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Abstract: Huntington’s disease is a progressive, autosomal dominant, neurodegenerative disorder
caused by an expanded CAG repeat in the huntingtin gene. As a result, the translated protein,
huntingtin, contains an abnormally long polyglutamine stretch that makes it prone to misfold and
aggregating. Aggregation of huntingtin is believed to be the cause of Huntington’s disease. However,
understanding on how, and why, huntingtin aggregates are deleterious has been hampered by lack of
enough relevant structural data. In this review, we discuss our recent findings on a glutamine-based
functional amyloid isolated from Drosophila brain and how this information provides plausible
structural insight on the structure of huntingtin deposits in the brain.

Keywords: functional amyloids; CPEB; Orb2; huntingtin; Huntington’s disease; polyglutamine;
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Polyglutamine (PolyQ)-related diseases are dominant, late-onset genetic disorders manifested
by progressive neurodegeneration. A common feature of this group of diseases, which include
Huntington’s disease (HD), dentatorubral-pallidoluysian atrophy, spinobulbar muscular atrophy, and
six types of spinocerebellar ataxias, is the abnormal expansion of a CAG codon repeat, coding for a
10 to 35 long glutamine tract in the wild-type protein [1]. First documented by George Huntington
in 1872, HD is one of the most common inherited neurodegenerative diseases, causing cognitive
disruptions and chorea with no effective cure [2]. The connection between HD and the expansion of the
glutamine tract in the huntingtin (HTT) gene, which codes for the multidomain and multifunctional
HTT protein [3,4], was identified in the early 1990s [5]. In HD, intraneuronal deposits of HTT fragments
that map onto the exon 1 (HTTex1) are found in cerebellum, striatum, and cortex [6]. This led to the
use of HTTex1 to determine the consequences of HTT deposits in mice and neuronal cell lines [7–10].
HD toxicity is believed to stem from a gain-of-toxic-function of HTT aggregates [11], along with a loss of
function through sequestration of HTT and other proteins into the aggregates [12,13]. However, there is
an ongoing debate about the nature of the harmful proteinaceous species in the brain; prefibrillar
oligomeric, generally α-helical, assemblies [14], or fibrillar amyloid assemblies [15].
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In vitro, the polyQ tract encoded by HTTex1 drives the self-assembly to an amyloid
fold [16,17]. The assembly kinetics, however, also depends on the polyQ-flanking regions [18–23].
The in vitro-assembled HTT amyloid is proposed to adopt an antiparallel β-sheet arrangement [24–34].
Yet, despite intense efforts, the atomic resolution 3D architecture of aggregated HTT, even assembled in
the test tube, remains elusive. A recent study employed cryo-ET methods to analyze the architecture of
HTTex1 amyloid-like filaments in the cellular context [35]. However, there is no atomic-level structural
information of pathological polyQ aggregates from patients’ brain. Unexpectedly, the functional
amyloid formed by Drosophila Orb2 protein, a member of the cytoplasmic polyadenylation element
binding proteins, provides plausible structural insight on the endogenous polyQ-based amyloids.
The aggregated state of Orb2 plays a causal role in memory stabilization [36–41]. Using cryo-EM,
the structure of the biochemically active Orb2 aggregates extracted from adult Drosophila head have
been recently solved [42]. The structure revealed that Orb2 aggregates are left-handed C3 helical
amyloid filaments, defined by three molecules per layer that form, on average, 750 Å continuous
in-register parallel β-sheets (Figure 1A). The filament structure is stabilized by a Q-based amyloid
core (Figure 1B), while the rest of the protein, comprising the RNA-recognition motifs and protein
interaction domain, extends from the Q-based amyloid core [42].Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 3 of 7 

 

 

Figure 1. General view of the Orb2 amyloid structure. Side view of the reconstructed Orb2 amyloid 
core showing the ~4.75 Å separation between β-strands, typical of the amyloid fold (A), and cross-
sectional view of one molecular layer of the calculated atomic model (B) [42]. Glutamines are colored 
in dark blue, while histidines are colored in light blue. In some histidine residues, a major and minor 
occupancy, alternative sidechain conformations are shown (arrow heads). Leucine and serine 
residues are represented in gray. 

The Orb2 and HTTex1 antiparallel hairpin arrangement differs in the overall amyloid 
architecture. The hairpin-like fold of the individual Orb2 chains is formed by the strands from two 
opposing parallel β-sheets [42] (Figure 2A). In contrast, the in vitro-assembled HTT model suggests 
the HTTQex1 β-hairpin is made of two hydrogen-bonded antiparallel strands in the same β-sheet 
[43] (Figure 2B). However, in vivo, the structure and/or arrangement of HTTex1 β-hairpin could be 
dictated by context-specific factors [30], which could lead to structurally different conformations to 
that assembled in vitro. Indeed, activity and structure of in vitro-assembled Orb2 amyloid is distinct 
from Orb2 amyloid isolated from adult brain [42,44].  

Is it possible that the endogenous, aggregated HTT structure is distinct from what has been 
inferred from in vitro studies? If so, could it be similar to Orb2 structure? Possible Orb2 and HTT 
structural similarity in the native context, besides a similar monomeric fold (i.e., hairpin) in the 
amyloid state, is underscored by the observation that exogenously expressed Orb2 co-aggregates 
with HTTex1 in Drosophila motor neurons [36]. This observation could be explained by different 
scenarios: First, the co-localization could result from the incorporation of HTTex1 monomers into the 
Orb2 filament arrangement forming a heteroaggregate, or vice versa. Second, HTTex1 and Orb2 
adopt a different structure, and the co-localization arises from a lateral surface association of HTTex1 
and Orb2 filaments. Third, endogenous HTTex1 adopts a structure similar to Orb2. Here, the 
interdigitated cross-β structure observed in head-extracted Orb2 filaments could be readily extended 
on both sides of a parallel β-sheet made of only glutamine residues (Figure 2C). Such an arrangement 
would allow the formation of more stable, multilayered cross-β structures from sufficiently long 
polyQ sequences based on hairpins with similar β-strand lengths as minimal repeat units (Figure 2D). 
Indeed, contrary to earlier reports [24,45,46], ssNMR data consistently report a length-independent 
common structure of the polyQ amyloid [26,47]. This observation may reflect the existence of a 
unique polyQ structure in all polyQ diseases, where protein context (such as flanking regions), or 

Figure 1. General view of the Orb2 amyloid structure. Side view of the reconstructed Orb2 amyloid core
showing the ~4.75 Å separation between β-strands, typical of the amyloid fold (A), and cross-sectional
view of one molecular layer of the calculated atomic model (B) [42]. Glutamines are colored in
dark blue, while histidines are colored in light blue. In some histidine residues, a major and minor
occupancy, alternative sidechain conformations are shown (arrow heads). Leucine and serine residues
are represented in gray.

In spite of differences in β-sheets arrangement, β-parallel (in vivo-assembled Orb2) versus
β-antiparallel (in vitro-assembled HTTex1), both proteins employ a similar arrangement of individual
molecules. Of the 704 amino acids of Orb2, 31 amino acids (176-206) form an antiparallel hairpin-like
structure with a hydrophilic core stabilized by 7 inter-digitated Q coming from opposing stands
connected by a turn—four from one β1 strand (Q179, Q181, Q183, and Q185) and three from the
opposing β2 strand (Q200, Q202, and Q204), separated by 14 residues (Q-x-Q-x-Q-x-Q-x14-Q-x-Q-x-Q
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motif). The interior of the Orb2 amyloid is formed by tightly packed and hydrogen-bonded Q
sidechains, whereas its exterior residues contribute to the protofilament interfaces [42] (Figure 1B).
Despite differences in Q-length between Orb2 and HTTex1, a recent study inferred a similar interdigitated
antiparallel hairpin structure as the stereochemically favorable arrangement of in vitro-assembled
HTTex1 [43]. The tight interdigitation of glutamine sidechains in the packing of antiparallel β-sheets in
HTTQex1 requires these sidechains to adopt two different rotamers for different strands [43], indicating
structural heterogeneity at single-residue level. Specifically, the Qs of the two β-strands in the HTTQex1
β-hairpin differ in their side chain dihedral angles; however, within each strand, all Q residues are
the same rotamers with the same backbone and sidechain geometry [28,43]. In this antiparallel
arrangement, inter-strand hydrogen bonds are only formed between β-strands with different sidechain
rotamers, but not between β-strands with the same rotamer [28,43]. On the other hand, the packing
of parallel β-sheets in the Orb2 core can be achieved with the same rotamer for all interdigitating
glutamines [42]. In addition, the Orb2 parallel β-structure could be stabilized by specific features of its
interdigitated cross-β packing: a slight tilt of the glutamine sidechains toward the N-termini of the
β-strands and the positioning of strands in one β-sheet opposite the inter-strand spaces in the other
β-sheet and vice versa. These arrangements allow the formation of additional, stabilizing hydrogen
bonds between the glutamine sidechains groups in one β-sheet and the carbonyl oxygen atom of
main chain peptides of the opposite β-sheet, with little or no effect on peptide group conformation,
as well as a tighter packing of the interdigitated glutamine sidechains from both β-sheets [42].

The Orb2 and HTTex1 antiparallel hairpin arrangement differs in the overall amyloid architecture.
The hairpin-like fold of the individual Orb2 chains is formed by the strands from two opposing
parallel β-sheets [42] (Figure 2A). In contrast, the in vitro-assembled HTT model suggests the
HTTQex1 β-hairpin is made of two hydrogen-bonded antiparallel strands in the same β-sheet [43]
(Figure 2B). However, in vivo, the structure and/or arrangement of HTTex1 β-hairpin could be dictated
by context-specific factors [30], which could lead to structurally different conformations to that
assembled in vitro. Indeed, activity and structure of in vitro-assembled Orb2 amyloid is distinct from
Orb2 amyloid isolated from adult brain [42,44].

Is it possible that the endogenous, aggregated HTT structure is distinct from what has been
inferred from in vitro studies? If so, could it be similar to Orb2 structure? Possible Orb2 and HTT
structural similarity in the native context, besides a similar monomeric fold (i.e., hairpin) in the
amyloid state, is underscored by the observation that exogenously expressed Orb2 co-aggregates with
HTTex1 in Drosophila motor neurons [36]. This observation could be explained by different scenarios:
First, the co-localization could result from the incorporation of HTTex1 monomers into the Orb2
filament arrangement forming a heteroaggregate, or vice versa. Second, HTTex1 and Orb2 adopt a
different structure, and the co-localization arises from a lateral surface association of HTTex1 and Orb2
filaments. Third, endogenous HTTex1 adopts a structure similar to Orb2. Here, the interdigitated
cross-β structure observed in head-extracted Orb2 filaments could be readily extended on both sides of
a parallel β-sheet made of only glutamine residues (Figure 2C). Such an arrangement would allow the
formation of more stable, multilayered cross-β structures from sufficiently long polyQ sequences based
on hairpins with similar β-strand lengths as minimal repeat units (Figure 2D). Indeed, contrary to
earlier reports [24,45,46], ssNMR data consistently report a length-independent common structure of
the polyQ amyloid [26,47]. This observation may reflect the existence of a unique polyQ structure
in all polyQ diseases, where protein context (such as flanking regions), or cell-type-specific context
(such as monomer availability), could determine the Qn threshold [48] and supramolecular filament
polymorphism [47,49]. In the future, the elucidation of structure of HTT and other polyQ aggregates
from diseased brains would either refute or support this thesis.
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Figure 2. Molecular architecture of Orb2 and Huntingtin amyloids. (A) Schematic of the antiparallel 
hairpin-like fold adopted by head-extracted Orb2 filaments, derived from the cryo-EM structure. 
Three Orb2 molecules per molecular layer form continuous in-register parallel β-sheets. Different tone 
of blue represents the different amino acid composition for each β-strand of the hairpin. Amyloid 
forming sequence is indicated in the top. (B) Schematic of the antiparallel β-hairpin adopted by in 
vitro-assembled HTTex1 amyloid, derived from ssNMR data. One single HTTex1 molecule 
contributes to two molecular layers to form antiparallel β-sheets. Different tone of green represents 
the two differently structured β-strand types of the β-hairpin. (C) Model of a multilayer packing of 
the parallel polyQ β-sheets, obtained by extending the Orb2 inter-digitated cross-β structure on both 
sides. Blue dashed line represents the hairpin turn. The extended glutamine side chains form a steric 
zipper interface to allow an ~8 Å distance between β-sheets. (D) Proposed in vivo HTTex1 filament 
model based on the multilayer polyQ packing showed in (C). Stacks of hairpins or meanders of similar 
β-strand lengths (highlighted in red), are viewed across the filament axis. 

Author Contributions: All three authors contributed to the preparation of this review. 

Funding: This work was supported by the Stowers Institute for Medical Research (to Kausik Si). 

Acknowledgments: We thank Douglas V. Laurents for comments and M. Miller for illustrations. 

Conflicts of Interest: The authors declare no conflict of interest. 

Abbreviations 

PolyQ Polyglutamine 
HD Huntington’s Disease 
HTT Huntingtin  
HTTex1 Huntingtin Exon 1 

Figure 2. Molecular architecture of Orb2 and Huntingtin amyloids. (A) Schematic of the antiparallel
hairpin-like fold adopted by head-extracted Orb2 filaments, derived from the cryo-EM structure.
Three Orb2 molecules per molecular layer form continuous in-register parallel β-sheets. Different tone
of blue represents the different amino acid composition for each β-strand of the hairpin. Amyloid
forming sequence is indicated in the top. (B) Schematic of the antiparallel β-hairpin adopted
by in vitro-assembled HTTex1 amyloid, derived from ssNMR data. One single HTTex1 molecule
contributes to two molecular layers to form antiparallel β-sheets. Different tone of green represents
the two differently structured β-strand types of the β-hairpin. (C) Model of a multilayer packing of
the parallel polyQ β-sheets, obtained by extending the Orb2 inter-digitated cross-β structure on both
sides. Blue dashed line represents the hairpin turn. The extended glutamine side chains form a steric
zipper interface to allow an ~8 Å distance between β-sheets. (D) Proposed in vivo HTTex1 filament
model based on the multilayer polyQ packing showed in (C). Stacks of hairpins or meanders of similar
β-strand lengths (highlighted in red), are viewed across the filament axis.
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PolyQ Polyglutamine
HD Huntington’s Disease
HTT Huntingtin
HTTex1 Huntingtin Exon 1
CPEB Cytoplasmic Polyadenylation Element Binding Protein
Orb2 The Drosophila protein encoded by the oo18 RNA-binding (orb) gene
Cryo-EM Cryo-Electron Microscopy
Cryo-ET Cryo-Electron Tomography
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