model 
 

Study 
Rationale for 

 ROB conclusion 

1. Bergeron et al 
(2019) 

2.1. Symptoms are measured inconsistently by either verbal disclosure or a self-report checklist 
3.1. Outcome likely to include measurement error 
3.3. Predictors were not excluded from outcome which was time until absence of predictors 
3.4. No information on how time until symptom resolution was measured 
3.5. Predictor information likely to be known due to outcome definition  
4.2. Pre-processing of predictor information not adequately described 
4.3. Not adequately described 
4.4. Not adequately described 
4.7. Improper model evaluation, not assessing calibration 

2. Cnossen et al 
(2017) 

4.3. Although participants were excluded with missing outcomes, between group differences were explored for missing 
outcomes, showing no difference in baseline characteristics for lost-to-follow-up, thus minimising this bias 
4.7. Improper model evaluation, not assessing calibration  

3. Gupta et al 
(2017) 

4.1. No reporting of events per candidate to fully assess dimensionality of data when sample size is small  
4.3. Participants were excluded with missing predictors and outcomes; between group differences were explored for 
missing outcomes, showing no difference in baseline characteristics for lost-to-follow-up, thus minimising this bias 
4.4. As with 4.3 
4.7. Improper model evaluation, not assessing calibration 
4.8. Internal cross-validation was not used to account for overfitting  
 

4. Hirata et al 
(2016) 

4.4. Participants were excluded for missing the outcome variable. No information is provided on handling of missing 
predictor information 
4.7. Improper model evaluation, not assessing calibration 
4.8. No use of internal or external validation  

5. Huttunen et al 
(2016) 

4.2. Data handling not adequately described 
4.7. No model evaluation 
4.8. No internal or external validation to account for overfitting 

6. Nishi et al 
(2019) 

4.1. No reporting of events per candidate to fully assess dimensionality of data when sample size is small  
4.3.  Inappropriate exclusion for people with missing predictor and outcome data with no imputation 
4.7. Improper model evaluation, not assessing calibration 
4.9. Final predictive algorithms and coefficients are not reported  

7. Shafiei et al 
(2017) 

3.5. Prospective design and no information on blinding to predictor variables during outcome determination  
4.1. Small sample size with a complex model architecture 
4.2. No information on handling of predictor variables 
4.7. Improper model evaluation, not assessing calibration 
4.8. Likely overfitting due to the 50/50 training test split for internal validation without external validation to 
accommodate, meaning parameter estimates have less variance 

8. Stromberg et al 
(2018) 

2.2. No information on whether predictor assessments were made without knowledge of outcome data 
4.4. Missing outcome excluded without exploration for impact on ROB 
4.7. Improper model evaluation, not assessing calibration 
4.8 A single split 85/15 validation was used increasing likelihood of overfitting and model optimism 
4.9. No information on whether the model was refitted after pruning 

9. Walker et al 
(2018) 

4.3. Removal of participant data beyond those stated by exclusion criteria 
4.4. Missing outcome and missing covariate excluded without exploration for ROB   
4.7. Improper model evaluation, not assessing calibration 
4.9. Unclear if predictors in the final models correspond to results from analysis as training data presented only   
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Appendix 2.2 The Disabilities Trust Management Approval  
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Appendix 2.3. The Disabilities Trust Caldicott Approval  
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Appendix 2.4. NHS Greater Glasgow and Clyde Caldicott Approval  
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Appendix 2.5: Candidate baseline predictors and data processing  
Candidate predictors  Measure Data type and processing if applicable 

Neuropsychological 

predictors 

Assessed by a 

member of the 

psychological team 

at GAH following 

admission  

General cognitive 

ability 

WAIS -IV (Wechsler, 

2008) 

5 domains including full scale IQ, verbal comprehension, perceptual reasoning, working memory, and 

processing speed, each kept as a continuous measure.  

 

Predicted 

premorbid 

intelligence 

TOPF (Wechsler, 

2011) 

Predictions of premorbid functioning in 5 domains including full scale IQ, verbal comprehension, perceptual 

reasoning, working memory, and processing speed, each kept as a continuous measure. 

 

Executive 

functioning 

BADS (Wilson, Evans, 

Alderman, Burgess, 

& Emslie, 1997) or 

the DKEFS (Delis, 

Kaplan, & Kramer, 

2001) depending on 

administrator choice.  

• An ordinal measure categorised as either high average, average, low average, borderline or impaired as 

coded in the BADS. If the DKEFS was administered instead of the BADS, the total score was averaged across 

subtests if they had 3 or more administered. This mean scaled score was then converted into an ordinal 

scaled score as coded by the BADS or coded as impaired if administration had clearly been discontinued. If 

a service user had both DKEFS and BADS administered at baseline, the BADS score was chosen over DKEFS 

due to the established standardised method Data were coded 1=Impaired 2=Borderline 3=Low average 

4=Average 5=High average 

•  

Memory Either RBMT (Wilson 

et al., 1999) or 

BMIPB (Oddy, 

Coughlan, & 

Crawford, 2007) 

• Scale quotient score as coded in the RBMT. If data was missing from the RBMT due to part administration, 

the total score was averaged across subtests if had 3 or more administered. For service users who had the 

BMIPB administered instead of the RBMT, the BMIPB score was converted into regression-based continuous 

norms using the Crawford equation to provide a quotient score equivalent of the RBMT [available from 

https://homepages.abdn.ac.uk/j.crawford/pages/dept/BMIPB_Programs.htm]. If a service user had both 

BMIPB and RBMT administered at baseline, the RBMT score was chosen over BMIPB due to the established 

standardised method 

 

 

 

https://homepages.abdn.ac.uk/j.crawford/pages/dept/BMIPB_Programs.htm
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Candidate predictors  Measure • Data type and processing if applicable 

 Neuropsychological 

data availability  

An indicator of 

whether baseline 

neuropsychological 

assessments were 

administered  

• As neuropsychological test administration was expected not to be missing at random, an indicator for 

testing ability was developed as a categorical measure, labelled  ordinally as “3” if service user had complete 

measures across WAIS, memory, executive and TOPF assessments, “2” if not all were administered or had 

WAIS subtests missing, and “1” if no neuropsychological tests were administered or had to be discontinued 

without enough to score a minimum of three subscales across all neuropsychological tests.  

 

Psychometric 

predictors 

Assessed by a 

member of the 

psychological team 

at GAH following 

admission 

Anxiety and 

Depression 

HADS (Zigmond & 

Snaith, 1983) at 

admission 

responded to by the 

patient 

Total scores of both the depression and anxiety subscales as continuous measures 

Physical, cognitive, 

emotional, 

behavioural, and 

social difficulties 

related to brain 

injury 

MPAI 4th edition 

(Bellon et al., 2012) 

at admission. The 

MPAI-4 may be 

completed by the 

patient, healthcare 

professional or 

family member.  

Total T-scores of the adjustment, participation, abilities and total subscales as continuous measures 

Demographics 

 

 

Age at injury Continuous, in weeks 

Age at admission Continuous, in weeks 

Gender Categorised as male or female as per recording practices in the service  

SIMD The SIMD rank score as a continuous measure with higher scores indicating lower levels of deprivation 
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Candidate predictors  Measure Data type and processing if applicable 

Medical history Type of ABI A categorical measure of either TBI, CVA, hypoxia, infection, neoplasm or other.  

Problematic drug use Binary Yes or No  

Problematic alcohol 

use  

Binary Yes or No 

Multiple trauma Binary Yes or No 

Other medical 

history  

Binary Yes or No 

Pre-injury psychosis  Binary Yes or No 

Days between injury 

and admission 

In days as a continuous measure   

 

Abbreviations: ABI= Acquired brain injury ; BADS= Behavioural Assessment of the Dysexecutive Syndrome ; BMIPB= BIRT Memory and Information Processing Battery ; CVA=Cerebrovascular 

accident ; DKEFS= Delis-Kaplan Executive Function System ; HADS = Hospital Anxiety and Depression Scale ; MPAI= Mayo Portland Adaptability Inventory ; RBMT= Rivermead Behavioural 

Memory Test ; SIMD= Scottish Index of Multiple Deprivation ; TBI= Traumatic brain injury ; TOPF= Test of Premorbid Functioning; WAIS= Wechsler Adult Intelligence Scale (FSIQ= Full scale IQ ; 

PRI= Perceptual reasoning index ; PSI= Processing speed index ; VCI= Verbal comprehension index ; WMI= Working memory index).  
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Appendix 2.6: Machine learning algorithms  
 

Regularised linear regression:  

A regression algorithm from the field of statistics, with elastic net penalisation (as described below), to 

predict a continuous outcome where Y is predicted: 

 Y = 𝛼 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 … 

Where 𝛼 represents the intercept and 𝛽 represents the coefficients to be learned and tuned from 𝑥, the 

predictors in the dataset using an iterative method. Unlike statistical regression, ML linear regression in 

this study used elastic net, a regularisation method which penalises some less contributing coefficients to 0 

or near 0 to minimize overfitting, for embedded feature selection (Zou & Hastie, 2005). The goal with 

elastic net penalisation is to have the benefits from alternative penalisation methods, ridge and lasso, of 

reducing the variance between predicted and observed data points, to handle greater collinearity between 

variables and to use a tuning parameter that reduces the likelihood of overfitting. At the same time elastic 

net overcomes the challenges of ridge regularisation (not having feature selection), and lasso (less effective 

regularisation). 

Regularised logistic regression:  

A classification algorithm whereby coefficient weights are learned using an iterative method with 

adjustments within a linear algorithm (described above in regularised linear regression) before being 

transformed to predict a binary outcome using the sigmoid, or logistic function (Nadkarni, 2016). 

Regularised logistic regression in this study also used elastic net penalisation for regularisation, which is 

solved as below: 

minβ0,β1N∑i=1Nwil(yi,β0+βTxi)+λ[(1−α)||β||22/2+α||β||1] 

“over a grid of values of λ covering the entire range. Here l(y,η) is the negative log-likelihood contribution 

for observation ii; e.g. for the Gaussian case it is 12(y−η)2. The elastic-net penalty is controlled by α, and 

bridges the gap between lasso (α=1, the default) and ridge (α=0). The tuning parameter λ controls the 

overall strength of the penalty” (Hastie & Qian, 2014). 

Random forest:  

An ensemble method where a large number of decision trees are grown, each with a random split of 

training data from the original data with replacement (known as bootstrap samples). Each bootstrap 

sample is trained using random feature selection and node splits to create trees which are largely 

uncorrelated. Each tree then votes for the most popular class at input 𝑥 (Breiman, 2001) combining the 
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results with a technique called “bagging.” The goal here is to produce a stronger, less biased model than 

single decision trees alone, which reduces the variance without increasing the bias.  Random forest 

algorithms have “out the bag” error embedded during model development which adjusts the fit of the 

models based on the results of each bootstrap sample for validation during the model development 

process.  

Linear kernel support vector machine 

A classification algorithm whereby vectors are mapped into a high dimensional space to construct a linear 

decision surface with the goal of separating two decision categories with a maximum “margin” (the 

distance between the data points and the linear decision surface, or hyperplane) between them (Cortes & 

Vapnik, 1995). The “support vectors” are the data points closest to the margin, meaning data further from 

the decision margin are not used (Nadkarni, 2016).  
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Appendix 2.7 Sensitivity analyses for ML algorithms with ≥50% complete data on predictor 

variables using KNN imputation  
 

Outcome 
Sample 

size 
Method AUC 95% CI 

Calibration 
(slope) 

Permutation 
p value 

Accommodation 164 

RLR 0.78 0.73-0.83 0.89 <0.001 

RF 0.82 0.78-0.86 1.09 <0.001 

SVM 0.78 0.73-0.83 0.96 <0.001 

Participation 120 

RLR 0.77 0.72-0.82 1.22 <0.001 

RF 0.79 0.75-0.86 1.47 <0.001 

SVM 0.72 0.66-0.77 0.82 <0.001 

Supervision 167 

RLR 0.77 0.73-0.82 1.04 <0.001 

RF 0.83 0.80-0.86 1.10 <0.001 

SVM 0.75 0.71-0.80 0.96 <0.001 

Occupation 164 

RLR 0.68 0.64-0.72 0.95 <0.001 

RF 0.66 0.63-0.70 0.93 <0.001 

SVM 0.62 0.58-0.66 0.75 <0.001 

Quality of life 38 RLR 0.73 0.63-0.83  0.22 <0.001 

 

AUC= Area under the curve; CI= Confidence intervals; LR= logistic regression; RF= random forest; RLR= regularised logistic 

regression; SVM= support vector machine. 
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Appendix 2.8. Stable predictors identified by 100% of developed models for RLR during nested 

cross-validation 
 

Outcome RLR (80% complete data) 
(coefficient mean in regression 

algorithm) 

RLR (50% complete data) 
(coefficient mean in regression 

algorithm) 
Accommodation  1. Neuropsychological data 

availability (0.506) 
2. MPAI Adjustment (-0.379)  

1. Neuropsychological data 
availability (0.514) 

2. Diagnosis other (-0.387) 
3. Total MPAI (-0.368) 

Participation 1. Neuropsychological data 
availability (0.361) 

  

1. Neuropsychological data 
availability 
(0.488)  

Supervision 1. Neuropsychological data 
availability (0.349) 

2. MPAI Adjustment (-0.355) 
3. MPAI Abilities (-0.291) 
4. Diagnosis Hypoxia (-0.237)  

1. Neuropsychological data 
availability (0.358) 

2. Processing speed WAIS 
(0.331) 

3. MPAI Adjustment (-0.283) 
4. Diagnosis Hypoxia (0.232) 

 

Occupation 1. Gender male (-0.483) 
2. Neuropsychological data 

availability (0.427) 
3. MPAI Abilities (-0.366) 
4. Diagnosis other (-0.191) 

 

1. Gender male (-0.354) 
2. Neuropsychological data 

availability (0.306) 
3. Working memory WAIS 

(0.223) 
4. HADS Anxiety (-0.223) 
5. MPAI Abilities (-0.156) 

QOL 1. HADS Anxiety (-1.053) 1. HADS Anxiety (-1.053) 

 

HADS= Hospital anxiety and depression scale; MPAI= Mayo Portland adaptability inventory; RLR = regularised logistic regression; 

QOL= quality of life; WAIS= Wechsler adult intelligence scale  
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Abstract  

Background: Outcomes after inpatient neurorehabilitation for acquired brain injury (ABI) are variable, 

challenging the ability to make timely, cost-effective decisions for the level of required support for housing 

and functional needs at the time of discharge. Machine learning algorithms have potentially high predictive 

power for modelling high dimensional data with collinear predictors, providing a valuable tool for 

predicting clinical prognostic outcomes.  

Aims: This project aims to build predictive models using neuropsychological, psychometric, medical and 

demographic variables to predict outcomes for service users’ length of admission, independence of living, 

required level of supervision, occupational functioning, participation in functional tasks, and quality of life 

after discharge from inpatient neurorehabilitation.  

Methods: This study will use a retrospective cohort study design of service users with ABI admitted and 

discharged from Graham Anderson House, neurorehabilitation centre. Data will be analysed using machine 

learning. Three different machine learning algorithms will be compared for their performance for 

predicting psychosocial outcomes after discharge. The algorithms will be selected based on the findings of 

the systematic review (also conducted by the researcher) for the most superior machine learning methods 

for predicting psychosocial outcomes in ABI research. These algorithms will be compared for their 

performance using a receiver operating characteristic (ROC) curve, with the area under the curve (AUC) 

being the primary metric used to determine model performance.  

Applications: A strong predictive algorithm will aid timely, cost-effective decisions for appropriate 

accommodation and support needs at the time of discharge.  

Introduction 

The number of admissions for people with acquired brain injury (ABI) in the UK is increasing, raising 

concern for developing care pathways for this highly heterogeneous condition. Approximately 1000 daily 

hospital admissions in the UK are attributed to ABI (Menon & Bryant, 2019), with stroke and traumatic 

brain injury being in the most frequent causes of death and disability worldwide (Feigin, Barker-Collo, 

Krishnamurthi, Theadom, & Starkey, 2010). The burden following ABI can affect multiple domains of 

functioning and continue throughout the lifespan, with outcomes varying greatly with the timing and 

intensity of interventions (Cullen et al., 2007).  

Brain Injury Rehabilitation Trust (BIRT) centres offer inpatient neurobehavioural rehabilitation for people 

with severe ABI. Rehabilitation programmes are individually tailored to improve functioning across 

cognitive, behavioural and motor domains. Even with the development of individualised rehabilitation 

programmes, long term outcomes for people with ABI remain variable (Ponsford et al., 2014; Rassovsky et 
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al., 2015). This challenges healthcare professionals ability to offer adequate guidance for service users 

(SUs), family members, and social services for the person’s probable housing, functional, and occupation 

needs.  

A person’s functional independence forms the basis of decision making for the required level of care. UK 

multicentre outcomes between 2010 and 2015 showed mean costs of care following inpatient 

neurorehabilitation discharge differ from £306/week (95% Confidence Interval £271-£342) for low 

dependency needs, to £1349/week (95% CI £1315-£1384) for high dependency needs (Turner-Stokes et al., 

2016). Accurately predicting support needs would ensure resources are allocated efficiently and cost-

effectively.  

Caregivers of people with ABI report main concerns of balancing their own emotional needs and the level 

of care they will need to provide (Powell et al., 2017). The sudden onset means caregivers have little time 

to prepare for these significant lifestyle changes. Caregiver burden is a particularly important consideration 

during early stages of the condition where carer distress is high (Qadeer et al., 2017). Predictive modelling 

can help prepare caregivers for discharge and provide timely support for those most in need.  

The usefulness of predictive models in clinical practice are often limited by the statistical methods 

employed. Findings are often not replicated or are ungeneralisable to clinical settings (Dwyer et al., 2018; 

Ioannidis, 2005, 2016). Traditional methods of modelling, validated in the same dataset they are developed 

(Yarkoni & Westfall, 2017), may rely on unrepresentative data collected for the purpose of the research 

question (Agoston & Langford, 2017). With added model complexity, traditional regression models are 

strongly influenced by sample noise, a phenomenon known as overfitting, resulting in predictive models 

with inaccurate performance in new samples.  

Machine learning (ML) approaches are growing in popularity for predicting healthcare outcomes with 

improved predictive power and less concern of overfitting (Yarkoni and Westfall, 2017). Rather than 

traditional statistical models, based on explanation or inference within a given dataset, ML-based 

predictive models make use of existing data to extrapolate to future or unknown events. ML’s capacity to 

deal with multidimensional, missing and multicollinear data typical of clinical data (Iniesta et al., 2016) 

means one can make use of pre-existing data sets, more representative of true population characteristics. 

With traditional regression models, neuropsychological measures predicted psychosocial outcomes after 

neurorehabilitation for people with ABI with linear regression accounting for 39-44% of the variance 

(Smith-Knapp et al., 1996) on functional measures. The limited explained variance of these models may 

reflect the omission of other potential predictors for these psychosocial outcomes, unable to be modelled 

for risk of overfitting. Traditional logistic regression predicted returning home after discharge from 
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inpatient Stroke neurorehabilitation using a wider range of socioeconomic, neurological and functional 

variables (Frank et al., 2010) with the area under the curve (AUC) of 0.86 (95% CI 0.84-0.88). Without the 

use of modern model validation techniques however, these models may not perform as well in new data 

sets.  ML has previously evaluated inpatient rehabilitation efficacy with model validation, finding AUC 

values of 0.85-0.93 with different ML algorithms for accurately predicting patient improvement (Marcano-

Cedeño et al., 2013). ML may therefore overcome these challenges, leading to more optimal model 

performance. 

Neurorehabilitation centres generate large volumes of data during the assessment process. These data 

offer invaluable information for predictive modelling. Employing ML to model this data offers a way 

forward to making more accurate predictions of psychosocial outcomes following inpatient 

neurorehabilitation for people with ABI.  

Aims and Hypotheses 

Given the variability of psychosocial outcomes for SUs with severe ABI, this research aims to build 

predictive models using ML for psychosocial outcomes at discharge and quality of life (QoL) 6-months after 

discharge from inpatient neurorehabilitation. Our aim is to predict status at a given point in time, rather 

than to predict amount of change over time. Different ML algorithms will vary in their accuracy for 

predicting psychosocial outcomes in brain injury. This project aims to compare the performance of logistic 

modelling machine learning and two other machine learning methods (decided upon from the systematic 

review results for which algorithms have the most superior predictive power for psychosocial outcomes in 

ABI research). 

In particular, the study aims to predict outcomes for length of admission, independence of living 

(accommodation status), level of supervision, occupational functioning, participation in functional tasks, 

and QoL. The primary outcome will be accommodation status, since clinical opinion within the service 

believe this is usually SUs primary concern at admission.  

The primary outcome timepoint will be at discharge from the inpatient unit, with a secondary timepoint of 

six months post-discharge also analysed for SUs with available data. 

The primary project hypothesis is that it is possible to predict, at better than chance level, independence of 

living at time of discharge, using baseline demographic, clinical, neuropsychological and psychometric 

measures from the time of admission. The null hypothesis is that the model’s performance will not be 

reliably different from chance level. Models with better than chance performance and an AUC of 0.8 or 

above will be considered to show ‘good’ performance (Safari, Baratloo, Elfil, & Negida, 2016b) 

Plan of investigation  
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Participants 

SUs admitted and discharged with ABI from care of Graham Anderson House (GAH) between 2009 and 

2018.  

Inclusion and Exclusion Criteria  

SUs admitted to GAH are aged between 16 and 84, with a diagnosis of ABI and complex needs in a stable 

condition by the time of referral. ABI may be caused by cerebrovascular accident, traumatic injury, anoxic 

brain injury or infection.  

For SUs to be included in the study they need to have been discharged from GAH, with data available from 

baseline and discharge assessments. A further analysis will be performed for individuals with 6-month 

outcome data.  

Where SUs have been readmitted, data from their initial assessment will be used, with readmission data 

excluded. 

Participants will be excluded where routine neuropsychological assessments were unable to be 

administered at baseline.  

Recruitment procedures 

This is a retrospective cohort analysis of all SUs discharged from GAH using existing data. No new 

recruitment is necessary. 

Measures 

Baseline predictor measures to be entered into the model are displayed in Table 1. 
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Table 1: Baseline predictor measures:  

Baseline Predictor Measure 

Neuropsychological 

predictors 

Assessed by a member of the 

psychological team at GAH  

following admission  

General 

cognitive ability 

Wechsler Adult Intelligence Scale IV (WAIS-IV, David 

Wechsler, 2008) 

Predicted 

premorbid 

intelligence 

Test of Premorbid Functioning (TOPF, D. Wechsler, 2011) 

Executive 

functioning 

Behavioural Assessment of the Dysexecutive Syndrome 

(BADS, Wilson et al., 1997) 

Memory Either Rivermead Behavioural Memory Test (RBMT, 

(Wilson et al., 1999) or BIRT Memory and Information 

Processing Battery (BMIPB, M. Oddy et al., 2007) 

Attention Test of Everyday Attention (TEA, Robertson, Ward, 

Ridgeway, & Nimmo-Smith, 1994) 

Psychometric 

predictors 

Assessed by a member of the 

psychological team at GAH 

following admission 

Anxiety and 

Depression 

Hospital Anxiety and Depression Scale (HADS, Zigmond & 

Snaith, 1983) at admission responded to by the patient 

Physical, 

cognitive, 

emotional, 

behavioural, 

and social 

difficulties 

related to brain 

injury 

Mayo Portland Adaptability Inventory 4th edition (MPAI-4, 

Bellon et al., 2012) at admission. The MPAI-4 may be 

completed by the patient, healthcare professional or 

family member.  

Injury-related predictors e.g. Time between injury and admission, total number of 

ABIs 

Demographics 

 

 

 

 

 

Age 

Gender 

Education level 

Scottish Index of Multiple Deprivation code (SIMD) 

Living arrangements prior to admission 

Other medical history Prior reported problematic drug/alcohol use 

The number of serious medical diagnoses in addition to ABI 

N.B. Feasibility checks will be conducted to ascertain amount of missing data on each measure and only 
measures with at least 80% complete data will considered for the model.  
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Outcome Measures  

For the purpose of the analysis, outcome measures (apart from length of admission) will be transformed 

into binary variables to be more practically relevant than a continuous score. Outcome data used for the 

purpose of the analysis will be gathered from routine outcome assessments at the time of the patient’s 

discharge as assessed by a Clinical Psychologist within the service. Further models will be built for 

predicting QoL at 6-months post-discharge. 

Primary Outcome Measure: 

Accommodation status: Either the Accommodation Scale within the BIRT Independent Living Scale (BILS, 

Michael Oddy et al., 2018), or the Accommodation Rating Scale within the Community Disposition Ratings 

(CDR-ARS, unpublished, appendix 1) as rated by a member of the psychological team at GAH at the time of 

the patient’s discharge. The scales will be converted into binary outcomes classifying the level of supported 

accommodation required, whereby scores ≤ 6 represent “independent or community supported housing” 

and scores ≥7 represent “residential/hospital accommodation.”  

Secondary outcome measures: 

Length of admission: Length of admission will be a continuous outcome score in the number of weeks. The 

predicted length of admission will be used as a predictor measure in models for the other outcome 

measures if the model has good performance. 

Participation in functional tasks: The Participation subscale of the MPAI (Bellon et al., 2012) as rated by a 

member of psychological team through interviewing the patient and family member where necessary. This 

measure is collected at the time of discharge, with binary outcome conversion of t-scores ≥50 representing 

‘moderate to severe disability’, and ≤49 representing ‘a good outcome or mild to moderate disability.’  

Level of supervision: The Supervision Rating Scale (SRS, Boake, 1996) as rated by a member of the 

psychological team at the time of discharge, with binary conversions of scores ≥8 representing the person 

requires ‘full time direct supervision,’ and ≤7 indicating ‘part time or no supervision.’  

Occupational functioning: either the Occupational Participation Scale, within the BILS (Michael Oddy et al., 

2018), or The Occupation Rating Scale within the CDR (CDR-ORS, unpublished, appendix 1), rated by a 

member of the psychological team at the time of discharge, with binary conversion scores of ≥7 

representing ‘recreational/non-occupational activity,’ and ≤ 6 indicating ‘productive occupational activity.’ 

QoL: The EuroQoL Instrument (EQ5D, EuroQoL Group., 2010) a patient-rated measure for QoL, converted 

as binary outcome measures. This patient-rated measure is administered at the 6-month follow-up rather 

than discharge. There are two commonly accepted ways to dichotomise favourable and poor EQ5D 
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outcomes: by dichotomising at the sample median to predict a favourable or poor outcome relative to the 

sample, or by dichotomising at the 0.5 point to predict a favourable outcome related to clinical populations 

more generally (Parkin, Devlin, & Feng, 2016). For the purpose of this study, two models will be developed 

to analyse outcomes of both approaches.   

Design  

The project will use a retrospective single-centre cohort design. 

Research procedures 

Ethical approval will be applied for via NHS ethics, because the majority of BIRT service users are NHS 

patients admitted under service-level agreements.  

At admission to GAH, SUs are involved in a comprehensive assessment during which the baseline measures 

described above are conducted by Clinical and Assistant Psychologists within the team. When SUs are due 

to be discharged they undergo routine assessment of their outcomes administered by a member of the 

psychology team, including the outcome variables described above (apart from the EQ5D). At the 6-month 

follow-up, the EQ5D is administered, which is voluntarily provided by SUs by either telephone interview or 

postal survey. For this reason, the number for whom this data is available is considerably lower.  

SU data from baseline and outcome measures will be collated in a database from paper files with the 

assistance of two honorary research assistants between October 2018 and April 2019. Data will be checked 

for accuracy prior to analyses. A research database will be collated with only anonymised data, identifiable 

by a participant ID number with no way of being traced back to the client in the clinical database. Patient 

name and other identifiable information will not be transferred to the research database. Clinical and 

research databases will be stored in separate locations. The research database will be stored on the 

University encrypted laptop and backed up regularly on University encrypted networks, given that GAH 

computers are not efficient for ML algorithms. The clinical database will be stored only at GAH. No patient 

identifiable information will be transferred to the research database.  

Data analysis  

Data analyses will be performed with R Programming using the Caret package. Missing data on predictor 

variables will be imputed using a non-parametric method (k nearest neighbours), as implemented within 

the Caret package. Logistic Model ML analyses, and two further machine learning algorithms (determined 

to be the most superior for predicting psychosocial outcomes in brain injury research from the findings of 

the systematic review also being conducted by the researcher), will be compared for their performance 

accuracy. Logistic modelling ML analysis will use elastic net (a regularization method to minimize 
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overfitting) for embedded feature selection. It is likely that a five-fold nested cross-validation approach will 

be used whereby 80% of the data will be used for training, with the remaining 20% of the data (chosen 

randomly each time) reserved for model validation. The predicted outcomes from the models will be 

evaluated using a receiver operating characteristic (ROC) curve, with AUC being the primary metric used to 

determine model performance. 

Justification of sample size  

The analysis will include approximately 250 people who have been discharged from GAH and meet the 

criteria for the cohort analysis, of whom around 100 people have 6 month follow-up data available (for the 

QoL analysis).  

Power analyses were performed on the ‘pROC’ package in R, based on a typical ratio of poor:good 

outcome of 4:1 (based on preliminary service data at GAH) for accommodation status at the time of 

discharge (the primary outcome). To have 80% power to detect a significant effect at p<.05 (two-sided), 

the minimum sample size required for analysis would be 29 for an AUC of 0.85 (similar to Frank et al.’s 

2010 model for predicting return home after neurorehabilitation), or 61 for a weaker AUC of 0.75.  

Settings and Equipment  

Data cleaning and organisation will be based at GAH. The researcher and clinical team will have access to 

the clinical database including identifiable information during this stage. The research database will be 

managed in an Excel spreadsheet with anonymised data. A data protection impact assessment has been 

completed. The research database will be exported to a University encrypted laptop and backed up 

regularly on a secure University network folder in line with GDPR. Appropriate statistical software will be 

installed on the laptop.  

Anonymised data will be held securely at the University for 10 years. 

The clinical database which includes identifiable information for clinical purposes will be stored in a 

different location, located at GAH.  

Health and Safety Issues 

None identified given this is using retrospective data.  

Ethical Issues 

Service users at GAH provide consent at admission for their anonymised data to be used for evaluating the 

rehabilitation service. The researcher will require access to records within the service to organise the 

anonymised database of assessment and outcome data. This has been approved by the Brain Injury 



Appendices: Major Research Project 

86 
 

Rehabilitation Trust, and BIRT Caldicott approval has been provided. The researcher will require access to 

patient information in the neuropsychological and outcomes databases. These are not anonymised as they 

are used clinically. No member of the clinical team would have capacity to organise and collate the 

databases to anonymise them prior to research. To gather information for the analysis, the researcher may 

need to extract data from clinical letters and clinical databases into a anonymised database. The 

neuropsychological database does not have the patient number included, therefore the collation of data 

from different databases is currently only identifiable by name. A separate anonymised database will be 

collated prior to analysis. The anonymised database will be identifiable only by participant ID number, 

which will not be able to be traced back to clinical information stored in the clinical database at GAH. NHS 

and BIRT Caldicott approval has been approved. A PVG check has been approved for working within GAH. 

An NHS ethics application will be required for research analysis of previously gathered patient information. 

A separate BIRT ethics application is not required in addition to NHS ethics in accordance to BIRT research 

procedures, however BIRT management/governance approval has been approved. Anonymised data will 

be held securely at the University for 10 years.  

 

Results will be disseminated via publication in peer reviewed journals, presentations at research 

conferences, and either the BIRT newsletter or website. 

 

Financial Issues 

None identified.  

Timetable 

There will be assistance from honorary research assistants from October 2018 to April 2019 for data entry. 

Planning meetings will be regularly scheduled to monitor progress with data entry.  

The researcher is currently undertaking training courses in ML and R Programming, managed in her own 

time.  

An ethics application will be made once the proposal has been accepted, likely June 2019.  

BIRT Caldicott approval was applied for in April 2019 and NHS Caldicott approval applied for in July 2019. 

Once this is received, I can continue with data cleaning (but no data analysis), because this is part of 

routine data curation in the service, while awaiting ethical approval. I aim to have data cleaning completed 

by September 2019.  

Data analysis will commence following ethical approval and the findings from the systematic review which 

will inform choice of ML algorithms (likely September to October 2019). Data analysis will be completed by 
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April 2020, with write up and supervisor review by July 2020. Regular supervision meetings will be 

scheduled, including supervisor Samuel Leighton for support for ML coding using R.  

Practical applications  

The results of this study will help service users, their families, and social services make timely, cost-

effective decisions for appropriate accommodation and support needs to be ready for discharge.  
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