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ABSTRACT

Dimension reduction is widely used and often necessary to make network analyses and their9

interpretation tractable by reducing high dimensional data to a small number of underlying10

variables. Techniques such as Exploratory Factor Analysis (EFA) are used by neuroscientists to11

reduce measurements from a large number of brain regions to a tractable number of factors.12

However, dimension reduction often ignores relevant a priori knowledge about the structure of the13

data. For example, it is well established that the brain is highly symmetric. In this paper, we (a)14

show the adverse consequences of ignoring a priori structure in factor analysis, (b) propose a15

technique to accommodate structure in EFA using structured residuals (EFAST), and (c) apply16

this technique to three large and varied brain imaging network datasets, demonstrating the17

superior fit and interpretability of our approach. We provide an R software package to enable18

researchers to apply EFAST to other suitable datasets.19

INTRODUCTION

Using modern imaging techniques, it is possible to investigate brain networks involving many20

regions, across different modalities such as grey matter volume, white matter tracts, and functional21

connectivity. To examine the relation of these networks with external variables of interest, it is22
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often necessary to summarize them using a small number of dimensions – often called factors or23

components. These low-dimensional components representing the networks can be tracked over24

the lifespan (de Mooij, Henson, Waldorp, & Kievit, 2018; DuPre & Spreng, 2017), compared to25

behavioural measures (Colibazzi et al., 2008), or related to phenotypes such as intelligence26

(Ferguson, Anderson, & Spreng, 2017). In the fields of statistics and mathematics, such methods27

for making analyses tractable and interpretable are collectively called dimension reduction.28

Many popular dimension reduction techniques make use of covariance. For example, principal29

components analysis (PCA) can be estimated using only a decomposition of the covariance30

matrix. Covariance underlies many brain imaging and network analysis approaches, too: in31

analysis of structural connectivity, regions of grey matter volume or white matter tractography32

which covary across individuals may constitute connected networks (Alexander-Bloch, Giedd, &33

Bullmore, 2013; Mechelli, Friston, Frackowiak, & Price, 2005), and in resting-state fMRI analysis,34

regions which covary within an individual over time are considered to have a functional connection35

(Van Den Heuvel & Pol, 2010). Thus, dimension reduction on the basis of covariance matrices is36

directly applicable to the field of network neuroscience.37

Exploratory factor analysis (EFA) is one such method for dimension reduction based on38

covariance. EFA models the observed covariance matrix of a set of P variables by assuming there39

are M < P factors, which predict the values on the observed variables. Although other techniques40

such as PCA and Independent Component Analysis (ICA) are more common in neuroimaging41

analysis, EFA has been used since the early days of MRI (see McIntosh and Protzner, 2012 for a42

review and Machado, Gee, and Campos, 2004 for an early methodological investigation). For43

instance, Tien et al. (1996) performed an EFA on 60 controls and 44 schizophrenia patients for a44

selection of regions of interest, explicitly noting the high degree of left/right symmetry and a45

disruption of this symmetry in patients. Similarly early studies used EFA to model morphology46

(Stievenart et al., 1997) and width (Denenberg, Kertesz, & Cowell, 1991) of the corpus callosum.47

Some approaches combined SEM and PCA to model latent factors of grey matter structure in48

clinical populations (Yeh et al., 2010). These approaches have also been used to study typical49

population of children and adults (Colibazzi et al., 2008). More recently, EFA has been used to50

reduce individual differences in white matter microstructure in clinical populations (Herbert et al.,51
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2018), as well as (extremely) large scale population studies (Cox et al., 2016). Hybrid approaches52

have combined exploratory and confirmatory factor analysis approaches (Baskin-Sommers,53

Neumann, Cope, & Kiehl, 2016; de Mooij et al., 2018) and used EFA in multimodal structural54

acquisitions (Mancini et al., 2016). EFA has also been used for functional imaging, including both55

fMRI (e.g., James et al., 2009) and EEG (Scharf & Nestler, 2018; Tucker & Roth, 1984). Most56

excitingly, recent work has used EFA to compare and contrast patterns of individual differences in57

brain structure at baseline with individual differences in developmental change over time, noting58

striking differences in dimensionality of change versus cross-sectional differences (Cox et al., 2020).59

Although the above is not intended to be a comprehensive review, it shows that EFA has been60

used widely in the imaging literature since early days.61

Many related dimension reduction techniques exist beyond EFA, including Partial Least62

Squares (PLS), Independent Component Analysis (ICA), spectral decomposition, and many more63

beyond our current scope (see Roweis & Ghahramani, 1999; Sorzano, Vargas, & Montano, 2014).64

All of these techniques aim to approximate the observed data by means of a lower-dimensional65

representation. These techniques, although powerful, share a particular limitation, at least in their66

canonical implementations, namely that they cannot easily integrate prior knowledge of67

(additional) covariance structure present in the data. In other words, all observed covariation is68

modeled by the underlying factor structure.69

This limitation is relevant in the context of structural and functional brain connectivity data70

because of symmetry: Much like other body parts, contralateral (left/right) brain regions are71

highly correlated due to developmental and genetic mechanisms which govern the gross72

morphology of the brain. Ignoring this prior information will adversely affect the dimension73

reduction step, leading to worse representation of the high-dimensional data by the extracted74

factors. Simple workarounds, such as averaging left and right into a single index per region, have75

other drawbacks: they throw away information, preclude the discovery of (predominantly)76

lateralized factors, and prevent the study of (a)symmetry as a topic of interest in and of itself.77

Other classes of techniques, developed largely within psychometrics, can naturally78

accommodate additional covariance structure such as symmetry. These techniques started with79

multitrait - multimethod (MTMM) matrices (Campbell & Fiske, 1959) and later confirmatory80
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factor analysis (CFA) with residual covariances (e.g., Kenny, 1976). MTMM is designed to extract81

factors when these factors are measured in different ways: when measuring personality through a82

self-report questionnaire and behaviour ratings, there are factors that explain correlation among83

items corresponding to a specific trait such as ’extraversion’, and there are factors that explain84

additional correlation between items because they are gathered using the same methods85

(self-report and behavioural ratings). Thus MTMM techniques separate the correlation matrix86

into two distinct, summative parts: correlation due to the underlying traits (factors) of central87

interest, and correlation due residual structure in the measurements. However, MTMM requires a88

priori knowledge of the trait structure (e.g., the OCEAN model of personality) for estimation.89

In this paper, we combine dimension reduction (e.g., across many brain regions) and prior90

structure knowledge (e.g., symmetry) by introducing EFA with structured residuals (EFAST).91

EFAST builds on standard implementations of EFA, CFA, and MTMM, but goes beyond these92

techniques by simultaneously allowing for exploration and the incorporation of residual structure.93

We show that EFAST outperforms EFA in empirically plausible scenarios, and that ignoring the94

problem of structured residuals in these scenarios adversely affects inferences.95

This paper is structured as follows. First, we explain why using standard EFA or CFA for brain96

imaging data may lead to undesirable results, and we develop EFAST based on novel techniques97

from structural equation modeling (SEM). Then, we show that EFAST performs well in98

simulations, demonstrating superior performance compared to EFA in terms of factor recovery,99

factor covariance estimation, and the number of extracted factors when dealing with symmetry.100

Third, we illustrate EFAST in a large neuroimaging cohort (Cam-CAN; Shafto et al., 2014). We101

illustrate EFAST for three distinct datasets: Grey matter volume, white matter microstructure102

and within-subject fMRI functional connectivity. We show how EFAST outperforms EFA both103

conceptually and statistically in all three datasets, showing the generality of our technique. We104

conclude with an overview and suggestions for further research.105

Accompanying this paper, we provide tools for researchers to use and expand upon with their106

own datasets. These tools take the form of (a) an R package called efast and a tutorial with107

example code (https://github.com/vankesteren/efast), and (b) synthetic data and code to108

reproduce the empirical examples and simulations (https://github.com/vankesteren/efast_code).109
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FACTOR ANALYSIS WITH STRUCTURED RESIDUALS

In this section, we compare and contrast existing approaches in their ability to perform factor110

analysis in an exploratory way while at the same time accounting for residual structure. We111

discuss new developments in the field of exploratory structural equation modeling (ESEM) that112

enable simultaneous estimation of exploratory factors and structured residuals, after which we113

develop the EFAST model as an ESEM with a single exploratory block. We will use brain114

morphology data with bilateral symmetry as our working example throughout, although the115

principles here can be generalized to datasets with similar properties.116

EFA, as implemented in software programs such as SPSS, R, and Mplus, models the observed117

correlation matrix through two summative components: the factor loading matrix Λ, relating the118

predefined number M of factors to the observed variables, and a diagonal residual variance matrix119

Θ, signifying the variance in the observed variables unexplained by the factors. Using maximum120

likelihood, principal axis factoring, or least squares (Harman & Jones, 1966), the factor loadings121

and residual variances are estimated such that the implied correlation matrix Σ = ΛΛT +Θ best122

approximates the observed correlation matrix S. After estimation, the factor loadings are rotated123

to their final interpretable solution using objectives such as oblimin, varimax, or geomin124

(Bernaards & Jennrich, 2005).125

We illustrate the challenge and the rationale behind our approach in Figure 1. The true126

correlation matrix is highlighted on the left, with correlations due to three factors shown as127

diagonal blocks. However, there is also considerable off-diagonal structure: the secondary128

diagonals show a symmetry pattern similar to that observed in real-world brain structure data129

(Taylor et al., 2017). The top panel of the figure shows that a traditional EFA approach will130

separate this data matrix into two components: (a) covariance due to the hypothesized factor131

structure and (b) the diagonal residual matrix. The key challenge is that EFA will attempt to132

approximate all the off-diagonal elements of the correlation matrix through the factors, even if133

this adversely affects the recovery of the true factor structure. Performing EFA with such a134

symmetry pattern may affect the factor solution in a variety of ways. For instance, in this toy135

example, the EFA model requires more than 12 factors to represent the data, instead of the three136

5



factors specified (see supplementary figure S1). In other words, in such cases it is essential to137

incorporate the known residual structure via a set of additional assumptions.138

ΛΨΛT Θ+

ΛΨΛT Θ+ Θstructure+

Exploratory factor analysis

Observed correlation

Confirmatory factor analysis with structured residuals

Figure 1. Example observed correlation matrix and its associated decomposition according to EFA (top) and according to CFA (bottom)

into a factor-implied correlation component (ΛΨΛT ), residual variance component Θ, and – in CFA with residual structure only – residual

structure component.

139

140

141

As an alternative to EFA, we may implement a Confirmatory Factor Analysis (CFA) instead. In142

contrast to EFA, CFA imposes a priori constraints on the Λ matrix: some observed variables do143

not load on some factors. Moreover, in contrast to standard EFA approaches, residual structure144

can be easily implemented in CFA using standard SEM software such as lavaan (Rosseel, 2012).145

In other words, CFA would allow us to tackle the problem in Figure 1: We can allow for the146
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residual structure known a priori to be present in the data. By allowing for the residual structure147

in the data, a CFA yields the implied matrices shown in the bottom panel of Figure 1, retrieving148

the correct factor loadings, residual variance, and residual structure. However, this is only possible149

because in this toy example we know the factor structure - In many empirical situations this is150

precisely what we wish to discover. In the absence of theory about the underlying factors, it is151

thus not possible to benefit from these features of CFA.152

As such, we need an approach that can combine the strengths of EFA (estimating the factor153

structure in the absence of strong a priori theory) with those from CFA (the potential to allow for154

a priori residual structure). Here, we propose a hybrid between the two, which we call exploratory155

factor analysis with structured residuals, or EFAST. In order to implement and estimate these156

models, we make use of recent developments in the field of structural equation modeling (SEM).157

In the next section, we explain how these developments make EFAST estimation possible.158

Exploratory SEM159

Exploratory SEM (ESEM) is an extension to SEM which allows for blocks of exploratory factor160

analysis within the framework of confirmatory SEM (Asparouhov & Muthén, 2009; Brown, 2006;161

Guàrdia-Olmos, Peró-Cebollero, Benítez-Borrego, & Fox, 2009; Jöreskog, 1969; Marsh, Morin,162

Parker, & Kaur, 2014; Rosseel, 2019). ESEM is a two-step procedure. In the first step, a regular163

SEM model is estimated, where each of the EFA blocks have a diagonal latent covariance matrix164

Ψ and the Λ matrix of each block is of transposed echelon form, meaning all elements above the165

diagonal are constrained to 0. For a nine-variable, three-factor EFA block b the matrices would166

then be:167
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Ψb =


1 0 0

0 1 0

0 0 1

 , Λb =



λ11 0 0

λ21 λ22 0

λ31 λ32 λ33

λ41 λ42 λ43

λ51 λ52 λ53

λ61 λ62 λ63

λ71 λ72 λ73

λ81 λ82 λ83

λ91 λ92 λ93


This means there are M2

b constraints for each EFA block b. This is the same number of168

constraints as conventional EFA (Asparouhov & Muthén, 2009). The second step in ESEM is to169

rotate the solution using a rotation matrix H . Just as in regular EFA, this rotation matrix is170

constructed using objectives such as geomin or oblimin. In ESEM, the rotation affects the factor171

loadings and latent covariances of the EFA blocks, but also almost all other parameters in the172

model (Asparouhov and Muthén (2009) provide an overview of how rotation changes these173

parameter estimates). Despite these changes, a key property of ESEM is that different rotation174

solutions lead to the same overall model fit.175

ESEM has long been available only in Mplus (Asparouhov & Muthén, 2009; Muthén & Muthén,176

1998). More recently, it has become available in open sourced R packages psych (for specific177

models, Revelle, 2018) as well as lavaan (since version 0.6-4, Rosseel, 2019) – a comprehensive178

package for structural equation modeling. An example of a basic EFA model using lavaan syntax179

with 3 latent variables and 9 observed variables is the following:180

efa(”block1”)*F1 =~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9181

efa(”block1”)*F2 =~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9182

efa(”block1”)*F3 =~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9183

In effect, this model specifies three latent variables (F1, F2, and F3) which are each indicated184

by all 9 observed variables (x1 to x9). The efa(”block1”) part is a modifier for this model which185

imposes the constraints on Ψ and Λ mentioned above. For a more detailed explanation of the186
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lavaan syntax, see Rosseel (2012). Figure 2 shows a comparison of the factor loadings obtained187

using conventional factor analysis (factanal() in R) and lavaan’s efa() modifier. As shown, the188

solution obtained is exactly the same, with perfect correlation among the loadings for each of the189

factors.190
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Figure 2. Exploratory factor analysis of 9 variables in the Holzinger and Swineford (1939) dataset. On the y-axis are the estimated factor

loadings using the oblimin rotation functionality in lavaan version 0.6-4, and the loadings on the x-axis are derived from factanal with

oblimin rotation from the GPArotation package (Bernaards & Jennrich, 2005). The loadings are all on the diagonal with a correlation of

1, meaning the solutions obtained from these different methods are equal.

191

192

193

194

With this tool as the basis for model estimation, the next section provides a detailed195

development of the construction of EFAST models.196

EFAST models197

We propose using EFA with corrections for contralateral covariance within the ESEM framework.198

The corrections we propose are the same as in MTMM models or CFA with residual covariance.199

In EFAST the method factors use CFA, and the remaining correlations are explained by EFA.200

Thus, unlike standard MTMM methods, EFAST contains exploratory factor analysis on the trait201
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side, as the factor structure of the traits is unknown beforehand: the goal of the analysis is to202

extract an underlying low-dimensional set of features which explain the observed correlations as203

well as possible. For our running example of brain imaging data with contralateral symmetry, we204

consider each ROI a “method” factor, loading on only two regions. Note that in the context of205

brain imaging, Lövdén et al. (2013, Figure 1, model A) have had similar ideas, but their factor206

analysis operates on the level of left-right combined ROIs rather than individual ROIs.207

The EFAST model has M exploratory factors in a single EFA block, and one method factor per208

homologous ROI pair, each with loadings constrained to 1 and its own variance estimated. The209

estimated variance of the method factors then represents the amount of covariance due to210

symmetry – over and above the covariance represented by the traits. In Figure 3, the model is211

displayed graphically for a simplified example with 6 ROIs in each hemisphere.212

���

LH
ROI1

LH
ROI2

LH
ROI3

LH
ROI4

LH
ROI5

LH
ROI6

RH
ROI1

RH
ROI2
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ROI3

RH
ROI4

RH
ROI5
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ROI6

ROI1

F1 F2 FM

ROI2 ROI3 ROI4 ROI5 ROI6

1 1 1 1 1 1 1 11111

Figure 3. EFAST model with morphology of 6 regions of interest measured in the left hemisphere (LH) and right hemisphere (RH). The

dashed lines indicate fixed loadings, the two-headed arrows indicate variance/covariance parameters. The method factors are constrained

to be orthogonal, and the loadings of the M traits are estimated in an exploratory way.

213

214

215
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An alternative parametrization for this model is also available. Specifically, we can use the216

correlations between the residuals of the observed variables instead of method factors with freely217

estimated variances. In the SEM framework, this would amount to moving the symmetry218

structure from the factor-explained matrix (ΛΨΛT ) to the residual covariance matrix Θ. This219

model is exactly equivalent, meaning the same correlation matrix decomposition, the same factor220

structure, and the same model fit will be obtained. However, we favour the method factor221

parametrization as it is closer to MTMM-style models, it is easier to extract potentially relevant222

metrics such as a ‘lateralisation coefficient’, and easier to extend to other data situations where223

multiple indicators load on each method factor.224

To implement the EFAST model we use the package lavaan, which allows for easy scaling of the225

input data, different estimation methods, missing data handling through full information226

maximum likelihood, and more. Estimation of the model in Figure 3 can be done with a variety of227

methods. Here we use the default maximum likelihood estimation method as implemented in228

lavaan. Accompanying this paper, we are making available a convenient R package called efast229

that can fit EFAST models for datasets with residual structure due to symmetry. For more230

implementation details, the package and its documentation can be found at231

https://github.com/vankesteren/efast.232

In the next section, we show how our implementation of EFAST compares to regular EFA in233

terms of factor loading estimation, factor covariance estimation, as well as the estimated number234

of factors.235

SIMULATIONS

In this section, we use simulated data to examine different properties of EFAST models when236

compared to regular EFA in controlled conditions. The purpose of this simulation is not an237

exhaustive investigation, but rather a pragmatically focused study of data properties238

(neuro)scientists wishing to use this technique are likely to encounter. First, we explain how data239

were simulated to follow a specific correlation structure, approximating the general structure of240

empirical data such as that in the Cam-CAN study (see empirical examples section). Then, we241

investigate the effects of structured residuals on the extracted factors from EFA and EFAST: in242
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several different conditions, we investigate how the estimation of factor loadings, the covariances243

between factors, and the number of factors changes with increasing symmetry.244

Data generation245

Data were generated following a controlled population correlation matrix Σtrue. This matrix246

represents the true correlation between measurements of brain structure in 17 left-hemisphere and247

17 right-hemisphere regions of interest. An example correlation matrix from our data-generating248

mechanism is shown in Figure 4.249

Σtrue was constructed through the summation of three separate matrices, as in the lower panel250

of Figure 1:251

1. The factor component Σfactor is constructed as ΛΨΛT , where the underlying factor252

covariance matrix Ψ can be either an identity matrix (orthogonal factors) or a matrix with253

nonzero off-diagonal elements (oblique factors). There are four true underlying factors in this254

simulation. One of the factors is completely lateralized (top left, highlighted in green),255

meaning that it loads only on ROIs in the left hemisphere. An additional illustration of this256

left-hemisphere factor is shown in Figure 5. The remaining 3 factors have both left- and257

right-hemisphere indicators.258

2. The structure component matrix is a matrix with all 0 elements except on the secondary259

diagonal, i.e., the diagonal elements of the bottom left and top right quadrant are nonzero.260

The values of these secondary diagonals determine the strength of the symmetry.261

3. The residual variance component matrix is a diagonal matrix where the elements are chosen262

such that the diagonal of Σtrue is 1.263
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Figure 4. Example covariance matrix of the data-generating mechanism used in the simulations. This matrix results from simulated

data of 650 brain images, with a factor loading of .595 for the lateralized factor, a loading of .7 for the remaining factors, a factor

correlation of .5, and a symmetry correlation of .2. The first 17 variables indicate regions of interest (ROIs) in the left hemisphere, and

the remaining variables indicate their contralateral homologues. Note the secondary diagonals, indicating contralateral symmetry, and

the block of 8 variables in the top left resulting from the lateralized factor.
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Figure 5. Example lateralized factor (the first factor in the simulation). Grey matter volume in 8 left-hemisphere regions of interest

are predicted by the value on this factor.

269

270

For the following sections, data were generated with a sample size of 650, 130, or 65, a latent271

correlation of either 0 or 0.5, bilateral factor loadings of 0.5 or 0.7, lateral factor loadings of .425272

or .595, and contralateral homology correlations of either 0 (pure EFA), 0.2 (minor symmetry), or273

0.4 (major symmetry). These conditions were chosen to be plausible scenarios, similar to the274

observed data from our empirical examples. In each condition, 120 datasets were generated on275

which EFA and EFAST models with 4 factors were estimated. Thus, in each analysis the true276

number of factors is correctly specified before estimation. In the last simulation we then explore277

different criteria for the choice of number of factors in the case of contralateral symmetry.278

Effect of structured residuals on factor loadings279

In this section, we compare estimated factor loadings from EFA and EFAST to the true factor280

loadings from the simulation’s data generating process. For each condition, 120 datasets were281

generated, to which both EFA and EFAST models were fit. The factor loading matrix for each282
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model was then extracted, the columns reordered to best fit the true matrix, and the mean283

absolute error of the factor loadings per factor was calculated.284

As hypothesized, allowing structured residuals affects how well the factor loadings are estimated285

from the datasets. Notably, as shown in 6 when performing regular EFA, the estimation error of286

the factor loadings increases when the symmetry becomes stronger, whereas the factor loading287

estimation error for the EFAST model remains at the level of regular EFA when there is no288

symmetry. Looking at the lateralized factor in particular, the adverse effect of omitting symmetry289

in dimension reduction becomes even stronger: in EFA, the lateralized factor becomes bilateral,290

leading to a larger error and an incorrect inference regarding the nature of the thus estimated291

factor. Although Figure 6 shows only the condition with a sample size of 650, factor loadings of292

0.5, and factor covariance of 0.5, the pattern is similar for different sample sizes, different factor293

loading strengths and with no factor covariance (see supplementary figures S2 and S3).294
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Figure 6. Mean absolute error for factor loadings of EFA versus EFAST models with increasing amounts of contralateral symmetry

correlation. This plot comes from the condition where the sample size is 650, the covariance of the latent variables is 0.5, and the

factor loadings are 0.5. The plot shows that for both bilateral and lateralised factors, EFA starts to exhibit more error as symmetry

increases, more so for the lateral factor, whereas EFAST performance is nominal over these conditions. Error bars indicate 95% Wald-type

confidence intervals.
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In addition, sample size analysis shows that EFAST and EFA show moderate to high300

convergence rates for small (65) to moderate (130) sample sizes (see supplementary figure S4).301

Although other drawbacks of smaller sample sizes remain (e.g., imprecise estimates, favouring of302

insufficiently complex models), this shows the feasibility, in principle, of using such analyses in303

commonly available sample sizes. To assess whether a particular combination of sample size, atlas304

dimensionality (i.e. number of regions) and strength of factor loadings is feasible for analysis using305
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EFAST, we recommend a simulation approach. Software packages such as lavaan offer versatile306

tools to generate data under various specifications, allowing researchers to see whether a particular307

analysis is in principle feasible under certain idealized conditions before proceeding with real data.308

Results from this section suggest that for the purpose of factor loading estimation, EFA and309

EFAST perform equally well in the case where a model without residual structure is the true310

underlying model, but EFAST outperforms EFA when residual structure in the observed data311

becomes stronger. In other words, implementing EFAST in the absence of residual structure does312

not seem to have negative consequences for estimation error, suggesting it may also be a useful313

default if a specific residual structure is thought, but not known, to exist. This is in line with314

Cole, Ciesla, and Steiger (2007), who argue that in many situations including correlated residuals315

does not have adverse effects, but omitting them does.316

Effect of structured residuals on factor covariances317

Here, we compare how well EFA and EFAST retrieve the true factor covariance values. For both318

methods, we used geomin rotation with an epsilon value of 0.01 as implemented in lavaan 0.6.4319

(Rosseel, 2019). The matrix product of the obtained rotation matrix H then represents the320

estimated factor covariance structure of the EFA factors: ΨEFA = HTH (Asparouhov & Muthén,321

2009, eq. 22).322

The mean of the off-diagonal elements of the ΨEFA matrix were then compared to the true323

value of 0.5 for increasing symmetry strength. The results are shown graphically in Figure 7.324

Here, it can be seen that with this rotation method the latent covariance is underestimated in all325

cases, although less so with stronger factor loadings. Furthermore, EFA performs worse as the326

symmetry increases, whereas the performance of EFAST remains stable regardless of the degree of327

contralateral homology, again suggesting no adverse effects to implementing EFAST in the328

absence of contralateral correlations. In the case of uncorrelated factors (not shown), the two329

methods perform similarly well.330
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Figure 7. Latent covariance estimates for different levels of contralateral homology correlation. The true underlying latent covariance

is 0.5; both methods underestimate the latent covariance but EFA becomes more biased as symmetry increases. Error bars indicate 95%

Wald-type confidence intervals.

331

332

333

The results from this section shows that in addition to better factor recovery for EFAST, the334

recovery of factor covariance is also improved relative to EFA. Again, even when the335

data-generating mechanism does not contain symmetry, EFAST performs at least at the level of336

the EFA model. Note that in this case the overall model fit in terms of AIC and BIC is slightly337

better for the EFA model, as it has fewer parameters: for factor loadings of .5 and no symmetry,338

the mean AIC is 60148 (EFA) versus 60164 (EFAST), and BIC is 60882 (EFA) versus 60974339

(EFAST). This, together with the comparable convergence rates for most conditions (Fig S4),340

suggests that it is viable to use EFAST as a ‘keep it maximal’ strategy (Barr, Levy, Scheepers, &341
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Tily, 2013), where EFAST can be used initially with no drawbacks, but one can use model342

evidence to favour classical EFA instead.343

Effect of structured residuals on model fit344

In the above analyses, the number of factors was specified correctly for each model estimation345

(using either EFA or EFAST). However, in empirical applications the number of factors will rarely346

be known beforehand, so has to be decided on the basis of some criterion. A common approach to347

extracting the number of factors, aside from computationally expensive strategies such as parallel348

analysis (Horn, 1965), is model comparison through information criteria such as the AIC or BIC349

(e.g. (Vrieze, 2012). In this procedure, models with increasing numbers of factors are estimated,350

and the best fitting model in terms of these criteria is chosen.351

In this simulation, we generated 100 datasets as in Figure 4 – i.e., strong loadings and medium352

symmetry – and we fit EFA and EFAST models with 2 to 10 factors. Across these solutions we353

then compute the information criteria of interest. Here we choose the two most common354

information criteria (the AIC and BIC) as well as the sample-size adjusted BIC (SSABIC), as this355

is the default in the ESEM function of the psych package (Revelle, 2018). The results of this356

procedure are shown in Figure 8. Each point indicates a fitted model. The means of the357

information criteria are indicated by the solid lines.358
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Figure 8. AIC and BIC values for increasing number of factors with EFA and EFAST models. Lines indicate expectations: the vertices

are at the mean values for these criteria. The true number of factors is 4 (dashed vertical line).

359

360

The plot in Figure 8 shows that across all factor solutions, EFAST shows better fit than EFA,361

suggesting the improvement in model fit outweighs the additionally estimated parameters. As the362

number of requested factors increases beyond optimality, this model fit improvement diminishes as363

EFA explains more of the symmetry structure through the additional factors. In general, the AIC364

tends to overextract factors, the BIC slightly underextracts, and the SSABIC shows the best365

extraction performance (see also supplementary figure S5). In practice, therefore, we suggest using366

SSABIC for determining the number of factors when model fit is of primary concern. Note that a367

researcher may also wish to determine the number of factors based on other considerations, such368

as usability in further analysis, estimation tractability, or theory.369
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EFAST IN PRACTICE: MODELING BRAIN IMAGING DATA

In the field of cognitive neuroscience, a large body of work has demonstrated close ties between370

individual differences in brain structure and concurrent individual differences in cognitive371

performance such as intelligence tasks (e.g. Basten, Hilger, & Fiebach, 2015). Moreover, different372

aspects of brain structure can be sensitive to clinical and pre-clinical conditions such as grey373

matter for multiple sclerosis (Eshaghi et al., 2018), white matter hyperintensities for374

cardiovascular factors (Fuhrmann et al., 2019) and white matter microstructure for conditions375

such as ALS (Bede et al., 2015), Huntingtons (Rosas et al., 2010) and many other conditions.376

However, one perennial challenge in imaging is how to deal with the dimensionality of imaging377

data. Depending on the spatial resolution, a brain image can be divided into as many as 100,000378

individual regions, or voxels, rendering mass univariate approaches vulnerable to issues of multiple379

comparison. An alternative approach is to focus on sections called regions of interest (ROIs)380

defined either anatomically (e.g., Desikan et al., 2006) or functionally (e.g., Schaefer et al., 2018).381

However, this only solves the challenge of dimensionality in part, by grouping adjacent voxels into382

meaningful regions. An emerging approach is therefore to study how neural measures covary383

across populations or time, either in these ROIs (Sripada et al., 2019) or at the voxel level (DuPre384

& Spreng, 2017). This offers a promising strategy to reduce the high dimensional differences in385

brain structure into a tractable number of components, or factors, not limited by spatial adjacency.386

However, standard techniques such as EFA or PCA do not easily allow for the integration of a387

fundamental biological fact: That there exists strong contralateral symmetry between brain388

regions, such that any given region (e.g. the left lingual gyrus) is generally most similar to the389

same region on the other side of the brain. Here, we show how we can combine the strengths of390

exploratory data reduction with the integration of a priori knowledge about the brain into a more391

sensible, anatomically plausible factor structure which can either be pursued as an object of392

intrinsic interest or used as the basis for further investigations (e.g. which brain factors are most393

strongly associated with phenotypic outcomes).394

Empirical example: Grey matter volume395
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Data description The data we use is drawn from the Cambridge Centre for Ageing and396

Neuroscience (Shafto et al., 2014; Taylor et al., 2017). Cam-CAN is a community derived lifespan397

sample (ages 18-88) of healthy individuals. Notably, the raw data from the Cam-CAN cohort is398

freely available through our data portal https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/.399

The sample we discuss here is based on 647 individuals. For the purposes of this project we use400

morphometric brain measures derived from the T1 scans. Specifically, we used the Mindboggle401

pipeline (Klein et al., 2017) to estimate region based grey matter volume, using the underlying402

freesurfer processing pipeline. To delineate the regions, we here use the Desikan-Killiany-Tourville403

atlas for determining the ROIs (Klein & Tourville, 2012) as illustrated in Figure 9.404

left

right

lateral medial
side

he
m

is
ph

er
e

banks superior temporal
caudal anterior cingulate
caudal middle frontal
cuneus
entorhinal
frontal pole
fusiform
inferior parietal
inferior temporal
insula
isthmus cingulate
lateral occipital
lateral orbitofrontal
lingual
medial orbito frontal
middle temporal
para central
parahippocampal

pars opercularis
pars orbitalis
pars triangularis
pericalcarine
post central
posterior cingulate
pre central
precuneus
rostral anterior cingulate
rostral middle frontal
superior frontal
superior parietal
superior temporal
supramarginal
temporal pole
transverse temporal
NA

Figure 9. Desikan–Killiany–Tourville atlas used in the empirical illustration, as included in the ggseg package (Mowinckel & Vidal-

Piñeiro, 2019).

405

406

We focus only on grey matter (not white matter) and only on cortical regions (not subcortical407

or miscellaneous regions such as ventricles) with the above atlas, for a total of 68 brain regions.408

The correlation matrix of regional volume metrics is shown in Figure 10, where the first 34409

variables are regions of interest (ROIs) in the left hemisphere, and the last 34 variables are ROIs410
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in the right hemisphere. The presence of higher covariance due to contralateral homology is411

clearly visible in the darker secondary diagonal ‘stripes’ which show the higher covariance between412

the left/right version of each anatomical region. Our goal is to reduce this high-dimensional413

matrix into a tractable set of ‘brain factors’, which we may then use in further analyses, such as414

differences in age sensitivity, in a way that respects known anatomical constraints.415
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Figure 10. Correlation plot of cortical grey matter volume in 647 T1 weighted images of the Cam-CAN sample, estimated through

Mindboggle in 34 brain regions in each hemisphere according to DKT segmentation. Numbers on the colour scale indicate the strength

of the estimated correlation, with darker blue indicating stronger positive correlations. Secondary diagonal lines are visible indicating

correlation due to contralateral homology.
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The default estimation using EFA will attempt to account for the strong covariance among420

homologous regions seen in this data, meaning it is unlikely for, say, the left insula and the right421

insula to load on different factors, and/or for a factor to be characterized only/mostly by regions422

in one hemisphere. To illustrate this phenomenon, we first run a six-factor, geomin-rotated EFA423

for the above data (the BIC suggests six factors for this data using the EFAST model). The factor424

loadings for each ROI in the left and right hemispheres are plotted in Figure 11. A strong factor425

loading for a ROI in the left hemisphere is likely to have a strong factor loading in the right426

hemisphere due to the homologous correlation, as shown by the strong correlations for each of the427

factors.428
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Figure 11. Left-right hemisphere factor loading correlations. The correlations between the loadings are high, indicating a strong

similarity between the loadings in the left and right hemispheres.
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In EFA, the resulting factors thus inevitably capture correlation due to contralateral symmetry,431

inflating or deflating factor loadings due to these contralateral residual correlations. Most432

problematically from a substantive neuroscientific standpoint, this distortion means it is effectively433

impossible to discover lateralized factors, i.e. patterns of covariance among regions expressed only,434

or dominantly, in one hemisphere. This is undesirable, as there is both suggestive and conclusive435

evidence that some neuroscientific mechanisms may display asymmetry. For instance, typical436

language ability is associated with an asymmetry in focal brain regions (e.g., Bishop, 2013;437

Gauger, Lombardino, & Leonard, 1997), whereas structural differences in the right hemisphere438

may be more strongly associated with face perception mechanisms (Frässle et al., 2016).439

Developmentally, there is evidence that the degree of asymmetry changes across the lifespan (e.g.440

Plessen, Hugdahl, Bansal, Hao, & Peterson, 2014; Roe et al., 2020). Within a SEM context, recent441

work shows that model fit of a hypothesized covariance structure may differ substantially between442

the right and left hemispheres despite focusing on the same brain regions (Meyer, Garzón, Lövdén,443

& Hildebrandt, 2019). The ignorance of traditional techniques for the residual structure may444

cause lateralized covariance factors to appear symmetrical instead, or to not be observed at all.445

Results In this section, we compare the model fit and factor solutions of EFA and EFAST for the446

Cam-CAN data, and we show how EFAST decomposes the correlation matrix in Figure 10 into447

factor, structure, and residual variance components. The full annotated analysis script to448

reproduce these results is available as supplementary material to this manuscript.449
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Figure 12. AIC and BIC for the with increasing numbers of EFA factors. Semitransparent points indicate models which are inadmissible

either due to nonconvergence or convergence to a solution with problems (e.g., Heywood cases). In these cases we plot the information

criteria based on the log-likehood computed at the time the estimation terminated.

450

451

452

Overall, the EFAST model performs considerably better than standard EFA using common453

information criteria (Figure 12). The BIC criterion, combined with the convergence of the models454

to an admissible solution, suggests that 6 factors is optimal for this dataset. While both AIC and455

SSABIC show that more factors may be needed to properly represent the data, we see that this456

quickly leads to nonconvergence. We here consider 6 factors to be a tractable number for further457

analysis. First and foremost, this 6-factor solution shows a much better model solution under458

EFAST (BIC ≈ 87500) than under EFA (BIC ≈ 90000), emphasizing the empirical benefits of459

appropriately modeling known biological constraints. Additionally, statistical model comparison460

through a likelihood ratio test shows that the EFAST model fits significantly better (see Table 1).461

Other fit measures such as CFI, RMSEA, and SRMR paint a similar story. The full factor loading462

matrix for both EFAST and EFA are shown in supplementary table S1.463
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Table 1. Comparing the fit of the EFAST and EFA models with 6 factors, using a likelihood ratio test and several fit criteria.464

CFI RMSEA SRMR χ2 Df ∆χ2 ∆Df Pr(> χ2)

EFAST 0.912 0.057 0.209 5762.676 1851

EFA 0.843 0.075 0.342 8818.146 1885 3055.471 34 < .001

The EFAST model decomposes the observed correlation matrix from Figure 10 into the three467

components displayed in Figure 13. The most notable observation here is the separation of468

symmetry structure (last panel) and latent factor-implied structure (first panel): the factor469

solution (first panel) does not attempt to explain the symmetry structure seen in the data (i.e.470

the characteristic diagonal streaks are no longer present). This indicates that the EFAST model471

correctly separates symmetry covariance from underlying trait covariance in real-world data.472

Figure 13. Extracted correlation matrix components using a 6-factor EFAST model with unconstrained correlations. Darker blue

indicates stronger positive correlation. From left to right: factor-implied correlations, residual variance, and structure matrix.

465

466

We also extracted the estimated factor covariance, shown as a network plot in Figure 14. For474

EFA, some latent variables show very strong covariance, clustering them together due to the475

contralateral symmetry. This effect is not visible in the EFAST model, which shows a more476

well-separated latent covariance structure. This suggests that one consequence of a poorly477
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specified EFA can be the considerable overestimation of factor covariance, which in turn adversely478

affects the opportunities to understand distinct causes or consequences of individual differences in479

these factors.480
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Figure 14. Network plots of the latent covariance for EFA (panel A) and EFAST (panel B).473

Empirical example: White matter microstructure481

Data description Our second empirical example uses white matter structural covariance networks.482

We use 42 tracts from the ICBM-DTI-81 atlas (Mori et al., 2008), including only those tracts with483

atlas-separated left/right tracts (i.e. excluding divisions of the corpus callosum – For a full list,484

see appendix). As anatomical metric we use tract-based mean fractional anisotropy, a summary485

metric sensitive (but not specific) to several microstructural properties (Jones, Knösche, & Turner,486

2013). For more details regarding the analysis pipeline, see (Kievit et al., 2016). The same tracts487

and data were previously analysed in (Jacobucci, Brandmaier, & Kievit, 2019).488
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Figure 15. Correlation matrix for Cam-CAN white matter tractography data (fractional anisotropy). Numbers on the colour scale

indicate the strength of the estimated correlation, with darker blue indicating stronger positive correlations. Secondary diagonal lines

are visible indicating correlation due to contralateral homology.

489

490

491

Results We chose 6 factors for the EFAST and EFA models based on the SSABIC in combination492

with the convergence limitations. In Table 2, the two models are compared on various493

characteristics. From the likelihood ratio test, we can see that the EFAST model represents the494

white matter data significantly better (χ2(21) = 3632.586, p < .001), and inspecting the SSABIC495

values (EFA = 59120, EFAST = 55727) leads to the same conclusion. In addition, the CFI,496

RMSEA, indicate better fit for the EFAST model, too.497

Table 2. Comparing the fit of the EFAST and EFA models with 6 factors for the white matter data, using a likelihood ratio test and

several fit criteria.

498

499

CFI RMSEA SRMR Df χ2 ∆χ2 ∆Df Pr(> χ2)

EFAST 0.899 0.081 0.205 603 3137.462

EFA 0.756 0.123 0.198 624 6770.048 3632.586 21 < .001
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The only index which indicates slightly poorer fit is the SRMR. The difference is very small in500

this case, but nonetheless it is relevant to show where these differences lie. A visual representation501

of the root square residual (observed - implied) correlations – which form the basis of the SRMR502

fit index – can be found in Figure 16. The figure shows that EFAST is able to represent the503

symmetry better: it has almost no residuals on the secondary diagonals. The remaining residuals504

are very similar, though slightly higher, leading to a higher SRMR.505
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Figure 16. Visual representation of the root square residual (observed - implied) correlations, which form the basis of the SRMR fit

index. Numbers on the colour scale indicate root square residual correlation, darker blue indicates larger residual.

506

507

Empirical example: Resting state Functional connectivity508

Data description Our previous examples correlation matrices capturing between- individual512

similarities across regions. However, the same techniques can be implemented at the513

within-subject level given suitable data. One such measure is functional connectivity which514

reflects the temporal connectivity between regions during rest or a given task, and captures the515

purported strength of interactions, or communications, between regions (Van Den Heuvel & Pol,516
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2010). Here we use functional connectivity matrices from 5 participants in the Cam-CAN study517

measured during an eyes-closed resting state block. We focus on 90 cortical and sub-cortical518

regions from the AAL-atlas (Tzourio-Mazoyer et al., 2002). The methodology to compute the519

connectivity metrics is outlined in (Geerligs, Tsvetanov, & Henson, 2017), and the data reported520

here have been used in (Lehmann, Henson, Geerligs, White, et al., 2019).521
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Figure 17. Correlation matrix for the first participant in the Cam-CAN resting state functional connectivity dataset. Numbers on

the colour scale indicate the strength of the estimated correlation, with darker blue indicating stronger positive correlations. Secondary

diagonal lines are visible indicating correlation due to contralateral homology.
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Results For this example, data from the first participant was used to perform the model fit522

assessments. We performed a similar routine as with the previous empirical datasets for523

determining the number of factors: we fit the EFAST and EFA models for 2-16 factors and524

compare their information criteria. All of the models converged, and the optimal model based on525

the BIC is a 13-factor EFAST model. BIC was chosen as a criterion for the number of factors in526

order to keep the analysis tractable – the other criteria indicated an optimum beyond 16 factors.527

The 13-factor EFAST model was then compared to the 13-factor EFA model on various fit528

indices. The results of this comparison can be found in Table 3. Across the board, the EFAST529

model has better fit, as the EFAST CFI, RMSEA, SRMR and χ2 fit indices outperform those for530

the EFA model, demonstrating that accounting for the bilateral symmetry in dimension reduction531

through factor analysis leads to better fitting model of the data.532

Table 3. Comparing the fit of the EFAST and EFA models with 13 factors for the functional resting state data, using a likelihood ratio

test and several fit criteria.

533

534

CFI RMSEA SRMR Df χ2 ∆χ2 ∆Df Pr(> χ2)

EFAST 0.836 0.093 0.253 2868 9350.278

EFA 0.774 0.108 0.272 2913 11828.126 2477.848 45 0.000

This approach also allows for comparing the factor loadings for the different participants. For535

illustration, the plot in Figure 18 shows the profile of factor loadings for the first three factors536

(columns) across the five participants (rows). These profile plots can be a starting point for537

comparison of the connectivity structure across participants, where higher correlation among538

participants means a more similar connectivity structure, while taking into account the symmetry539

in the brain. For example, for Factor 1, participant 3 has a quite different functional connectivity540

factor loading profile than the other participants.541
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Figure 18. Comparison of factor loading profiles for the first three factors (columns) across five participants (rows). The left side of

each subplot corresponds to the left hemisphere, the right side corresponds to the right hemisphere.

542

543

MODEL-BASED LATERALIZATION INDEX

In the simulations, we showed how the EFAST approach yields a more veridical representation of

the factor structure than EFA. However, using EFAST yields an additional benefit: our model

allows for estimating the extent of symmetry in each ROI, while taking into account the overall

factor structure. This enables researchers to use this component of the analysis for further study.

The (lack of) symmetry may be of intrinsic interest, such as in language development research

(Schuler et al., 2018), intelligence in elderly (Moodie et al., 2019), and age-related changes in

cortical thickness asymmetry (Plessen et al., 2014). In the efast package, we have implemented a

specific form of lateralization which is based on a variance decomposition in the ROIs. Our

lateralization index (LI) is a dissimilarity measure representing the proportion of residual variance

(given the trait factors) in an ROI that cannot be explained by symmetry. The index value is 0 if
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the bilateral ROIs are fully symmetric (conditional on the trait factors), and 1 if there is no

symmetry:

LIi = 1− cor(ulh
i , u

rh
i ) (1)

where ulh
i and urh

i are residuals given the trait factors of interest of the ith ROI in the left and544

right hemisphere, respectively. The correlation cor(· , ·) between these residuals represents the545

amount of symmetry, so the LIi represents the residual dissimilarity of the ith ROI in the two546

hemispheres after taking into account the factor structure in the data. When LIi is 0, the ROIs547

are fully symmetric given the traits, and a LIi of 1 indicates no symmetry. Note that LIi can be548

larger than 1 if the residuals are negatively correlated.549

The LI for each ROI in the grey matter volume example is shown in Figure 19. Here, we can see550

that there is high lateralization in the superior temporal sulcus and medial orbitofrontal cortex,551

but high symmetry in the lateral orbitofrontal cortex and the insula. In Figure 20, we additionally552

show in the white matter example that LI can naturally be supplemented by standard errors and553

confidence intervals. Thus, the EFAST procedure not only improves the factor solution under554

plausible circumstances for such datasets, but in doing so yields an intrinsically interesting metric555

of symmetry.556
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Figure 19. Amount of grey matter volume asymmetry per ROI. Dark blue areas are highly symmetric given the previously estimated 6-

factor solution, and bright yellow areas are highly asymmetric. Such plots can be made and compared for different groups and statistically

investigated for differences in symmetry for a common factor solution. A lateralization index (LI) of 0 means that the regions are fully

symmetric conditional on the trait factors.
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Figure 20. White matter lateralization index for a selected set of regions given the previously estimated 6-factor solution. Lower values

means that bilateral ROIs are more symmetric conditional on the trait factors, higher values that they are less so. The line ranges indicate

95% confidence intervals, computed as LI ± 1.96× SELI , where the standard error SELI is computed using the delta method.

561

562

563

SUMMARY AND DISCUSSION

In this paper, we have developed and implemented EFAST, a method for performing dimension564

reduction with residual structure. We show how this new method outperforms standard EFA565

across three separate datasets, by taking into account hemispheric symmetry in brain covariance566

data. We have argued through both simulations and real-world data analysis that our method is567

an improvement in the dimension reduction step of such high-dimensional, structured data,568

yielding a more veridical factor solution. Such a factor solution can be the basis for further569

analysis, such as an extension of the factor model to prediction of continuous phenotype variables570

such as intelligence scores, or the comparison among different age groups. These extensions will be571
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improved by building on a factor solution which appropriately takes into account the symmetry of572

the brain. Furthermore, we believe that many data reduction problems in social, cognitive, and573

behavioural sciences have a similar structure: residual structure is known, but precise theory574

about the underlying factor structure is not (Asparouhov & Muthén, 2009). As such, although we575

focus on brain imaging data, our approach is likely more widely applicable.576

Care is needed in the interpretation of the factor solution as underlying dimensions, as the577

empirical application has shown that the absolute level of fit for both the EFA and EFAST models578

is not optimal. In addition, estimation of more complex factor models may lead to nonconvergence579

or inadmissible solutions. Such problems would need to be further investigated, potentially580

leading to more stable estimation, for example through a form of principal axis factoring, or581

potentially through penalization of SEM (Jacobucci et al., 2019; van Kesteren & Oberski, 2019).582

However, these limitations hold equally for EFA, and when comparing both methods it is clear583

from the results in this paper that the inclusion of structured residuals greatly improves the584

representation of the high-dimensional raw data by the low-dimensional factors. In summary, this585

relatively simple but versatile extension of classical EFA may be of considerable value to applied586

researchers with data that possess similar qualities to those outlined above. We hope our tool will587

allow those researchers to easily and flexibly specify and fit such models.588

Note that we are not the first to suggest using structured residuals in EFA to take into account589

prior knowledge about structure in the observed variables. Adding covariances among residuals is590

a common method to take into account features of the data-generating process (e.g., Cole et al.,591

2007), and this has been possible in the context of EFA since the release of the ESEM capability592

in MPlus (Asparouhov & Muthén, 2009) and in lavaan (Rosseel, 2019). In the context of593

neuroscientific data, similar methods in accounting for structure in dimension reduction have been594

researched by De Munck, Huizenga, Waldorp, and Heethaar (2002) in source localization for595

EEG/MEG. Our goal for this paper has been to provide a compelling argument for the use of596

such structured residuals from the point of view of neuroscience, as well as a user-friendly,597

open-source implementation of this method for dimension reduction in real-world datasets.598
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