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Abstract 

 

Alcohol consumption is correlated positively with risk for breast cancer in observational studies, but 

observational studies are subject to reverse causation and confounding. The association with 

epithelial ovarian cancer (EOC) is unclear. We performed both observational Cox-regression and 

two-sample Mendelian randomization (MR) analyses using data from various European cohort 

studies (observational) and publicly available cancer consortia (MR). These estimates were 

compared with World Cancer Research Fund (WCRF) findings. In our observational analyses, the 

multivariable-adjusted hazard ratios (HR) for a one standard drink/day increase was 1.06 (95% 

confidence interval; 1.04,1.08) for breast cancer and 1.00 (0.92,1.08) for EOC, both of which were 

consistent with previous WCRF findings. MR ORs per genetically predicted one standard drink/day 

increase estimated via 34 SNPs using MR-PRESSO were 1.00 (0.93,1.08) for breast cancer and 0.95 

(0.85,1.06) for EOC. Stratification by EOC subtype or estrogen receptor status in breast cancers made 

no meaningful difference to the results. For breast cancer, the confidence intervals for the 

genetically derived estimates include the point-estimate from observational studies so are not 

inconsistent with a small increase in risk. Our data provide additional evidence that alcohol intake is 

unlikely to have anything other than a very small effect on risk of EOC.  
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Introduction  

The World Cancer Research Fund (WCRF) concluded that alcohol intake is a probable cause of breast 

cancer, with an estimated additional risk of 9% per 10g/day increase in consumption of ethanol, but 

that there is inadequate evidence to evaluate the association with epithelial ovarian cancer (EOC) 1,2. 

It is, however, difficult to measure any effect of elevated alcohol consumption from conventional 

observational data because of the possible confounding issues: alcohol consumption is itself 

associated with many other lifestyle and socio-economic factors, which may themselves be a risk 

factor for cancers and are difficult to quantify. Estimates from observational studies may additionally 

be biased by other mechanisms 3, including recall bias due to differences in the completeness of the 

subjective indications of alcohol consumption across case-control status, selection bias 4,5 against 

heavy users of alcohol due to the preferential participation of reasonable healthy individuals and 

reverse causality. The WCRF estimates are based on data from population-based prospective cohort 

studies, where exposure information is collected before the event of interest occurs. Although cohort 

studies in general are less likely to suffer from bias, it is still impossible to rule out confounding. Also, 

such studies typically only measure exposure variables once or a few times, precluding detailed 

individual modelling of exposures over time 6. In principle, double blinded randomized trials are the 

best way to evaluate causality, but such studies are usually logistically cumbersome and may be 

unethical.  

 

A Mendelian randomization (MR) study, using genetic variants associated with alcohol consumption 

as an instrument for alcohol consumption, offers a way to test hypotheses of causality, since the 

genetic variants are less likely to be associated with other known or unknown confounders, and they 

are not influenced by (pre-)clinical stages of the diseases 7. Conceptually, MR relies on the random 

assortment of genetic variants during meiosis to mimic a “natural” randomized trial 8. However, for 

MR estimates to make valid inferences on causality, several assumptions have to be met 8. Typically, 

https://paperpile.com/c/UiceYX/XPOb+GsWM
https://paperpile.com/c/UiceYX/d8h7d
https://paperpile.com/c/UiceYX/VK4sh+4k5r4
https://paperpile.com/c/UiceYX/aY31B
https://paperpile.com/c/UiceYX/KuAe7
https://paperpile.com/c/UiceYX/IUsyP
https://paperpile.com/c/UiceYX/IUsyP
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such a genetic instrument only explains a fraction of the variance of the exposure variable, and 

therefore MR studies need very large numbers of participants to answer questions of causality. For 

alcohol consumption, previous MR studies have used the rs1229984 variant (as this SNP is associated 

with high levels of acetaldehyde and facial flushing 9) as a genetic instrument to evaluate the link 

between alcohol intake and disease outcomes 10–12. Two-sample mendelian randomization is an 

extension of the traditional MR methodology that leverages greater statistical power for MR analyses 

by utilizing independent summary-based datasets to derive the genetic association on alcohol and 

cancer outcome separately without the need for individual level data. As larger GWAS have identified 

more risk loci and GWAS of outcomes of interest have increased in size, power has recently become 

adequate to support meaningful statistical inference 13.   

Using several large independent population-based prospective cohorts, we first tested whether 

alcohol intake is associated with risk of breast cancer and EOC via observational analyses, to compare 

against previous WCRF findings. We then evaluated whether there is genetic evidence to support a 

causal relationship between the two using a two-sample Mendelian randomization study approach 

utilizing consortia data from both the Breast Cancer Association Consortium (BCAC) and Ovarian 

Cancer Association Consortium (OCAC) for breast and ovarian cancer, respectively. Both observational 

and genetically derived estimates were then used to infer whether there is evidence for a causal 

relationship between alcohol intake and these cancers. 

 

Materials and Methods   

Overview 

For the large-scale population-based cohorts, we evaluated the observational association between 

self-reported alcohol consumption and risk of breast and ovarian cancer via Cox-regression analyses. 

Study-specific hazard ratio (HR) estimates were then combined via a fixed-effect meta-analysis 

(separately for each cancer). For the genetic causality analyses, we performed a two-sample MR to 

https://paperpile.com/c/UiceYX/Kj4CM
https://paperpile.com/c/UiceYX/j6hYA+dB0na+Js5Ix
https://paperpile.com/c/UiceYX/PlLca
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assess whether genetically predicted alcohol consumption is associated with breast/ovarian cancer 

susceptibility using publicly available consortia data. Instruments for the MR analyses were obtained 

from an alcohol consumption GWAS performed on the UK Biobank white British participants.  

 

 

Description of observational cohort studies 

Data from Copenhagen General Population Study (CGPS) and Copenhagen City Heart Study (CCHS) 

The CGPS14 and the CCHS15 are two large prospective general population studies from Denmark. For 

both studies, residents from Copenhagen were invited to complete a baseline questionnaire and 

undergo a physical examination. The questionnaire includes the number of alcoholic drinks consumed 

daily and this was used to derive standard drinks per week (for this study 1 standard drink ~ 12g 

ethanol). Blood samples were also obtained. In total, 69 420 women participated, 60 205 from the 

CGPS (enrolled between 2003 to 2015) and the remaining 9 215 from the CCHS (enrolled during four 

examinations from 1976-78, 1981-83, 1991-94, and 2001-03). A total of 2 312 incident breast cancer 

and 327 EOC cases were identified. Women with diagnosis of breast cancer prior to examination or 

who had missing information on covariates were excluded from the analysis. All participants gave 

written informed consent, and both CCHS and CGPS were approved by the Danish ethics committees 

(H-KF01‐144/01 and KF100.2039/91). Full details on the observational HR analysis in the CGPS and 

CCHS are provided in Supplementary Methods. 

 

Data from the Karolinska Mammography Project for Risk Prediction of Breast Cancer (KARMA). 

The KARMA study is a large Swedish breast cancer prospective cohort study comprising 70 877 women 

who attend regular mammographic screening across four hospitals in Sweden 16. The aim of the 

project is to identify risk factors for breast cancer such as mammographic density, genetic and lifestyle 

https://paperpile.com/c/UiceYX/EHDuT
https://paperpile.com/c/UiceYX/OcS9Z
https://paperpile.com/c/UiceYX/pEoOO
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factors. Information on tumour characteristics, such as ER status, was identified through registers. 

Self-reported alcohol intake (in grams) estimated via questionnaires was standardised into number of 

standard drinks/week using a nominal conversion scale of 10g/standard drink.  For our HR analysis, 

we identified 985 incident breast cancer cases in a cohort of 60 903 women with non-missing data on 

confounders. We did not perform the analysis for EOC due to the limited number of cases (n=57). See 

Supplementary Methods for a complete description. 

 

Data from the UK Biobank cohort 

The UK Biobank (UKB) cohort consists of 502 000 middle-aged individuals recruited from across the 

United Kingdom 17. The UKB study was approved by the North West Multi-Centre Research Ethics 

Committee (reference number 06/MRE09/65), participants at the time of recruitment gave informed 

consent to participate in UK Biobank and be followed up, using a signature capture device. 487 910 

individuals passed initial genetic quality control protocols. We identified 215 830 women genetically 

similar to those of white-British ancestry through ancestral principal component techniques 18. The 

UKB records extensive (n>2 000) phenotypes including anthropometric traits, disease status and 

lifestyle behaviours. Number of standard drinks per day (one standard drink in the UKBB is roughly 

equivalent to 12g/day of alcohol) was calculated as a weighted sum of daily consumption on various 

types of alcoholic beverages (Supplementary methods; see also Supplementary Table 1 and 2). Non-

drinkers were given a score of zero standard drinks per day. Information about cancer diagnosis 

among the UKB participants was obtained through data-linkage between self-report, hospital records 

and cancer registries. Individual cancer types were defined based on ICD-10 definitions, as per 

previous work 19. After excluding women with a history of cancer (excluding non-melanoma skin 

cancer) prior to enrolment including recurrent cancer cases, the cohort comprised 141 071 white 

British women with 4,068 women diagnosed with breast cancer and 425 with EOC. However, the 

proportion of individuals with missing data on the necessary covariates (e.g. menopausal status, 

https://paperpile.com/c/UiceYX/rhn0S
https://paperpile.com/c/UiceYX/hrVrH
https://paperpile.com/c/UiceYX/hlmeI
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education attainment, nulliparity) were relatively high (i.e. only 1 771 breast cancer cases and 187 

EOC cases had complete data). Cox regression was used to obtain hazard ratios for cancer risk per 

standard drinks/day increase in alcohol consumption. A complete description of the observational HR 

analysis for alcohol and cancer in the UKB is provided in Supplementary Methods.  

 

Meta-analysis of observational findings  

We then performed an observational meta-analysis of the association estimates combining the UKB 

results with those obtained from the CCHS+CGPS and KARMA study for breast cancer and EOC. All 

association estimates were scaled to reflect a one standard drink per day increase (an increase of 

~10g/day of ethanol) to facilitate comparison with our MR findings. Estimates were combined under 

a fixed-effect inverse variance weighted model using the rmeta R library. These results were then 

compared against the existing WCRF findings on both cancers 1,2. 

 

Genetic analyses 

In this two-sample MR study, we derived instrumental variables for alcohol consumption from the UK 

Biobank cohort. We then evaluated whether these alcohol-associated instruments were associated 

with breast/ovarian cancer risk using GWAS summary statistics obtained from the Breast Cancer 

Association Consortium (BCAC) and the Ovarian Cancer Association Consortium (OCAC). A flowchart 

illustrating the complete MR procedure is shown in Figure 1. 

(Figure 1 here) 

Breast and ovarian cancer risk GWAS 

The BCAC breast cancer GWAS summary statistics 20, derived from a total of 122 977 cases and 105 

974 controls of European ancestries, were obtained from a publicly available repository 

https://paperpile.com/c/UiceYX/XPOb+GsWM
https://paperpile.com/c/UiceYX/55i9b
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(http://bcac.ccge.medschl.cam.ac.uk/bcacdata/oncoarray). Among these, 69 501 of the cases were 

identified to have ER+ breast cancer, and 21 468 breast cancer cases were ER-. Participants in the 

BCAC were recruited from various case-control and cohort studies around the world. BCAC 

participants involved in the breast cancer GWAS were genotyped via one of these genotyping 

platforms: (i) custom Illumina iSelect genotyping arrays, (ii) OncoArray or (iii) the iCOGS array. 

Genotypes were then imputed against the 1000 Genomes Project Phase III reference panels using 

IMPUTE2 21. A full description of the genetic quality control procedures is given elsewhere 20. The 

association between SNPs and cancer outcome were estimated using conventional multiple logistic 

regression adjusting for top ancestral principal components and age 20.  

 

The OCAC EOC GWAS summary statistics 22, derived from a total of 22 406  cases and 40 941 controls 

of European ancestries, were obtained from a publicly available repository 

(http://ocac.ccge.medschl.cam.ac.uk/). The genotyping platforms used were broadly similar to those 

used in the BCAC breast cancer GWAS. Top ancestral principal components were fitted as covariates 

in both the breast cancer and EOC GWAS model to account for the presence of population 

substructure. Prior to our main analyses, we excluded SNPs that were poorly imputed (INFO<0.6) or 

had very low minor allele frequencies (MAF<0.01) for both GWAS datasets. Similarly, the association 

between SNPs and cancer outcome were estimated using conventional multiple logistic regression 

adjusting for top ancestral principal components and age 22. 

 

Deriving genetic instruments for alcohol consumption (UKB data) 

The complete description of how estimated standard drinks per week was derived via self-reported 

consumption of alcoholic beverages is provided in Supplementary Methods. In brief, we computed 

the participants’ total alcohol standard drinks per week using both frequency and quantity of alcohol 

consumption, summing across the alcohol content (in std drinks) from self-reported quantities of 

http://bcac.ccge.medschl.cam.ac.uk/bcacdata/oncoarray
https://paperpile.com/c/UiceYX/WZRKM
https://paperpile.com/c/UiceYX/55i9b
https://paperpile.com/c/UiceYX/55i9b
https://paperpile.com/c/UiceYX/MwTC1
https://paperpile.com/c/UiceYX/MwTC1
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various types of alcoholic beverage consumed weekly. Non-drinkers are included in the GWAS, and 

assigned a score of zero standard drinks per week.  We performed a GWAS on standard alcoholic 

drinks per week to calibrate genetic instruments that are predictive of self-reported alcohol 

consumption among white British women in the UKB. We used the software BOLT-LMM 23, a Bayesian 

linear mixed model GWAS framework to explicitly model the genetic relatedness within the sample. 

Genetic sex, age and 10 ancestral principal components were included as covariates. We performed 2 

separate GWAS: using i) the estimated alcohol quantity in both sexes (n=432 178) and ii) the estimated 

alcohol quantity in females only (n=197 948). For each alcohol GWAS result, only SNPs that were 

genome-wide significant and had MAF>0.01 were retained. Clumping on the SNPs were then 

performed based on LD (𝑟2 <0.01) and maximum distance of 1 000 kb apart to ensure that selected 

instruments are strictly independent. We identified 72 instruments (including SNP rs1229984) from 

the combined-sex drinks/week GWAS (Supplementary Table 3). The combined-sex GWAS was used to 

robustly identify alcohol associated SNPs but in our main MR analysis we adopted SNP effect sizes 

estimated among females only. In order to ensure that our analyses were protected against weak 

instrument bias, we only used 34 out of 72 SNPs that were successfully replicated in the female-only 

alcohol GWAS (p<1e-5 in females).  

   

Two-sample Mendelian randomization 

GWAS summary statistics were used to obtain association estimates for genetic predictors of alcohol 

on cancer outcomes (breast or ovarian cancer) from the respective consortia (BCAC and OCAC). The 

estimated statistical power to detect MR associations at various effect sizes (ORs) is shown in 

Supplementary Table 4. We extracted the SNP-cancer association estimates and minor allele 

frequency information for each of the 34 alcohol-associated SNP instruments. We fitted a 

multiplicative random effect inverse variance weighted (IVW) model to obtain a combined estimate 

of the causal effect inferred via multiple SNPs 24. For each test, palindromic SNPs with strands that 

https://paperpile.com/c/UiceYX/8lqeu
https://paperpile.com/c/UiceYX/mV2PW
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could not be inferred via allele frequency were excluded. The global Cochran Q statistics was first 

evaluated to determine MR findings with heterogeneous effect sizes. For tests with strong evidence 

of causal effect heterogeneity, we then repeated our IVW MR analyses by manually filtering out SNPs 

that showed strong evidence for having heterogenous effect estimates, defined by SNPs with a 

Cochran’ Q statistics exceeding 3.84. The heterogeneity-adjusted MR estimate will be reported in the 

main results section for traits that have inflated global Cochran Q statistics (p-heterogeneity < 0.05). 

 

Previous studies have shown that SNPs associated with alcohol intake might be pleiotropically linked 

with changes in adiposity, or simply markers for smoking behaviour or education attainment, some of 

which might confound the association with these cancers. Discarding SNPs on the basis of a pleiotropic 

association might result in loss of power if the association is linked through the same causal pathway 

(vertical pleiotropy). However, determining the modes of pleiotropy for each SNP instrument is not a 

trivial task. Instead, we applied a multivariable MR (MVMR) model to evaluate the direct effect 

between genetically predicted alcohol intake on breast/ovarian cancer by regressing out the genetic 

effect of these variants on BMI, BMI-adjusted waist-to-hip ratio, education attainment and cigarettes 

smoked per day. The marginal OR for alcohol intake (drink/day) on cancer risk(s) after adjusting for 

the aforementioned risk factors were reported. Curation of the phenotypes used in the MVMR 

framework is described in Supplementary Methods.   

 

We scaled our MR estimate to reflect a genetically predicted one drink/day increase in alcohol 

consumption (by multiplying the predicted change in log(OR) of cancer for 1 standard drink/week by 

7). All statistical analyses (including MR sensitivity analyses) were performed in statistical package R 

using the TwoSampleMR library implemented in the MR-Base platform 25.   

 

 

https://paperpile.com/c/UiceYX/0PZ3O
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Sensitivity analyses 

Observational. We assessed evidence for a non-linear relationship between alcohol and breast cancer 

or EOC outcomes by evaluating the dose-response relationship over strata of increasing alcohol intake 

in the observational analyses. For the KARMA study (where ER status was available for breast cancer 

cases), we performed stratified analyses to evaluate whether the alcohol-breast cancer association 

differed by ER status. There is no information available for ER-status in both the UK Biobank and 

Copenhagen cohort studies. Due to the high rate of missingness in the covariate data in our UKB 

(multivariable adjusted) observational HR analyses, we finally performed missing data imputation to 

evaluate whether the associations varied with more recovered samples (see Supplementary 

Methods).   

 

MR analyses For the genetically derived estimates, we first attempt to re-evaluate our MR findings 

using only the rs1229984 SNP as an instrument fitted through a Wald-type estimator 26. Next we 

ensure that our findings were not biased by violation of the MR assumptions by repeating our analyses 

using the following alternative MR models: MR Egger regression 27, weighted median 28 and the 

penalised weighted median model29. Deviations of the MR Egger regression intercept from the null for 

each tested outcome were used to assess evidence of directional pleiotropy. The multi-SNP MR 

analyses were also repeated using the MR-PRESSO technique 30 which provides adjusted causal 

estimates after filtering out heterogeneous SNP-outliers. MR estimates derived using these models 

were reported alongside the main (IVW) MR results to ensure robustness of findings as different 

techniques relax different assumptions. Funnel plots and leave-one-out MR plots were also generated 

to evaluate whether the causal estimates were driven by strong outliers. We also performed a SNP-

lookup on the recently published alcohol drinks/week GWAS summary data to evaluate whether our 

instrument-alcohol associations replicate well in the much larger GSCAN alcohol GWAS 31. Detailed 

descriptions of the MR sensitivity analyses are provided in the Supplementary Methods.  

https://paperpile.com/c/UiceYX/O0t8r
https://paperpile.com/c/UiceYX/xRUiV
https://paperpile.com/c/UiceYX/biFDU
https://paperpile.com/c/UiceYX/OTIBB
https://paperpile.com/c/UiceYX/5TOFA
https://paperpile.com/c/UiceYX/f62W


13 
 

For the MR analysis on breast cancer, we additionally performed stratified analyses based on estrogen 

receptor (ER) status, whilst for EOC, we subsequently evaluated the association of alcohol across 

different histotypes including the most common HGSOC histotype.  

 

Results 

Conventional observational analyses on alcohol consumption 

Observational association between alcohol consumption with breast and ovarian cancer risk 

Breast cancer. Alcohol consumption was associated with increased risk of breast cancer in the 

CCHS+CGPS cohorts with a HR of 1.09 per standard drink/day (95% C.I. 1.05, 1.13), and the Swedish 

KARMA study with HR 1.07 (0.97,1.19) while the HR in the UKB dataset was lower (HR 1.04 (1.01, 

1.07)). Meta-analysing all these estimates yielded an HR of 1.06 (1.04,1.08) for risk of breast cancer 

per one standard drink/day (Figure 2 upper panel) 

Ovarian cancer. In the UK Biobank, higher alcohol consumption was associated with a reduction in risk 

for cancers in the ovary with an age-adjusted HR of 0.92 (0.85,0.99). Using the multivariable adjusted 

model (N=61,267, N=187 cases), the log(HR) was unchanged, albeit with wider confidence intervals 

(adjusted HR 0.92 (0.83,1.03)) due to missing information on covariates. In CCHS+CGPS, the estimated 

HR (HR=1.07 (0.96,1.20)) was in the opposite direction, but with 95% CIs that overlapped the estimates 

from the UKBB. Combining both these estimates yielded an meta-analysed HR of 1.00 (0.92,1.08) for 

the risk of EOC per one standard drink of 10 g alcohol per day increase in alcohol consumption (Figure 

2 lower panel). 

(Figure 2 here) 

Instrumental variable analyses - Genetically predicted alcohol consumption 

Association of genetically predicted alcohol consumption with breast cancer and EOC 
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(Figure 3 here) 

For a one unit increase in genetically predicted daily alcohol intake (using 34 variants), the odds ratio 

on breast cancer was 1.03(0.93,1.14) in standard IVW analysis, with a tighter confidence interval when 

MR-PRESSO was used to discard one heterogeneous SNPs (OR 1.00 [0.93,1.08], figure 3). For EOC, the 

point estimate was less than one, although with relatively wide confidence intervals (OR 0.89 

(0.73,1.08)). The MR-PRESSO MR OR estimate for EOC was attenuated slightly towards the null (OR 

0.95 [0.85,1.06]). Given that all but one of the SNPs (rs62055546) used in our genetic instrument 

appeared homogeneous in our MR-PRESSO analysis we adopted the MR-PRESSO results as our 

primary results. Estimates of the MR association under alternative models are shown together in 

Figure 3. The comparison of our genetically derived estimate against our new observational findings 

and the WCRF results for breast cancer and EOC risk is provided in Figure 4. The original results not 

manually filtered for heterogenous SNPs are shown in Supplementary Table 11.  

 

For the multivariable analyses, the estimated marginal OR on breast cancer for one drinks/week 

increase is 1.03 (0.97,1.10) in the MVMR model after excluding SNPs with high heterogeneity scores 

(Q>3.84), showing no evidence of effect size attenuation in the univariate MR model due to negative 

pleiotropy. The MVMR OR estimate for ovarian cancer was 0.97 (0.87,1.09), see Supplementary Table 

12.  

(Figure 4 here) 

Sensitivity analyses 

The observational HR association between alcohol and breast cancer and EOC for different levels of 

alcohol consumption indicated no strong evidence for a non-linear relationship (Supplementary Table 

5-6). There was limited evidence that the alcohol-breast cancer association differed by ER status in 

the KARMA study (Supplementary Table 7). Furthermore, the age-adjusted and fully-adjusted models 
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gave similar estimates suggesting minimal evidence for confounding on the factors that were 

controlled for (Supplementary Table 8). To address the high rate of missingness in the UK Biobank 

multivariable-adjusted HR analyses, multiple imputation was performed to recover missing 

information in the covariates. We first verified that missingness of our covariates of interests can be 

predicted by our set of auxiliary variables and other covariates (satisfying the MAR assumption for 

accurate imputation) (see Supplementary Methods 8; Supplementary Figure 5 and 6). We generated 

a total of five sets of imputation datasets and pooled the estimates from each individual imputed 

dataset. The pooled regression estimates from imputed data revealed minor attenuation of the 

estimate between alcohol drinks/day and both cancers (HR on breast cancer =1.02 [1.00, 1.03] ; 

ovarian cancer = 0.94 [0.90, 0.99]) towards the null, providing more precise estimates upon modelling 

the covariates that previously had high rates of missingness adequately. However, these revised 

estimates were not meaningfully different from the original multivariable HR estimates as shown by 

the overlapping confidence intervals (Supplementary Table 9).  

(Figure 5 here) 

The confidence interval of the estimate from our single SNP MR analyses using the rs1229984 (ADH1B) 

variant (strongest instrument, explaining 0.23% of variation in alcohol intake, p=1e-128) largely 

overlaps those of the multi-instrument MR results (Supplementary Figure 1). The MR scatter plots for 

both cancers using the original 34 alcohol SNP instruments are shown in Figure 5. The F-statistics for 

our instruments suggest that each of our 34 SNPs are strong instruments, with SNP-alcohol 

associations (female only) being replicated successfully in the subsequent GSCAN GWAS revealing 

limited evidence for weak instrument bias (Supplementary Table 13-14). Our Steiger Z-test 

(Supplementary Table 15) also indicated no evidence for instrument mis-specification (i.e. our SNP 

instrument r^2 on alcohol >> r^2 on outcome) in our study design. Estimates derived from alternative 

MR methods (before/after filtering heterogenous instruments) reveal that our findings were robust 

against weak violation of MR assumption, with the MR-Egger intercepts showing no evidence for 
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directional pleiotropy (Supplementary Table 10, 11, 15 and 16). In our pleiotropy assessment, we did 

not observe evidence for an association between our genetic instruments with potential confounders 

including age at menarche, oral contraceptive use, smoking quantity, coffee consumption and 

psychiatric traits, except for BMI in the UKB (See Supplementary Table 17 and 18). However, the 

magnitude of association between rs1229984 and BMI is so small that it is very unlikely to have 

substantially biased our estimates. Moreover, our MR-PRESSO findings were statistically consistent 

with the IVW estimates for each trait. The distribution of effect sizes around the null across multiple 

sensitivity MR analyses provide strong support for an overall null or a very weak positive relationship 

between alcohol and breast cancer or EOC.    

 

In our exploratory MR analyses, stratification by ER status produced essentially unchanged the MR 

results for breast cancer (Supplementary Table 19). Similarly, for subtypes of EOC, results were 

indistinguishable from those for overall EOC: the high-grade serous estimate was 0.95 [0.85,1.06] 

(Supplementary Figure 2). 

 

Discussion 

In this study, we evaluated the association between alcohol consumption and breast and ovarian 

cancer using conventional observational prospective designs and MR approaches. The point estimates 

for breast cancer from the observational findings were slightly higher than those from MR, but with 

overlapping confidence intervals. Although the confidence intervals are wider for the MR estimates, 

the MR design is likely to be robust to some of the issues which can hamper interpretation of 

observational studies, such as confounding. Taken together, although our MR estimate overlaps the 

null, the confidence interval from our MR estimate remains consistent with a modest increase as 

consistently reported in observational findings. For EOC, the effect appears null in both the 

observational and MR analyses.   
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Comparison with previous literature 

Earlier molecular investigations found that alcohol may be implicated in the development of breast 

cancer, especially ER+ breast cancer, as it modulates estrogen levels. This adverse influence of alcohol 

is supported by a study investigating the link between alcohol intake and percentage of breast density 

(PBD), postulating a potential relationship between alcohol intake and breast cancer susceptibility via 

increased PBD 32. Similarly, many observational findings have found that alcohol consumption is 

associated with risk of breast cancers 33–36. Results from a large meta-analysis of  27 cohort studies 

showed that even light drinking (<1 drink/day) is associated with increased risk of breast cancer in 

women 37. In our study, we found suggestive evidence from our observational study meta-analysis 

that increased alcohol consumption is associated with susceptibility for breast cancers, although the 

magnitude of association was slightly lower than those reported by the WCRF 2. Here we add MR 

analysis to provide additional evidence as to whether the association seen in the observational studies 

represents a true causal association. Whilst the MR estimates had confidence intervals overlapping 

those from the observational studies, the most likely causal effect was zero (point estimate from MR 

analysis), with the relatively narrow MR confidence intervals suggesting the causal effect of alcohol 

intake is at most very small. 

 

The null association between alcohol and EOC was previously shown in the study by Kelemen et al. 38 

pooling together data from 12 case-control studies in OCAC, , and in other pooled case-control39 and 

cohort40 studies. In contrast, Cook et al.41 showed that self-reported wine consumption was associated 

with a reduction in EOC risk in a recent Canadian study. One possible explanation for such an 

association is that the relationship may have been driven by residual confounding with other 

exposures correlated with socio-economic factors such as educational attainment 38,41. While the 

estimated direction of effect for alcohol and ovarian cancer differed (non-significantly) for the UKB 

https://paperpile.com/c/UiceYX/YUzLh
https://paperpile.com/c/UiceYX/XVVEe+fldSa+hhXNr+b8vWO
https://paperpile.com/c/UiceYX/V3yzk
https://paperpile.com/c/UiceYX/GsWM
https://paperpile.com/c/UiceYX/uU88Z
https://paperpile.com/c/UiceYX/MWsaV
https://paperpile.com/c/UiceYX/rI9jH
https://paperpile.com/c/UiceYX/ZHWia
https://paperpile.com/c/UiceYX/ZHWia+uU88Z
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and Copenhagen cohorts, it is difficult to draw any definitive statement given the overlapping CIs and 

low number of cases. In our observational meta-analyses, we did not find strong evidence to support 

a protective association between alcohol and overall EOC, consistent with the WCRF findings 1. Our 

MR results for EOC were concordant with the observational study results. 

 

Strength and limitations 

Our large sample size combining data from various sources allow us to assess the role of alcohol 

consumption on breast/ovarian cancer with reasonably good precision. The MR approach provides 

additional evidence to triangulate evidence for causality. Our additional MR analysis using alcohol 

consumption instruments calibrated only among European women helps protect against biased 

inferences due to weak instruments 42. While these SNPs combined explain only a small amount 

(~0.92%) of variation in alcohol consumption among women (Supplementary Table 3), due to the large 

sample sizes from both OCAC and BCAC, the confidence intervals on our MR estimates are reasonably 

precise. The use of a larger set of SNP instruments also enabled better assessment of potential bias in 

MR findings through the use of alternative MR models which allow inference under a range of different 

assumptions (heterogeneity of effect sizes, horizontal pleiotropy).   

 

This study had some limitations. While genetically derived estimates are unlikely to be affected by 

confounding, the magnitude of association between these genetic instruments and estimated 

standard drinks detected in GWAS analyses relies on the accuracy of self-reported data, which may 

contain self-report bias. This might also apply to the UKBB with known healthy volunteer bias43, in 

which the genetic instruments were derived. In recent years, investigators have used multi-instrument 

MR experiments due to availability of genetic data on large cohorts. The multi-instrument approach 

is expected to minimise the standard errors around the causal estimates (relative to just a single SNP), 

although in practice we only found this to be the case when one heterogeneous SNP was discarded 

https://paperpile.com/c/UiceYX/XPOb
https://paperpile.com/c/UiceYX/MqZx0
https://paperpile.com/c/UiceYX/prun
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using MR-PRESSO (Figure 3). Furthermore, the strength of our instruments (explaining ~1% of 

variance) remain insufficient to detect small ORs and make further inference on causality, evident 

from the large degree of overlap in CIs between the observational and MR estimates. The presence of 

weak instruments in the multi-instrument MR can potentially bias the overall causal estimates 

towards the null 42, however this is unlikely the case given that our instruments satisfy the strong 

instrument criteria (median F-stat 22.2; Interquartile range: 19.5 - 30.3) and most of our variants show 

evidence of replication in the recent combined-sex drinks/week GWAS from GSCAN 31. Of the 98 

associations reported in the GSCAN alcohol GWAS meta-analysis31, 95 replicated in our combined-sex 

alcohol GWAS in UKBB alone, suggesting that the genotype-alcohol associations used in this study are 

fairly stable. Results from alternative MR estimators that are robust against horizontal pleiotropy were 

similar to the IVW findings, although the confidence intervals were wider for those techniques. In 

contrast, assessing the rs1229984-only estimate remains informative because rs1229984 by itself is 

by far the strongest and most extensively studied instrument among the SNP set with well-studied 

biological insights to justify its association with alcohol consumption. Apart from the ADH1B variant, 

the biological pathways linking the SNP instruments with alcohol consumption are not well 

understood; for a trait like alcohol, unmeasured pleiotropy remains a concern as variants might 

consequently influence alcohol intake through changes in socio-economic status, cultural factors and 

other social behaviours. In our assessment for bias, the MR-Egger intercept for alcohol-EOC did not 

show any evidence of directional pleiotropy affecting our MR findings (Supplementary Table 16).  

 

Earlier studies have suggested a link between acetaldehyde (ADH) and cancer cell growth 44,45, but it 

is unclear whether these associations were mainly driven by a change in alcohol consumption. 

Disentangling the complex effects of the rs1229984 variant is difficult, as previous studies have shown 

that the variant is associated with esophageal carcinoma 46, potentially due to accumulation of 

acetaldehyde among minor allele carriers although our single SNP MR analyses using the rs1229984 

https://paperpile.com/c/UiceYX/MqZx0
https://paperpile.com/c/UiceYX/f62W
https://paperpile.com/c/UiceYX/f62W
https://paperpile.com/c/UiceYX/jQwvs+gVd2m
https://paperpile.com/c/UiceYX/T0o2v
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(ADH1B) variant find weak evidence for an association with breast cancer risk. Our PheWAS findings 

on rs1229984 found no strong evidence that the ADH1B instrument was associated with potential risk 

factors linked with breast or ovarian cancer that are unlikely to be mediated through increased alcohol 

consumption (Supplementary Table 17). However, we cannot exclude the possibility of rs1229984 

being associated with other factors related to carcinogenesis and unmeasured confounders. We are 

unable to assess whether our MR causal inference remain consistent when we conservatively 

excluded rs1229984 from the main analyses, as it resulted in wide confidence intervals on the estimate 

(rs1229984 being the instrument that explains the highest amount of genetic variance, Supplementary 

Table 3).   

 

For our observational analyses, selection bias might be present for the study cohorts if participants 

are more healthy than non-participants. Our reliance of self-reported consumption data for the 

observational analyses is vulnerable to recall error, and the definition of standard drinks may differ 

slightly across regions, contributing to higher heterogeneity in our exposures. In the covariate-

adjusted model, the power to detect meaningful associations were hindered by a large degree of 

missingness on information for the covariates, especially the UK Biobank cohort where the number of 

cancer events from the multivariable-adjusted analyses were essentially halved.  Our multiple 

imputation analyses recovered valuable information on both smoking pack/years and duration of 

hormone-replacement therapy and in the pooled regression estimate adjusted for these covariates in 

the imputed dataset there was a small degree of attenuation of the effect size between alcohol and 

both cancers (towards the null). Whilst the regression analysis on the imputed dataset characterises 

confounding better, the estimates based on imputed data (with twice the number of events) were not 

meaningfully different to the original multivariable adjusted findings for the UKB (Supplementary 

Table 9) and  our conclusions remain essentially unchanged.  
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When we compare the observational findings across different cohorts, the breast cancer estimates for 

one standard drink/day increase from the Copenhagen cohorts and KARMA were broadly consistent 

with the overwhelming evidence from previous studies. However the estimated HR from the UKB 

cohort is slightly lower (HR 1.04). This might be explained by the healthy-volunteer selection bias in 

the recruitment for the UKB cohort, resulting in under-estimation of the true effect size. Conversely, 

genetic estimates are conceivably less affected by these biases, but they can be vulnerable to biases 

in the presence of horizontal pleiotropy. We performed sensitivity analyses based on filtering out SNPs 

with heterogeneous causal effects to reduce the chances of horizontal pleiotropy biasing the estimate 

including the use of MVMR to adjust for confounding risk factors, although in practice this made no 

meaningful changes to our results. If participants in the genetic study under-reported their true 

alcohol consumption this may lead to an underestimate of the SNP-alcohol effect sizes, resulting in an 

inflated estimate from the MR analysis. If the SNP-alcohol effect sizes were underestimated, it would 

suggest more strongly that alcohol intake is not causally associated with breast cancer. Finally, our risk 

estimates from the observational and MR analyses were on similar but not identical scales (i.e. OR 

versus HR); however for low prevalence outcomes any discrepancy is likely to be small. Individuals 

with high alcohol consumption are less likely to participate in the studies included, and competing 

risks after study participation may have influenced our estimates of the effect of risk factor on 

outcome, but since the observational studies largely reproduced results from other observational 

studies, this bias is likely to have been small. 

 

The MR estimates for alcohol and risk of breast cancer or EOC remain valid under the assumption that 

alcohol consumption and log(OR) of these disease outcomes have a linear relationship. This is a strong 

assumption, given previous speculation about a J-shaped relationship between alcohol and other 

disease outcomes (e.g. cardiovascular diseases) where abstainers are at higher risk similar to those 

drinking more than moderate amounts 47,48. Despite our inability to perform MR-by-stratum 

https://paperpile.com/c/UiceYX/NiTIc+lb3Lp
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(evaluating effect of genetically predicted alcohol consumption on risk of disease at various 

consumption levels) due to insufficient sample size, our observational findings show little evidence 

that the relationship between alcohol intake and these cancers is non-linear. Given that the alcohol 

variants (such as rs1229984) might predict both drinker status and quantity consumed, modelling the 

MR association within drinkers-only might potentially induce collider bias 49.  

 

Taken together, Mendelian randomization analyses are not inconsistent with findings from several 

cohort studies showing that moderate alcohol consumption is associated with a modest increase in 

risk of breast cancer (upper 95% CI of OR on breast cancer being 1.10 for a genetically predicted 1 

drink per day increase). For EOC alcohol intake is unlikely to have anything other than a very small 

effect on risk. 
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Figure Legends 

Figure 1. Schematic diagram illustrating the Mendelian randomization (MR) framework for the 

main analysis.  

 

Figure 2 Meta-analysis of the observational hazard ratio estimates for daily alcohol consumption 

on breast and ovarian cancer. Estimates were adjusted for BMI, oral contraceptive use, nulliparity, 

physical activity and education attainment. Please refer to supplementary table 7 for the estimated 

HR adjusted for age only. There is no strong evidence for effect heterogeneity (p>0.1) among 

estimates from each of these studies.  

 

Figure 3. Mendelian randomization estimates for the relationship between alcohol consumption 

and risk of breast/ovarian cancers. The confidence interval around the estimates narrowed down 

after we removed SNPs via the outlier test in MR-PRESSO. 

 

Figure 4. Comparison of observational and genetic (MR) estimates for the association between 

standard drink per day with breast and ovarian cancer risk.  Observational HR estimates were 

obtained via fixed effect meta-analysis of the studies used in the main analysis. The MR-PRESSO 

outlier-adjusted estimates were reported here as the MR-analysis findings. 

 

Figure 5. Scatter plot for the genetic association between alcohol drinks/week SNP instruments 

and risk of breast and ovarian cancers. The slope of the fitted line in the scatter plots reflect the MR 

causal estimates for each type of MR estimator. The scatter plot shows the association of a 

genetically predicted one standard drinks/week increase on log(OR) of the outcome (cancer) risk 

inferred via each alcohol SNP instrument. The panel (A) refers to the plot for overall EOC; (B) refers 

to the plot for the risk of overall breast. For both plots, the right-most point refers to the rs1229984 

SNP estimate. The forest plot for the individual SNP estimates along with the leave-one-SNP-out MR 

forest plot is shown in Supplementary Figure 3 and 4. 
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Supplementary materials and methods 

Method 1. Estimating phenotypic variance tagged by genetic variants 

 

For a set of 𝑘 SNP instruments and phenotype of interest 𝑌, we used the following equation to estimate 

the total phenotypic variance explained by instruments: 

𝑟2 = ∑  

𝑘

𝑖=1

 2𝑝𝑖(1 − 𝑝𝑖)𝛽𝑖
2 /𝑉𝑎𝑟(𝑌) 

 

Where 𝑝𝑖  and 𝛽𝑖 refers to the minor allele frequency and the magnitude of association of the i-th SNP. 

 

Method 2. Deriving number of alcoholic standard drinks in UK Biobank 

Information on quantity and frequency of alcohol consumption, was obtained through self-report 

questionnaires in the UKB. Frequency of consumption (AC-Frequency) was assessed in 501,718 

participants (UKB field IDs: 1558) with the item “About how often do you drink alcohol?”. Frequency was 

originally assessed at a scale ranging from 1 (daily or almost daily) to 6 (never), but was recoded so that 

a lower score represented less frequent drinking. For individuals who reported multiple instances (via 

multiple visits) of alcohol intake, only the first assessment was used.  

In those who drank at least once or twice a week, information on quantity of consumption (AC-Quantity) 

was assessed (n=348,039). AC-Quantity was assessed based on the average weekly alcohol intake for 

five general classes: red wine (1568), champagne plus white wine (1578), spirits (1598), beer plus cider 

(1558), and fortified wine (1608). The following item was used: “In an average WEEK, how many servings 

of {class of alcohol} would you drink?”. To combine the different classes of alcohol, we followed the 

procedures developed by Clarke et al. (2)  with some minor changes, as discussed below. To calculate 

the total number of alcohol standard drinks, the number of reported drinks was multiplied with a 

conversion factor depending on the class of alcohol (Supplementary Table 1). For the less-frequent 

drinkers, we repeated the same procedure using equivalent assessments available for their monthly 

(instead of weekly) quantity. These values were converted to weekly units by dividing by 4.3 (~30 

days/7). The average value for total drinks/day was then calculated for each frequency category (see 

Supplementary Table 2). We subsequently identified outliers as those who had a score that deviated >5 

SD from the average in each female drinker category.  

 

We then imputed the missing values with the sex-specific average of total standard drinks/week for 

each of the 6 frequency categories. This allowed us to utilise data from the maximum number of female 

participants for the GWAS analyses, further improving the statistical power to detect robust genetic 

instruments for alcohol intake. Finally, we selected only individuals of white-British ancestry based on 

clustering via ancestral principal components and performed the GWAS analyses as per description in 

https://paperpile.com/c/qRTXGi/4svL


11 
 

the main text. Unlike Clarke et al. (2), we did not include weight (in kg) as a covariate in the GWAS 

model. 

Method 3. Observational data for the Copenhagen General Population Study and the Copenhagen City 

Heart Study 

 

We performed cox regression analyses of the 69,420 women to evaluate the relationship between daily 

number of standard alcohol drinks of 10 g alcohol per day on breast cancer risk or ovarian cancer risk, 

adjusted for cohort, age, parity, use of contraceptives, hormone therapy, daily and cumulative tobacco 

use, height, weight, BMI, nulliparity and menopausal status. Follow up began at date of examination, 

and ended at next examination, date of first breast or ovarian cancer diagnosis, date of death, or end of 

follow up (December 31st 2016), whichever came first. Each woman from CCHS could contribute with up 

to 4 observations, depending on the number of examinations of that woman. Recurrent events were not 

considered. Women with event prior to entry were excluded from that particular analysis. Analyses 

were performed using STATA 13.1 SE.  

Method 4. Observational data for the Karolinska Mammography Project for Risk Prediction of Breast 

Cancer (KARMA). 

In the KARMA study, alcohol drinking behaviour of the participants was captured through diet 

questionnaires, along with information on other breast cancer related risk factors (Parity, age at 

menarche, anthropometric traits, smoking and menopausal status). Self-reported alcohol intake (in 

grams) estimated via questionnaires was standardised into number of standard drinks/week using a 

nominal conversion scale of 10g/standard drink. All individuals diagnosed with breast/ovarian cancer 

prior to recruitment were excluded. In total, 60,903 women (985 incident breast cancer cases) with non-

missing data on confounders were used for the KARMA observational analyses. Among the 985 cases, 

867 were ER+ while the remaining 118 were ER-. We derived both a crude estimate adjusting for only 

age, and a multivariable-adjusted estimate accounting for parity, age at menarche, BMI, height, hip 

circumference, smoking and menopausal status. The Software SAS v9.4 was used for the KARMA 

observational analyses. 

Method 5. Modelling the association between alcohol and BrCa/OvCa in UK Biobank  

Using our derived alcohol intake phenotype (estimated standard drinks per week), we used Cox 

proportional hazards models to quantify the association between alcohol consumption and 

breast/ovarian cancer risk. All cancers diagnosed prior to recruitment (prevalent cases) were excluded, 

retaining only 427 ovarian cancer and 4,081 breast cancer incident cases (cohort size, n=145,089 

women) all of which are filtered to be genetically unrelated. The crude model adjusts for only top 10 

ancestral principal components, with age at last follow-up as the underlying time variable. The adjusted 

model (complete_model) additionally included the following covariates: number of live births, cigarette 

pack years, smoking status (former, current, non-smoker), coffee intake, education attainment, BMI, 

height, physical activity, age at menarche and menopausal status. Individuals that are cryptically related 

https://paperpile.com/c/qRTXGi/4svL
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were removed by filtering individual-pairs (and retaining only one of each) with a strong degree of 

genetic relatedness (�̂� > 0.2) estimated through genetic data. The sample size for the adjusted model 

were lower due to missing data on some of the covariables (See Supplementary Table 7). The Cox 

proportional hazard models were implemented using Surv() in R. 

Method 6. Sensitivity analyses for the Mendelian randomization study 

 

Weak violation of the MR assumptions (such as SNP-confounding and invalid instruments) can severely 

bias MR inferences. To address these issues, we performed sensitivity analyses using alternative MR 

models (MR Egger, Weighted median, MR-PRESSO) that are least affected by these violations. The MR-

Egger intercepts were computed to evaluate evidence of directional pleiotropy, which would be 

captured by a non-zero intercept estimate. To generate a reliable causal estimate, we attempted to 

screen for heterogeneity in MR causal estimates through the global and individual SNP heterogeneity 

Cochran Q test (Supplementary Table 10). We conservatively excluded any SNPs with a Q-score greater 

than 3.84 (3). These estimates are provided in Supplementary Table 11. In the main text, we included 

the MR-PRESSO estimates alongside the IVW estimate to provide an estimate of the MR association that 

are robust against SNP-heterogeneity. Furthermore, leave-one-out MR analyses (MR estimates leaving 

out one SNP at a time) were also used to detect outliers in our MR estimates. For the single instrument 

(rs1229984) MR analyses, the causal estimate was computed using a wald-type ratio estimator. We 

further performed a phenome-wide association scan (PheWAS) on the rs1229984 SNP, which is the 

strongest alcohol-associated genetic variant against publicly available GWAS datasets to assess potential 

pleiotropic association with known confounders. The Steiger-Z test was also used to perform MR 

directionality test to ensure SNP instruments are acting on the correct hypothesized causal pathway and 

avoid instrument mis-specification.   

 

For the MR-PRESSO analysis, each trait (cancer outcomes) was performed using the mr_presso() function 

in the mr-presso R package (4), with default setting at Nb=5000 iterations, enabled distortion test, enabled 

outlier test and applied an outlier-significance threshold of 0.05. SNP alleles were harmonized prior to 

running these analyses via the harmonize() feature in the MR-Base R-package. All sensitivity analyses apart 

from the MR-PRESSO tests were performed using the MendelianRandomization and MR-Base R package 

(5,6). 

 

Method 7. Multivariable Mendelian randomization analyses 

 

When the exposure of interest is correlated with various other risk factors, MR estimates can be 

severely biased by horizontal pleiotropy. However, some of the SNP association on these risk factors 

might manifest in the same causal pathway, where manual removal of these variants would reduce 

statistical power for MR. The multivariable MR model can hence be used to evaluate the direct effect 

between our exposure of interest on the outcome while adjusting the genetic effect our SNPs exert on a 

https://paperpile.com/c/qRTXGi/NUbOI
https://paperpile.com/c/qRTXGi/xx6RM
https://paperpile.com/c/qRTXGi/Yc2Ax+Qycd3


13 
 

set of risk factors. This is implemented through the mv_multiple() function curated within the 

TwoSampleMR R package. The risk factors that we adjusted for includes BMI, BMI-adjusted waist-to-hip 

ratio (WHR), education attainment and cigarette smoked per day, all of which had data available in the 

UK Biobank cohort. We performed the GWAS for BMI and WHR using identical procedure to those 

described in previous work (Gharahkhani et al. 2019). We recoded education attainment as an ordinary 

variable, with the lowest score reflecting lowest attained academic qualification, with individuals that 

reported to have “Other professional qualification” excluded from the GWAS analysis. The variable is 

then ranked-transformed to allow effect size to be interpreted in changes in SD units. For cigarette per 

day, we excluded individuals reported to have smoked more than 99 cigarettes per day but retained 

individuals that reported zero consumption levels. For both education attainment and cigarette/day, the 

GWAS was performed on 438,609 white British individuals in the UK Biobank using the BOLT-LMM 

software, adjusting for recruitment age, sex and top 10 ancestral principal components. The effect 

estimate of the alcohol instruments on these risk factors obtained directly from the GWAS summary 

statistics were then applied into the MVMR model.  

 

Method 8. Imputation of missing covariate data in UK Biobank observational analyses 

In our primary cox-regression analyses, participants with missing information on any of the covariates 

are removed from the analyses. For the UK Biobank cohort, this eventually resulted in a much lower 

sample size (cases were essentially halved) for the multifactor-adjusted cox regression analyses. To be 

able to include additional samples, we imputed missing confounders via multiple imputation analyses in 

R. We extracted a collection of phenotypes on socio-economic status, sexual development, and female 

sex-specific risk factors (see list below). The pairwise correlation between these phenotypes and the 

covariates (for imputation) are shown in Supplementary Figure 5.  

 

Finalised Variables considered in the multiple imputation analyses including auxiliary variables (AX):  

“Ever smoked”, “Age at menarche”, “Duration of daily moderate physical activity”, “Duration of daily 

vigorous physical activity”, “coffee cups/day”, “drink temperature (AX) ”, “Townsend deprivation index”, 

“Duration of hormone replacement therapy (HRT)”, “Ever had HRT”, “Menopausal status”, “Smoking 

pack years”, “Overall health rating (AX)”, “Body mass index”, “Frequency of visit from friends and family 

(AX)”, “Number of live births”, “Age at first sexual intercourse (AX)”, “Renting or privately owns an 

apartment (AX)”, “Academic qualifications”, “Age completed full time education (AX)”, “Number of 

medications (AX)”, “Number of vehicles in the household (AX)”, “Birth weight (AX)”, “Height” 

 

Before we can proceed to impute the missing values on the covariates, we first extracted a series of 

auxiliary variables from the UK Biobank to assess whether missingness on any of these covariate of 

interests can be predicted by these auxiliary variables (along with the other covariates with low 

missingness). This can be done via performing a logistic regression fitting all auxiliary variables against 

the missingness status of the covariate (i.e.  we defined a ‘missingness status’ phenotype where we 

recoded missing values as 1, and non-missing values as 0 for the trait under assessment). We performed 

this check for each covariate we intend to impute, to help assess plausibility of the Missing-at-random 
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(MAR) assumption prior to multiple imputation. In our dataset, the missingness for each of our covariate 

of interests can be predicted by atleast one auxiliary variable (average predictors ~ 3), hence there is 

strong evidence to support the MAR assumption on the pattern of missingness for these covariates. We 

also compared these predictability estimates against those from the predictor matrix derived from the 

MiCE initiation process (accessible via imp$predictorMatrix upon executing 

“imp=mice(dat,m=1,max_iter=0,..))”. The comparison of the predictability of each covariate and the 

specific models used for the imputation of the trait is summarized in Table M8. We did NOT impute our 

outcome (cancer diagnosis) and exposure (alcohol drinks/week) phenotype to prevent bias from circular 

associations – these variables were manually omitted from the multiple imputation process. 

 

The missing data imputation was performed using mice() from the MiCE R package for missing data 

imputation (available at https://github.com/stefvanbuuren/mice). The process was set for a maximum 

of 5 iterations, generating 5 distinct datasets with pseudo-random seed set at seed=123. We applied 

different imputation models to impute covariate data of varying characteristics: the predictive mean 

matching model (pmm) for quantitative trait, logistic regression (logreg) for binary trait, proportional 

odds model (plr) for ordered categorical traits and polytomous regression (polyreg) for 

ordered/unordered categorical traits. Cox proportional hazard estimates from the 5 distinct imputed 

datasets were then computed using Surv() and then pooled together via the pool() function in MiCE. The 

pooled estimates were finally compared against the original estimate (multivariable adjusted Cox-

model) for both cancers to evaluate potential difference in observational findings. Note that the 

multiple imputation analysis was performed on the entire set of UK Biobank female participants used in 

the main analysis but were evaluated separately for both cancers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



15 
 

Table M8. Evaluation of missingness in covariate data in the UK Biobank breast/ovarian cancer cohort 

 

Variable Data 
structure 

Proportion of missing 
values 

Predictable 
from auxiliary 
variables 

Number of 
predictors 
(based on 
MiCE 
prediction 
matrix) 

Number of 
predictors 
(based on 
missingness 
regression) 

Imputation 
model 

Used 
  in 
analyses 

Breast 
cancer UKB 
cohort 

Ovarian 
cancer 
  UKB 
cohort 

Duration 
  of Hormone 
replacement 
therapy 

Continuous 0.732 0.713 Yes 3 6 pmm N/A 

Cigarettes 
  smoked in pack 
years 

Continuous 0.361 0.352 Yes 12 5 pmm N/A 

Qualification Categorical 
  (ordered) 

0.172 0.167 Yes 13 8 polr Yes 

Coffee 
  consumption 
(cup/day) 

Continuous 0.073 0.071 Yes 1 2 pmm Yes 

Duration 
  of daily 
moderate physical 
activity 

Categorical 
(ordered) 

0.055 0.054 Yes 3 1 polr Yes 

Duration 
  of daily vigorous 
physical activity 

Categorical 
(ordered) 

0.051 0.049 Yes 3 2 polr Yes 

Age 
  at menarche 

Continuous 0.029 0.028 Yes 1 1 pmm Yes 

Ever 
  smoked 

Binary 0.003 0.003 Yes 3 3 logreg Yes 

BMI Continuous 0.003 0.002 Yes 11 3 pmm Yes 

Height Continuous 0.002 0.002 Yes 7 2 pmm Yes 

Menopausal 
  status 

Categorical 
  (unordered) 

0.002 0.001 Yes 7 3 polyreg Yes 

Number 
  of live births 

Continuous 0.001 0.001 Yes 8 4 pmm Yes 

Townsend 
  deprivation 
index 

Continuous 0.001 0.001 Yes 0 0 pmm Yes 

Participant 
  ID 

N/A 0 0 N/A N/A N/A N/A Reference 
only 

Sex N/A 0 0 N/A N/A N/A N/A N/A 
  

The model “pmm” refers to the predictive mean matching model for quantitative traits, “polr” refers to proportional odds 

model for ordered categorical variable(s), “polyreg” refers to polytomous logistic regression for unordered categorical 
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variable(s) and “logreg” refers to logistic regression for binary coded variable(s). The performance of the logistic regression on 

missingness is poor (since ncases [missing=1] for traits with very low missingness is very small) apart from duration of HRT and 

cigarette smoked in pack years; note that these estimates are indicative of plausibility for MAR assumption only, since the 

multiple imputation process was wholly performed via the MiCE R package. 
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Supplementary tables 

Supplementary Table 1. Conversion table for various alcoholic beverage into units of standard drinks. 

Type of alcoholic beverage UKB-ID for 
weekly; monthly 

Standard drinks equivalence 

Red wine 1568 ; 4407 1.67 

White wine 1578 ; 4418 1.67 

Fortitude wine 1608 ; 4451 2.25 

Spirits 1598 ; 4440 1 

Pint of beer 1588 ; 4429 2.3 

Other alcoholic drinks 5364 ; 4462 1.1 

 

Supplementary Table 2. Estimated average of total standard drinks per week across each consumption 

category among women in the UK Biobank cohort. 

Alcohol frequency category Description Average no. of standard 
drinks/week 

Category 1 Daily or almost daily 12.5 

Category 2 3 or 4 times a week 8.0 

Category 3 Once or twice a week 5.0 

Category 4 1 or 3 times a month 0.8 

Category 5 Special occasion only 0.5 

Category 6 Never 0 

Total - 9.4 
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Supplementary Table 3. Phenotypic variance (weekly alcohol intake) explained by alcohol-associated 

SNP instruments used in MR analysis. The variance explained by instrument (𝒓𝟐) was estimated using 

the formula provided in Supplementary methods. BETA refer to the magnitude of association on 

estimated standard drinks/week per effect allele (EA) of the SNP. EAF is the frequency of the effect 

allele. The variance for drinks/week was estimated to be 256.67 (across both sexes) and 114.60 (in 

females). Only SNPs with P<1e-5 in the female-only GWAS are used as instruments for the MR analyses. 

 

SNP CHR EA NEA Estimated across both sexes Estimated in females only 

EAF BETA P-value r^2 EAF BETA P-value r^2  

rs1229984 4 T C 0.02 -3.421 1.10E-218 0.0020 0.02 -2.471 6.80E-121 0.0023 

rs1260326 2 T C 0.39 -0.529 3.50E-58 0.0005 0.39 -0.315 4.60E-23 0.0004 

rs11940694 4 A G 0.39 -0.518 9.70E-55 0.0005 0.39 -0.342 1.40E-26 0.0005 

rs13107325 4 C T 0.93 0.706 4.50E-30 0.0003 0.93 0.300 6.70E-07 0.0001 

rs1302808 4 C A 0.80 -0.446 1.90E-27 0.0002 0.80 -0.318 6.50E-16 0.0003 

rs62055546 17 A C 0.78 0.401 1.50E-24 0.0002 0.78 0.258 1.10E-11 0.0002 

rs1004787 2 G A 0.47 -0.310 9.90E-22 0.0002 0.47 -0.235 1.10E-13 0.0002 

rs11604680 11 A G 0.68 0.305 5.50E-19 0.0002 0.68 0.167 5.80E-07 0.0001 

rs56094641 16 A G 0.60 0.251 2.30E-14 0.0001 0.60 0.072 2.20E-02 0.0000 

rs61873510 10 G T 0.67 0.263 5.70E-14 0.0001 0.67 0.181 5.80E-08 0.0001 

rs9822731 3 T C 0.78 -0.288 7.80E-14 0.0001 0.78 -0.189 2.40E-07 0.0001 

rs485425 11 C G 0.45 -0.229 5.30E-13 0.0001 0.45 -0.141 3.40E-06 0.0001 

rs4630328 11 G A 0.62 0.237 6.60E-13 0.0001 0.62 0.228 4.30E-13 0.0002 

rs113443718 16 G A 0.69 0.251 9.80E-13 0.0001 0.69 0.192 1.90E-08 0.0001 

rs378421 16 G A 0.58 0.228 1.40E-12 0.0001 0.58 0.181 2.00E-08 0.0001 

rs838145 19 G A 0.46 0.229 2.60E-12 0.0001 0.46 0.216 4.70E-12 0.0002 

rs6969458 7 G A 0.53 -0.227 5.00E-12 0.0001 0.53 -0.182 6.40E-09 0.0001 

rs75199129 2 A T 0.95 0.510 1.00E-11 0.0001 0.95 0.320 7.90E-06 0.0001 
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rs13413953 2 T G 0.64 0.228 1.60E-11 0.0001 0.64 0.168 1.80E-07 0.0001 

rs28929474 14 C T 0.98 0.755 2.30E-11 0.0001 0.98 0.389 4.90E-04 0.0001 

rs4480324 1 A G 0.30 0.239 2.60E-11 0.0001 0.29 0.145 3.80E-05 0.0001 

rs12124523 1 C T 0.89 0.340 2.80E-11 0.0001 0.89 0.178 2.70E-04 0.0001 

rs74424378 9 T G 0.76 0.251 3.40E-11 0.0001 0.76 0.208 1.90E-08 0.0001 

rs77294902 17 G A 0.78 0.252 5.00E-11 0.0001 0.78 0.161 1.50E-05 0.0001 

rs6452788 5 G A 0.76 -0.249 5.20E-11 0.0001 0.76 -0.223 8.20E-10 0.0002 

rs7786376 7 A G 0.72 -0.240 6.30E-11 0.0001 0.72 -0.193 4.90E-08 0.0001 

rs7132908 12 G A 0.62 0.206 1.50E-10 0.0001 0.62 0.119 1.80E-04 0.0001 

rs11860773 16 T C 0.80 0.264 1.60E-10 0.0001 0.80 0.204 1.40E-07 0.0001 

rs4815366 20 G T 0.36 -0.213 1.60E-10 0.0001 0.36 -0.162 5.90E-07 0.0001 

rs2858088 4 A G 0.38 -0.208 3.50E-10 0.0001 0.38 -0.129 5.00E-05 0.0001 

rs2959005 15 C T 0.33 -0.216 4.10E-10 0.0001 0.33 -0.100 2.10E-03 0.0000 

rs9349379 6 A G 0.59 -0.207 4.30E-10 0.0001 0.59 -0.146 4.30E-06 0.0001 

rs748919 11 T C 0.79 0.245 4.60E-10 0.0001 0.79 0.131 4.90E-04 0.0000 

rs113441031 16 C T 0.83 0.266 6.40E-10 0.0001 0.83 0.135 1.40E-03 0.0000 

rs109536 9 G C 0.73 -0.222 6.50E-10 0.0001 0.73 -0.102 2.70E-03 0.0000 

rs2717053 2 G C 0.37 -0.205 8.20E-10 0.0001 0.37 -0.074 2.10E-02 0.0000 

rs35572189 17 G A 0.64 -0.205 8.80E-10 0.0001 0.64 -0.089 5.40E-03 0.0000 

rs2274793 14 C T 0.67 0.210 9.20E-10 0.0001 0.67 0.154 1.70E-06 0.0001 

rs147711594 3 G T 0.98 0.651 9.60E-10 0.0001 0.98 0.416 2.90E-05 0.0001 

rs322764 7 G A 0.44 -0.197 1.00E-09 0.0001 0.44 -0.131 3.70E-05 0.0001 

rs11692435 2 G A 0.92 -0.364 1.10E-09 0.0001 0.92 -0.156 4.80E-03 0.0000 

rs7940127 11 T C 0.14 -0.281 1.10E-09 0.0001 0.14 -0.144 1.30E-03 0.0000 

rs11648570 16 T C 0.89 -0.318 1.30E-09 0.0001 0.89 -0.243 1.80E-06 0.0001 
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rs72726477 4 G A 0.88 0.304 1.30E-09 0.0001 0.88 0.136 4.40E-03 0.0000 

rs75543135 19 T A 0.88 -0.309 1.70E-09 0.0001 0.88 -0.081 8.90E-02 0.0000 

rs56197131 7 G A 0.80 0.239 2.70E-09 0.0001 0.80 0.170 1.20E-05 0.0001 

rs17177078 16 C T 0.94 0.421 3.10E-09 0.0001 0.94 0.297 1.20E-05 0.0001 

rs324012 12 C T 0.55 -0.194 3.20E-09 0.0001 0.55 -0.084 8.40E-03 0.0000 

rs142687608 16 A G 0.98 0.661 7.50E-09 0.0001 0.98 0.508 5.30E-06 0.0001 

rs6136465 20 G A 0.60 0.190 8.00E-09 0.0001 0.60 0.124 6.10E-05 0.0001 

rs7630012 3 A G 0.57 0.186 8.00E-09 0.0001 0.57 0.165 2.00E-07 0.0001 

rs77123275 9 C T 0.95 -0.415 8.10E-09 0.0001 0.95 -0.284 5.70E-05 0.0001 

rs3809162 12 A G 0.59 -0.185 8.30E-09 0.0001 0.59 -0.195 6.40E-10 0.0002 

rs28601761 8 C G 0.58 -0.193 8.40E-09 0.0001 0.58 -0.103 1.60E-03 0.0000 

rs9639559 7 C T 0.28 -0.213 8.40E-09 0.0001 0.27 -0.136 9.70E-05 0.0001 

rs4775792 15 T G 0.37 0.192 8.50E-09 0.0001 0.37 0.094 4.50E-03 0.0000 

rs17446532 9 C T 0.51 -0.182 8.80E-09 0.0001 0.51 -0.106 8.20E-04 0.0000 

rs12899560 15 C T 0.59 -0.195 9.60E-09 0.0001 0.59 -0.096 2.20E-03 0.0000 

rs11773627 7 T C 0.81 -0.238 9.70E-09 0.0001 0.81 -0.093 2.10E-02 0.0000 

rs2117760 3 C A 0.71 0.198 1.00E-08 0.0001 0.71 0.180 1.40E-07 0.0001 

rs7673993 4 A G 0.58 -0.187 1.10E-08 0.0001 0.58 -0.161 3.60E-07 0.0001 

rs142488468 10 G C 0.82 0.238 1.30E-08 0.0001 0.82 0.146 1.90E-04 0.0001 

rs7499750 16 A C 0.22 0.217 1.40E-08 0.0001 0.23 0.170 6.00E-06 0.0001 

rs2584448 4 T G 0.43 -0.187 1.70E-08 0.0001 0.43 -0.159 5.00E-07 0.0001 

rs17884691 22 G A 0.75 0.208 2.00E-08 0.0001 0.75 0.155 2.60E-05 0.0001 

rs756747 7 T G 0.48 -0.183 2.00E-08 0.0001 0.48 -0.111 2.30E-04 0.0001 

rs11030084 11 C T 0.81 0.228 2.20E-08 0.0001 0.81 0.113 3.30E-03 0.0000 

rs1713675 11 A G 0.51 -0.183 2.40E-08 0.0001 0.51 -0.132 4.40E-05 0.0001 
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rs2756185 6 G A 0.93 0.337 2.60E-08 0.0001 0.93 0.066 2.10E-01 0.0000 

rs11079849 17 C T 0.67 -0.195 2.80E-08 0.0001 0.67 -0.111 9.20E-04 0.0000 

rs118784 5 T A 0.50 -0.178 3.20E-08 0.0001 0.50 -0.110 3.30E-04 0.0001 

rs78621285 16 A T 0.91 0.312 3.20E-08 0.0001 0.91 0.175 1.10E-03 0.0000 

rs1788820 18 A G 0.35 -0.186 3.40E-08 0.0001 0.34 -0.156 1.70E-06 0.0001 

rs2068650 5 A C 0.53 0.178 3.70E-08 0.0001 0.53 0.145 2.60E-06 0.0001 

rs6690101 1 T C 0.46 -0.178 3.90E-08 0.0001 0.46 -0.114 2.80E-04 0.0001 

rs1788030 18 C T 0.54 0.179 4.70E-08 0.0001 0.54 0.096 3.00E-03 0.0000 

rs11090045 22 G A 0.69 0.194 4.80E-08 0.0001 0.69 0.129 1.50E-04 0.0001 

Combined       0.0094    0.0095 

 

 

Supplementary Table 4. Power calculation for MR analysis 

Outcome Number of Controls Number of cases OR>1.15 OR>1.20 OR>1.30 

Breast cancer 105974 122977 0.91 0.99 0.99 

Ovarian cancer 40941 22406 0.4 0.62 0.91 

 
Power for MR analysis estimated for a 1SD change in alcohol intake (~1.4 stand drinks/day) using mRnd power 

calculator (https://shiny.cnsgenomics.com/mRnd/). Variance explained by instrument is set to be 𝑟2=0.95%. 
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Supplementary Table 5. Estimated hazard ratios for the association between daily alcohol 

consumption and breast and ovarian cancer in the CCHS+CGPS for different consumption levels. 

Breast cancer Total sample size HR (adjusted model) P-value 

Daily number of drinks (1 drink=12g) 

0.0-0.9 44451 0.91 (0.82, 1.00) 0.05 

1.0-1.9 21435 REF - 

2.0-2.9 8156 1.11 (0.97, 1.27) 0.13 

3.0-3.0 2765 1.24 (1.02, 1.51) 0.03 

4.0-4.9 871 1.38 (1.00, 1.90) 0.05 

5.0-9.9 550 1.36 (0.91, 2.03) 0.13 

>=10 38 4.3 (1.61, 11.49) 0.004 

   P-trend= 0.02 

Ovarian cancer    

Daily number of drinks (1 drink=12g) 

0.0-0.9 45601 1.19 (0.91, 1.55) 0.22 

1.0-1.9 22242 REF  

2.0-2.9 8510 1.19 (0.81, 1.74) 0.37 

3.0-3.0 2873 0.62 (0.29, 1.35) 0.23 

4.0-4.9 916 2.89 (1.50, 5.58) 0.002 

5.0-9.9 566 1.87 (0.69, 5.12) 0.22 

>=10 no events   

   P-trend=0.32 

Analyses used age as the underlying time, and were adjusted for cohort (CCHS or CGPS), birth year, and examination year. For 

both cancers, final consumption category (>=10) was omitted from trend test.  
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Supplementary Table 6. Estimated hazard ratio for the association between daily alcohol drinks with 

breast cancer in the KARMA study for different consumption levels. 

Study Category  
(daily alcohol intake, in grams) 

HR (only age adjusted) HR (full adjusted model) 

KARMA 0.1-9.9g 1.13 (0.93,1.36) 1.10 (0.91,1.34) 

KARMA 10-20g 1.18 (0.79,1.76) 1.14 (0.76,1.69) 

KARMA 20-30g 1.30 (0.62,2.74) 1.25 (0.60,2.64) 

 

 

Supplementary Table 7. Estimated hazard ratio for the association between daily alcohol drinks with 

breast cancer in the KARMA study stratified by ER status of breast cancer. 

Study ER Status Events HR (only age adjusted) HR (full adjusted model) 

KARMA All breast cancer 985 1.09 (0.99,1.20) 1.07 (0.97,1.19) 

KARMA ER+ breast cancer 867 1.10 (0.99,1.23) 1.09 (0.98,1.21) 

KARMA ER- breast cancer 118 0.97 (0.73,1.30) 0.99 (0.74,1.34) 

 

 

 

 

 

 

 

 

 

 

 



24 
 

Supplementary Table 8. Comparison of age- and fully-adjusted hazard ratios for the association 

between daily alcohol intake and breast and ovarian cancer risk for each study. Age was used as the 

underlying time variable. Participants were censored at the last visit, death or event, whichever came 

first.  

 Only age adjustment Multifactorial adjustment 

Study Events Participants HR_age adjusted Events Participants HR_fully adjusted 

Breast       

KARMA 985 59918 1.12 (1.01,1.24) 985 59918 1.07 (0.97, 1.19) 

CCHS+CGPS 2312 65803 1.07 (1.04, 1.10) 2055 63560 1.09 (1.05, 1.13) 

UK Biobank 4081 141008 1.08 (1.06, 1.10) 1787 64622 1.04 (1.01, 1.07) 

       

Ovarian       

CCHS+CGPS 327 67981 1.05 (0.97, 1.14) 287 62867 1.07 (0.99, 1.16) 

UK Biobank 427 137394 0.97 (0.90, 1.04) 187 61267 0.92 (0.83, 1.03) 

 

The crude HR model is adjusted for recruitment age, top 10 ancestral principal components (UKB only) and Townsend deprivation index (UKB 

only). The adjusted model incorporates the following additional covariates: coffee intake, BMI, height, smoking pack years, menopausal status, 

number of live births, ever smoked, education, duration of moderate and vigorous physical activities and age at menarche. Given that a sizeable 

proportion of the UK Biobank participants are cryptically related, estimates obtained from the UK Biobank had been adjusted for cryptic 

relatedness (i.e. related individuals removed within and between cancer cases and healthy individuals undiagnosed with any cancer).  
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Supplementary Table 9. Comparison of pooled HR estimates obtained through missing covariate data 

imputation against original estimates in the UK Biobank breast and ovarian cancer cohort.  

Outcome Events Participants HR (95% CI) P-value 

Age-adjusted HR model 

Breast cancer 4081 141008 1.08 (1.06, 1.10) 3.20E-15 

Ovarian cancer 427 137394 0.97 (0.90, 1.04) 0.38 

     

Multivariable-adjusted HR model 

Breast cancer 1787 64622 1.04 (1.01, 1.07) 0.01 

Ovarian cancer 187 61267 0.92 (0.83, 1.03) 0.16 

     

Pooled multivariable-adjusted HR model using imputed covariate data 

Breast cancer 4081 141008 1.02 (1.00, 1.03) 8.5E-3 

Ovarian cancer 427 137394 0.94 (0.90, 0.99) 0.01 

 

The crude HR model is adjusted for recruitment age, top 10 ancestral principal components (UKB only) and Townsend deprivation index (UKB 

only). The adjusted model incorporates the following additional covariates: coffee intake, BMI, height, smoking pack years, menopausal status, 

number of live births, ever smoked, education, duration of moderate and vigorous physical activities and age at menarche. The pooled HR 

estimates were averaged across 5 imputed datasets. Note that the cancer outcome of interest, recruitment age, and diagnosis age were not 

imputed.  
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Supplementary Table 10. Global test for heterogeneity on MR causal estimates. SNP-outliers are 

detected using the conventional Cochran Q-statistics (with df=1), where SNPs that have a heterogeneity 

score > 3.84 are filtered. The causal estimate derived from the filtered set of SNPs are reported in the 

main analysis. 

Trait Methods 

Before filtering heterogenous SNP-
effects After filtering heterogenous SNP-effects 

nsnps 
cochran Q-
stats Q-stat pvalue nsnps 

cochran Q-
stats 

Q-stat 
pvalue 

All BrCa IVW(main) 34 82.4 2.53E-06 29 26.6 0.54 

 MR-Egger 34 81.9 1.80E-06 29 26.6 0.49 

        

All EOC IVW(main) 34 73.7 6.19E-05 33 24.3 0.83 

 MR-Egger 34 73.3 4.45E-05 33 22.8 0.86 

        

 

The variant(s) that was dropped after heterogeneity filtering were rs11648570, rs2117760, rs61873510 and 

rs62055546 for the breast cancer MR analysis. The variant that was dropped was rs62055546 for the ovarian 

cancer MR analysis. 
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Supplementary Table 11. Comparison of MR estimates across alternative MR methods before and 

after filtering for SNP-heterogeneity. For MR-Egger(bootstrap), 1000 bootstrap iterations were 

performed to obtain reliable standard errors for the causal estimates. PWM stands for the penalized 

weighted median model. 

Outcome MR-model Before filtering for SNP-

heterogeneity 

  After filtering for SNP-

heterogeneity 

P-value OR L_95CI U_95CI   P-

value 

OR L_95CI U_95CI 

All Breast 

cancers 

MR-Egger 0.96 1.00 0.86 1.17  0.83 0.99 0.90 1.09 

  PWM 0.50 0.97 0.89 1.06  0.51 0.97 0.89 1.06 

  IVW (random 

effect) 

0.53 1.03 0.93 1.14  0.78 0.99 0.93 1.06 

 IVW (fixed 

effect) 

0.31 1.03 0.97 1.10  0.78 0.99 0.93 1.06 

                

All EOC MR-Egger 0.27 0.84 0.62 1.14  0.17 0.86 0.71 1.06 

  PWM 0.07 0.84 0.70 1.01  0.003 0.73 0.59 0.90 

  IVW (random 

effect) 

0.23 0.89 0.73 1.08  0.39 0.95 0.85 1.07 

 IVW (fixed 

effect) 

0.07 0.89 0.78 1.01  0.46 0.95 0.83 1.08 
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Supplementary Table 12. Multivariable MR analysis adjusting for the effect on adiposity, smoking 

behaviour and education attainment. Changes in the MVMR estimate before and after filtering out 

SNPs with heterogeneous effect sizes indicate that the unadjusted estimates were largely driven by 

outliers. Estimated OR reflect the change in risk per one SD increase in the risk factors. 

Risk factors Outcome 

Before filtering for heterogenous 
variants 

After filtering for heterogenous 
variants 

nsnp pval OR CI_low CI_upper nsnp pval OR CI_low CI_upper 

Cigarette/day 
Breast 
cancer 34 0.02 1.03 1.01 1.06 30 0.00 1.03 1.01 1.05 

Education 
attainment 

Breast 
cancer 34 0.08 1.67 0.95 2.96 30 0.20 1.34 0.86 2.09 

estimated 
standard 
drinks/week 

Breast 
cancer 34 0.02 1.10 1.02 1.19 30 0.31 1.03 0.97 1.10 

Waist-Hip Ratio 
adjusted for BMI 

Breast 
cancer 34 0.00 0.45 0.29 0.70 30 0.03 0.69 0.49 0.97 

BMI 
Breast 
cancer 34 0.92 1.00 0.93 1.07 30 0.95 1.00 0.95 1.06 

            

Cigarette/day 
Ovarian 
cancer 34 0.19 1.04 0.98 1.11 33 0.01 1.05 1.01 1.09 

Education 
attainment 

Ovarian 
cancer 34 0.04 0.26 0.07 0.94 33 0.50 0.76 0.34 1.69 

estimated 
standard 
drinks/week 

Ovarian 
cancer 34 0.03 0.82 0.95 1.00 33 0.65 0.97 0.87 1.09 

Waist-Hip Ratio 
adjusted for BMI 

Ovarian 
cancer 34 0.42 1.53 0.55 4.26 33 0.11 0.59 0.31 1.13 

BMI 
Ovarian 
cancer 4 0.43 0.94 0.79 1.11 33 0.98 1.00 0.91 1.11 

 

The variant(s) that was dropped after heterogeneity filtering were rs11648570, rs2117760, rs61873510 and 

rs62055546 for the breast cancer MR analysis. The variant that was dropped was rs62055546 for the ovarian 

cancer MR analysis. PheWAS analysis reveal that the dropped variant rs62055546 in both the breast and ovarian 

cancer analyses was strongly associated with changes in red blood cell count 

(http://geneatlas.roslin.ed.ac.uk/phewas/?variant=rs62055546&representation=table). 
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Supplementary Table 13. Comparison of instrument strength across various sets of instrument from 

UK Biobank drinks/week GWAS. The median value (and the interquartile range) for the partial F-

statistics for each set of instruments were reported. 

Test 
statistics 

Alcohol intake 
(combined sex) 

Alcohol intake (combined 
sex) Alcohol intake (females only) 

Number of 
SNPs 77 34 34 

Total r2 0.009 0.006 0.007 

Partial  
F-stat 30.31[26.6 - 37.0] 37.3 [29.3 - 46.3] 22.2 [19.5 - 30.3]  

total F 50 75 41.7 

Description 

Variants identified 
from combined sex 
alcohol GWAS 

Variants identified from 
combined sex GWAS that 
replicate in female only 
GWAS (p<1e-5) 

Variants identified from combined sex 
GWAS that replicate in female only 
GWAS (p<1e-5), using EAF and effect 
sizes from female only GWAS 
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Supplementary Table 14. Evidence of replication of UKBB estimated drinks/week (females only) SNP-

association in the GSCAN drinks/week GWAS summary statistics 

 

SNP CHR NEA EA EAF 
BETA_
GSCAN SE_GSCAN N_GSCAN 

PVALUE_
GSCAN PVAL_UKBB 

rs1260326 2 T C 0.60 0.024 0.002 532340 3.33E-33 4.60E-23 

rs75199129 2 A T 0.04 -0.026 0.005 513023 8.44E-09 7.90E-06 

rs1004787 2 G A 0.58 0.015 0.002 526940 3.31E-15 1.10E-13 

rs13413953 2 T G 0.34 -0.012 0.002 529000 5.35E-09 1.80E-07 

rs7630012 3 A G 0.46 -0.007 0.002 535602 0.000423 2.00E-07 

rs2117760 3 C A 0.28 -0.009 0.002 524866 1.01E-05 1.40E-07 

rs9822731 3 T C 0.22 0.017 0.002 531166 5.03E-14 2.40E-07 

rs11940694 4 A G 0.60 0.028 0.002 527865 3.11E-46 1.40E-26 

rs7673993 4 A G 0.41 0.012 0.002 529073 2.65E-09 3.60E-07 

rs1229984 4 T C 0.95 0.188 0.006 514602 1.60E-203 6.80E-121 

rs1302808 4 C A 0.19 0.024 0.002 516605 1.36E-23 6.50E-16 

rs2584448 4 T G 0.54 0.010 0.002 531331 1.83E-07 5.00E-07 

rs13107325 4 C T 0.07 -0.036 0.004 528164 1.23E-20 6.70E-07 

rs6452788 5 G A 0.27 0.012 0.002 535356 3.58E-07 8.20E-10 

rs2068650 5 A C 0.47 -0.009 0.002 527780 2.38E-06 2.60E-06 

rs9349379 6 A G 0.40 0.009 0.002 526515 4.90E-06 4.30E-06 

rs7786376 7 A G 0.27 0.011 0.002 525890 1.01E-06 4.90E-08 

rs6969458 7 G A 0.46 0.013 0.002 509646 5.20E-11 6.40E-09 

rs74424378 9 T G 0.26 -0.011 0.002 530826 1.72E-06 1.90E-08 

rs61873510 10 G T 0.31 -0.011 0.002 500397 8.83E-08 5.80E-08 

rs11604680 11 A G 0.32 -0.015 0.002 526748 2.87E-12 5.80E-07 

rs4630328 11 G A 0.35 -0.014 0.002 531293 3.80E-12 4.30E-13 

rs485425 11 C G 0.54 0.010 0.002 532602 2.13E-07 3.40E-06 

rs3809162 12 A G 0.41 0.010 0.002 527315 4.61E-07 6.40E-10 

rs2274793 14 C T 0.33 -0.012 0.002 531843 3.15E-09 1.70E-06 

rs7499750 16 A C 0.78 -0.009 0.002 534136 0.000192 6.00E-06 

rs378421 16 G A 0.41 -0.013 0.002 508328 2.26E-11 2.00E-08 

rs113443718 16 G A 0.28 -0.011 0.002 510879 5.26E-08 1.90E-08 

rs142687608 16 A G 0.02 -0.021 0.007 489914 0.00226 5.30E-06 
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rs11648570 16 T C 0.11 0.019 0.003 526153 3.43E-09 1.80E-06 

rs11860773 16 T C 0.18 -0.015 0.002 515422 8.35E-10 1.40E-07 

rs62055546 17 A C 0.20 -0.020 0.002 529432 3.06E-17 1.10E-11 

rs1788820 18 A G 0.65 0.007 0.002 535226 0.000374 1.70E-06 

rs838145 19 G A 0.58 -0.016 0.002 521587 3.87E-16 4.70E-12 

rs4815366 20 G T 0.67 0.009 0.002 534788 2.70E-06 5.90E-07 

 

 

Supplementary Table 15. MR Steiger Z-test for directionality.  

Outcome Exposure 
𝒓𝟐 on 
exposure 

𝒓𝟐 on 
outcome 

Correct causal 
direction 

Directionality test p-
value 

Breast 
cancer 

alcohol 
(drinks/week) 0.007 0.00024 TRUE <1e-300 

Ovarian 
cancer 

alcohol 
(drinks/week) 0.007 0.00078 TRUE <1e-300 

 

 

 

Supplementary Table 16. Estimate of the MR-Egger intercept for the MR analysis between alcohol 

intake with breast and ovarian cancer risk. For both cancer outcomes, the MR Egger intercept was not 

significantly different from zero, presenting limited evidence against the presence of directional 

pleiotropy biasing the IVW results. 

Outcome Intercept se(intercept) Pvalue 
lower 95% 
C.I. upper 95% C.I. 

All Breast cancer 0.002 0.003 0.483 -0.004 0.008 

      

All EOC -0.001 0.004 0.752 -0.009 0.006 
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Supplementary Table 17. Pleiotropy assessment on ADH1B SNP rs1229984 using the online 

Phenoscanner database. Beta refer to the magnitude of association on the traits per effect allele (T), the 

none effect allele for the SNP is C. Note that traits that are directly related to alcohol drinking (e.g. 

alcohol dependence) are excluded. Traits with N_cases being zero are quantitative traits. Only 

association estimates derived from Europeans were included. 

 

Trait Beta se P-value direction N N_cases N_controls 

Upper 
aerodigestive 
tract cancers 

0.4447 0.0476 1E-20 + - - - 

Self-reported 
gout 

0.0084 0.001 3.6E-18 + 337159 4807 332352 

Reason for 
reducing 
amount of 
alcohol drunk: 
health 
precaution 

-0.051 0.0063 8E-16 - 124798 40728 84070 

Treatment 
with 
allopurinol 

0.0068 0.0009 6.1E-15 + 337159 3819 333340 

Leg fat mass 
right 

-0.042 0.0066 9.4E-11 - 331293 0 331293 

Systolic blood 
pressure 

-0.052 0.0083 3.3E-10 - 317754 0 317754 

Leg fat mass 
left 

-0.04 0.0065 9.5E-10 - 331275 0 331275 

Leg fat 
percentage 
right 

-0.03 0.0052 6.5E-09 - 331296 0 331296 

Whole body 
fat mass 

-0.045 0.008 1.4E-08 - 330762 0 330762 

Leg fat 
percentage 
left 

-0.028 0.0051 5E-08 - 331278 0 331278 
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Body mass 
index 

-0.044 0.0081 6.5E-08 - 336107 0 336107 

Vascular or 
heart 
problems 
diagnosed by 
doctor: none 
of the above 

0.02 0.0037 8.9E-08 + 336683 236530 100153 

Vascular or 
heart 
problems 
diagnosed by 
doctor: high 
blood pressure 

-0.019 0.0036 1.1E-07 - 336683 91033 245650 

Sodium in 
urine 

0.0422 0.008 1.2E-07 + 326831 0 326831 

Arm fat mass 
left 

-0.042 0.008 1.4E-07 - 331164 0 331164 

Body fat 
percentage 

-0.033 0.0063 1.5E-07 - 331117 0 331117 

Arm fat mass 
right 

-0.041 0.008 2.5E-07 - 331226 0 331226 

Trunk fat mass -0.042 0.0083 2.9E-07 - 331093 0 331093 

Pulse pressure -0.465 0.0925 5.00E-07 - - - - 

Arm fat 
percentage 
left 

-0.031 0.0062 7E-07 - 331198 0 331198 

Waist 
circumference 

-0.036 0.0073 8.1E-07 - 336639 0 336639 

Self-reported 
hypertension 

-0.018 0.0036 8.2E-07 - 337159 87690 249469 
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Medication for 
cholesterol, 
blood pressure 
or diabetes: 
cholesterol 
lowering 
medication 

-0.025 0.0051 9.9E-07 - 154702 35840 118862 

Weight -0.035 0.0072 1.3E-06 - 336227 0 336227 

Arm fat 
percentage 
right 

-0.03 0.0062 1.8E-06 - 331249 0 331249 

Trunk fat 
percentage 

-0.035 0.0075 3.9E-06 - 331113 0 331113 

 

 

Supplementary Table 18. Pleiotropy assessment on ADH1B SNP rs1229984 using database GeneATLAS. 

Shortlisted traits are risk factors that are potentially associated with breast/ovarian cancer. These 

associations are obtained from the UK Biobank only. The GeneATLAS database is available at 

https://geneatlas.roslin.ed.ac.uk/phewas/) 

 

Trait Variant Eff. 
allele 

beta pvalue MAF 

Psychological/psychiatric problem rs1229984 C -0.001564 0.37201 0.0246 

N95 Menopausal and other 
perimenopausal disorders 

rs1229984 C -0.002943 0.12659 0.0246 

Smoking status rs1229984 C -0.003317 0.42239 0.0246 

Body mass index (BMI) rs1229984 C 0.17162 2.6542e-11 0.0246 

Standing height rs1229984 C -0.026256 0.32622 0.0246 

 

 

 

http://geneatlas.roslin.ed.ac.uk/phewas/
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Supplementary Table 19. MR association between standard drink/day alcohol consumption and 

breast cancer risk stratified by ER status. The MR association estimates derived from alternative MR 

models (other than the IVW) were shown altogether. For MR-Egger(bootstrap), 1000 bootstrap 

iterations were performed to obtain reliable standard errors for the causal estimates. PWM stands for 

the penalized weighted median model. The confidence interval of the estimated OR for ER- and ER+ 

breast cancer were largely overlapping and included the null (OR=1), indicating minimal meaningful 

differences with respect to the relationship against alcohol intake.  

Outcome MR-model 

Before filtering for SNP-
heterogeneity 

  
After filtering for SNP-
heterogeneity 

P-
value 

OR L_95CI U_95CI   
P-
value 

OR L_95CI U_95CI 

ER- Breast 
cancers 

MR-Egger 0.52 0.93 0.75 1.15   0.2 0.89 0.75 1.06 

  PWM 0.22 0.91 0.78 1.06   0.22 0.91 0.78 1.06 

  
IVW (random 
effect) 

0.77 0.98 0.85 1.13   0.71 0.98 0.89 1.08 

 
IVW (fixed 
effect) 

0.71 0.98 0.88 1.09  0.74 0.98 0.88 1.09 

                      

ER+ Breast 
cancers 

MR-Egger 0.64 0.96 0.82 1.12   0.37 0.95 0.85 1.06 

  PWM 0.30 0.95 0.85 1.05   0.29 0.95 0.86 1.05 

 
IVW (random 
effect) 

0.76 1.02 0.92 1.12   0.96 1.00 0.92 1.08 

  
IVW (fixed 
effect) 

0.67 1.02 0.94 1.09  0.96 1.00 0.93 1.08 
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Supplementary Figures 

Supplementary Figure 1. Comparison of MR association between estimated one standard drink/day 

and breast cancer and EOC susceptibility using single instrument and multiple instrument approaches. 

Estimates for the multi-instrument analyses were derived from 34 alcohol-associated SNPs as per main 

analysis. LMP refer to Low-malignant potential tumours. 

 
 

Supplementary Figure 2. MR association between estimated one standard drink/day and EOC 

susceptibility based on EOC subtypes. Estimates were derived from 34 alcohol-associated SNPs as per 

main analysis. LMP refer to Low-malignant potential tumours. The serous subtype can further be 

separated into high-grade serous and low-grade serous EOC. 
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Supplementary Figure 3. Scatter plot and forest plot for the genetic association between alcohol 

drinks/week SNP instruments and risk of breast and ovarian cancers. The slope of the fitted line in the 

scatter plots reflect the MR causal estimates for each MR estimator. The forest plot shows the 

association of a genetically predicted one unit increase in alcohol drinks/week (need to be multiplied by 

7 to obtain drink/day) on log(OR) of the outcome (cancer) risk inferred via each alcohol SNP instrument. 

The panel (a) refer to the plots for overall EOC and (b) refer to the plots for the risk of overall breast 

cancers respectively. The rs62055546 variant was consistently dropped after filtering for SNP-

heterogeneity. 

(a) Overall EOC MR scatter plot and forest plot 

 

 

(b) All Breast cancer MR scatter plot and forest plot 
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Supplementary Figure 4. MR Leave-one-out plots for the genetic association between alcohol 

drinks/week SNP instruments and risk of breast and ovarian cancers. The forest plot shows the IVW 

estimate of a genetically predicted one unit increase in alcohol drinks/week (need to be multiplied by 7 

to obtain drink/day) on log(OR) of the outcome (cancer) risk inferred via excluding one alcohol SNP 

instrument at a time. The left and right side of panel (a) refer to the Leave-one-out plot for EOC and (b) 

refer to the plots for overall breast cancer.  

(a) Ovarian cancer 

 

(b) MR leave-one-out breast cancer 
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Supplementary Figure 5. Phenotypic correlation between covariates and auxilliary variables used in 

the multiple imputation analysis for the UKB cohort. The figure below shows the magnitude of 

correlation between pairs of traits, with correlations that did not achieve nominal significance (p<0.05) 

left blank. The complete list of variables carried forward into the imputation process can be found in 

Table M8 (methods table in Supplementary material) . 
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Supplementary Figure 6. Indicator matrix on the predictability of covariates with missing data from 

other covariates and auxiliary variables estimated from MiCE. For each row, a positive indicator value 

(value=1) indicates that the trait of the corresponding column can be used to predict the row trait in a 

multiple imputation framework (vice versa, for column on row). The total number of predictors for a 

given trait is hence the sum of values across the row and column corresponding to that trait. We 

manually omit the cancer diagnosis outcome variables (diag_age_C50/C56 and C50/C56), genetic sex 

(inferred.sex) and the user ID (FID) phenotype from the multiple imputation analysis.  
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Meta−analysis of observational hazard ratio estimates for one standard drink increase 
on risk of breast and ovarian cancers

Studies

CCHS+CGPS

KARMA

UKBB

Combined (BrCa)

CCHS+CGPS

UKBB

Combined (EOC)

Cancers

Breast

Breast

Breast

Breast

EOC

EOC

EOC

Cases; Total

2039;65126

985;60903

1787;62867

4811;188896

264;61427

187;61267

451;122964

HR (95% C.I.)

1.09(1.05, 1.13)

1.07(0.97, 1.19)

1.04(1.01, 1.07)

1.06(1.04, 1.08)

1.07(0.96, 1.20)
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Odds Ratio



Mendelian randomization estimate for the odds ratio on breast and ovarian cancer 
per one standard drink/day increase in estimated alcohol consumption

Outcome

All breast cancer

EOC

Instruments

Inverse−variance weighted

MR−PRESSO (outlier−adjusted)

MR−Egger

Penalised weighted median

Inverse−variance weighted

MR−PRESSO (outlier−adjusted)

MR−Egger

Penalised weighted median

SNPs

34

33

34

34

34

33

34

34

OR (95% C.I.)

1.03(0.93, 1.14)

1.00(0.93, 1.08)

1.00(0.86, 1.17)

0.97(0.89, 1.06)

0.89(0.73, 1.08)

0.95(0.85, 1.06)

0.84(0.62, 1.14)

0.84(0.70, 1.01)

P−value

0.53

0.92

0.96

0.5

0.23

0.36

0.27

0.07

0.5 0.75 1 1.25 1.5
Odds Ratio



Comparison of observational and genetic estimates for one
standard drink/day increase in alcohol consumption on risk of breast and ovarian cancers

Studies

Observational

WCRF CUP meta−analysis

MR analysis (BCAC data)

Observational (HR)

WCRF SLR meta−analysis

MR analysis (OCAC data)

Cancers

Breast

Breast

Breast

EOC

EOC

EOC

Cases

4811

35221

122977

451

2954

22406

Model

HR

RR

OR

HR

RR

OR

Measure

1 std drink/day

10g ethanol/day

1 std drink/day

1 std drink/day

10g ethanol/day

1 std drink/day

Estimate 
(95% C.I.)

1.06(1.04, 1.08)

1.09(1.07, 1.12)

1.00(0.93, 1.08)

1.00(0.92, 1.08)

1.01(0.96, 1.06)

0.95(0.85, 1.06)

0.5 0.75 1 1.25 1.5
Odds Ratio
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