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Abstract 

Thesis title: Using Integrated Assessment Models to Achieve the Paris Climate Target 

Author: Ida Andrea Braathen Sognnæs 

 

Integrated assessment models (IAMs) have become central tools in global assessments of how to 

achieve the Paris climate target. But how reliable are the insights that can be drawn from IAMs? This 

thesis identifies and begins to assess three challenges associated with the use of IAM ensembles and 

individual IAMs to draw insights on climate mitigation.  

First, it highlights the importance of model independence for the robustness of insights that can be 

drawn from IAM ensembles. It develops a method that uses model documentation to construct a model 

family tree and uses this method to identify likely model dependencies between IAMs in the IPCC’s 5th 

assessment report (AR5). The analysis shows that the 14 most influential IAMs in AR5 form three 

branches, the largest of which (including MERGE, MESSAGE, MERGE-ETL, REMIND, WITCH, and 

BET) is responsible for about half of the scenarios in AR5. The model documentation also indicates 

that an expanding set of policy questions has incentivised a continuous increase in the detail and scope 

of IAMs over time. The findings give reason to believe that the diversity of model choices and 

assumptions included in the AR5 IAM ensemble might be limited.  

Second, it argues, based on a debate on values in science in philosophy, that the exclusively positive 

estimates of the cost of mitigation in AR5 are problematic because they don’t capture the full range of 

cost estimates found in the literature and because the uncertainty of the cost of mitigation is important. 

A review of the literature reveals that general equilibrium models, which are responsible for all the cost 

estimates in AR5, can (despite claims to the contrary) be modified to generate net negative costs, but 

that few of the IAMs in AR5 include mechanisms that typically contribute to net negative costs. It is 

also found that the model intercomparison studies that are responsible for most of the AR5 cost 

estimates focused only on aspects that increase the cost of mitigation. Overall, this gives reason to 

believe that the AR5 IAM ensemble might be biased against net negative mitigation costs.  

Third, it shows that predictions of climate policy impacts based on the Future Technology 

Transformations (FTT) simulation model are highly sensitive to a scaling parameter whose correct 

value is deeply uncertain. This result, which is obtained using Monte Carlo analysis and uniform and 

independent distributions (around ±50% of default values) for investor discount rates, technology build 

times, technology lifetimes, learning rates, and the scaling factor in a global sensitivity analysis, shows 

that the use of diffusion theory to derive technology deployment – which is seen by those who designed 

FTT to present a unique feature of the model – does not in itself ensure reliable predictions. In fact, the 

result indicates that predictions from both energy system optimisation models, which are more widely 

used, and FTT depend on similar unknowns related to future rates of technological change. 



 

 

 

Based on these three challenges, the thesis concludes, a diversity of model choices and assumptions is 

crucial for ensuring robust insights and for reflecting important uncertainties associated with IAM 

research. 
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1 Introduction 

 

The Paris Agreement on climate change was adopted by consensus at the 21st Conference of the Parties 

to the United Nation Framework Convention on Climate Change on 12 December 2015. The central 

aim of the agreement is to “strengthen the global response to the threat of climate change by keeping a 

global temperature rise this century well below 2 degrees Celsius above pre-industrial levels and to 

pursue efforts to limit the temperature increase even further to 1.5 degrees Celsius” (UNFCCC, 2019).  

 

There is now widespread agreement that global warming is caused by anthropogenic emissions of 

greenhouse gases (GHGs) (IPCC, 2014b). According to the Intergovernmental Panel on Climate 

Change (IPCC) Special Report on the impacts of global warming of 1.5°C (SR15) (IPCC, 2018a), GHG 

emissions have already raised global temperatures by roughly 1.0˚C since pre-industrial times. Global 

CO2 emissions now need to reach net zero around 2050 if we want to limit global warming to below 

1.5˚C and around 2070 if we want to limit global warming to below 2˚C1. Given that CO2 emissions 

have continued to rise, with 2018 seeing record levels (Jackson et al., 2018), meeting the Paris climate 

target will require a radical shift from current trends. Figure 1.1 provides a graphical depiction of what 

is required. According to Rockström et al. (2017), this will take “herculean efforts” and according to 

Stern (2009) “we will need a revolution that surpasses the scale and impact of previous world-changing 

technologies” in order to get there. What might this revolution look like?  

 

 

1 Reaching net zero by 2050 gives a 50% chance of staying below 1.5˚C and reaching net zero by 2070 gives a 

66% chance of staying below 2˚C. In these scenarios the emissions of non-CO2 GHGs are also reduced, but they 

do not reach zero. 
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Figure 1.1 Stylized net global CO2 emission pathways for 1.5˚C (the blue pathway gives to a higher probability 

that temperatures will stay below 1.5˚C than the grey pathway). Reproduced from IPCC (2018b, p. 8).  

Integrated Assessment Models (IAMs) have come to play a crucial role in providing answers to this 

question. By computing different scenarios, IAMs tell us how human systems (most notably the energy 

system and the economy) might evolve so as to achieve different temperature targets. More specifically, 

a scenario is defined in the IPCC’s 5th assessment report (AR5) as  

“a plausible description of how the future may develop based on a coherent and 

internally consistent set of assumptions about key driving forces (e.g., rate of 

technological change (TC), prices) and relationships.” (IPCC, 2014a, p. 1270).  

Similarly, a scenario can also be thought of as “a story of what happened in the future” (Knutti, 2018, 

p. 214). Essentially, in AR5, transformation pathways are scenarios in which emissions are reduced2. 

In concrete terms, a scenario in AR5 is equivalent to a set of (quantitative) IAM outputs such as the 

share of low-carbon energy, electricity demand, emissions by sector, natural resource use, land use, and 

GDP. Together, such IAM outputs can be used to describe how the world might evolve to achieve the 

Paris climate target.  

 

Some of the most well-known IAMs, such as DICE (Nordhaus, 1992) and PAGE (Hope et al., 2003), 

incorporate the damages from climate change and endogenously balance damages with mitigation costs. 

These IAMs, which might be referred to as cost benefit analysis IAMs (or CBA IAMs), tend to be more 

stylized and are not the main focus in the IPCC’s most recent reports. Instead, both AR5 and SR15 rely 

on larger scale non-CBA IAMs (referred to here as large-scale IAMs or simply IAMs) to generate long-

term scenarios for climate mitigation and to assess different transformation pathways. These IAMs are 

preferred partly because CBA IAMs tend to be highly aggregated and according to AR5 don’t provide 

 

2 There are also baseline scenarios, in which nothing is (intentionally) ‘transformed’. 
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the “sufficient sectoral and geographic resolution to understand the evolution of key processes such as 

energy systems or land systems” (2014a, p. 51). In addition, CBA IAMs have received a significant 

amount of criticism, in particular for the way in which they use damage functions and social discounting 

(e.g. Pindyck, 2013; Stern, 2013b; Weitzman, 2009). For this reason, CBA IAMs are mostly excluded 

from the assessment of transformation pathways in AR5 and SR153, and are not considered in this 

thesis. 

 

According to Krey et al. (2019b), large-scale IAMs have become increasingly influential in informing 

climate policy over the last few years4. Beyond IPCC assessments, these IAMs are used to inform 

decision making, for instance, in policy impact assessment by the European Commission5 and for 

national governments in preparing and updating their Nationally Determined Contributions (NDCs). 

Given the Paris Agreement and the associated process of continuously updating NDCs, it is expected 

that large-scale IAMs will continue to play an important role in the coming decades (Krey et al., 2019b).  

 

While the role of CBA IAMs in climate policy has been discussed and criticised at length (e.g. 

Ackerman et al., 2009; Pindyck, 2013; Stern, 2013b; Weitzman, 2009), large-scale IAMs have received 

relatively less attention. This likely has to do, at least in part, with the complexity and significantly 

larger size of large-scale IAMs, which can require hundreds or thousands of parametric and structural 

assumptions (Trutnevyte, 2016). Most generalisations about ensembles of large-scale IAMs are likely 

to be contradicted by exceptions. Many researchers are also not aware of the distinction between CBA 

IAMs and large-scale IAMs and cite criticisms of CBA IAMs when discussing large-scale (non-CBA) 

IAMs without realising that many of these don’t apply6.  

 

Still, large-scale IAMs have received an increasing amount of criticism since AR5 (see Gambhir et al. 

(2019) for a comprehensive review). Much of this has focused on the widespread use of negative 

emissions technologies (so-called NETs, also referred to as carbon dioxide removal (CDR) 

technologies) in transformation pathways generated by large-scale IAMs (Anderson, 2015; Anderson 

& Peters, 2016; Fuss et al., 2014; Larkin et al., 2018; Smith et al., 2016; P. A. Turner et al., 2018), but 

there is also an ongoing discussion of whether (Anderson & Jewell, 2019) and how (Grant et al., 2020; 

Hausfather & Peters, 2020; Mccollum et al., 2020) IAMs should be used to inform climate 

 

3 A few models, such as the WITCH model (Bosetti, Carraro, Galeotti, et al., 2006), has sufficient detail to be 

included in AR5 and can also be run in CBA mode. 

4 Sometimes these IAMs are also referred to simply as ‘climate-policy models’ (e.g. Anderson & Jewell, 2019). 

5 https://ec.europa.eu/clima/policies/strategies/analysis/models_en 

6 In particular the criticisms of the damage function and the social discount rate that are used to weigh climate 

damages against mitigation costs do not apply to large-scale IAMs. 

https://ec.europa.eu/clima/policies/strategies/analysis/models_en
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policymaking. Some (e.g. Iyer and Edmonds (2018)), have also pointed out that scenarios are prone to 

misconceptions because of a lack of guidance from modelers about underlying assumptions and missing 

information on how to interpret results. Some of the criticism also focuses on the implications of 

uncertainty in assumptions for the insights that can be drawn from IAMs, which is the focus of this 

thesis (e.g. Rosen and Guenther (2015) go as far as saying that the level and type of uncertainty of input 

assumptions render the cost of mitigation unknowable). Older research on and discussions of spurious 

detail (Funtowicz & Ravetz, 1990; Morgenstern, 1963), the dependence of model outputs on arbitrary 

assumptions (Keepin & Wynne, 1984), and the ‘black box’ nature of many large models (Robinson, 

1990) are also relevant and still feature in more recent assessments of IAMs (see e.g. Stanton et al. 

(2008)). Still, little research has been done on IAM ensembles as ensembles, and uncertainty 

assessments based on formal techniques such as the ones used in this thesis are still far in between 

(Gambhir et al., 2019; Yue et al., 2018). This thesis aims to fill part of this gap7. The size and complexity 

of large-scale IAMs makes studying the robustness and reliability of the insights that can be drawn from 

them a challenging task. Their increasing influence in global assessments of how to achieve the Paris 

target, however, also makes this an important task.  

 

AR5 relies heavily on IAMs to generate and assess transformation pathways (IPCC, 2014a). It states 

the questions to be answered with IAMs as follows:  

“Stabilizing greenhouse gas (GHG) concentrations will require large-scale 

transformations in human societies, from the way that we produce and consume 

energy to how we use the land surface. A natural question in this context is what 

will be the ‘transformation pathway’ towards stabilization; that is, how do we get 

from here to there? … The chapter is primarily motivated by three questions. First, 

what are the near-term and future choices that define transformation pathways, 

including the goal itself, the emissions pathway to the goal, technologies used for 

and sectors contributing to mitigation, the nature of international coordination, and 

mitigation policies? Second, what are the key characteristics of different 

transformation pathways, including the rates of emissions reductions and 

deployment of low-carbon energy, the magnitude and timing of aggregate economic 

costs, and the implications for other policy objectives such as those generally 

associated with sustainable development? Third, how will actions taken today 

influence the options that might be available in the future?” (IPCC, 2014a, p. 418).  

 

7 The rest of this thesis will use ‘IAM’ to refer to large-scale (non-CBA) IAMs. 
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In order to compute transformation pathways, IAMs represent key interactions among technologies, 

human systems, GHG emissions, and the climate in a single integrated framework (IPCC, 2014a). Many 

assumptions and model choices (discussed in the next two sections) are required to generate 

transformation pathways using IAMs. This thesis identifies and takes first steps towards assessing 

challenges associated with drawing robust and reliable insights using IAMs given the uncertainty of 

these model choices and assumptions. The first part of the thesis (chapters 2-4) focuses on the IAM 

ensemble used in AR5 and the second part of the thesis (chapters 5-6) investigates predictions based on 

the Future Technology Transformations (FTT) energy system simulation model.  

 

The first part makes two arguments about IAM ensembles. First, it argues that IAM independence is an 

important but neglected topic in AR5, which has an important bearing on the robustness of the insights 

that can be drawn. If the IAMs in the AR5 ensemble are not independent, we cannot know whether 

agreement in outputs is a sign of robustness or a consequence of shared model choices and assumptions. 

A method is developed that uses model documentation to construct a model family tree and this method 

is used to identify likely model dependencies in AR5. Based on this, it is found, many of the IAMs in 

AR5 are not independent. Second, it argues that the risk of the AR5 IAM ensemble being wrong about 

the sign of the cost of mitigation is significant. AR5 cost estimates, which are exclusively positive, do 

not capture the full range of cost estimates observed in the literature, which also includes negative 

values. A review of the AR5 scenario publications suggests that the reason why none of the IAMs in 

AR5 predicted net negative costs in AR5 is that few of the mechanisms that typically give rise to net 

negative costs were included in the AR5 IAMs. It is also shown that the model intercomparison studies 

that generated most of the AR5 scenarios focused only on aspects that increase the cost of mitigation. 

Based on all of this, it appears, the AR5 IAM ensemble might be biased against net negative cost results.  

 

The second part of the thesis examines the reliability of the predictions generated by FTT. The FTT 

energy system simulation model is seen by Mercure et al. (2014; 2016) to offer better predictions of the 

impacts of policies on the energy system than what energy system optimisation models (ESOMs) do, 

due in part to the derivation of technology deployment rates based on the theory of technology diffusion. 

However, even though the assumptions of perfect markets and fully rational agents that underpin the 

descriptive power of ESOMs have been criticised, and even though technology deployment in ESOMs 

is determined in part by exogenous constraints, it is not clear that FTT’s predictions fare any better. A 

global sensitivity analysis examining the sensitivity of technology deployment and emissions in the 

power sector sub-model of FTT (FTT:Power) to investor discount rates, technology lifetimes, 

technology build times, learning rates, and a model specific scaling factor – a constant representing the 

time it takes to achieve a full turnover of technologies – shows that FTT:Power predictions are highly 

sensitive to the scaling factor, whose “true” value is deeply uncertain. This poses an issue for the 

reliability of best guess FTT:Power predictions.  
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Based on the importance of model independence for robustness and on the risk of being wrong 

(associated with both ensemble results and individual model results such as those based on FTT), the 

thesis concludes that IAM research should aim to incorporate a diversity of model choices and 

assumptions both in the construction of IAM ensembles and in individual IAMs.  

1.1 From temperature targets to transformation pathways 

IAMs are used to translate climate policy targets, such as the 2˚C Paris target, into concrete 

transformation pathways, which depict how different sectors of the economy (e.g. energy, industry, 

transport, agriculture, forestry) in different regions of the world can change in order to meet the required 

emissions reduction. Among other things, transformation pathways tell us how, when, and where fossil 

fuels – which are responsible for the majority of GHG emissions – are replaced by alternative energy 

sources. 

 

How do IAMs do this? First, temperature targets have to be translated into emissions pathways8. This 

is the domain of climate science, in which uncertainty has led to many different climate models, which 

yield different temperature projections for the same emissions pathway. By running multiple climate 

models together to generate ‘super-ensembles’, which convey the variety of temperature responses 

produced by different climate models (IPCC, 2014a), however, the probability that a given emissions 

pathway will lead to warming below a certain level can be computed. This is why temperature targets 

always come with probabilities; A common interpretation of the Paris climate target, for instance, is a 

66% chance of staying below 2˚C.  

 

Climate modelling has shown that the probability of meeting a given temperature target is roughly 

proportional to cumulative emissions (IPCC, 2014a). This relatively simple relationship has given rise 

to the popular concept of carbon budgets, which tell us how much more we can emit if we want to 

achieve a given temperature target (with a certain probability). At the time of AR5, the carbon budget 

corresponding to a 66% chance of staying below 2˚C was estimated to be between 600 and 1,200 (10-

90% range) GtCO2 (Anderson & Peters, 2016)9.  

 

 

8 IAMs might also take emissions and GHG concentration levels as inputs. 

9 These estimates have changed since AR5, but the range of uncertainty is still large. 
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Many emissions pathways, however, are compatible with the same level of cumulative emissions. 

Emissions could either decrease immediately, allowing for a (relatively speaking) slower rate of 

emissions reductions, or emissions could continue to increase for a while, thereby necessitating more 

rapid emissions reductions later on10. Even the same emissions pathway, however, can be met using a 

combination of different mitigation measures. As shown in Figure 1.2, many different gases and sectors 

contribute to GHG emissions. This means that identical emissions pathways can be achieved by 

targeting different combinations of gases and sectors. Even if we consider only CO2 emissions (which 

account for 76% of GHGs), which eventually have to reach net zero, the timing of emissions reductions 

in different sectors can still vary. And even within the same sector, mitigation options abound. For 

instance, within the energy sector (electricity and heat + other energy in Figure 1.2), reductions can 

stem from changes to energy demand or energy supply. Even if we narrow it down to emissions 

reductions in electricity supply alone, we still have a choice between multiple low-carbon technologies 

(such as nuclear, hydro, and renewables) for replacing unabated fossil fuel technologies. In addition to 

all of this, emissions can also be reduced using NETs. In short, climate mitigation is characterised by a 

very high degree of freedom and IAMs have to make a multitude of choices in order to go from a 

temperature target, such as the 2˚C Paris target, to a concrete transformation pathway. These choices 

will be defined not only by the solution mechanisms that are employed by IAMs, but also the many 

structural and parametric assumptions that have to be made in order to represent the economic and 

technological systems that are involved. All of these choices and assumptions involve a great deal of 

uncertainty.  

 

10 Anderson and Peters (2016) warn against relying too heavily on carbon budgets, as relationships between 

emissions and temperature rises in reality are more complex. It is, however, still true that cumulative emissions 

provide a good first-order approximation for temperature increases.  

Figure 1.2 Global GHG emissions by gas (left) and by sector (right) in 2010. Numbers are taken from 

AR5 and show percentages in 2010 (IPCC, 2014a). 
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1.2 Plausible futures 

Any attempt at modelling the economy or the energy system (and the interactions between the two) at 

time scales relevant to climate change mitigation (typically on the order of 30-100 years) faces a great 

deal of uncertainty. A footnote in the Summary for Policymakers (SPM) in the AR5 Working Group 

III (WGIII) report tells us that: 

“[IAMs] are simplified, stylized representations of highly-complex, real-world 

processes, and the scenarios they produce are based on uncertain projections about 

key events and drivers over often century-long timescales. Simplifications and 

differences in assumptions are the reason why output generated from different 

models, or versions of the same model, can differ, and projections from all models 

can differ considerably from the reality that unfolds.” (IPCC, 2014a, p. 10).  

IAMs need to make hundreds, if not thousands, of assumptions regarding model structure and parameter 

values in order to estimate the value of variables such as the cost of mitigation and the deployment of 

renewable energy technologies (Trutnevyte, 2016). This introduces two types of uncertainty that will 

play central roles in this thesis: parametric uncertainty and structural uncertainty. Parametric 

uncertainty is the uncertainty associated with the value of model parameters. There are many different 

sources of parametric uncertainty, such as measurement error and natural variability (for a thorough 

treatment, see e.g. Morgan and Henrion (1990)). Structural uncertainty is the uncertainty associated 

with the equations that are used to relate parameters and variables in the model. Structural uncertainty 

reflects the imperfect and incomplete knowledge of the system being modelled (Boulanger & Bréchet, 

2005; DeCarolis, 2011). Both kinds of uncertainty are strongly present in IAMs. 

 

Partly for this reason, AR5 uses the term “plausible descriptions of the future” when talking about IAM 

scenarios, and points out that “scenarios are neither predictions nor forecasts” (IPCC, 2014a, p. 1270). 

Instead, IAMs are commonly seen to provide answers to ‘what-if’ questions (e.g. Anderson & Jewell, 

2019; Schneider, 1997), and answers to these questions are often coached in careful language, using 

phrases such as “what might happen” (Mcdowall et al., 2014). 

 

One of the key purposes of asking ‘what-if’ questions is to gain a better understanding of the 

consequences of decisions and other developments (Anderson & Jewell, 2019). For this to be the case, 

however, answers must tell us something about the actual mechanisms involved in climate mitigation. 

If a ‘what-if’ question is answered using an inference tool that fails to mimic relevant mechanisms in 

the real world then it is likely to suggest consequences that are different to those that will actually occur. 

IAMs only provide information that is useful for decision making if they get some things (and enough 

of them) right. Thus, even though IAMs do not forecast or predict the future – because the key drivers 
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are too uncertain, and it is impossible to foresee all events that might shape outcomes – we still expect 

answers to ‘what-if’ questions to capture real-world relationships to some extent. Otherwise, the 

answers would simply not be useful. For example, answers to questions about aggregate mitigation 

costs would not be useful if we had no reason to believe that they capture some of the important cause-

effect relationships or at least get the order of magnitude right.  

 

Given the significant uncertainty regarding both parameter values and causal structures, however, 

different IAMs provide different answers to the same ‘what-if’ question. This poses challenges for the 

interpretation of results. While it is clear – and often repeated – that IAMs provide “insights, not 

numbers” (Peace & Weyant, 2008), there are still important questions to be asked regarding what 

insights can be gleaned and how. Ultimately, the confidence we place on IAM results matters not only 

for their usefulness in informing climate policy, but also for framing the public debate. In particular, it 

matters because the consequences of being wrong, and in that way providing a poor basis for decision 

making and public deliberation, can be dire.  

1.3 Overview of thesis 

As noted, IAMs have become central tools in the assessment of global transformation pathways that 

can meet the Paris target and play a central role in IPCC reports, including in AR4 (IPCC, 2007), AR5 

(IPCC, 2014a), and in SR15 (IPCC, 2018a). IAMs will also play a key role in the upcoming IPCC 6th 

assessment report (AR6)11. While the first part of this thesis (chapters 2-4) examines the robustness and 

uncertainty of IAM ensemble results, the second part of the thesis (chapter 5-6) examines the reliability 

of individual IAM results. 

 

More specifically, Chapter 2 draws on research conducted in climate modelling (Jun et al., 2008; Knutti 

et al., 2013; Masson & Knutti, 2011; Tebaldi & Knutti, 2007) to argue that the robustness of insights 

drawn from IAM ensembles requires independence between IAMs; independence that is assumed 

without discussion in AR5. The chapter develops a method to construct a model family tree based on 

similarities between models explicitly stated in their model documentation and uses this method to 

identify likely dependencies between IAMs in AR5. The analysis shows that the 14 most influential 

IAMs in AR5 form three branches, the largest of which is the MESSAGE/MERGE branch, which 

includes MERGE, MESSAGE-MACRO, MERGE-ETL, REMIND, WITCH, and BET. Together, the 

IAMs in this branch are responsible for about half of the scenarios in the AR5 ensemble. The model 

documentation is also used to show that IAM development over time has been driven by an expanding 

 

11 Based on the contents of the first order draft and communication with one of the lead authors, Glen Peters.  
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set of policy questions that have incentivised a continuous increase in the level of detail and scope of 

analysis.  

 

Utilising the AR5 WGIII report’s discussion of key differences in IAM structure, Chapter 3 shows that 

there is a strong overlap between the IAM categories that arise when considering the degree of foresight 

and economic coverage in IAMs, the main model frameworks (optimal growth theory, computable 

general equilibrium modelling, and energy systems optimization modelling), and the branches in the 

model family tree constructed in Chapter 2. All the IAMs in the MESSAGE/MERGE branch, for 

example, are general equilibrium – perfect foresight models based on (Ramsey) optimal growth theory. 

Chapter 3 also shows, however, that the model family tree captures sources of model dependencies and 

independencies that the key differences in model structure discussed in AR5 do not capture. This is not 

surprising given the many sources of model dependencies (some of which are discussed in Chapter 2 

for climate models).  

 

Chapter 4 starts from the observation that all the estimates of the cost of mitigation reported in AR5 are 

positive. Yet, according the literature, the cost of mitigation could also be net negative. Chapter 4 

reviews several reasons for how net negative mitigation costs might arise and presents a number of 

mechanisms that, if included in models, might give rise to net negative cost results. The chapter notes 

that experts disagree when it comes to the ability of these mechanisms to generate net negative costs in 

the real world. This means that the AR5 IAM ensemble captures only part of the uncertainty associated 

with the cost of mitigation. Based on Douglas (2009) and Rudner (1953), the chapter develops an 

argument for why this uncertainty is important. In short, being wrong about the cost of mitigation could 

have large negative consequences. This is used to argue that a diversity of model choices and 

assumptions is important not only for ensuring robustness of insights (as argued in Chapter 2) but for 

reducing the risk of being wrong. 

 

Chapter 4 also examines potential reasons for why the AR5 IAM ensemble contains only net positive 

cost results. While some authors have argued that general equilibrium models (including CGE and 

optimal growth models), which are responsible for all the cost estimates in AR5, exclude net negative 

costs by construction, Chapter 4 shows that general equilibrium models can be modified in order to 

reflect the possibility of net negative costs by taking into account the sorts of mechanisms previously 

identified. A review of the AR5 scenario publications, however, indicates that only two IAMs in AR5 

(IMACLIM and, to some extent, WITCH) include any of the mechanisms identified as enabling net 

negative costs. Additionally, Chapter 4 shows that the model intercomparison studies that are 

responsible for the vast majority of the scenarios in the AR5 ensemble focused on aspects that can only 

increase the cost of mitigation. Based on this, Chapter 4 concludes, there is reason to believe that the 

AR5 IAM ensemble is biased towards net positive mitigation costs.  
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Chapters 5 and 6 turn to predictions based on FTT, which is seen by Mercure et al. (2014; 2016) to 

differ from most other energy systems models. Chapter 6 conducts a global sensitivity analysis of the 

power sector sub-model of FTT (FTT:Power) and Chapter 5 provides the context and motivation for 

the analysis conducted in Chapter 6. The goal of both chapters is to begin to assess whether FTT meets 

the goals that it (according to those who built it) was designed to meet. 

 

Chapter 5 presents the claims put forth by FTT modelers regarding the superiority of FTT relative to 

ESOMs. In particular, the chapter focuses on the claim by Mercure et al. (2014; 2016) that the 

endogenous derivation of technology deployment rates based on the theory of technology diffusion 

enables a more realistic depiction of the impacts of policies on future technology deployment. The 

chapter shows that ESOMs are likely to provide poor predictions if either the assumptions of perfect 

markets and rationality do not hold (sufficiently), or if the exogenous technology deployment 

constraints do not accurately capture real-world constraints. However, even though the neoclassical 

assumptions have been widely criticised and even though technology deployment in ESOMs is 

determined in part by exogenous constraints, Chapter 5 concludes, we cannot claim that FTT 

predictions fare any better without (at least) assessing the sensitivity of FTT predictions to key uncertain 

assumptions. 

 

In order to begin to do so, Chapter 6 conducts a global sensitivity analysis of the FTT:Power model 

using Monte Carlo analysis and Latin Hypercube sampling. The goal of the chapter is to provide a first 

conservative estimate of the uncertainty of FTT:Power predictions, and to identify the parameters in the 

FTT core equation with the largest influence on FTT:Power predictions. The analysis represents the 

first sensitivity analysis of any of the FTT models that goes beyond a one-factor-at-a-time approach and 

includes all the parameters that define the core equation (the shares equation). Uniform and independent 

distributions based on varying default parameter values by ±50% are used to examine the sensitivity of 

technology deployment and emissions to investor discount rates, technology build times, technology 

lifetimes, learning rates, and the overall scaling factor – a constant representing the time it takes to 

achieve a full turnover of technologies. Given that the analysis in Chapter 6 includes only a sub-set of 

FTT:Power parameters and ignores structural uncertainty (and given that the ±50% parameter ranges 

are shown to be close to ranges observed in the literature), the results can be interpreted as a first order, 

conservative estimate of the uncertainty of FTT:Power predictions.  

 

The results show that, for the chosen parameter ranges, technology diffusion alone is not sufficient to 

reduce emissions in line with the 2˚C pathway in FTT:Power. This suggests (if we accept the structural 

assumptions in FTT:Power) that policies will be necessary to limit emissions from the power sector. 

The results, however, also show that the FTT:Power predictions of policy impacts depend crucially on 
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the scaling factor, whose “true” value is deeply uncertain. Thus, the chapter concludes, the influence of 

the scaling factor on FTT:Power predictions poses an issue for the accuracy of best guess FTT:Power 

predictions. Given the importance of the uncertainty, Chapter 6 concludes, it is more appropriate to 

provide policymakers with ranges of results contingent on key parameter values.  

 

Overall, chapters 5 and 6 thus show that while the rates of technology deployment in ESOMs are 

determined partly by exogenous constraints drawn from limited empirical evidence, the rates of 

technology deployment in FTT:Power are determined to a large extent by the scaling factor. The value 

of the scaling factor appears to be no more certain or any easier to verify than the values of the maximum 

technology deployment rates that are assumed in ESOMs.  

 

Based on the arguments and findings presented in chapters 2-6, Chapter 7 concludes, the IAM 

community should strive to incorporate a diversity of approaches and assumptions both in IAM 

ensembles and in individual IAMs. This is key to ensuring robustness of insights and reflecting 

important uncertainties associated with IAM research. 
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2 IAM dependencies in AR5 

A key aim of the IPCC reports is to gather and assess the knowledge base that exists in the areas of 

climate change (Working Group I), mitigation (Working Group III), and adaptation (Working Group 

II). Representing the uncertainty of the knowledge base is central to this. According to the AR5 

Synthesis Report, 

“[a]n integral feature of IPCC reports is the communication of the strength of and 

uncertainties in scientific understanding underlying assessment findings. 

Uncertainty can result from a wide range of sources… Complex interactions among 

multiple climatic and non-climatic influences changing over time lead to persistent 

uncertainties, which in turn lead to the possibility of surprises.” (IPCC, 2014b, p. 

37) 

As mentioned in Chapter 1, different climate models predict different temperature responses for the 

same emissions pathway. The variety of responses is a result of the complexity of the climate system 

and associated uncertainties regarding how to model it (Tebaldi & Knutti, 2007). For this reason, the 

IPCC uses ensembles (sometimes called ‘super-ensembles’) of climate models to capture the 

differences in temperature responses predicted by different climate models. The use of climate model 

ensembles to estimate the likely impacts of emissions on temperature increase is seen as a way of 

capturing the structural uncertainty associated with modelling climate change.  

 

Similarly, the IPCC uses IAM ensembles to assess transformation pathways, i.e. pathways depicting 

how we might reduce GHG emissions in order to meet different climate targets. Just like ensembles of 

climate models can be used to show the spread of temperature responses generated by different climate 

models (and different versions of the same climate models), ensembles of IAMs can be used to show 

the spread of different IAM outputs generated by different IAMs (and different versions of the same 

IAMs).  

 

A key question is whether the spread in outputs captured by IAM ensembles provides a good 

representation of the structural uncertainty that is associated with integrated assessment modelling. 

Based in part on a series of papers published in the climate modelling literature, this chapter argues that 

IAM independence is crucial for our ability to draw robust insights from IAM ensembles. In order to 

assess model dependencies between the IAMs in the AR5 ensemble, this chapter develops a method 

that deliberately avoids detailed bottom-up comparisons of IAMs, because the number and complexity 

of IAMs in AR5 would render this infeasible. The method – which is based on document analysis – is 

used to construct a family tree that indicates likely model dependencies in AR5. In addition to this, the 
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documents are used to obtain a richer understanding of what has driven the development of IAMs over 

the last few decades.   

 

The results of the analysis indicate that a significant number of model dependencies exist within the 

AR5 IAM ensemble. Given the importance of the independence assumptions for our ability to obtain 

robust insights, this chapter argues, future IAM research and IPCC reports should pay much more 

attention to IAM dependencies. 

 

Section 2.1 introduces the AR5 IAM ensemble. Section 2.2 explains how model independence 

represents an important, but rarely justified, assumption in climate model ensembles. Section 2.3 shows 

that the AR5 WGIII report mentions dependencies between scenarios that stem from the same IAM and 

the same model intercomparison study but says nothing about dependencies between IAMs. This, 

section 2.4 argues, presents an issue for the interpretation of agreement among IAMs in an ensemble as 

a sign of robustness. Section 2.5 presents the method developed in this chapter to identify likely model 

dependencies in AR5 and section 2.6 presents the resulting model family tree. Section 2.7 presents the 

results of the additional document analysis, which indicates that the evolution of IAMs has been driven 

by policy demands that appear to have incentivised an increase in detail and scope, rather than a 

diversity of modelling approaches. Section 2.8 provides concluding remarks.   

2.1 Using IAM ensembles to capture structural uncertainty 

Figure 2.1 provides an example of how scenarios produced by the IAMs in the AR5 ensemble are 

presented in AR5. The top panel shows global GHG emissions over time in all the scenarios in the 

ensemble, and the bottom panel shows the shares of low-carbon energy in scenarios grouped according 

to the GHG concentration levels achieved. The bottom right figure, for example, shows the share of 

low-carbon energy in all the scenarios that reach GHG concentration levels of 430-480 ppm CO2eq. 

Not surprisingly, because this group includes the scenarios that achieve the lowest GHG concentration 

levels, the average low-carbon shares (in each year) in this group is higher than the average low-carbon 

shares (in the corresponding years) in the other groups. The ranges, however, are still large. This 

illustrates how scenarios can achieve the same GHG concentration levels with different shares of low-

carbon energy. 

 

The ranges above are partly a consequence of the many degrees of freedom in IAMs, which means that 

the same climate target can be met in many ways. It is also, however, a result of the uncertainties 

associated with modelling technological and human systems, such as the economy and the energy 

system. The value of an IAM output is determined by the value of IAM inputs (e.g. assumed population 

growth, policies), the value of IAM parameters (e.g. technology costs, rates of renewable technology 
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cost reductions), and model structure (e.g. whether renewable technology cost reductions are exogenous 

or endogenous, how decision making is modelled). If either input values, parameter values, or model 

structure is changed, output values will change too12. Due to our incomplete knowledge regarding how 

to model technological and human systems, we don’t know the “most correct” or “best” way to do so. 

Because different IAMs encompass different assumptions and modelling choices (materialising in 

different model structures and parameters), different IAMs will generally compute different output 

values for the same input values. IAM ensembles are thus seen to capture some of the inherent 

uncertainties involved in integrated assessment modelling. Capturing structural uncertainty is one of 

the main reasons for including many different IAMs in the same ensemble.  

 

 

Figure 2.1 Global GHG emissions in all scenarios in the AR5 ensemble (upper panel) and associated upscaling 

requirements of low-carbon energy for 2030, 2050, and 2100 compared to 2010 in scenarios that achieve different 

GHG concentration levels (lower panel). The upper panel also shows the Representative Concentration Pathways 

(RCPs), which correspond to different levels of radiative forcing (measured in W/m2) in 2100. GHG concentration 

levels are indicated by the legends. Reproduced from IPCC (2014a, p. 11). 

 

12 It is possible, in principle, that changing two or more of these aspects simultaneously will generate the same 

output value. 
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Scenarios have been used by the IPCC since the first assessment report (IPCC, 1990). At that point, 

only two different IAMs were used to generate emissions scenarios. Since then, the number of IAMs 

that generate scenarios have increased significantly. In AR5, “the number of models has increased, and 

model functionality has significantly improved since AR4, allowing for a broader set of scenarios in 

the AR5 ensemble” (IPCC, 2014a, p. 423). All scenarios included in the IPCC reports have to be 

published in the peer-reviewed literature. Based on this literature, a total of 1,184 scenarios from 30 

different IAMs were collected for the AR5 scenario ensemble13. The majority (about 95%) of these 

scenarios were generated as part of nine model intercomparison studies (IPCC, 2014a). Model 

intercomparison studies are studies involving many different models and modelling teams aimed at 

investigating specific topics. The two model intercomparison studies responsible for the largest number 

of scenarios in the AR5 Scenario Database, AMPERE (Kriegler et al., 2015b; Riahi et al., 2015a) 

(responsible for 378 scenarios) and EMF 27 (G. J. Blanford et al., 2014; Krey et al., 2014; Kriegler et 

al., 2014) (responsible for 362 scenarios) explore the implications of delayed and fragmented mitigation 

and of limitations on technology (including on costs, performance, and availability). RoSE (Bauer et 

al., 2016; Calvin et al., 2016; Chen et al., 2016; De Cian et al., 2016; Luderer et al., 2016) (responsible 

for 105 scenarios), LIMITS (Kriegler et al., 2013; Tavoni et al., 2014) (responsible for 84 scenarios), 

and EMF 22 (Clarke et al., 2009) (responsible for 70 scenarios) explore delayed and fragmented 

mitigation, and ADAM (Edenhofer, Knopf, Leimbach, & Bauer, 2010) (responsible for 15 scenarios) 

explores the implications of limitations on technology. Lastly, RECIPE (Luderer et al., 2012) 

(responsible for 18 scenarios) again explore the implications of delayed and fragmented mitigation and 

limitations on technology. A key question is whether a continuously increasing number of IAMs (and, 

related, an increasing number of scenarios) leads to better insights. 

 

This chapter argues that dependencies between IAMs in the AR5 ensemble is an important but neglected 

topic. It is important because it influences the robustness of insights that can be gleaned from scenario 

ensembles. Such dependencies have already been shown to be prevalent in climate model ensembles, 

which in many ways have provided a template for IAM ensembles (Knutti et al., 2013; Masson & 

Knutti, 2011). 

2.2 Lack of independence in climate model ensembles 

The main motivation for using ensembles of climate models is to capture uncertainty related to the 

choice of model design (Tebaldi & Knutti, 2007), that is, structural uncertainty. In several areas of 

research, such as public health and agriculture, forecasts based on combining different models have 

been shown to outperform single-model forecasts (Tebaldi & Knutti, 2007). Similarly, in climate 

 

13 Available online at https://tntcat.iiasa.ac.at/AR5DB/dsd?Action=htmlpage&page=about 
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modelling, averages of results from multiple models have been found to agree better with observations 

than results from single models.  

 

The reason for this is essentially this: in an ensemble, errors introduced via different modelling choices 

and assumptions tend to cancel out. Errors in modelling are an unavoidable result of the fact that models 

are simplifications of the real world. They reflect the fact that correspondences between the models and 

the real world are never one-to-one. Specifically, “simplifications, assumptions and choices of 

parametrizations have to be made when constructing a model, and they inevitably lead to errors in the 

model and the forecasts it produces” (Tebaldi & Knutti, 2007, p. 2056). By combining different models, 

the errors of different models can be made less severe. Based on a reading of the law of large numbers, 

if models are assumed to be normally distributed around an error free mean, then as more and more 

outputs from different models are aggregated, the errors of different models will cancel out. 

 

This, however, rests on a crucial assumption, namely that model choices and assumptions in the 

different models are made independently of each other. Without independence, we cannot assume that 

errors are normally distributed around an error free mean. Quite the contrary, if model choices and 

assumptions are dependent, errors will be correlated. In this case, errors will not cancel out. Put 

differently, the models’ “deviations from the true system or other models will be similar” (Masson & 

Knutti, 2011, p. 1). 

 

A handful of papers have presented methods to show that many climate models used in climate model 

ensembles are not independent. By comparing the outputs of 20 state of the art climate models with 

observations, Jun et al. (2008) provide evidence that many climate models have highly correlated errors. 

Knutti and Masson (2011) develop a distance metric based on differences between modelled and 

observed temperature and precipitation levels in order to measure climate model dependence. Both 

papers find strong similarities between many models.  

 

Overall, Knutti and Masson (2011) find, dependencies exist between models developed at the same 

institution, between models sharing similar components, and between successive versions of the same 

model. This is also consistent with Jun et al.’s (2008) finding that climate models developed by the 

same institution have similar errors. In many ways, this is not surprising. New climate models are rarely 

written from scratch but “evolve from combining, modifying and improving existing parts and ideas” 

(Masson & Knutti, 2011, p. 2). Some institutions use entire model components from other models. What 

this means is that the effective number of independent models in climate model ensembles is lower than 

the actual number of models.  
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Based on their findings, Knutti et al. (2013) conclude that the independence assumption in climate 

model ensembles is rarely justified. Rather, “current coordinated model experiments are like asking the 

same question to a small number of people, without thinking about how to select those people, how 

many to ask, and how to account for the fact that they may have similarly biased opinions. This 

undoubtedly makes the interpretation of the answers challenging” (Masson & Knutti, 2011, p. 4).  

2.3 Dependencies in the AR5 ensemble 

Chapter 6 in the AR5 WGIII report acknowledges that ensemble results are not straightforward to 

interpret. In particular, it notes the “unavoidable ambiguity in interpreting ensemble results in the 

context of uncertainty” (IPCC, 2014a, p. 423). This ambiguity arises in part because “the scenarios 

assessed in this chapter do not represent a random sample that can be used for formal uncertainty 

analysis” (IPCC, 2014a, p. 423). The reason for this is twofold.  

 

First, the vast majority of the scenarios in the AR5 ensemble were generated as part of model 

intercomparison studies. As already mentioned, these studies are focused on exploring particular 

questions such as the consequences of delayed climate action or limited technology availability. They 

tend to impose specific assumptions and often harmonise key parameters in order to make results 

comparable. In addition to this, several scenarios also represent sensitivity runs (for instance with 

respect to different levels of technology availability). Because “each scenario [in the AR5 ensemble] 

was developed for a specific purpose” it follows that “the collection of scenarios…does not necessarily 

comprise a set of ‘best guesses’” (IPCC, 2014a, p. 423). This means that the spread of the scenarios 

cannot be taken to represent the uncertainty of the most likely outcome.  

 

Second, some modelling groups have generated significantly more scenarios than others. Since each 

scenario is weighted equally in AR5, IAMs that contribute with more scenarios have a larger influence 

on ensemble results (such as averages). According to Chapter 6, this introduces “a weighting of 

scenarios that can be difficult to interpret” (IPCC, 2014a, p. 423).  

 

Using the language of the previous sections, the model choices and assumptions made in scenarios from 

the same model intercomparison study or from the same IAM are not independent. In other words, these 

scenarios are not independent. In this sense, AR5 acknowledges some of the dependencies that 

complicate the interpretation of ensemble results.  

 

AR5 does not, however, say anything about possible dependencies between IAMs, and thus about 

scenarios that stem from dependent IAMs (see Table 2.1). If anything, AR5 highlights the independence 

of different modelling groups (IPCC, 2014a, p. 175). Several of the model intercomparison studies that 
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contribute to the AR5 ensemble also highlight the diversity of the IAMs included (Kriegler et al., 2013, 

2015b; Riahi et al., 2015a). For instance, in presenting the AMPERE model intercomparison study 

(which is responsible for 32% of the scenarios in AR5), Riahi et al. (2015b, p. 12) point out that “the 

diversity of approaches is an important asset, since it helps us to better understand structural 

uncertainties, and to focus on findings that are robust across a wide range of methodologies.”  

 

Table 2.1 Three ways in which scenarios might be dependent. 

Scenarios from… Are according to AR5… 

The same IAM Not independent 

The same model intercomparison study Not independent 

Dependent IAMs [Not mentioned]* 

* The work in this chapter aims to fill this gap. 

 

In the end, the AR5 WGIII report “does not attempt to resolve the ambiguity associated with ranges of 

scenarios” but instead “focuses simply on articulating the most robust and valuable insights that can be 

extracted given this ambiguity” (2014a, p. 424). As we will see in the next section, however, the concept 

of robustness again relies crucially on independence.  

2.4 Agreement as robustness 

A robust model result is a result that is invariant with respect to uncertain model assumptions, be they 

parametric or structural. If model A, based on assumptions {a1,…,an}, produce the same value of an 

output as model B, which is based on equally plausible assumptions {b1,…,bn}, then the value of the 

output can be said to be robust with respect to variations in these assumptions. The concept is most 

straightforward when applied to parametric assumptions. If we are faced with a range of plausible 

parameter values and incomplete knowledge with respect to choosing a value, it is good practice to 

check whether model results depend on the choice. If results depend (significantly) on the choice, the 

results are said to be sensitive to the parameter in question. If results don’t depend (significantly) on the 

choice, the results can be said to be robust with respect to the parameter in question. In order to establish 

robustness, however, we have to make sure that the results are (sufficiently) invariant with respect to 

the entire range of plausible parameter values. If we only check what the results are for a smaller section 

of the plausible parameter range, we cannot conclude that results are robust with respect to the 

uncertainty of the parameter in question. Although the concept of robustness gets more complicated 

when applied to structural assumptions, a similar point can be made: we cannot conclude that results 

are robust with respect to structural assumptions unless we make sure that results are (sufficiently) 

invariant with respect to all plausible structural assumptions.  
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In theory, then, the requirement for defining insights as robust is that they are (sufficiently) invariant to 

all plausible modelling choices and assumptions14. In practice, this requirement is of course not possible 

to attain for IAMs: We can never be sure that all possible modelling choices and assumptions are 

captured in IAM ensembles. The point remains, however, that the ability to obtain robust insights from 

IAM ensembles relies on a sufficiently diverse ensemble. If too many IAMs are dependent, diversity 

will be curbed. 

 

Providing robust insights is an important aim of IAM research and a key justification for including 

many IAMs in ensembles. This is highlighted both in AR5 itself and in model intercomparison studies 

on which AR5 relies. Moreover, results from the AR5 ensemble are communicated to policymakers 

and the wider public in the Summary for Policy Makers (SPM) and the synthesis report without the 

caveats listed in Chapter 6 of the WGIII report. When IAMs agree on results, this is likely to be 

perceived by the public as a sign of high confidence in those results. But this interpretation of agreement 

in results is, as we have seen, questionable if many IAMs are dependent. In this case, agreement in 

results might be a consequence of shared modelling choices and assumptions rather than a consequence 

of robustness with respect to a variety of modelling choices and assumptions.  

 

The concepts of agreement and independent lines of evidence are, in fact, already key to the assessment 

of uncertainty in the IPCC: 

“The IPCC Guidance Note on Uncertainty defines a common approach to 

evaluating and communicating the degree of certainty in findings of the assessment 

process. Each finding is grounded in an evaluation of underlying evidence and 

agreement. In many cases, a synthesis of evidence and agreement supports an 

assignment of confidence, especially for findings with stronger agreement and 

multiple independent lines of evidence. The degree of certainty in each key finding 

of the assessment is based on the type, amount, quality and consistency of evidence 

(e.g., data, mechanistic understanding, theory, models, expert judgment) and the 

degree of agreement” (IPCC, 2014b, p. 37 my italics).  

In other words, agreement on its own is not enough to assign a high degree of confidence to a finding. 

The agreement must be based on independent lines of evidence. If scenarios are added to IPCC 

 

14 Being invariant to implausible modelling choices and assumptions is not a requirement. If the value of a 

parameter is well known – that is, if the uncertainty is insignificant – the only plausible value of the parameter is 

the given value. Thus, insights can be robust even though they are sensitive to an assumption as long as there is 

little or no uncertainty regarding that assumptions.   
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ensembles from IAMs that are not independent, results (such as those shown in figure 2.1) might appear 

less spread out, and thus less uncertain. An increase in the number of dependent IAMs might thus lead 

to a false impression of increasing confidence. In reality, if bias is defined as systematic error in a 

specific direction, ensembles that contain many dependent models will be biased in the direction of the 

errors associated with the shared modelling choices and assumptions that are responsible for those 

dependencies. Thus, the degree of independence between the IAMs in the AR5 ensemble should be 

considered when evaluating the quality of the evidence referred to in the above quote. 

2.4.1 Ensembles of opportunity 

Since only scenarios published in the peer-reviewed literature can be included in IPCC reports, IAM 

ensembles, like climate model ensembles, represent “ensembles of opportunity in which the sampling 

and dependence in the model space is unknown” (Masson & Knutti, 2011, p. 1). The use of ensembles 

represents a pragmatic approach that allows the IPCC to capture some of the structural uncertainty that 

is associated with integrated assessment modelling. The ensemble approach has arisen in climate 

modelling due in part to a lack of unique model quality metrics (Masson & Knutti, 2011). If we knew 

what models were “more correct” or “better” (in a given context), then we would simply use these. 

Such quality metrics are, if anything, even harder to come upon for IAMs. In general, IAMs resist the 

kind of validation that models of physical processes can be exposed to (DeCarolis, 2011)15. Among 

other things, whereas climate model outputs are regularly compared to observations, IAM outputs are 

not. This makes it even more difficult to determine the quality of IAMs (Decarolis et al., 2012).  

 

Thus, it makes sense to combine the results of many different IAMs and to try to draw insights based 

on this. But even though IPCC reports rely on results that have been published in the peer-reviewed 

literature, they have a mandate to assess the strength and uncertainties of those results. Given how 

model dependencies impact on the robustness of insights that can be obtained from IAM ensembles, 

IPCC reports should pay more attention to these.  

 

The issues posed by IAM dependencies and the absence of an assessment of such dependencies 

highlights a gap, namely the need for methods to identify such dependencies. The next section presents 

the new method developed in this chapter to identify likely model dependencies in IAM ensembles. 

 

15 Hodges and Dewar (1992) describe the problem of model validation and explains why some models cannot be 

validated. 
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2.5 IAMs in AR5 

Figure 2.2 shows the number of scenarios generated by each of the 30 IAM in the AR5 ensemble based 

on data provided in Appendix II.10 of the AR5 WGIII report. As already mentioned, the 30 IAMs vary 

in terms of how many scenarios they contribute with. Because each of the 1,184 scenarios is given equal 

weight in the AR5 ensemble, this means that some IAMs have a larger influence on ensemble results 

than others. Figure 2.2 shows that the most influential IAM in AR516, with 158 scenarios (13% of the 

AR5 ensemble), is the REMIND model. On the opposite end, the Ecofys Energy Model contributes 

with only one scenario (less than 0.1% of the AR5 ensemble). In particular four models stand out by 

contributing with more than 100 scenarios each: REMIND, MESSAGE, GCAM, and WITCH. 

Together, these four IAMS – from now on referred to as the ‘Big Four’ – are responsible for almost 

half of the scenarios in the AR5 ensemble.  

 

 

Figure 2.2 Number of scenarios generated by each IAM in the AR5 scenario ensemble. 

 

16 When influence is measured as the number of scenarios a model contributes with.  
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Scenarios that stem from the same IAM are not independent (given that they, with the exception of 

smaller variations, are based on the same model choices and assumptions). Figure 2.2 thus shows that 

relatively large groups of scenarios in AR5 are not independent. Correlations between scenarios from 

certain models, especially from the Big Four, might therefore be important to consider when 

interpreting AR5 ensemble results. Despite acknowledging the ambiguity that an uneven number of 

scenarios introduces, AR5 does not show how uneven this distribution is, nor does it say anything about 

what IAMs are most influential.  

 

There are, nonetheless, still 30 different IAMs contributing with scenarios in AR5. If these were all 

independent, the uneven distribution of scenarios per model might not pose such a big problem (13.5% 

is, after all, still a relatively small fraction of all the scenarios in the ensemble). An even more important 

question, therefore, is the extent to which scenarios from different IAMs may also be correlated due to 

dependencies between IAMs.  

 

Before describing the method used to identify likely model dependencies, it should be noted that all the 

IAMs in the AR5 ensemble are large and complex. They typically involve hundreds or thousands of 

assumptions and parameters and it can take years to achieve a good understanding of even a single of 

these IAMs. These aspects might deter researchers from attempting to study entire IAM ensembles. It 

is, nonetheless, no less important to do so. But choices must be made in order to make the task feasible. 

 

When studying an entire ensemble of IAMs, it is not feasible to conduct a detailed bottom-up 

investigation of all the model choices and assumptions that are made in all of the IAMs. A different, 

and in some ways more “superficial”, approach must be taken. The method developed in this chapter is 

based on using model documentation to draw up a “model family tree” and to gain a qualitative 

understanding of how IAMs have evolved. In so doing, the uneven distribution of scenarios per IAM 

in AR5 was utilized to limit the number of IAMs while still making sure that the vast majority of the 

scenarios in the AR5 ensemble was captured. The data behind figure 2.2 shows that the bottom 16 IAMs 

are responsible for only 10% of the scenarios in the AR5 ensemble. Thus, by selecting only the 14 most 

influential IAMs, it was possible to limit the number of IAMs considerably but still capture 90% (1,051) 

of the scenarios in the AR5 ensemble. 

 

Limiting the number of IAMs allowed for a more detailed analysis overall. For each of the 14 IAMs, 

model documentation going back all the way to the very beginning was gathered. First, references to 

the journal papers that present the scenarios in AR5 were obtained from the WGIII AR5 Scenario 

Database (IAMC, 2014). Second, references to model documentation (journal papers, model manuals, 

working papers, websites) that describe the IAMs used to generate the scenarios were obtained from 

the journal papers. Based on this, references to earlier model documentation was found. This 
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snowballing approach was employed for each of the 14 IAMs until no earlier documentation could be 

found. Based on the model documentation gathered through this process, a model family tree providing 

a “genealogy” of the 14 IAMs was constructed, and a qualitative understanding of how the 14 IAMs 

have evolved was obtained. Details of the 14 IAMs, including the earliest documentation, are shown in 

Table 2.2. The results of the analyses are presented in sections 2.6 and 2.7.  

 

Table 2.2 Details of the 14 IAMs responsible for the largest number of scenarios in AR5. Sources: AR5 Appendix 

II.10 (IPCC, 2014a) and individual model documentation. 

Model # Scenarios Full name Institution Earliest Documentation 

REMIND 158 Regionalized Model of 

Investments and 

Development 

Potsdam Institute for 

Climate Impact Research 

(PIK) (Germany) 

(Leimbach et al., 2010) 

MESSAGE-

MACRO* 

140 Model for Energy 

Supply Strategy 

Alternatives and their 

General Environmental 

Impacts 

International Institute for 

Applied Systems Analysis 

(IIASA) (Austria) 

(Messner & Schrattenholzer, 

2000) (for MESSAGE, the 

earliest documentation is 

(Agnew et al., 1979a)) 

GCAM 139 Global Change 

Assessment Model 

Pacific Northwest National 

Laboratory (PNNL) (US) 

(Edmonds & Reilly, 1983a) 

WITCH 132 World Induced 

Technical Hybrid 

Fondazione Eni Enrico 

Mattei (FEEM) (Italy) 

(Bosetti, Carraro, Galeotti, et 

al., 2006) 

IMAGE 79 The Integrated Model to 

Assess the Global 

Environment (formerly: 

Integrated Model for 

the Assessment of the 

Greenhouse Effect) 

Netherlands Environmental 

Assessment Agency (PBL) 

(Netherlands) 

(Rotmans, 1990) 

POLES 79 Prospective Outlook on 

Long-term Energy 

Systems 

European Commission’s 

Join Research Centre (JRC) 

(Europe) 

(Lesourd et al., 1996) 

IMACLIM 53  Center for International 

Research on Environment 

and Development (CIRED) 

(France) 

(Baron & Salles, 1991) 

MERGE-

ETL 

48 MERGE- Endogenous 

Technical Learning 

 (Kypreos & Bahn, 2003) 

MERGE 44 Model for Evaluating 

Regional and Global 

Stanford University (US) (Manne & Richels, 1992) 
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Effects of GHG 

reduction policies 

DNE21+ 43 Dynamic New Earth 

21+ 

The Research Institute of 

Innovative Technology for 

the Earth (RITE) (Japan) 

(Fujii & Yamaji, 1998) 

AIM-

Enduse 

41 Asia-Pacific Integrated 

Model - Enduse 

National Institute for 

Environmental Studies 

(Japan) 

(Kainuma et al., 1995) 

TIAM-

World 

41 TIMES Integrated 

Assessment Model - 

World 

International Energy 

Agency (IEA) 

(Richard Loulou & Labriet, 

2008) 

Phoenix 31  Pacific Northwest National 

Laboratory (PNNL) (US) 

(Brenkert et al., 2004) 

BET 23 Basic Energy systems, 

Economy, 

Environment, and End-

use Technology Model 

Central Research Institute 

of Electric Power Industry 

(Japan) 

(Yamamoto et al., 2014) 

*Although MESSAGE-MACRO is referred to simply as MESSAGE in AR5, the full name is used in this thesis 

to distinguish this IAM from the energy system sub-model MESSAGE, which is depicted separately in the model 

family tree. 

2.6 The model family tree 

Figure 2.3. shows the model family tree that was constructed based on the model documentation. The 

tree is based on information about i) the year in which each IAM was constructed (taken as the year in 

which the earliest model documentation appears, unless otherwise specified in the documentation), ii) 

changes to model names over time, iii) precursor models, and iv) links between models (discussed in 

more detail in section 2.6.1). Whenever the model documentation collected through the snowballing 

approach gave inconclusive answers, additional model documentation was sought. In total, 117 

different sources of documentation for the 14 IAMs and their precursor models were gathered to 

construct the model family tree.  
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Figure 2.3 Model family tree for the 14 most influential IAMs in AR5 (black lines) including precursor models 

(grey lines) showing when each model was constructed (the starting point of each line). Vertical lines represent 

links from newer to older models. These are always placed at the year in which the newer model is constructed. 

The numbers at the end of each line show the number of scenarios generated by the respective IAMs in the AR5 

ensemble. The percentages show the fraction of scenarios generated by the respective branches as a proportion of 

the total number of scenarios (1,051) generated by the 14 IAMs. The green rectangle highlights the most active 

decade (1990-2000) in terms of new IAM development. 

In short, the model family tree shows how the 14 IAMs that are responsible for 90% of the scenarios in 

the AR5 ensemble have evolved as a group of models. More specifically, each line in figure 2.3 

represents the evolution of one IAM (or, in the case of TIMER and FAIR, sub-models that form 

15% 

20% 

52% 
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components of IAMs). The starting point of each line indicates the year in which the model was 

constructed. Unless specified in the model documentation, this is taken as the year in which the earliest 

model publication appears. All the lines end at the year of the AR5 publication. Double and triple lines 

are used for IMAGE and MESSAGE-MACRO to represent the evolution of sub-models. Model names 

in black correspond to the names used in AR5, and names in grey show previously used model names. 

Each name is positioned at the year in which it first appears in the model documentation. Precursor 

models – models that are intimately related to or considered foundational to but distinct from the AR5 

models – are represented using grey lines. The Hafele/Manne model, for example, is a precursor to 

MESSAGE because it is referred to as “the grandfather of MESSAGE” (Agnew et al., 1979b, p. 4). 

 

Finally, the vertical lines in figure 2.3 represent model links (discussed in more detail in the next sub 

section). Each link is based on one or several statements in the model documentation that connect the 

newer IAM to the older IAM. Thus, the source of a given model link is always the model documentation 

for the newer of the two models that make up a link. For instance, Bosetti et al. (2006), connect WITCH 

to MERGE when presenting WITCH for the first time. Only links between the 14 IAMs (and precursor 

models) are included in figure 2.3 (i.e. links to IAMs other than the 14 IAMs are not included). This is 

because the focus here is on likely dependencies between the IAMs in the AR5 ensemble. 

 

The model family tree shows at least two things. First, it shows when the 14 most influential IAMs in 

AR5 were constructed, including their precursor models, and as such provides a picture of the evolution 

of these IAMs as a group.  There is a large spread in the age of the 14 IAMs, with the oldest 

(MESSAGE) dating back to 1979 and the newest (BET) appearing for the first time in 2014, the same 

year in which AR5 was published. (In terms of precursor models, the oldest model (ETA) dates back to 

1972.) The majority of the 14 IAMs were, however, constructed in the 1990s. A likely explanation for 

this is the publication of the first IPCC assessment report in 1990 (IPCC, 1990) and the supplementary 

IPCC report that included IAMs for the first time two years later (IPCC, 1992). 

 

Second, the model family tree shows links between the 14 IAMs and, importantly, how these links lead 

to distinct branches. The largest branch is the branch that stem from the MERGE model, which includes 

MESSAGE-MACRO17, MERGE-ETL, WITCH, REMIND, and BET. Together, the IAMs in this 

branch, which we can call the ‘MESSAGE/MERGE branch’ are responsible for 52% of the 1,051 

scenarios generated by the 14 IAMs. In addition to this, the forerunner to TIAM-World, MARKAL, 

and MERGE are also linked to BET and MESSAGE-MACRO via MARKAL-MACRO. If we include 

TIAM-World in the MESSAGE/MERGE branch, the fraction of scenarios in the AR5 ensemble that 

 

17 MESSAGE-MACRO also links back to MESSAGE (and before this, the Hafele/Manne model).  
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stem from this branch increases to 56%. Interestingly, all the IAMs that have been constructed after 

2000 belong to this branch. 

 

The second largest branch is the branch that stems from the ERB model, which includes GCAM, AIM-

Enduse, and Phoenix. The number of scenarios generated by IAMs in this branch amounts to 20% of 

the scenarios generated by the 14 IAMs. The third largest branch is made up of POLES and IMAGE 

(connected via TIMER, which is a sub-model of IMAGE). This branch is responsible for 15% of the 

scenarios generated by the 14 IAMs. Lastly, two models, DNE21+ and IMACLIM, were not found to 

be linked to any of the other 14 IAMs.  

2.6.1 The model links 

As noted, the model links in figure 2.3 are based on statements in the model documentation. It is 

important to understand that these links capture a variety of relationships. What these links have in 

common, however, is that they capture the modelers’ judgments – as represented in the model 

documentation (which is written by modelers) – regarding how their IAM relates to other IAMs at the 

time of writing. To provide more information about what the links represent, Table 2.3 provides a 

typology that has been developed inductively based on the statements on which the model links are 

based. Representative quotes are also shown. Although the quotes in Table 2.3 are almost all (except 

for AIM-Enduse) taken from the earliest model documentation, the same or very similar statements are 

often also found in later model documentation (indicating that relationships don’t change much and/or 

that model descriptions are often reused). Additional statements and information related to the links 

between the 14 IAMs can be found in Appendix A. 

 

‘Combination’ is used to denote links that are formed two existing models are combined to create a new 

model. MESSAGE-MACRO, for example, was constructed by combining the energy system model, 

MESSAGE, with the macroeconomic model, MACRO (which represents a core component of the 

MERGE model). ‘Version’ is used when the model documentation indicates that the model in question 

can be considered a version of another model. MERGE-ETL, for example, is described as “a MERGE 

model with endogenous technological progress” and Phoenix is described as a “process-level version 

of the ERB” in the model documentation. For BET, the documentation provides multiple statements 

that together suggest that BET can be seen as a version of MERGE: BET is described as “a MERGE 

with advanced, electric end-use technologies” and is developed based on the computer code for 

MERGE. The label ‘Structural’ is attached to a link when the model documentation indicates 

similarities in structure and when the stated differences refer only to aspects such as model resolution 

or the way in which sub-model are combined. REMIND, for example, shares the same intertemporal 

structure as MERGE but offers a higher degree of technological detail. ‘Component’ is used when a 
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model uses a component from another model. The only example of this is AIM-Enduse, which has a 

component that is based on the ERB model. Lastly, ‘Similar’ is used when the model documentation 

states that the new model is “similar to” or “has much in common with” another model, but without 

saying much more about how or in what ways. Since the link types are not mutually exclusive, links 

can be given more than one label.  

 

Table 2.3 Overview of the model links shown in the model family tree (figure 2.3) including link types and 

example statements from the model documentation.  

Link  

to 

Link   from Type of link Representative Quote 

WITCH  

 

 

MERGE 

 

Structural 

 

“In comparison to other optimal growth models… MERGE (Manne, 

Mendelsohn and Richels, 1995) links a simple top-down model to a 

bottom-up part that returns the cost of energy; in contrast, WITCH is a 

single model that represents the energy sector within the economy, and 

therefore chooses the energy technology investment paths coherently 

with the optimal growth structure. Also, WITCH features a non-

cooperative game among the regions.” (Bosetti, Carraro, Galeotti, et al., 

2006, p. 16) 

MERGE-

ETL 

MERGE 

 

Version 
“A MERGE model with endogenous technological progress” (Kypreos 

& Bahn, 2003, p. 249). 

REMIND  MERGE 

WITCH 

 

Structural 

 

“With MERGE and WITCH, REMIND-R shares the same intertemporal 

structure, but is distinguished from both by a higher degree of 

technological resolution in the energy sector…Whereas WITCH is more 

elaborated in modeling R&D investments and knowledge spillovers, 

REMIND-R is more advanced in addressing trade issues” (Leimbach et 

al., 2010, p. 157). 

BET  MERGE  & 

MARKAL-

MACRO 

 

Version 

 

According to Yamamoto et al. (2014) (2014, p. 584), BET “is strongly 

influenced by MERGE (Manne et al. 1995; Richels and Blanford 2008) 

and MARKAL-MACRO (Loulou et al. 2004)” (2014, p. 584) and “the 

BET model can be summed up as “a MERGE with advanced, electric 

end-use technologies” or “a global MARKAL-MACRO with limited 

technologies”” (Yamamoto et al., 2014, p. 585). In the 

acknowledgements, Yamamoto et al. write “we greatly appreciate the 

kindness of the MERGE group to make a version of the code available 

online, which helped us develop the BET model” (Yamamoto et al., 

2014, p. 595). 

MESSAGE-

MACRO 

MERGE   + 

MESSAGE  

Combination  
“MACRO, as it is used in the link with MESSAGE, has its roots in a long 

series of models by Manne and others. The latest model in this series is 

MERGE–3” (Messner & Schrattenholzer, 2000, p. 271). 
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  MARKAL-

MACRO 

 

Similar 

Component 

“…the MARKAL–MACRO model…has much in common with our 

model. The main difference between the two approaches is that 

MARKAL–MACRO is a fully integrated single model, whereas 

MESSAGE–MACRO is solved by running each part separately and 

iterating their inputs until consistency between the macroeconomic part 

and the energy part is reached.” Messner & Schrattenholzer (2000, p. 

270). 

MARKAL-

MACRO  

MACRO  + 

MARKAL 

Combination “MARKAL-MACRO is an experiment in model linkage” (Manne & 

Wene, 1992, p. 1) 

AIM-Enduse  ERB Component “The energy sector top-down module was developed based on the 

revised Edmonds-Reilly-Barns (ERB) model (Edmonds et al. 1983; 

Edmonds et al. 1995)” (Kainuma et al., 2003, p. 20) †. 

Phoenix  ERB 

 

Version “Phoenix is a re-design of the Second Generation Model (SGM) 

produced by The Joint Global Change Research Institute” Wing et al. 

(2011). 

   “the Second Generation Model (SGM)…is a process-level version of the 

ERB formulated as a general-equilibrium energy-economy 

model”(Brenkert et al., 2003, p. 13) ⁰. 

TIMER POLES 

 

Similar 

 

“…a model which is in various aspects similar to the TIMER-model is 

the POLES-model” Vries et al. (2001, p. 11). 

† This is the only statement in the table that is not taken from the earliest model documentation. Early references 

for AIM and AIM-Enduse (such as Matsuoka et al. (1995) and Kainuma et al. (1995)) are either not available in 

English, or do not mention other models. The source here is a more recent book (published in English) about the 

AIM model, which also includes a detailed history of the model.   

⁰ Brenkert et al. (2003) provides model documentation for MiniCAM, not Phoenix. Two of the three authors, 

however, also wrote the model documentation for the SGM (Brenkert et al., 2004) –  which is what became 

Phoenix – one year later.  

 

In short, IAMs are linked if they are constructed by combining other models, or if they share the same 

structure as or a component with other models. IAMs are also linked if the model documentation 

describes them as versions of another model or indicate that they are “similar to” another model. 

 

Some types of links are clearer in meaning than others. It is generally clearer what is meant by a 

‘Combination’ link than by a ‘Version’ link. And it is generally clearer what is meant by a ‘Version’ 

link than by ‘Similarity’. At the same time, however, it is important to understand that the typology is 

based on the wording of the model documentation, which reflects subjective judgments. Care should 



 

31 

therefore be taken in drawing conclusions from the types of links. Whether a new model is described 

as a version of an older model and the link thus ends up being classified as a ’Version’ link, or whether 

it is described as sharing a component and the link ends up being classified as a ‘Component’ link, or 

whether it is described as sharing the same structure and the link ends up being classified as ‘Structural’ 

link is to a large extent up to the modelers writing the model documentation. Thus, similar model 

relationships might end up being classified as different types of links. 

 

In addition to this, the identification of links depends on what can be discerned from the model 

documentation. The amount and quality of documentation for different IAMs varies substantially. Some 

modelers provide comprehensive descriptions, comparisons, and histories of their model, others do not. 

In general, more influential IAMs are better documented. This means that model links are more likely 

to be identified for more influential IAMs. This introduces a potential bias in the findings. The 

documentation (available in English) for the two IAMs that don’t have any links to other IAMs in figure 

2.3 (IMACLIM and DNE21+), for example, was relatively limited. Appendix A provides more 

information about the model links, including the availability of model documentation. 

 

Lastly, it is important to note that we cannot conclude from the types of links the strength of links. For 

our purpose, the strength of a link must be related to the degree of model dependence. The degree of 

model dependence will be higher if two models share more assumptions and model choices. In the end, 

however, dependence matters because it leads to correlated – and thus not independent – model results. 

The more highly correlated outputs are, the stronger a link can be said to be. But every IAM has multiple 

outputs, and different outputs are most likely affected differently by the same link. The use of carbon 

dioxide removal (CDR) in scenarios that limit global warming to 2°C, for example, might be very 

similar in two IAMs due to similarities in cost assumptions and the solution algorithm that determine 

technology choice. The same two IAMs might, however, provide very different estimates for the 

employment effects of reaching the same target, as this will be determined by other factors. Thus, the 

strength of a link is not a one-dimensional concept. And to determine the impacts of a link even for one 

particular model output, one would have to know first all the factors that determine the output in 

question and second how these factors are affected by the link. Due to the variety of relationships that 

are captured by the links and the subjectivity involved in describing these, we cannot infer from the 

types of links the impacts of links on outputs. Determining the impacts of links on outputs would require 

a detailed and comprehensive comparison of IAMs and their outputs. 

2.6.2 From links to dependencies 

We do not, however, need to know the strength of links or the impacts of links on outputs in order to 

argue that the links depicted in figure 2.3 imply likely model dependencies. 
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One of the reasons why it is difficult to conclude from the types of links the strength of links is that 

different types of links can represent similar relationships. A new version of an older model, for 

example, would normally inherit the structure as well as components from the older model. The link 

between these models might thus be classified as a ‘Version’, ‘Component’, or ‘Structural’ link, 

depending on how modelers choose to describe the relationship in the model documentation. The fact 

that different types of links can represent similar relationships, however, is an important point in itself. 

A ‘Version’ link indicates that either the core of the model is the same (such as is the case for MERGE 

and MERGE-ETL), or that the newer model inherits important building blocks (such as is the case for 

Phoenix) or code (such as is the case for BET) from the older model. For ‘Component’ links, a part of 

the older model is used in the newer model. For ‘Structural’ links, the model structure is the same. In 

other words, the reason why it is difficult to distinguish between ‘Version’, ‘Component’, and 

‘Structural’ links is that they all imply that either model components and/or structure is shared. The 

same is true for ‘Combination’ links. 

 

Thus, we find that all the link types except ‘Similar’ links, imply shared model components, shared 

model structure, or both. In all these cases, certain model choices and assumptions will be shared.  Thus, 

all the link types – except for one – indicate some degree of model dependency. This might also be the 

case for ‘Similar’ links, but the statements on which these links are based are too vague to warrant 

conclusions. It is, however, reasonable to think that when modelers state that two models are “in various 

aspects similar” this also includes some model choices and assumptions. Still, the ‘Similar’ link type is 

only used on its own in one instance (between POLES and TIMER). 

 

Thus, we can say, without knowing the strength or the specific impacts on model outputs, that (almost) 

all the links in the model family tree imply likely model dependencies. Despite the vagueness of many 

of the statements on which the links are based, the dependence conclusion is further supported by the 

fact that model documentation in most cases is highly selective about what other IAMs are referenced. 

In no cases do the model documentation for a given IAM compare the IAM against “all” other IAMs. 

In other words, even though the links in some cases might appear uncertain or even tenuous, the fact 

that another model is mentioned in the model documentation for an IAM in the first place is itself an 

indication of significance.  

 

One might, however, argue that being mentioned is an indication of the significance of the model being 

mentioned, not the link. By discussing another IAM, this IAM is given space, which is an indication 

that this IAM is seen as significant or somehow relevant to the authors. In particular, one would expect 

better-known and more highly regarded IAMs to be seen as more significant to all modelling groups 

and thus mentioned more often. Still, there are no examples of IAMs that are mentioned in the model 
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documentation for all the 14 IAMs. Even though MERGE is a well-known and long-standing model – 

something which might explain part of the reason why model documentation so often refers to it – it is 

important to realise that far from all IAMs in AR5 mention MERGE. Only a distinct group of IAMs do. 

 

Therefore, one might alternatively take the branches in the model family tree to indicate social scientific 

networks. IAMs within the same network are considered more significant and therefore relevant to other 

IAMs within the same network, which make them more likely to mention each other. If we take links 

to indicate social scientific networks, the branches in the model family tree can be seen to represent 

distinct networks.  

 

What does that imply for the dependence conclusion? Everything else being the same, two models in 

the same network are more likely to learn from each other and therefore make similar model choices 

and assumptions than two models belonging to different networks. In other words, even under this 

interpretation, the links can be seen to indicate closer relationships, and thus likely model dependencies. 

  

Overall, even though the types of links cannot be used to infer the strength of the links or the impacts 

on different outputs, they can be used to suggest that linked IAMs are not independent, and thus that 

some of their outputs are likely to be correlated. 

2.7 The evolution of IAMs 

In addition to constructing the model family tree, the model documentation was used to obtain a richer 

understanding of how the 14 IAMs have evolved as a group. 

2.7.1 Increasing detail and scope 

All IAMs that have been around for some time have gone through multiple versions. For each new 

version, changes are made. The model documentation for IMAGE, which is one of the most well 

documented IAMs, provides a detailed illustration of this process. IMAGE has been developed 

progressively since the 1980s with the inclusion of additional systems (e.g. energy and agriculture), 

regional detail, improved representations of systems (e.g. climate and land use), and other additional 

details (Stehfest et al., 2014). Following the initial version (IMAGE 1.0), “IMAGE 2.0 was the first 

published global integrated model having geographic resolution” (Bouwman et al., 2006, p. 9). In the 

late 1990s, “further refinements and extensions were implemented in IMAGE 2.1…to enhance the 

model’s performance and broaden its applicability” (Bouwman et al., 2006, p. 10). Only one year later, 

“the board recommended making Global Change the target area, extending it beyond climate change, 

and building on integration of socio-economic and natural systems” (Bouwman et al., 2006, p. 10). 
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IMAGE 2.6, again, “marks an important milestone on the development path towards a next generation 

model, referred to as IMAGE 3, aimed at capturing – to a larger extent – the different aspects and 

domains of sustainability, with emphasis on the ecological domain but also related to the economic and 

social domains” (Bouwman et al., 2006, p. 17). In summary, IMAGE has been continuously expanded 

over time to increase the detail and scope of analysis.  

 

Although IMAGE is the best documented of the 14 IAMs, we see similar trends when we examine the 

model documentation also for the other IAMs. For GCAM, the increase in scope and model capabilities 

over time has been a response to a growing set of questions: “throughout its lifetime, GCAM has 

evolved in response to the need to address an expanding set of science and assessment questions. The 

original question that the model was developed to address was the magnitude of mid-21st-century 

global emissions of fossil fuel CO2. Over time GCAM has expanded its scope to include a wider set of 

energy producing, transforming, and using technologies, emissions of non-CO2 greenhouse gases, 

agriculture and land use, water supplies and demands, and physical Earth systems” (GCAM v5.1 

Documentation, 2019).  

 

Similarly, MERGE and WITCH (even though the latter has only been around since 2006) also show 

signs of increasing scope and detail over time. According to Blanford et al. (2014, p. 528) “like virtually 

all models being actively used in the climate debate, MERGE is continually being adapted to assess the 

implications of new policy proposals. Among the most noteworthy enhancements to the current version 

is the inclusion of BECS, bio-energy with carbon dioxide capture and geologic storage”. POLES has 

also been “extended on several occasions to capture the most recent market and policy developments” 

(Despres, 2018).  

 

Thus, the model documentation for several of the 14 IAMs suggests that policy is an important driver 

in IAM development. This appears to lead to a continuous increase in detail and scope. A similar 

observation was made in 2003, when Kainuma et al. (2003) (working with the AIM model) noted that 

the development of IAMs tended towards an inclusion of more phenomena (thus widening the scope) 

and more detail, and towards applications to regional and local scales, which required an increase in 

resolution. These developments were, according to Kainuma et al., a consequence of the increasingly 

central role that IAMs play at the interface of science and policy and the associated demands that are 

put on them. The expansion of scope might also be explained by the fact that it increases the audience 

and users of IAMs.  

 

The tendency towards increasing scope and detail is not only observed in the evolution of individual 

IAMs over time. A similar trend is also found if one looks at how new IAMs distinguish themselves 

from existing IAMs. MARKAL-MACRO, for example, was constructed specifically to increase the 
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scope and detail of analysis, again motivated by policy demands. As Manne and Wene wrote when they 

presented MARKAL-MACRO for the first time, “an efficient modelling tool must have the scope and 

detail to match the width and depth of the policy problem being analyzed” (Manne & Wene, 1992, p. 

1). When it comes to the MESSAGE/MERGE branch, we find that increasing detail and resolution is 

frequently emphasised as the distinguishing feature for several of the new IAMs. REMIND, for 

example, is distinguished from MERGE by a higher degree of technological resolution in the energy 

sector and a higher resolution in the representation of trade and BET is seen as “a MERGE with 

advanced, electric end-use technologies” (Yamamoto et al., 2014, p. 585). The documentation for 

WITCH also emphasises “richer technological detail” (Bosetti, Carraro, Galeotti, et al., 2006, p. 16) 

relative to other IAMs (see Appendix A for more details). The hybrid nature of newer IAMs, i.e. the 

way in which they combine previously distinct types of IAMs18 into a single framework, is sometimes 

also emphasised. REMIND, for example, was designed as a hybrid model from the start. For practical 

purposes, hybridisation makes IAMs more “complete” when it comes to their ability to analyse different 

questions. 

2.7.2 A “normal” evolution 

If the development of IAMs is anything like the development of climate models, there are reasons to 

believe that new IAMs are designed partly by combining and modifying existing parts and ideas. This 

is most obvious when two existing models are combined to construct a new one (thus forming a 

‘Combination’ link). As Wene (1996) writes in his description of the linking between ETA-MACRO 

(later MERGE) and MESSAGE, “for linking, it is possible to use peer-reviewed models, which avoids 

repeating earlier work and provides needed initial quality assurance to the efforts” (p. 810). In other 

cases, and as shown by Knutti et al. (2013) for climate models, dependencies often arise due to the use 

of similar approaches and simplifications. 

 

In many ways, the model family tree (figure 2.3) is suggestive of a research field that has evolved from 

a formative stage (prior to the 1990s), through an expansive stage (the 1990s), and to a mature stage 

(post 2000s). The observed trend among the 14 IAMs towards an increase in detail and scope over time 

also fits with the Kuhnian concept of ‘normal science’ (Kuhn, 1962). ‘Normal science’ refers to a stage 

that is characterised by incremental progress and a continuous accumulation of detail within established 

frameworks. In this stage, underlying assumptions are not questioned (Kuhn, 1962).   

 

 

18 Combining what has been referred to in the literature as “top-down” (primarily macroeconomic) models with 

“bottom-up” (typically engineering based) models. 
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A close reading of the model documentation for the IAMs constructed after 2000 shows that the 

underlying assumptions made in comparable older IAMs are not challenged or questioned. Structural 

changes or the development of new approaches are also not emphasised. While the documentation for 

two of the IAMs in the MESSAGE/MERGE branch, MERGE-ETL and WITCH, emphasise the 

endogenous representation of technological change19 – which in certain respects (in particular for the 

cost of mitigation) represents a significant departure from models with exogenous technical change – 

this is still done by modifying existing approaches (based on optimal growth theory). If anything, 

comparisons of new IAMs to old IAMs that do not challenge any of the model choices or assumptions 

provide an implicit indication that new IAMs are based on old approaches. 

 

This, and the fact that new IAMs are distinguished from older IAMs primarily by pointing to an increase 

in detail, suggest a trend in the evolution of IAMs towards an expansion of what is, rather than towards 

a diversity of approaches. Like most mature research fields, the development of integrated assessment 

modelling, at least post 2000, appears to be path dependent and incremental. Bosetti et al., for example, 

“wrote the first equations of WITCH in 2005 and since then the model has grown in complexity and 

richness. However, the core of the model has not changed” (2014, p. viii). While such a trend might 

represent a natural progression of a research field, which is not a problem in itself, it may limit the 

structural diversity of IAM ensembles. The development of IAMs has been driven to a large extent by 

policy demands, which have led IAMs to attempt to answer an expanding set of questions at an 

increasing level of resolution. This has incentivised an increase in detail and scope, but not necessarily 

a variety of assumptions and modelling choices. Unless structural diversity is encouraged specifically, 

policy relevance is more likely to define the development of IAMs, also in the future20. This might pose 

problems if IAM ensembles are used in the belief that they capture the relevant structural diversity. 

2.8 Conclusion 

This chapter has argued, based partly on studies published in the climate modelling literature, that IAM 

dependencies is an important but neglected topic in AR5. If IAMs are not independent, we cannot know 

whether agreement in results is a sign of robust insights or a consequence of shared model choices and 

assumptions. In order to identify likely model dependencies in the AR5 IAM ensemble, the chapter has 

 

19 ETL in MERGE-ETL stands for endogenous technical learning and the development of WITCH was motivated 

by a need to “capture the dynamics of technical change and the relationships between technical change and the 

main economic and policy variables” (Bosetti et al. in 2006 p. 14). For WITCH, “the endogenous representation 

of R&D diffusion and innovation processes constitute a distinguishing feature” (The WITCH team, 2017, p. 5). 

20 The discussion here is limited by what could be discerned from the model documentation. There are also other 

incentives, such as academic incentives, that are likely to affect the evolution of IAMs. 
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developed a method that deliberately avoids comprehensive investigations of individual IAM 

assumptions. The method, which is based on analysing available model documentation, culminates in 

a model family tree that shows when the most influential IAMs in AR5 were designed and how they 

are linked to each other. The model family tree shows that the 14 most influential IAMs in AR5 form 

three distinct branches of IAMs, the largest of which is the MESSAGE/MERGE branch. Together, the 

IAMs in the latter branch (MERGE, MESSAGE-MACRO, MERGE-ETL, REMIND, WITCH, and 

BET) are responsible for about half of the scenarios in the AR5 ensemble. By analysing the types of 

links, it is shown, all the links in the model family tree (except for possibly one) imply that assumptions 

and model choices are shared to some extent. Thus, IAMs that are linked are not independent. In 

addition to this, the model documentation is used to provide an understanding of what has driven the 

development of IAMs over time. It is found that the development of IAMs has been driven, to a large 

extent, by policy demands that have incentivised increasing detail and scope. If we consider not only 

what is stated, but also what is not stated in the model documentation, we find that new IAMs rarely 

challenge the model choices and assumptions that are made in related IAMs. 

 

The extent of the IAM dependencies shown to be present in the AR5 IAM ensemble presents two main 

issues. First, the extent of the dependencies challenges the robustness of AR5 insights. In particular, the 

findings suggest, agreement among IAMs in the MERGE/MESSAGE branch could be a result of shared 

assumptions and modelling choices rather than a sign of robustness. Second, the extent of the 

dependencies – which imply shared model choices and assumptions – limits the structural diversity of 

the AR5 IAM ensemble. This implies that the AR5 IAM ensemble might not provide a good 

representation of the structural uncertainty that is associated with IAM outputs. The severity of these 

two issues for AR5 results, however, can only be determined by conducting more detailed analyses of 

the effects of the model dependencies on specific IAM outputs. 

 

The method developed in this chapter circumvents hugely time-consuming model comparisons in order 

to enable identification of model dependencies in an entire ensemble of IAMs. While the results indicate 

that model dependencies are present among several highly influential IAMs in AR5, more work is 

needed in order to determine the strength and implications of these dependencies. For this purpose, a 

number of approaches might be taken. 

 

Jun et al. (2008) showed that institutional links have a significant impact on climate model 

dependencies. One thing that is not mentioned in Table 2.3 (but which can be discerned from Table 2.2) 

is that the model that later became Phoenix, SGM, was developed by some of the same researchers who 

developed the model that later became GCAM, MiniCAM, at the same institution (the Pacific 

Northwest National Laboratory (PNNL)). This adds further support to the claim that Phoenix and 
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GCAM are not independent.21 In order to gain more information about the institutional and personal 

links that shape IAM development and research, bibliometric and social network analysis could be used. 

Examples of relevant studies include Chappin et al. (2014), who use bibliometric analysis to study the 

structure of authorship networks in the field of socio-technical transitions research, and Corbera et al. 

(2016), who employ social network analysis to study patterns of authorship in the AR5 WGIII report. 

Applying similar techniques to IAM publications could be used to provide additional information 

regarding the links between IAMs. In particular, metrics from social network analysis that capture 

centrality and clustering might be used to construct measures of IAM relatedness. Such metrics would 

still, however, be limited in that they can only serve as proxies for dependencies in model choices and 

assumptions. It is still possible that even highly connected IAMs (in terms of people and institutions) 

differ when it comes to important model choices and assumptions. 

 

In order to get a better understanding of the strength and implications of the model links identified in 

this chapter, interviews with modelers could therefore be used. One might ask questions such as: “In 

what ways is model X similar to model Y and in what ways is it different?” and “What are the 

implications for results of the link between model X and Y?”. One could also use interviews to ask 

more questions about the history of the models (who developed them, on what basis, and for what 

purpose). The information that can be obtained from interviews is, however, limited by the knowledge 

and viewpoints possessed by present-day modelers. The model documentation instead gives us the 

viewpoints of the modelers who designed the models at the time of construction. For some of the most 

long-standing IAMs, present-day modelers may be less aware of the original roots and connections to 

other models. Interviews might thus be more informative in the case of newer IAMs. The main 

limitation to interviews in this case is the possibility that model developers may want to highlight 

novelty and end up underplaying similarities and model dependencies. This, however, may also be true 

for the model documentation. 

 

A richer account of the evolution and development of IAMs could also be obtained by conducting a 

more comprehensive historical analysis. Such an analysis could even investigate the process by which 

models and scenarios have been developed and ultimately included in IPCC reports. The material used 

for this purpose should be expanded beyond model documentation to include other sources that may 

provide information regarding IAM development, key institutions (such as for example IIASA and the 

Stanford Energy Modelling Forum), influential modelers, and the processes by which IAMs are 

included in IPCC reports. Among other things, such an analysis might help explain why all the IAMs 

 

21 The reason why this was not discussed in the main body of this chapter is that institutional and personal links 

were not investigated in a systematic manner. 
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that have been developed post 2000 belong to the MERGE/MESSAGE branch. It might also help 

explain why an IAM such as E3MG, which the modelers claim offers a fundamentally different 

approach compared to other IAMs (Barker et al., 2012; Barker & Şerban Scrieciu, 2010), was included 

in AR4, but not in AR5. 

 

In order to support, or challenge, the significance of the IAM dependencies that have been identified in 

this chapter, a mostly data centred approach could be used to determine whether the IAMs that are 

linked in the model family tree produce correlated outputs. The WGIII AR5 Scenario Database is 

available online (IAMC, 2014), and so are other databases that contain model results for many of the 

IAMs analysed in this chapter. Data from these databases could be used to investigate whether model 

dependencies imply similarities in results. 

 

Awaiting further research into the strength and the implications of the likely IAM dependencies that 

have been identified in this chapter, the IPCC could still take a number of steps to improve the 

interpretation of ensemble results and ameliorate the potential consequences of IAM dependencies. The 

presence of IAM dependencies should not come as a surprise, given how modelling work is known to 

be conducted, and given how climate models have been shown to relate.  

 

The first thing the IPCC can do is acknowledge and discuss IAM dependencies in the presentation of 

ensemble results. One of the core aims of the WGIII reports is assessing the uncertainty of the 

knowledge base related to climate mitigation. By not considering IAM dependencies, it might be argued 

that AR5 fails to meet this aim regarding transformation pathways, which represent key contributions 

to the AR5 report. The acknowledgement of IAM dependencies should therefore be done in the outer 

layers of the IPCC reports, such as the SPMs and the Synthesis Reports. 

 

The second thing the IPCC can do is improve the presentation of ensemble results by addressing the 

potential impacts on results from IAM dependencies directly. The uneven number of scenarios 

generated per IAM in AR5 (shown in Figure 2.2) – which is mentioned in passing in Chapter 6 of the 

AR5 WGIII report – means that scenarios produced by some IAMs (especially the Big Four) have a 

significant influence on ensemble results. The number of scenarios produced by dependent IAMs, 

however, is still much more numerous. In order to ameliorate the unevenness of scenarios generated by 

each IAM, IPCC reports could simply weigh each IAM, rather than each scenario, equally22. In order 

to ameliorate the dominance of certain branches of IAMs – which is the focus of this chapter – the IPCC 

 

22 Under this scheme, each REMIND scenario would have a weight of 1/(158*30) whereas the single Ecofys 

scenario would have a weight of 1/30. 
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reports could weigh each scenario according to the branch it belongs to such that each branch of IAMs, 

rather than each scenario, is given equal influence on ensemble results. Another benefit of so doing is 

that it would illuminate the extent to which model dependencies actually matter for results. Based on 

different ways of grouping dependent IAMs, different results might be obtained. If the groupings have 

a big impact on ensemble results, a more detailed investigation of dependencies would be warranted. If 

the groupings don’t make a big difference, less attention would need to be paid to the dependencies. In 

the end, this brings us back to the data analysis suggested above for investigating correlations between 

outputs from IAMs. 

 

The third thing the IPCC can do is take steps that might lead to an increase in the diversity of future 

IAM ensembles. As Masson & Knutti argue, “the goal for an ensemble should be to maximize diversity 

… and minimize dependency” (2011, p. 3). Among other things, the goal of maximising diversity could 

be built into the process by which IAMs are selected for inclusion in IPCC reports. If the problem 

instead is a scarcity of diverse IAMs in the literature, the IPCC could also use its authority to call for 

the development of a wider variety of IAMs. The IPCC could also call for more research on IAM 

dependencies. By so doing, more attention would be paid to those IAMs that bring independent insights, 

which again might incentivise the development of such IAMs. 

 

Overall, this chapter has taken a first step towards assessing some of the important challenges associated 

with the use of IAM ensembles in IPCC reports. It has done so by drawing on relevant studies in the 

climate modelling literature and by developing a method for identifying likely model dependencies in 

the AR5 IAM ensemble. One of the key challenges associated with studying IAM ensembles as distinct 

entities is that the number and complexity of IAMs in ensembles preclude a deep comparison of 

individual IAM features. This means that the analysis in some ways might appear shallow. However, 

unless we study IAM ensembles as ensembles, we might fail to recognize some of the overarching 

conditions that are necessary for our ability to obtain robust insights into climate mitigation. Although 

the method developed in this chapter does not obviate the need for more detailed analyses of the 

implications of IAM dependencies, it has shown how such dependencies are likely to appear among 

IAMs and it has identified a number of dependencies that can serve as the starting point for more 

detailed investigations. 

 

Chapter 4 will look in more detail at how certain kinds of IAMs in AR5, many of which are found in 

the MERGE/MESSAGE branch, might have led to a bias in the reported mitigation costs. Before then, 

the next chapter presents the dimensions that are used to classify IAMs in the (appendix to the) WGIII 

report and the frameworks that the IAMs in AR5, according to the model documentation, are based on. 

This is used to show that the branches in the model family tree, although they align with underlying 
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model frameworks, also provide information about model dependencies and independencies that are 

not captured by looking at IAM frameworks alone. 
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3 Model Frameworks 

Chapter 2 shows that several of the more recently developed IAMs in the AR5 ensemble share either 

model structure or model components (or both) with older IAMs. Although AR5 does not discuss IAM 

dependencies, it does contain a general discussion of key IAM differences. This chapter employs the 

information provided in the AR5 WGIII report appendix regarding these differences in order to 

categorise the 30 IAMs in the AR5 ensemble. The resulting categories, which reflect the degree of 

foresight and economic coverage in IAMs, are then compared with the model frameworks that are used 

to classify the 14 most influential IAMs in the respective model documentation. The chapter shows that 

there is an almost perfect match between the degree of foresight and economic coverage and the 

underlying frameworks. It also shows that there is a strong overlap between the categories and model 

frameworks, and the model family tree branches identified in Chapter 2. In particular, all the IAMs in 

the MESSAGE/MERGE branch are general equilibrium – perfect foresight models based on a Ramsey-

type optimal growth framework. Still, however, the method developed in Chapter 2 captures sources of 

model dependencies and independencies that the information contained within the WGIII appendix 

does not capture.  

 

While the model categories and frameworks presented in this chapter will be familiar to most modelers 

and many researchers in this area, the uneven distribution of IAMs in AR5 with respect to these 

frameworks might not be. This is a point that will be brought up also in Chapter 4, which highlights 

additional reasons for why diversity in IAM ensembles is important. 

 

Section 3.1 presents the six “key differences in model structure” that are discussed in the WGIII report 

and uses two of these (the degree of foresight and economic coverage) to group the AR5 IAMs. The 

results are also compared to the model family tree constructed in Chapter 2. Section 3.2 adds to this the 

model frameworks that, according to the model documentation, underpins the 14 most influential IAMs 

in AR5. Section 3.3 further discusses the relationships between the model family tree constructed in 

Chapter 2 and the model differences and frameworks analysed in this chapter and provides concluding 

remarks.  

3.1 Key structural differences 

All IAMs in AR5 fall under the generic category of ‘large-scale integrated models’. While AR5 

highlights the role of integration and interdisciplinarity in IAMs, it provides little information about 

what exactly is integrated and how. The most detailed explanation of what IAMs do is found in Chapter 

6 of the AR5 WGIII report, which states that 
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“[IAMs] use economics as the basis for decision making. This may be implemented 

in a variety of ways, but it fundamentally implies that the models tend toward the 

goal of minimizing the aggregate economic costs of achieving mitigation outcomes, 

unless they are specifically constrained to behave otherwise. In this sense, the 

scenarios tend towards normative, economics-focused descriptions of the 

future. The models typically assume fully functioning markets and competitive 

market behavior, meaning that factors such as non-market transactions, information 

asymmetries, and market power influencing decisions are not effectively 

represented.” (IPCC, 2014a, p. 422). 

This description, however, still leaves a lot unanswered. Economics can be used in many different ways 

to describe decision making and it is not clear what “economics-focused descriptions of the future” 

mean. Even if the economics framework was clear, the above quote only describes tendencies and 

typical assumptions. It appears that IAMs can always be constrained to behave differently. Overall, the 

above description provides only a vague understanding of what IAMs do and what they can and cannot 

tell us. This might not be surprising given the complexity and size of IAMs, which makes it very 

difficult to make general claims.  

 

Chapter 6 does, however, highlight six “key differences in model structure” between IAMs (IPCC, 

2014a, p. 422): 

1. “Economic coverage and interactions”. This captures the way in which models “differ in 

terms of the degree of detail with which they represent the economic system and the degree of 

interaction they represent across economic sectors” (IPCC, 2014a, p. 422). Two options are 

contrasted: “Full-economy models (e. g., general equilibrium models) represent interactions 

across all sectors of the economy, allowing them to explore and understand ripple effects from, 

for example, the imposition of a mitigation policy, including impacts on overall economic 

growth. Partial-economy models, on the other hand, take economic activity as an input that is 

unresponsive to policies or other changes such as those associated with improvements in 

technology. These models tend to focus more on detailed representations of key systems such 

as the energy system” (IPCC, 2014a, p. 422). Note that, in the appendix to the WGIII report, 

the more common term partial-equilibrium is used instead of partial-economy.   

2. “Foresight”. Again, two options are contrasted: “Perfect-foresight models (e. g., intertemporal 

optimization models) optimize over time, so that all future decisions are taken into account in 

today’s decisions. In contrast, recursive-dynamic models make decisions at each point in time 

based only on the information in that time period” (IPCC, 2014a, p. 422). The latter models are 

also referred to as myopic models in the WGIII report.   
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3. “Representation of trade”. This reflects the fact that “models differ in terms of how easy it is 

for goods to flow across regions” (IPCC, 2014a, p. 422). 

4. “Model flexibility”. According to Chapter 6 of the WGIII report, “the flexibility of models 

describes the degree to which they can change course. Model flexibility is not a single, explicit 

choice for model structure. Instead, it is the result of a range of choices that influence, for 

example, how easily capital can be reallocated across sectors including the allowance for 

premature retirement of capital stock, how easily the economy is able to substitute across 

energy technologies, whether fossil fuel and renewable resource constraints exist, and how 

easily the economy can extract resources” (IPCC, 2014a, p. 423). 

5. “Sectoral, regional, technology, and GHG detail”.  According to Chapter 6, “Models differ 

dramatically in terms of the detail at which they represent key sectors and systems…Key 

choices include the number of regions, the degree of technological detail in each sector, which 

GHGs are represented and how, whether land use is explicitly represented, and the 

sophistication of the model of earth system process such as the carbon cycle” (IPCC, 2014a, p. 

423). 

6. “Representation of technological change”. Here, two options are again contrasted: “On one 

end of the spectrum, models with exogenous technological change take technology as an input 

that evolves independently of policy measures or investment decisions. These models provide 

no insight on how policies may induce advancements in technology. On the other end of the 

spectrum, models with endogenous technological change (also known as induced technological 

change) allow for some portion of technological change to be influenced by deployment rates 

or investments in research and development (R&D)” (IPCC, 2014a, p. 423). 

 

These key differences offer useful insights into the workings of IAMs and some of the trade-offs that 

are associated with integrated assessment modelling. The WGIII report does not, however, relate any 

of these differences to the IAMs in the AR5 ensemble, except for in the appendix. More specifically, 

the WGIII report appendix includes a table (Table A.II.14) that lists certain features of the 30 IAMs 

that are included in the AR5 ensemble. Among other things, this table classifies each IAM according 

to three out of the six key differences described above: economic coverage, degree of foresight, and 

level of detail (for regions and GHGs). No information is provided in AR5 for the IAMs regarding the 

remaining three key differences (representation of trade, model flexibility, and representation of 

technological change). Given our interest here in the frameworks that underpin IAMs rather than the 

levels of detail (which Chapter 2 showed tends to increase over time), this leaves us with two 

dimensions according to which AR5 IAMs can be classified using the information in the appendix: 

economic coverage and degree of foresight. The appendix provides three options for economic coverage 

– general equilibrium, partial equilibrium, and econometric – and two options for the degree of 

foresight – myopic and foresight. (While AR5 provides a brief description of the differences between 
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general and partial equilibrium models, econometric models are not discussed.) This allows us to 

construct a 2x3 matrix in which to place the 30 IAMs, which gives rise to six categories of IAMs. This 

is shown in Table 3.1. 

 

Table 3.1 Classification of AR5 IAMs according to the two AR5 dimensions, ‘Degree of Foresight’ and 

‘Economic coverage’. The 14 most influential IAMs (analysed in Chapter 2) are shown in black and the remaining 

IAMs are shown in grey. The fractions of scenarios generated by all the IAMs in each of the six categories as a 

proportion of the entire AR5 ensemble are shown in parenthesis. 

 General equilibrium Partial equilibrium Econometric 

F
o

re
si

g
h

t 

REMIND, MESSAGE-

MACRO, WITCH, MERGE-

ETL, MERGE, BET 

EC-IAM, GRAPE, MARIA, 

iPETS  

(50%) 

 

DNE21+, TIAM-World,  

TIAM-ECN, TIMES-VTT 

(9%)  

IEEJ 

(0.2%) 

M
y

o
p

ic
 

IMACLIM, Phoenix 

ENV-Linkages, FARM, GEM-

E3-ICCS, WorldScan2, SGM, 

IGSM, GTEM, KEI-Linkages  

(13%) 

GCAM, IMAGE, POLES, AIM-

Enduse 

Ecofys Energy Model 

(29%) 

 

 

Table 3.1 shows two things. First, it shows that some IAM categories are responsible for significantly 

more scenarios in the AR5 scenario ensemble than others. The most influential IAM category is the 

General equilibrium - Perfect foresight category, which is responsible for 50% of the scenarios in AR5. 

The second largest category is the Partial equilibrium - Myopic category, which is responsible for 29% 

of the scenarios. Scenarios from the Partial equilibrium – Perfect foresight and the General equilibrium 

– Myopic categories account for only 9% and 13% each. The Econometric category includes only one 

IAM, which is responsible for only 2 scenarios. Thus, the influence of this category on the AR5 

ensemble is insignificant. Second, it shows that the IAM categories in Table 3.1 have a strong overlap 

with the branches in the model family tree presented in Chapter 2. The six IAMs (of the 14 most 

influential, shown in black) in the upper left corner of the table show a perfect correspondence with the 

six models that make up the ‘MESSAGE/MERGE branch’ in the model family tree. And almost all the 

IAMs that constitute the two remaining branches of the model family tree (POLES and IMAGE on the 

one hand, and AIM-Enduse and GCAM on the other hand) fall into the Partial equilibrium - Myopic 

category. There is only one instance where two models belong to the same branch in the model family 

tree but fall into separate categories in Table 3.1, namely GCAM and Phoenix. 
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3.2 Underlying model frameworks 

The previous section places the 30 IAMs according to some of the key differences in model structure 

listed in AR5. AR5 does not, however, relate these structural differences to the frameworks that are 

typically used in the literature to describe IAMs. In order to find this information, we again look to the 

model documentation. 

 

The frameworks that, according to the model documentation, underpin the 14 most influential IAMs in 

AR5 are shown in Table 3.2 (in orange) together with the categories identified in the previous section. 

In short, models based on a Ramsey-type optimal growth framework compute an optimal pathway by 

choosing the savings and investments that optimise the intertemporal utility of a representative agent 

with perfect foresight (Rezai et al., 2013). Similarly to these models, computable general equilibrium 

(CGE) models also compute optimal pathways arising from the optimising behaviour of agents (Peace 

& Weyant, 2008), but whereas optimal growth models treat the entire economy as one sector, CGE 

models include the interactions between different economic sectors. Chapter 4 will discuss the 

implications of using optimal growth models and CGE models to estimate the cost of mitigation. Lastly, 

energy system optimisation models (ESOMs), instead of optimising the utility of a representative agent, 

optimise the total energy system cost (or, equivalently, the total surplus in energy markets). ESOMs use 

linear programming, which is a special case of mathematical programming, to identify the optimal 

solutions. Some of the consequences of using this technique to compute transformation pathways will 

be discussed in Chapter 5. More details regarding the descriptions in the model documentation of what 

frameworks are used in each of the 14 IAMs are provided in Appendix B.  

 

The main takeaway from Table 3.2 is that the categories that arise based on the two dimensions, ‘Degree 

of Foresights’ and ‘Economic coverage’, fit almost perfectly onto the model frameworks used to 

describe the 14 IAMs in the model documentation. We already saw that the six models that make up 

the ‘MESSAGE/MERGE branch’ in the model family tree (MERGE, REMIND, WITCH, MERGE-

ETL, BET, and MESSAGE-MACRO) all fall into the same category in Table 3.1 (General Equilibrium 

- Perfect Foresight). Table 3.2 shows that all of these models are based on a Ramsey-type optimal 

growth framework. (MESSAGE-MACRO simply combines two frameworks, corresponding to 

MESSAGE and MACRO respectively).  The two models in the General Equilibrium - Myopic category 

(IMACLIM and Phoenix) are both CGE models and the two models in the Partial Equilibrium - Perfect 

Foresight category (DNE21+ and TIAM-World) are both ESOMs.  
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Table 3.2 Classification of the 14 most influential AR5 IAMs according to the two AR5 dimensions, ‘Degree of 

Foresight’ and ‘Economic coverage’ with additional information from the model documentation regarding the 

model frameworks. The number of scenarios generated in total by all the IAMs in each of the four categories are 

shown in parenthesis. 

 

General equilibrium Partial equilibrium 

F
o

re
si

g
h

t 

Ramsey-type optimal growth 

REMIND, WITCH, MERGE-ETL, MERGE, 

BET 

Ramsey-type optimal growth + Energy 

system optimisation (ESOMs) 

MESSAGE-MACRO 

(545) 

 

Energy system optimisation (ESOMs) 

DNE21+, TIAM-World,  

(84) 

M
y

o
p

ic
 

 

Computable general equilibrium (CGE) 

IMACLIM, Phoenix 

(84) 

 

IMAGE, POLES, AIM-Enduse, GCAM 

(338) 

 

 

The almost perfect correspondence between the frameworks described in the model documentation and 

the two AR5 dimensions used to categorise the IAMs in Table 3.1 might not be surprising. In fact, the 

key differences listed in AR5 are most likely based on these frameworks in the first place. It is worth 

noting, however, that it only takes two dimensions (and two options in each) to capture the main 

frameworks used to described IAMs. Clearly, these two dimensions are important in the field of 

integrated assessment modelling.  

 

By taking a closer look at the actual frameworks, additional model similarities can also be found. In 

particular, all of the models in these three categories are based on optimisation algorithms of various 

sorts. Furthermore, the link between Ramsey-type optimal growth models and ESOMs appear to be 

relatively strong. Both MESSAGE-MACRO and MARKAL-MACRO – both of which are highly 

influential (in AR5 and beyond) – are based on linking an optimal growth model with and ESOM. 

Essentially, perfect foresight is intimately related to inter-temporal optimisation algorithms, which are 

used in both model types. This might make combining models more straightforward. The close 

relationships between these two model types is also confirmed by Nordhaus (2017), who writes that 

optimal growth IAMs and ESOMs share a long and mutually influential history dating back to at least 

the 1970s.  
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The frameworks used for the IAMs in the Partial Equilibrium - Myopic category are much harder to 

pin down. In a sense it is, perhaps, the most diverse category. This might explain part of the reason why 

many IAMs that fall into this category in Table 3.1 are not linked in the model family tree. IMAGE, 

which is described as closer to earth systems models than any other IAM, certainly appears quite unique 

in the IAM ensemble. What we can see, however, is that the models in this category tend to focus on 

simulation as opposed to optimisation. This generally means that they are based on algorithms that 

compute solutions at each point in time based on the state of the modelled system at the previous point 

in time together with assumptions about how the system (or agents within the system) behaves and 

responds to changes23. While very few IAMs claim to be able to forecast the effects of energy and 

climate policies, some of the simulation models, such as POLES (Enerdata, 2019), do. The distinction 

between optimisation and simulation will be discussed further in Chapter 5. Because these models focus 

mainly on the energy system (although GCAM also has a broader economic coverage), the term ‘energy 

simulation models’ is used to refer to them in this thesis.  

3.3 Conclusion 

This chapter has used the information regarding “key differences in model structure” presented in the 

WGIII report appendix to categorise the AR5 IAMs and compared the resulting categories with the 

frameworks that, according to the model documentation, underpin the 14 most influential IAMs. This, 

again, was compared with the model family tree branches that were identified in Chapter 2 of this thesis. 

The chapter has shown three things. First, it has shown that the information provided in the WGIII 

appendix is sufficient to delineate the main model frameworks that are used to describe the most 

influential IAMs in AR5: By categorising each of the 14 IAMs according to economic coverage and 

degree of foresight, Ramsey-type optimal growth models, Energy system optimisation models 

(ESOMs), and Computable General Equilibrium (CGE) models emerge as distinct groups (Table 3.2). 

 

Secondly, this chapter has shown that the IAMs in the AR5 ensemble are unevenly distributed among 

the model categories that emerge. The General equilibrium - Perfect foresight IAMs are responsible 

for 50% of the scenarios in the AR5 ensemble. Of the 14 most influential IAMs that fall into this 

category, all are Ramsey-type optimal growth models. This gives reason to believe that the AR5 

ensemble might be biased in the direction of model choices and assumptions implied by this 

framework24. The second largest category of IAMs, the Partial equilibrium - Myopic category, is 

 

23 This is in line with e.g. Edenhofer et al. (2006) who add that these models, mathematically speaking, solve 

initial or boundary value problems given a system of differential equations.  

24 Recall that the 14 most influential IAMs are responsible for 90% of the scenarios in the AR5 ensemble. Even 

if none of the remaining 16 IAMs in the AR5 ensemble (shown in grey in Table 3.1) are Ramsey-type optimal 
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responsible for 29% of the scenarios. This category, however, does not correspond to a distinct IAM 

framework according to the model documentation. Finally, the one IAM that is classified as an 

econometric model makes an insignificant contribution to the AR5 ensemble. AR5 does not recognise 

or discuss the uneven contribution of IAMs belonging to different categories. Measures could have been 

taken by the IPCC to present ensemble results in a way that reflects this unevenness. For example, and 

as already suggested in the conclusion to Chapter 2, each scenario could have been weighted in such a 

way that each category of IAMs is given equal influence on ensemble results (instead of each scenario). 

 

Third, this chapter has shown that there is a relatively strong correspondence between the IAM 

categories that emerge based on the “key structural differences” (Table 3.1), the underlying IAM 

frameworks (Table 3.2), and the branches in the model family tree (Figure 2.3). With one exception, all 

the IAMs that belong to the same branch in the model family tree also fall into the same category when 

it comes to economic coverage and degree of foresight. In particular, of the 14 most influential IAMs, 

all the IAMs that fall into the General equilibrium - Perfect foresight category are the Ramsey-type 

optimal growth models that belong to the MESSAGE/MERGE branch. The overlap between the model 

family tree and the key structural differences also indicates that most of the model links in Chapter 2 

either directly capture or are related to similarities in model structure. 

 

For the ‘Structure’ links, this is not be surprising. This link type is used when the model documentation 

indicates similarity in structure and when the stated differences refer only to aspects such as model 

resolution or the way in which sub-model are combined. More specifically, Table 2.3 shows, this link 

type is used only for IAMs that are based on optimal growth theory. For the ‘Combination’ links, entire 

models are combined, and hence the structure is too.  For the ‘Component’ links, structural similarity 

might either stem from the component that is being shared, or structural similarity might be a 

prerequisite for sharing components in the first place. When it comes to the ‘Similarity’ links, which 

are vague, it also makes sense that model structure, given its central role, is an important component of 

similarity. For the ‘Version’ links, it would not be surprising if being considered a version also requires 

the underlying model structure to be the same. Note, however, that the only two IAMs that are linked 

in the model family tree but fall into separate categories in Table 3.1, GCAM and Phoenix, are also 

connected via a ‘Version’ link. In this case, Phoenix is seen as a version of the ERB model (which also 

marks the beginning of GCAM) that is formulated specifically as a general-equilibrium model (see 

Table 2.3 and Appendix A).  

 

 

growth models, the 545 scenarios from the Ramsey-type optimal growth models shown in Table 3.2 would still 

account for 46% of the entire AR5 ensemble. 
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Given their status as key differences in AR5, it is reassuring to see that most of the model dependencies 

identified using the method developed in Chapter 2 capture these differences. This gives additional 

reasons to believe that the model family tree constructed in Chapter 2 provides relevant and valid 

information regarding IAM relationships. Based on this, it might, however, be argued that one could 

simply use the information that is already contained within AR5 to identify IAM dependencies, and 

thus avoid the more laborious process of going through model documentation to identify model links. 

The method used to construct the model tree in Chapter 2, however, captures more than what the model 

differences listed in AR5 and the underlying frameworks do.  

 

First, the method developed in Chapter 2 captures model dependencies that go across key differences. 

As already mentioned, the dependencies between GCAM and Phoenix, which are developed at the same 

institution by some of the same researchers, and are described as versions of the same initial model 

(ERB), are captured by the method developed in Chapter 2 but not by the categories in Table 3.1. 

Second, the method developed in Chapter 2 captures model independencies that are not visible from 

the categories in Table 3.1. IMACLIM and Phoenix, for example, are shown as independent in the 

model family tree because there are no links between them. Phoenix is not mentioned at all in the 

documentation that was collected for IMACLIM and IMACLIM is not mentioned at all in the 

documentation that was collected for Phoenix. In short, the model documentation indicates that 

IMACLIM and Phoenix have followed largely separate development trajectories (see Appendix A for 

more details on the model links). Separate development trajectories, all else being equal, implies a 

greater degree of independence in model choices and assumptions. Similarly, the model family tree 

shows that, while GCAM and Aim-Enduse are connected (directly) via the ERB module, and IMAGE 

and POLES are connected (more loosely) via the TIMER sub-model, the two branches of IAMs are not 

connected. This information would be lost if one simply relied on the information that is already 

contained in the WGIII report (shown in Table 3.1) to identify IAM dependencies. For example, it 

seems Phoenix and GCAM are more closely related than Phoenix and IMACLIM even though the key 

differences in model structure would tell us otherwise. Thus, the method developed in Chapter 2 

captures both model dependencies and model independencies that would not be captured using the 

information that is contained in AR5. 

 

This is not surprising when we consider the fact that model dependencies have multiple sources. Knutti 

and Masson (2011) and Jun et al. (2008) find dependencies between climate models developed at the 

same institution, between climate models sharing similar components, and between successive versions 

of the same climate model. All of this is likely to lead to shared model choices and assumptions, and 

hence, what in this thesis is referred to as model dependencies. The same is most likely true also for 

IAMs that are developed at the same institution, that use similar components, or that can be considered 

versions of each other. These sources of model dependencies are not necessarily aligned with key 
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structural model differences and underlying model frameworks. Put differently, IAMs are characterised 

by many degrees of freedom. This means that even though the degree of foresight and the economic 

coverage in a model might imply a series of related model choices and assumptions, they do not dictate 

all model choices and assumptions. In short, two dimensions are not sufficient for capturing all relevant 

model choices and assumptions, and thus not all sources of model dependence (and independence).  

 

Thus, the method developed in Chapter 2 provides information about relationships between IAMs that 

is different from the classification of IAMs provided in AR5 itself. Many IAM classifications also exist 

beyond the one used in the WGIII report (e.g. Dowlatabadi, 1995; Grubb et al., 2002; Hedenus et al., 

2013; Löschel, 2002; Sanstad & Greening, 1998; Zhang & Folmer, 1998). Although such classifications 

often also point to important structural model differences, no classifications can capture all relevant 

sources of model dependency. In general, classifications provide a more top-down and static approach 

to identifying IAM similarities. They do not say anything about how IAMs have evolved and thus how 

some IAMs have been inspired by other IAMs. The method developed in Chapter 2 represents a 

different approach, which, despite limitations, captures model dependencies that are missing from 

existing model classifications, including the one provided in the appendix to the WGIII report. 

 

Nonetheless, the uneven contribution from IAMs based on different model frameworks in the AR5 

ensemble should be taken seriously. Given the IPCC’s role in communicating the degree of certainty in 

the knowledge base, and given how agreement among IAMs is often perceived to represent robust 

insights, IPCC reports should do more to assess potential sources of IAM dependencies than what they 

currently do. Although, in an ideal world, all shared model choices and assumptions should be 

considered in the construction of IAM ensembles and in the presentation of different IAM outputs, this 

might not be feasible in practice. The model frameworks used, thus, appear to represent a particularly 

straightforward candidate. Simply listing the “key structural differences” in Chapter 6 of the WGIII 

report without relating any of these to the IAMs in AR5 or discussing the implications for the ensemble 

results is not satisfactory. Despite the fact that about half of the AR5 scenarios are generated using 

Ramsey-type optimal growth models, AR5 does not mention this, let alone discuss the theory and its 

implications.25 This is despite a comprehensive discussion of the frameworks underpinning CBA IAMs 

in AR5. One reason for this might be the significant complexity of large-scale IAMs compared to CBA 

IAMs, whose logic and theoretical assumptions and implications have been discussed at length in the 

literature (e.g. Ackerman et al., 2009; Munda, 1996; Pindyck, 2013; Stern, 2013b; Weitzman, 2009). 

Still, given the decreasing role of CBA IAMs and the (seemingly) increasing role of large-scale IAMs, 

 

25 CGE models are described briefly, but not in relation to the scenario ensemble. 
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this appears unbalanced. The next chapter argues that there are important reasons, also beyond the goal 

of obtaining robust insights, to include a diversity of model frameworks in IAM ensembles.  
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4 The positive cost of mitigation 

The previous two chapters focused on the ability to provide robust insights as a key reason for why we 

should care about IAM dependencies and aim to maximise diversity in IAM ensembles, in part inspired 

by studies that have been published in the climate modelling literature. This chapter develops a different 

argument for why we should care about the extent to which IAM ensembles capture the “true” 

uncertainty of IAM results, namely because not doing so can imply a significant risk of being wrong. 

This argument is based on a recently revitalised debate in the philosophy of science. The chapter starts 

from the observation that all the scenarios in the AR5 ensemble predict that climate mitigation will 

inflict economic costs in the aggregate. This leads to the impression that there must be a trade-off 

between climate protection and economic gains. As this chapter shows, however, this needs not be the 

case according to both theory and applied modelling studies. Several mechanisms that have been shown 

to contribute to net negative cost results in the literature can be identified. As such, the scenarios in the 

AR5 ensemble do not reflect the full (according to the literature) uncertainty of the cost of mitigation. 

This chapter argues that this uncertainty, due to the high stakes involved, is important and should 

therefore be reflected in IPCC assessment reports. Otherwise, the risk of being wrong will be high. 

Thus, this chapter goes beyond robustness and offers an additional reason for why we should make sure 

that plausible assumptions are not excluded from IPCC IAM ensembles.  

 

In addition to this, this chapter explores potential reasons for why AR5 IAMs do not predict net negative 

costs of mitigation. All the cost estimates in AR5 stem from general equilibrium (optimal growth and 

CGE) IAMs. While some authors have argued that general equilibrium models exclude net negative 

costs by construction, this chapter offers a more nuanced argument. In short, although general 

equilibrium models can be modified to include features that enable net negative cost results, these 

features are difficult to implement in practice. A review of the publications that present the scenarios 

that are responsible for the economy-wide cost estimates in AR5 indicates that most of the IAMs include 

few or no mechanisms that are known to contribute to net negative cost results. Additionally, the model 

intercomparison studies that are responsible for the vast majority of the AR5 ensemble focused only on 

aspects that increase the cost of mitigation. The chapter concludes, based on this, that there is reason to 

believe that the AR5 IAM ensemble is biased against net negative costs. While it is beyond the scope 

of this chapter to investigate the process of selection and inclusion of scenarios in IPCC assessment 

reports, this chapter and the previous two chapters all suggest this is an important avenue for future 

research. 

 

Section 4.1 presents the AR5 estimates of the cost of mitigation. Section 4.2 reviews a number of ways 

in which the cost of mitigation, according to the literature, might be net negative and presents a list of 

mechanisms that, if included in IAMs, may give rise to net negative cost results. The section also 
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presents five examples of applied modelling studies that have predicted net negative mitigation costs. 

Based on this, it is argued, AR5 cost estimates do not reflect the full uncertainty of the cost of mitigation. 

Section 4.3 develops the argument, based on philosophy of science, for why this uncertainty is 

important. In short, being wrong about the cost of mitigation could have significant negative 

consequences. Under such circumstances, even a small possibility that the cost of mitigation might be 

net negative should be taken seriously. Section 4.4 shows that, although optimal growth and CGE 

models in principle can be modified to take into account factors that enable net negative cost results, 

few AR5 IAMs appear to include such mechanisms to a significant degree and all the AR5 model 

intercomparison studies focused on aspects that can only increase the cost of mitigation. In short, the 

inclusion of mechanisms that are known to contribute to net negative cost results in IAMs appears 

difficult and rare. Section 4.5 concludes.  

4.1 AR5 cost estimates 

The cost of mitigation has been central to the climate change debate since at least the beginning of the 

1990s (e.g. Nordhaus, 1991b). Not surprisingly, the cost of mitigation has also been a key result in 

IPCC reports, presented both in the Synthesis Reports and the WGIII SPMs.  

 

In AR5, the economy-wide costs of mitigation is measured as losses in consumption, GDP, or welfare 

(IPCC, 2014a). It is computed by IAMs as the difference (in the chosen metric) between a mitigation 

scenario and a counterfactual baseline scenario in which no (additional) climate policies are imposed. 

Thus, the cost of mitigation is “the difference in economic conditions relative to what would have 

happened without mitigation” (IPCC, 2014a, p. 448). Because partial equilibrium IAMs in AR5 do not 

compute economy-wide costs26, the IAMs that are responsible for the cost of mitigation in AR5 are the 

ones that fall into the general equilibrium category (that is, the IAMs in the left-most column in Table 

3.1). 

 

Figure 4.1 shows the estimates of the cost of mitigation reported in the SPM of the AR5 synthesis report 

in the form of consumption losses. The left panel shows the increase in consumption in baseline 

scenarios (in 2030, 2050, and 2100) and the right panel shows the percentage reduction in consumption 

relative to the baseline scenarios in the mitigation scenarios (in different years and for different levels 

of mitigation). The figure shows that the cost of mitigation increases over time and with the stringency 

of the targets (i.e. costs are higher for lower CO2eq concentrations). Scenarios that are more likely than 

not (>50-100%) to limit warming to below 1.5˚C and 2˚C reach concentration levels below 430 and 

 

26 Partial equilibrium models (typically) only capture energy system costs (measured as the area under the 

marginal abatement cost curve or energy system cost mark-up).  
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500 ppm CO2eq respectively (IPCC, 2014b). Scenarios that reach concentration levels of 450 ppm 

CO2eq are likely (66-100%) to keep warming to below 2˚C (IPCC, 2014b). The most important thing 

to note for the purpose of this chapter is that all the estimates of the cost of mitigation in AR5 are 

positive27. In addition to this, the figure also shows that the ranges of cost estimates widen over time. 

This is consistent with an increase in uncertainty the further into the future we go. 

 

 

Figure 4.1 Global mitigation costs in AR5 scenarios at different GHG concentration levels in 2100. Consumptions 

losses (right panel) are shown relative to a baseline without climate policy (left panel). The table at the top shows 

annualize consumption growth reductions relative to the baseline in scenarios with different GHG concentration 

levels. The cost estimates do not consider the benefits of reduced climate change or co-benefits and adverse side 

effects of mitigation. The figure includes only results from cost-effective scenarios, i.e. scenarios that assume 

immediate mitigation in all countries and a single global carbon price and impose no additional limitations on 

technology relative to the models’ default technology assumptions. Reproduced from IPCC (2014b, p. 24). 

The sign of mitigation costs in AR5 implies that there is a trade-off between climate mitigation and 

consumption when we ignore the benefits of reduced climate change or co-benefits. This result is based 

on the scenarios in the AR5 ensemble and thus depends on the assumptions and model choices that are 

made in the IAMs that are included in this ensemble. As the next section shows, however, the literature 

indicates that net negative costs are possible both according to theory and according to a number of 

applied modelling studies. In other words, the AR5 IAM ensemble (which contains only net positive 

cost results) does not capture the full range of results reflected in the literature. This might lead one to 

question the extent to which the AR5 IAM ensemble captures the “true” uncertainty of this crucial IAM 

output and the reasons why it might not. 

 

27 Figure 6.21 in the main WGIII reports provides a more detailed picture of the cost estimates, including the full 

ranges (not just the interquartile ranges) and the net present values.  
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4.2 Negative cost – is it possible? 

As noted above, the cost of mitigation reported in AR5 shown in Figure 4.1 does not include the benefits 

of reduced climate change, co-benefits or adverse side effects of mitigation. In that sense it only shows 

the “purely economic” cost of mitigation. This is in line with the majority of IAM studies. If climate 

benefits (i.e. avoided damages) are included, e.g. as part of consumption – the way that it typically is in 

CBA IAMs – the cost of mitigation can become net negative even for relatively stringent stabilization 

targets (depending on the model and the assumptions, particularly around discounting and the damage 

function, see e.g. Nordhaus (2007)). This is a crucial finding in environmental economics because it 

means that it is not optimal from a welfare perspective to continue with “business as usual” (and it has 

recently been shown that the Paris agreement passes the cost-benefit test (Glanemann et al., 2020)). The 

main reason why emissions reductions do not take place, according to environmental economics theory, 

is because climate change represents a (largely) unpriced externality. It is this kind of reasoning that 

led Nicholas Stern to proclaim that “climate change represents the biggest market failure the world has 

seen” (2013a).  

 

In addition to this, the cost of mitigation might also be net negative if other co-benefits, such as health 

benefits from reduced air pollution, are included. Many co-benefits of mitigation are thought to be 

substantial (IPCC, 2018b). What this chapter focuses on, instead, is whether climate mitigation can be 

compatible with economic gains when we ignore the benefits of reduced climate change and other co-

benefits. That is, can climate policy be “good” for the economy? As this section shows, this is possible 

both according to theory and according to applied modelling studies.  

4.2.1 According to the literature, yes 

A number of academic debates in the 1990s revolved around the question of whether environmental 

policy could be good for the economy. The ‘Porter hypothesis’ (Porter & Van Der Linde, 1995) asserted 

that firms can benefit from environmental regulation because this can spur innovation, which in turn 

can increase productivity. On an aggregate level this could mean that there is no trade-off between 

economic growth and environmental protection, but instead a win-win situation. Similarly, the so-called 

‘no regret’ emissions reductions potential, which was closely linked to the ‘efficiency gap controversy’, 

was also heavily debated in the 1990s (Hourcade, 1993). The ‘no regret’ potential refers to an amount 

of emissions that can be reduced at net negative costs (Maréchal, 2007). The most famous example of 

such a potential is the investment in energy efficiency, which, because it is often not undertaken in real 
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life, has led to the notion of an ‘efficiency gap’ or an ‘efficiency paradox’ (Marechal & Lazaric, 2010)28. 

Related to how climate policies are implemented in practice, the ‘double dividend’ hypothesis 

suggested that increased environmental taxes could improve not only environmental conditions, but 

increase economic efficiency if combined with the reduction of other (distorting) taxes (Goulder, 1995). 

This is also known as the ‘revenue-recycling effect’.  

 

What these concepts have in common – besides being related to the possibility of net negative mitigation 

costs – is that empirical evidence has neither confirmed nor denied their validity. Questions remain 

regarding the ability to reap the associated economic benefits in the real world. Ambec et al. (2013) 

conclude, almost 20 years after the Porter hypothesis was conceived of, that the empirical evidence is 

mixed. In some cases, environmental regulation appears to have improved business performance, in 

other cases not. When it comes to the efficiency gap, economists and energy system analysts still debate 

whether it exists and what the reasons behind it might be (Allcott & Greenstone, 2012; Gerarden et al., 

2017; Jaffe & Stavins, 1994) and, related, the real costs of no regret potentials (Marechal & Lazaric, 

2010). Similarly, although the choice of revenue recycling is held to be a key determinant of the cost 

of mitigation (Barker et al., 2006; Bye et al., 2002; Repetto & Austin, 1997) – and even though authors 

have found evidence of strong double dividends (Bosquet, 2000; Bye et al., 2002) – researchers are still 

not in agreement as to whether revenue recycling can lead to net negative costs overall. As was already 

the case in 1995, the weak version of the hypothesis – revenue recycling through cuts in distortionary 

taxes leads to cost reductions relative to the case where revenues are returned lump-sum – is widely 

supported, but the empirical evidence for the strong version – replacing distortionary taxes with 

environmental taxes lead to zero or negative costs – is mixed (Goulder, 1995). According to Guivarch 

et al. “the answer [regarding the potential of revenue recycling] has not really been resolved” (2011, p. 

2).  

 

Thus, if we look to the literature (on the energy efficiency gap, the Porter hypothesis, the double 

dividend, and revenue recycling) the answer to the question of whether net negative cost of climate 

mitigation (and environmental protection more generally) is possible appears to be “it depends”. More 

recently, several authors have again explored the possibility of net negative costs in relation to the 

concept of Green Growth, which was popularised by institutions such as the World Bank, OECD, and 

UNEP around 2011-2012 (OECD, 2011; UNEP, 2011; World Bank, 2012) 29. If we combine the above 

 

28 The existence of a no regret potential does not on its own imply that emissions reductions at the level needed 

to meet the Paris target can be undertaken at net negative costs, but it will reduce overall costs.  

29 There are two versions of the green growth concept. The strong version asserts that environmental protection 

can positively promote economic growth and the weak version simply asserts that proper environmental protection 
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concepts with the ideas that have been discussed in relation to the green growth debate, we arrive at a 

number of mechanisms that, if they are present, might give rise to, or at least contribute to, net negative 

mitigation costs. These mechanisms are listed in Table 4.1 and discussed below.  

 

Table 4.1 Mechanisms that might enable, or at least contribute to, net negative mitigation costs.  

Green Growth Mechanisms 

Keynesian green stimulus (‘Green New Deal’) Climate policy can act as a stimulus on the economy, which 

will increase employment and capital utilization, and thus 

spur growth. 

Limits to brown growth Increasing environmental damages will sooner or later 

hamper economic growth itself. Climate policy can move 

us in the direction of a better long-term growth path. 

Market failure corrections 

 

Climate policy can be used to correct existing market 

failures and thus increase the overall efficiency of the 

economy. 

Revenue recycling Climate taxes can be used to decrease other distortionary 

taxes.  

No-regret options Climate policy can be used to incentivise cost-effective 

choices that are not currently made (e.g. investments in 

energy efficiency).  

Knowledge spillovers (R&D) Climate policy can be used to increase economic 

productivity by remedying current underinvestment in low-

carbon R&D caused by innovation externalities.   

Under-employed production factors Climate policy can help increase the employment of 

currently under-employed production factors (labour and 

capital). 

Learning-by-doing Climate policy can be used to reduce the future cost of 

energy (and thus increase economic productivity) by 

remedying current underinvestment in low-carbon 

technologies caused by learning externalities. 

Schumpeterian green revolution Climate policy can unleash a wave of innovation that will 

ultimately transform the economy and bring about a “green 

industrial revolution”. 

 

 

 

can be compatible with economic growth (i.e. environmental protection does not necessitate a reduction in 

economic growth) (Jacobs, 2013).   
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Keynesian green stimulus (‘Green New Deal’) 

The original case for green growth in the aftermath of the 2008 financial crisis was based largely on the 

Keynesian argument that an economy in recession can be stimulated back into growth through 

environmental measures (e.g. Jones (2009), New Economics Foundation (2008)). The argument, also 

known as a ‘Green New Deal’, rests on the idea that in a recession, governments should stimulate 

demand by replacing lost private demand with public expenditure (Jacobs, 2013). This expenditure need 

not be green for it to have the desired effect, but if green investment is going to be needed in the near 

future regardless, it represents a particularly good choice. Investment in green infrastructure represents 

one such option (Hallegatte et al., 2012). Many have also argued that since environmental measures are 

often labour intensive, they offer better economic growth per dollar spent than other measures (Jacobs, 

2013; Mark et al., 2011).  

 

Critics of the Keynesian stimulus idea argue that the effects are only short term. According to Hallegatte 

et al. “demand-led and Keynesian effects” become important “when actual production is more 

constrained by demand than by production capacity (i.e., in situations of high unemployment and low 

utilization of production capital)” (2012, p. 8). While many proponents of Keynesian policies will agree 

that stimulus measures are only meant to be short-term, some have, however, argued that environmental 

measures can also drive economic growth in the medium- and long-term (e.g. Spencer et al. (2012)).  

 

Limits to brown growth  

Another argument says that the current pattern of economic growth, if continued into the future, will 

ultimately be bad for economic growth itself. This argument is based on the idea that environmental 

damages, when they get bad enough, will start to also damage productivity. Current patterns of growth, 

the argument goes, fail to take into account the increasingly negative impacts of increasing climate 

damages on natural capital and labour (Hallegatte et al., 2012). That is, long-term economic output can 

be increased by climate policy because it will reduce damages to physical (e.g. from extreme weather 

events) and human (e.g. from air pollution) capital, both of which affect productivity. This view can be 

contrasted with the traditional view that environmental policies will have a negative impact on capital 

because it constrains available technologies and forces polluting technologies into early retirement.  

 

Jacobs (2013) notes, however, that even though many argue that sustainable management of resources 

might generate growth, many argue that unsustainable exploitation will generate more growth. The 

latter is, after all, how developed nations grew: by transforming natural capital into physical capital, 

which led to higher productivity and ultimately higher economic output. The answer will ultimately 

depend on one’s assessment of the current and future state of the environment and its impact on the 

economy. While proponents of green growth will argue that although “brown growth” was possible in 
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the past, we have now reached a point at which the environment has become so scarce that this is no 

longer viable, proponents of continued “brown growth” will argue that this time has not yet arrived.  

 

Market failure corrections 

A wide range of market failures (beyond the climate change externality) are known to be present in the 

economy. If climate policy is used to correct some of these market failures, the net result could be an 

increase in economic efficiency rather than a decrease. Many of the concepts that were discussed in the 

1990s fall into this category. 

 

Revenue recycling (double dividend) 

Environmental taxes can be used to correct the economic inefficiency of the current taxation system. 

‘Revenue recycling’, if done the right way, can thus lead to a ‘double dividend’. This possibility is also 

referred to as ‘environmental tax reform’. 

 

No-regret options 

‘No-regret’ options imply that (at least some) emissions reductions are possible at net negative costs. 

Investment in energy efficiency, for example, is widely thought to be good both for the environment 

and the economy30. 

 

Knowledge spillovers (R&D) 

Invention and innovation failures due to underinvestment in basic research and development (R&D) are 

known to be caused by knowledge spillovers (Ackerman et al., 2010; Edenhofer et al., 2013; Nemet, 

2013). Given the crucial role of innovation for productivity and growth, correcting the effects of 

knowledge spillovers in the case of low-carbon technologies might benefit both the climate and the 

economy. Although not exactly the same, this idea is also related to the ‘Porter hypothesis’ discussed 

above (or a macro-scale version of this hypothesis (Hallegatte et al., 2012)). Policies that can be used 

include direct government investments in R&D, innovation prizes, patenting systems, and carefully 

designed tax breaks and subsidies (Stern, 2014). Hallegatte et al. (2012), however, also note that green 

investments might sometimes crowd out more profitable investments.  

 

Learning by doing 

The basic idea behind learning-by-doing, which dates back to Arrow (1962), is that the cost of 

producing a good declines with the cumulative production of the good. Learning-by-doing is a cause of 

 

30 If energy efficiency leads to increased economic output this also leads to a rebound effect, which means that 

the environmental benefits are smaller than if there were no economic gains.  
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market failure if firms cannot capture the cost reductions caused by their own production of the good. 

For renewable energy technology in particular, there is ample evidence that the cost has declined with 

cumulative installed capacity (Rubin et al., 2015; Samadi, 2018).  

 

In an extensive meta-analysis of cost estimates Barker et al. (2006) found that the treatment of 

technological change is a major determinants of the cost of mitigation. Together, the effects of R&D 

and learning-by-doing on technological change are often captured using the term induced technological 

change (ITC). In a large model intercomparison study of 10 IAMs, Edenhofer et al. (2006) showed that 

ITC reduced abatement costs in all models. Bosquet (2000) also found that technological change 

increases the economic benefits of environmental tax reforms.  

 

Under-employed production factors 

Production factors, including capital and labour, might be under-employed not only in a recession, but 

also for structural reasons (Hallegatte et al., 2012). Climate policy might help increase the employment 

of several production factors. Both Bosquet (2000) and Bye et al. (2002) find that the presence of 

structural unemployment also increase the economic benefits of revenue recycling.  

 

Schumpeterian green revolution 

Certain authors have argued that environmental policy can serve as a new engine of growth for the 

global economy (Perez, 2009, 2017; Stern, 2014). According to Perez, policies that take environmental 

threats as opportunities and combine smart green growth with full global development can unleash a 

“global sustainable Golden Age” (2017, p. 3). According to Stern, climate policy can be used to bring 

about “a new green industrial revolution” (2009). While invention and innovation is also at the core of 

this argument, it extends beyond the more narrow confines of knowledge spillovers (discussed above) 

and borrows from Schumpeterian theories (presented e.g. in Schumpeter (1983)) to make more general 

claims regarding economic development. The idea is that sufficient levels of environmental policy will 

unleash a wave of innovation that will ultimately transform the economy. 

 

 

The above mechanisms, summarized in Table 4.1, can give rise to, or at least contribute to, net negative 

mitigation costs. They are not mutually exclusive. Learning-by-doing and knowledge spillovers, for 

example, which are listed under market failure corrections, are also central to the idea of a 

Schumpeterian green revolution. Limits to “brown growth”, due to increasing environmental 

degradation, could also be considered an (inter-temporal) market failure. This is indeed similar to how 

the climate change problem is conceived of in cost-benefit IAMs, the main difference being that here 

we are not talking about utility or welfare, but economic output.  

 



 

64 

The ultimate impact of climate policy on the economy will depend on the balance of mechanisms 

pulling in different directions. Can a Keynesian stimulus have a long-term effect on economic output, 

for example, or is this only a short-term fix? Will the increasing environmental damages associated 

with the current growth path outweigh the benefits of staying on this path? Are the constraints imposed 

by climate policy on capital and labour larger or smaller than the benefits in terms of innovation and 

increased energy efficiency? What effect dominates, knowledge spillovers or crowding out? Overall, 

how large are existing market failures and to what extent can climate policy correct them? Based on 

the literature, we do not currently have a clear answer to these questions. Expert opinions differ, often 

considerably. The fact that no data exists on the impacts of climate mitigation on the scale required to 

meet the Paris target does not help resolve the issue. While we certainly cannot conclude that climate 

policy will generate net negative costs, the main takeaway from this section is that we also cannot 

conclude that climate policy cannot generate net negative costs. The latter, however, is what is indicated 

by AR5. The next section presents a handful of applied modelling studies that further corroborates the 

possibility of net negative cost results. 

4.2.2 According to applied modelling studies, yes 

This section presents five examples of models that have predicted net negative mitigation costs. While 

no attempt has been made to offer a complete list of models that have produced such results, an effort 

has been made to capture a variety of different types of models (including two CGE, one optimal 

growth, one macroeconometric, and one systems dynamics model). Several of the examples are taken 

from the review of model structures for win-win strategies by Wolf et al. (2016). Because the main 

point in this section is to show that such model examples exist, the discussion of each model will be 

brief. Some of the model assumptions will, however, be discussed in more detail in section 4.4. 

  

T21 

The UNEP Green Economy Report (UNEP, 2011) uses a macroeconomic model based on systems 

dynamics called Threshold 21 (T21) to show that a green economy can grow faster than a ‘brown’ 

(baseline) economy. T21 was developed by the Millennium Institute31 in the 1990s (Qu et al., 1998) to 

study strategies for medium to long-term development and poverty reduction. It combines optimisation 

in the energy sector with econometrics in the economic sectors. A key feature of T21 is the fact that it 

takes into account the role of natural resources in production (in addition to capital and labour). 

According to the UNEP Green Economy Report, “the inclusion of natural resources as a factor of 

production distinguishes T21 from all other global macroeconomic models” (UNEP, 2011, p. 24). 

While economic output is higher in the baseline scenario than in the green scenarios for T21in the first 

 

31 https://www.millennium-institute.org/ 
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7-9 years, economic growth in the green scenarios overtake growth in the baseline scenario and lead to 

permanently higher economic output after this initial period of green investment. 

 

E3MG 

The macro-econometric model E3MG (now called E3ME) has generated scenarios that predict 

economic benefits from climate policies on several occasions (e.g. Barker et al., 2006; Barker & Şerban 

Scrieciu, 2010). In fact, results from E3MG depicting net negative costs from climate mitigation was 

included in the IPCC AR4 scenario ensemble (see Figure 11.17 in IPCC (2007)). The distinguishing 

features of E3MG are, according to Barker and Scrieciu (2010), its Keynesian demand-led approach, 

its representation of the economy without assuming equilibrium, and its assessment of policies in a non-

optimal environment. E3MG assumes increasing returns to production and under-employment of labour 

source in the baseline (Edenhofer et al., 2006). This means that climate policy can lead to an increase 

in investment which in turn leads to an increase in economic output. These features allow positive 

macroeconomic effects of climate mitigation, in both the short and long terms, although both the 

magnitude and sign of economic impacts depend on the specifics of how policies are implemented 

(including how carbon revenues are used). E3MG has even predicted that economic output can increase 

with the stringency of climate targets (Barker & Şerban Scrieciu, 2010).  

 

GEM-E3 

The CGE model GEM-E3 (EU Science Hub, 2019) computed positive economic impacts of climate 

policy in the study A New Growth Path for Europe by Jaeger et al. (2011). The version of GEM-E3 

used in this study was enhanced specifically to include key features such as learning-by-doing and to 

allow expectations to influence economic dynamics. The natural rate of unemployment was also 

allowed to vary. Together, these elements allowed GEM-E3 to model a virtuous cycle of feedback 

between investment into green technology, learning by doing, and investor expectations. As a result, 

the version of GEM-E3 used in this study was able to depict a transition from what was seen at the time 

to be an inferior equilibrium (with high unemployment and low growth) to a superior equilibrium (with 

lower unemployment and higher growth) in which GHG emissions were also reduced (Jaeger et al., 

2011).  

 

IMACLIM 

A follow-up study by Jaeger et al. (2015) also included the CGE model IMACLIM (in addition to GEM-

E3), which was used to compute scenarios in which green policies coordinated investor behaviour in a 

way that stimulated the economy and thus increased economic growth relative to the baseline. The 

version of IMACLIM used in this study also included learning by doing as well as economic frictions. 

These features, which are default features of IMACLIM (Sassi et al., 2010; Waisman et al., 2012), were, 

however, not sufficient to generate net negative costs on their own: introducing a carbon price to the 
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default version of IMACLIM in this study led to a reduction in GDP. In order to depict pathways with 

net economic benefits, two additional assumptions were therefore imposed: First, revenues from carbon 

taxes were recycled, and second, a specific stimulus package that redirected finance from high to low 

carbon activities was imposed. The result of all these assumptions was a significant increases in GDP 

relative to the baseline at all time periods in the climate policy scenario (Jaeger et al., 2015).  

 

FEEM-RICE-FAST  

A version of the optimal growth model FEEM-RICE, called FEEM-RICE-FAST (Bosetti, Carraro, & 

Galeotti, 2006), predicted GDP gains from emissions reductions in the Innovation Modeling 

Comparison Project (IMCP) (Edenhofer et al., 2006). The baseline in FEEM-RICE-FAST assumes 

market imperfections due to externalities in R&D investment: Regions under-invest in R&D due to 

assumed non-cooperative behaviour (Edenhofer et al., 2006). When climate policy is introduced, 

regions are induced to increase their R&D investments, bringing these closer to the cooperative, 

optimal, levels. The net negative cost results, however, also hinges on two more assumptions, namely 

the existence of learning-by-doing and limited crowding out. If the learning-rate is slow and the 

crowding out effect is large, costs are no longer net negative (Edenhofer et al., 2006).  

 

All of the above modelling studies represent serious attempts to depict real-world possibilities. 

Although some of the assumptions underlying some of the model runs might be thought of as 

optimistic32, none of them are deemed implausible (at least by the authors themselves).  

 

Based on theoretical arguments and applied modelling studies found in the climate policy literature – 

of which this section has provided only a snapshot – it appears that even the sign of the cost of mitigation 

is uncertain. The possibility that mitigation costs can be net negative, however, is not captured by AR5 

results33. The next section argues that this possibility is important and that it should therefore be 

recognised in IPCC reports. 

 

32 According to Edenhofer et al, “in the case of FEEM-RICE-FAST the negative costs are the consequence of the 

optimistic assumptions on the effects of R&D investments and of the role that stabilization targets have in inducing 

more R&D investments” (2006, p. 76). 

33 It should be noted that two of the five models discussed, GEM-E3 and IMACLIM, are included in the AR5 

IAM ensemble. The scenarios generated by these two models in the AR5 ensemble do not, however, predict net 

negative costs (but, in the case of IMACLIM, unusually high positive costs). The potential reasons for this will 

be discussed in section 4.4.4. 
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4.3 When uncertainty matters 

A question asked by philosophers of science in the 1950s was whether scientists, when giving advice 

to decision makers, should consider the potential consequences of error when deciding what to say 

(Rudner, 1953). In a well-known article and book on values in science, Heather Douglas (2000, 2009) 

recently revised this debate34. 

 
The premise of Douglas’ argument is that all humans have a general moral responsibility to consider 

the consequences of error when making choices. It is widely accepted that people are responsible for 

side effects of their actions when these are caused by reckless or negligent behaviour. Being reckless 

means that one is aware of the risks caused by a choice, and that these risks are unjustified, but one still 

goes ahead. An example of this is speeding on city streets for the fun of it (as opposed to speeding in 

order to get a seriously injured person to the hospital). Being negligent means that one does not bother 

to properly evaluate obvious risks or fails to think about potential consequences. An example of this is 

making a bonfire on a dry and windy summer day with no thought as to how to control the fire. The 

argument in this case is that the person should have foreseen the potential problems and planned 

accordingly. If the fire is made with clear awareness of the risk, but the person doesn’t care, then the 

action would be reckless. In Douglas’ own words “recklessness is proceeding in the face of 

unreasonable risk; negligence is the failure to foresee and mitigate such risk” (Douglas, 2009, p. 70).  

 
Douglas’ main point is that one can be negligent or reckless not only in actions, but also in making 

descriptive or empirical claims. According to Douglas, “making empirical claims should be considered 

as a kind of action, with often identifiable consequences to be considered” (Douglas, 2009, p. 70). As 

an example, she considers the question of whether one should report an unattended briefcase. Whatever 

the choice, there are clear risks of error. If one reports the briefcase, and it is not a bomb, it will disrupt 

people’s daily lives and take away resources from more important tasks. If one does not report it and it 

is a bomb, serious harm and death might result. Clearly, the latter result is much worse. But probabilities 

should also be considered35. In the same manner, Douglas argues, scientists are also morally responsible 

for the consequences of making inaccurate or unreliable empirical claims.  

 
This argument is not universally accepted and some have argued that scientists should be exempt from 

this moral responsibility (e.g. Lübbe, 1986). This argument is generally based on the view that such 

 

34 See Elliot (2017) and Kincaid et al. (2007) for more on this debate. 

35 The probability will depend on contextual factors, such as where the briefcase is spotted. If spotted in a 

classroom known to be used by a particularly absentminded colleague, the probability that the briefcase is not a 

bomb (but the colleague’s briefcase) appears to be much higher than if the briefcase is spotted on a busy subway 

station. 
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considerations would impose too much of a handicap on scientists’ work. The strong version of the 

argument says that it would impose unreasonable limits on scientific freedom, which is essential to the 

pursuit of knowledge. Because this knowledge is so valuable to society, it justifies the exemption of 

scientists from such moral obligations. Against this, Douglas points to the fact that we already do not 

allow the pursuit of knowledge to trump all other values. The value of knowledge is always weighed 

against other values. For instance, we place limits on the use of research subjects. In other words “the 

knowledge produced by scientists should not be and is not considered priceless” (Douglas, 2009, p. 77). 

The weaker form of the argument says that, even if we don’t consider science to be priceless, requiring 

scientists to consider the consequences of their work still places a too large burden on the scientists. 

Against this, Douglas argues, “the price of morally exempting scientists from the general responsibility 

to consider the consequences of errors looks much higher than the price of having scientists shoulder 

this burden” (Douglas, 2009, p. 78). Given cases where moral exemption would be very harmful and 

the absence of clear boundaries of cases in which it would and wouldn’t, Douglas argues, blanket 

exemption is not defensible. Thus, Douglas rejects the argument that scientists should be exempt from 

the moral responsibility of making inaccurate or unreliable claims.  

 
This does not imply that scientists are responsible for every use or misuse of their work, which would 

be an unreasonable expectation. Just as humans should only be held responsible for the unintended 

consequences of their actions under certain conditions (e.g. when they are reckless or negligent), the 

same should be true for scientists. That is, scientists – like other people – are only responsible for what 

is reasonably foreseeable. Douglas uses the discovery of the neutron in nuclear physics by James 

Chadwick and the research that followed in the 1930s as an example. This discovery later led to the 

development of the atomic bomb. However, it was not until the discovery of fission in December 1939 

that the atomic bomb could be conceived of. Thus, we could not have expected Chadwick to foresee 

this possibility, but we could expect all nuclear physicists working in this area after 1939 to foresee 

this. In short, “the moral burdens on scientists are not unlimited. They are held to only what can be 

foreseen, and thus discussed and considered” (Douglas, 2009, p. 84). 

 
It is in light of this that Douglas (2009), in line with Rudner (1953), argues that scientists should 

consider the consequences of being wrong when deciding whether or not to make a claim. Rudner 

(1953) argues that scientists should weigh the importance of the uncertainty based on the consequences 

of making an error: 

“since no scientific hypothesis is ever completely verified, in accepting a hypothesis 

the scientist must make the decision that the evidence is sufficiently strong or that 

the probability is sufficiently high to warrant the acceptance of the hypothesis. 

Obviously our decision regarding the evidence and respecting how strong is "strong 

enough", is going to be a function of the importance, in the typically ethical sense, 
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of making a mistake in accepting or rejecting the hypothesis. Thus, to take a crude 

but easily manageable example, if the hypothesis under consideration were to the 

effect that a toxic ingredient of a drug was not present in lethal quantity, we would 

require a relatively high degree of confirmation or confidence before accepting the 

hypothesis - for the consequences of making a mistake here are exceedingly grave 

by our moral standards. On the other hand, if say, our hypothesis stated that, on the 

basis of a sample, a certain lot of machine stamped belt buckles was not defective, 

the degree of confidence we should require would be relatively not so high. How 

sure we need to be before we accept a hypothesis will depend on how serious a 

mistake would be” (Rudner, 1953, p. 2 italics in original). 

Douglas (2009), similarly, uses the example of a scientist that discovers a correlation between a 

particular pollutant and respiratory deaths to explain how scientists should exercise their moral 

responsibility. If the pollutant in question is cheap and easy to control, the consequences of incorrectly 

accepting the claim as reliable appears much less severe than the consequences of incorrectly rejecting 

the claim as reliable. In this situation, Douglas argues, the scientist should note the uncertainty, but 

suggest that the evidence sufficiently supports the claim. When scientists are considering potentially 

catastrophic consequences of making an error, such as was the case when scientists considered the 

potential effects of the first atomic bomb test in New Mexico in 1945, less uncertainty is tolerable for a 

claim that the testing is safe.  

 
The key point for both Rudner (1953) and Douglas (2009), thus, is that the importance of the uncertainty 

– and thus the amount of uncertainty that scientists should tolerate in making claims – depends on the 

consequences of being wrong. When the consequences of being wrong are significant, scientists should 

require a greater level of certainty when making a claim. When consequences are relatively 

insignificant, we need not worry so much about being wrong. In short, the higher the stakes, the more 

important the uncertainty.  

4.3.1 Implications for IAM research 

If we accept Douglas and Rudner’s argument, researchers are morally responsible for the consequences 

of making inaccurate or unreliable claims also based on IAMs. As has already been noted, the cost of 

mitigation is a central IAM output. So far, this chapter has presented theoretical arguments and provided 

examples of applied modelling studies that suggest mitigation costs could be net negative. The AR5 

IAM scenarios, however, do not reflect this possibility. In order to assess the importance of the 

uncertainty associated with the cost of mitigation, we now consider the consequences of being wrong 

regarding this IAM result.  
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In order to consider the consequences of being wrong, we assume that the “true” cost of mitigation is 

net negative. We then ask what the consequences are of incorrectly predicting positive costs.36 If the 

cost of mitigation in reality is net negative, this means that we are currently on a sub-optimal (from a 

purely economic point of view) pathway. The consequences of not yet having reduced global GHG 

emissions amounts to decades of lost economic benefits. In the counterfactual (optimal) pathway, one 

or several of the mechanisms listed in Table 4.1 (reduced damages to capital and labour from climate 

change, corrections of existing market failures, economic stimulus through periods of slow growth, and 

possibly even a new wave of green innovation) could have led to a win-win situation compared to where 

we are at. Given the global magnitude of the economic effects and the fact that three decades have 

passed since the first IPCC report, if the “true” cost of mitigation is (and has been) net negative, the 

economic consequences of not having mitigated are most likely considerable. If we include the 

environmental consequences, the cost is larger. This is because the counterfactual (optimal) pathway 

implies not only economic benefits, but environmental benefits: In this pathway, more mitigation would 

take place37. As evidenced by the IPCC’s SR15 (IPCC, 2018a), even a 0.5˚C difference in global 

warming can have enormous consequences. In the worst case, the difference between the pathway that 

we are currently on and the optimal from an economic point of view (corresponding to the case in which 

the cost of mitigation is net negative) could amount to the difference between a stable climate and a 

climate in which irreversible tipping points are reached. 

 

Thus, if we assume the “true” cost of mitigation is net negative, the difference between the sub-optimal 

pathway that we are currently on and the optimal pathway that we could have been on, is likely large 

both in economic and environmental terms. There is one last question, however, and that is how large 

the impacts of IPCC cost estimates are. That is, how much do these results affect climate policy and 

action? If the influence of IAM cost results are small, the consequences of being wrong would also be 

small. In this case, the uncertainty of the results would not be important because the results are not 

important (in the sense of having an impact on climate policy and thus mitigation). There could be two 

reasons why IAM cost results don’t have a material impact on climate policy: either policymakers don’t 

take IAM cost results seriously or the aggregate cost of mitigation is of relatively minor importance to 

 

36 Given the uncertainty and variability of IAM results, we here equate “being wrong” about the sign of the cost 

of mitigation from the perspective of the IPCC reports as a situation in which all IAMs in the ensemble predict 

net positive costs when the true cost is net negative. IAM ensembles can of course also be wrong about the 

magnitude of costs, whether these are negative or positive. But because of the significance of the sign, and in 

order to simplify the discussion, we here focus only on the sign of the cost. 

37 Note that the optimal pathway when the cost of mitigation is net negative does not necessarily imply an 

instantaneous reduction of emissions to zero. Even in the case where the cost of mitigation is net negative, a 

smooth reduction of emissions would likely be preferred to a sudden reduction.  
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policymakers. The first explanation leads us into a somewhat paradoxical situation: if IAMs are 

designed to inform climate policy, but IAM results don’t have an impact on policy, then either IAM 

research is not worthwhile, or policymaking should be changed such that it takes IAM results more 

seriously. If one concludes the former, that IAM research is not worthwhile, then IAM researchers have 

bigger problems to worry about than the risk of producing inaccurate or unreliable results. In this 

situation, although it would be true, it would also be self-deprecating for IAM researchers to argue that 

they don’t have to worry about the risk of being wrong because their results don’t matter. If one instead 

concludes the latter, that policymakers should take IAM results seriously, then one should also care 

about the risk of being wrong regarding the cost of mitigation.  

 

The second explanation is likely to hold true at least to some extent: policymakers care about much 

more than the aggregate global cost of mitigation. They are likely to care more about domestic gross 

costs, and care about energy security and affordability, not just aggregate costs. In addition to this, 

policies interact and climate policies, like any other policies, are rarely “only” climate policies: 

policymakers are constantly weighing multiple goals against each other and a variety of constraints. 

Nonetheless, costs and economic growth are and have been key concerns for policymakers in the last 

decades. Costs were, among other things, one of the main arguments used by the US when leaving the 

Kyoto agreement. Even though IAMs are far from the only input to climate policy, they still influence 

the public debate and inform climate policy both nationally and internationally (Krey et al., 2019a). 

Although we do not know the magnitude of the impact of IAM cost estimates on climate policy, we can 

be fairly certain of the direction of the impact. 

 

In both cases, IAM researchers should act as if the results of their work are taken seriously and have an 

impact on climate policy – informing climate policy is, after all, the main purpose of IAMs. Thus, 

assuming that IAM research is worthwhile and that IAM results either already have an impact38 or that 

IAM researchers want it to have an impact on climate policy39, we can consider how IAM cost estimates 

might affect climate policy, and thus what the consequences of being wrong regarding this IAM result 

might be.  

 

 

38 This does not just include direct impact. The cost of mitigation is also part of the public debate around climate 

change, and this in turn has a significant impact on climate policy.  

39 This does not imply that IAM results will be fed into policymaking in a simple linear manner, nor that their 

results will not be challenged in the policymaking process. Policymakers are not passive consumers of scientific 

research. Nor do IAMs, in the vast majority of cases, provide clear recommendations for policy. Ultimately, 

politics entails evaluating different sources of information and weighing up multiple considerations against each 

other. The interplay between science and policy is messy (see e.g. Owens (2015)). 
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In assessing the consequences of being wrong, it is again helpful to consider the counterfactual: 

assuming the true cost of mitigation is net negative, what might have happened if IAM ensembles 

(correctly) predicted this?40 

 

First, nations most likely would have been more willing to sign up to an international climate agreement 

if IAM research indicated that mitigation presented a win-win option. The cost of mitigation was 

reported in IPCC reports for the first time in the second assessment report (AR2) in 1995 (IPCC, 1995). 

This was around the time when the negotiations leading up to the Kyoto agreement were taking place. 

Several authors have, according to Bowen and Fankhauser, “long argued that a key barrier to reaching 

an international agreement on climate change is the burden-sharing focus of the UN Framework 

Convention on Climate Change” (Bowen & Fankhauser, 2011). The belief that mitigation would be 

costly most likely contributed to this. In contrast to this, the concept of win-win policies that benefit not 

only the climate but also the economy “tries to make environmental policies easier to implement in 

spite of political obstacles, and to increase the social and political acceptability of environmental 

policies” (Hallegatte et al., 2012, p. 30). Among other things, economic cost was the main argument 

used by the US when leaving the Kyoto agreement. If IPCC reports had instead indicated that costs 

would most likely be net negative, it seems plausible that the US would have been less likely to leave 

the agreement or at least found it harder to justify doing so. If the US had stayed in the Kyoto agreement, 

this would have also most likely had a positive impact on global mitigation efforts. The US was not 

only the biggest emitter at the time (a role which has now been taken by China41), but also a world 

leader in many other respects (e.g. in terms of technology). 

 

Second, international climate agreements would have likely been more ambitious. The 2˚C target that 

was finally agreed in Paris in 2015 was the result of a long and tedious process stretching over many 

years. Costs have always been an important consideration for the parties to the agreement. If IPCC 

reports had indicated all along that costs would most likely be net negative, the incentives for stronger 

action would have also been stronger.  

 

Third, net negative cost results would have most likely made it easier for policymakers also at the 

domestic level to implement climate policies. This is because climate policies would have been seen as 

less of a threat to economic development, which remains a primary goal.   

 

40 If IAM ensemble results are “wrong” about the cost being net negative when they predict only net positive 

results, they can be said to be “correct” if they predict only net negative cost results (or at the very least, if they 

predict net negative costs on average). 

41 In absolute levels, not per capita (Friedlingstein et al., 2019). 
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It should be noted that even if the true cost of mitigation is net negative this does not imply that there 

are no costs associated with climate mitigation. Net negative costs do not prevent gross costs from being 

large. These gross costs will be felt to different degrees by different industries, regions, and people. The 

transformation of the energy system will have large negative consequences for particular industries, 

notably the fossil fuel industry. The transformation also implies significant risks of stranded fossil fuel 

assets, which again has macroeconomic and distributional consequences (Mercure, Pollitt, Viñuales, et 

al., 2018)42. And on a domestic level, the implementation of climate policy will impose certain costs 

for certain parts of the population. The gilet jaunes (yellow jacket) movement in France provides a good 

illustration of how people might react to these very real costs. These gross costs, which, if not 

implemented alongside counterbalancing redistributive policies, will be felt unequally by people and 

industries. Thus, such costs will most certainly still represent a barrier to the implementation of climate 

policy, even if the net global cost of mitigation is negative – and even if IAM results reflected that. 

Nonetheless, net negative cost results might have shifted the debate from a question of overall economic 

output and burden sharing to a question of how to distribute the gains in a just manner. 

 

It is impossible to say exactly how much more mitigation would have taken place if IAM ensembles 

(correctly) predicted that the cost of mitigation would be net negative. More research into the use of 

IAM results and the effects of IPCC results on climate policy and action is needed. But, even then, it 

would be impossible to say exactly what would have happened if things had been different. Nonetheless, 

even though the magnitude of the impacts on climate policy of the cost of mitigation is unknown, the 

direction seems clear: net negative cost results would not have led to less climate mitigation. We can 

assume, with a high degree of confidence, that if IAMs predicted net negative costs all along, earlier 

and stronger mitigation would have resulted. Thus, although we cannot know the magnitude of this 

effect, we can argue that the consequences of IAMs being wrong about the cost of mitigation (assuming 

the cost of mitigation in reality is net negative) includes missed economic opportunities and increased 

climate damages. Given the large difference in climate damages caused by 1.5°C of global warming 

and 2°C of global warming, and how close we are to not being able to make either of these targets today 

(IPCC, 2018a), the consequences of being wrong about the cost of mitigation might, in the worst case, 

amount to irreversible environmental damages. 

 

In summary, being wrong about the cost of mitigation is likely to have negative consequences. The 

scale and nature of the climate change problem implies that the lost economic benefits and increased 

 

42 I am a co-author of this paper.  
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climate damages are likely to be substantial. Assuming IPCC assessment report results have a material 

impact on mitigation, the consequence of being wrong is significant. 

 

This chapter has argued that the uncertainty regarding the sign of the cost of mitigation is considerable. 

The potential magnitude of the consequences of being wrong implies that this uncertainty is also 

important. The AR5 IAM ensemble, however, does not reflect this uncertainty.  

 

The argument that AR5 leaves out important uncertainties regarding the cost of mitigation concludes 

the first part of this chapter. In order to link this conclusion to the arguments and findings in Chapters 

2 and 3, and in order to present a more complete assessment of the AR5 cost estimates, the rest of this 

chapter examines potential reasons for why the AR5 IAM ensemble does not capture the possibility of 

net negative mitigation costs. As in previous chapters, given the large number of IAMs and the 

complexity of each IAM, the analysis will not be based on a detailed investigation of all the assumptions 

that determine cost estimates in the individual IAMs that in AR5 produce economy-wide cost estimates. 

This means that it is difficult to draw definite conclusions. The analysis nonetheless provides a relatively 

thorough assessment of the potential reasons why AR5 IAMs do not produce net negative cost results 

based on a review of model publications, model documentation, the WGIII report, and more general 

arguments drawn from the economics literature.  

4.4 Potential reasons why net negative costs do not appear in AR5  

4.4.1 Because general equilibrium models exclude the possibility by construction 

The first thing to note is that all the economy-wide cost estimates in AR5 stem from general equilibrium 

IAMs. There are 20 general equilibrium IAMs in AR5 (shown in Table 3.1). As shown in Chapter 3, 

eight of the 14 most influential IAMs in AR5 are general equilibrium IAMs. These eight models are 

either optimal growth or CGE models (Table 3.2). A closer look at the remaining 12 general equilibrium 

IAMs in AR5 (shown in grey in Table 3.1) reveals that these are also either optimal growth or CGE 

models. By looking at the number of scenarios generated by each model, we find that 79% of the 

scenarios generated by general equilibrium IAMs in AR5 stem from optimal growth models and that 

21% stem from CGE models. Table 4.2 lists the general equilibrium IAMs in AR5 and the versions 

used in AR5, and the number of scenarios generated per IAM.  
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Table 4.2 General Equilibrium IAMs in AR5. Source: WGIII AR5 Scenario Database (IAMC, 2014). 

 Model types, names, and versions included in AR5  

# of 

scenarios 

in AR5 

 Optimal Growth  CGE   

Perfect foresight IAMs 

 REMIND (1.1, 1.2, 1.3, 1.4, 1.5)   158 

 MESSAGE* (V.1, V.2, V.3, V.4)   140 

 WITCH (AME, AMPERE, 

EMF22, EMF27, LIMITS, 

RECIPE, ROSE) 

  132 

 MERGE-ETL (2011)   48 

 MERGE (AME, EMF22, EMF27)   44 

 BET (1.5)    23 

 EC-IAM 2012    21 

 GRAPE (ver1998, ver2011)   14 

 MARIA23_org   5 

  iPETS (1.2.0)  4 

Myopic (recursive dynamic) IAMs 

  IMACLIM (v1.1)  53 

  Phoenix (2012.4)  31 

  ENV-Linkages 

(WEO2012)  

 17 

  FARM (3.0)   12 

  GEM-E3-ICCS  11 

  WorldScan2  8 

  SGM  7 

  IGSM  5 

  GTEM REF23  4 

  KEI-Linkages  4 

*All the versions of MESSAGE in AR5 include MACRO (they are sometimes referred to as MESSAGE-MACRO 

for that reason). 

 

One of the reasons why the model types are important is because several authors have argued that 

general equilibrium models, including optimal growth and CGE models, exclude negative costs by 

construction. Already in 1997, DeCanio argued that the sign of the aggregate costs produced by general 

equilibrium models is predetermined by the assumption that there must be a trade-off between 
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environmental protection and economic growth (DeCanio, 1997). Terry Barker, who played an 

instrumental role in the development of the macroeconometric E3MG model (which, as shown in 

section 4.2.2, have predicted net negative costs of mitigation), has long criticised CGE models for 

assuming that the economy is already in an optimal equilibrium, which implies that climate policies can 

only have a negative impact on economic output. In CGE models, according to Barker, “by definition 

any change brought about by policy towards sustainability will incur economic costs” (2004, p. 8). 

Similar arguments have also been put forth by others (see for example Scrieciu et al. (2013) and Wolf 

et al. (2016)). 

 

Given the influence of MERGE on optimal growth IAMs (see Chapter 2), and the influence of optimal 

growth models on AR5 cost estimates, it is worth looking at how MERGE first conceptualised the 

climate change problem. The part of MERGE that is used to estimate the cost of mitigation, Global 

2200, uses production functions to calculate economic output based on capital, labour, and energy. 

Savings decisions are made so as to maximise the discounted utility of consumption corresponding with 

the standard Ramsey optimal growth framework. According to Manne et al., 

“[e]nergy-economy interactions occur in two ways…energy is an input to the 

economy…energy costs represent one of the claims upon the economy's output. 

Tighter environmental standards and/or an increase in energy costs will reduce the 

net amount of output available for meeting current consumption and investment 

demands.” (Manne et al., 1990, p. 57) 

Thus, environmental policy by definition reduces the amount of economic output in MERGE: emissions 

constraints necessarily lower GDP. In other words, the original framework underpinning the MERGE 

model excludes the possibility of net negative costs by construction.  

 

Although not part of the AR5 IAMs, Nordhaus’ contribution to climate economics is also worth 

considering due to its significant influence on IAMs in general and on optimal growth models in 

particular. Nordhaus also had a strong influence on the work of Manne, including the MERGE model 

(Nordhaus, 2017). In his seminal article, “To Slow or Not to Slow”, Nordhaus (1991a) writes, 

“[w]e can derive from economic theory certain properties about the shape of the 

marginal abatement cost function in a competitive economy with no other 

externalities and where controls are efficiently designed. First, we know that it has 

a minimum of zero at the uncontrolled point: The first units of GHG reduction are 

virtually free. This is the result of the zero market price on the GHG emissions. 

Second, we know that the cost function increases in the level of abatement. Third, 
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society can always do worse than the abatement cost function by inefficiently 

designing regulations”. (Nordhaus, 1991a, p. 923) 

Thus, according to Nordhaus, the cost of mitigation must also be positive, and it must increase with the 

level of mitigation. This is indeed consistent with the AR5 cost estimates if we look at the results (Figure 

4.1). As stated in the quote, however, these properties assume that two conditions hold: first, that the 

economy is perfectly competitive and that no other externalities (beyond the climate externality) are 

present, and second, that climate policies (“controls”) are perfectly designed. These two conditions are 

crucial. In particular, and as already indicated in Table 4.1, the possibility of net negative costs is 

intimately related to the presence of already existing (non-climate) market failures. In other words, for 

mitigation costs to be negative, the first condition must fail. Nordhaus (1991a) does not discuss this 

possibility. He does, however, note that society can “do worse” by inefficiently designing policies, i.e. 

by failing to meet the second condition. As we will see in section 4.4.5, relaxations of Nordhaus’ second 

condition also play a much larger role in the AR5 IAM ensemble. 

 

The above might suggest that the reason why AR5 does not contain any net negative cost results is 

because the types of IAMs that are used to produce the cost results exclude such results by construction. 

Not only have several authors argued that general equilibrium models simply assume net positive costs, 

but the most influential optimal growth model in the AR5 ensemble also appears to have assumed this. 

Given how later optimal growth models in the AR5 ensemble relate to MERGE (see Chapter 2), we 

might be tempted to conclude that this is the reason why the AR5 ensemble does not capture the 

possibility that mitigation costs might be net negative.  

 

However, section 4.2.2 gave examples of both optimal growth (FEEM-RICE-FAST) and CGE 

(IMACLIM and GEM-E3) models that have produced net negative cost results. Thus, it simply cannot 

be true that all general equilibrium models exclude the possibility of net negative costs by construction. 

Claims that they do are incorrect; The real picture is more nuanced.  

 

In order to explain how general equilibrium models can produce net negative cost results, the next 

section shows how an optimal growth model can be modified to take into account mechanisms that can 

lead to net negative costs. These modifications are then related to the concrete modelling studies 

presented in section 4.2.2. 

4.4.2 “Optimal green growth” and imperfect baselines 

The issue with standard optimal growth models is, according to Hallegatte et al. (2012),  that they 

assume a first-best world with no market failures in which output is a simple function of human capital 

(A), physical capital (K), and labour (L), 𝑌 = 𝑓(𝐴, 𝐾, 𝐿). In this world, all production factors are used 
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optimally. In order to take the environment into account, Hallegatte et al. modify the standard optimal 

growth framework by including the environment as ‘natural capital’ in the production function43, such 

that 𝑌 = 𝑓(𝐴, 𝐾, 𝐿, 𝐸), where E is natural capital. The inclusion of natural capital allows the possibility 

that production factors are not used in an optimal manner when natural capital is under-priced. 

 

The above production function does not, however, take into account other existing market failures and 

the impacts of environmental policies on the economy (other than via E). In order to represent these 

factors, Hallegatte et al. (2012) add an efficiency factor () (which takes on values between 0 and 1) 

and environmental policy (𝑃𝐸) to the production function, such that  

 

𝑌 = 𝜓(𝑃𝐸)𝑓(𝐴(𝑃𝐸), 𝐾(𝑃𝐸), 𝐿(𝑃𝐸), 𝐸(𝑃𝐸)).  

 

In this production function, every factor is a function of the environmental policy. These modifications 

mean that many of the green growth mechanisms listed in Table 4.1 can be captured by the model. For 

instance: 

i. The correction of existing market failures (such as the energy efficiency gap) can be represented 

as an increase in the overall efficiency factor, 𝜓. This factor can also capture demand-led and 

Keynesian effects (which, according to Hallegatte et al. (2012), are only short-term) in 

situations of high unemployment and underutilized production capital. 

ii. The notion that economic output can be increased by environmental policy if we take into 

account the impacts on aspects such as worker’s health and the risk of natural disasters (which 

affect productivity) can be represented by increasing the effective quantity of K and L. 

iii. The possibility of positive knowledge spillovers from accelerated innovation can be represented 

as an increase in A. This amounts to moving the production frontier. 

 

Thus, an optimal growth framework can be modified to take into account many of the sources of net 

negative costs, which are reflected in the literature and listed in Table 4.1. Despite the number of 

mechanisms discussed in section 4.2, however, the possibility that climate policy can have a positive 

impact on the economy rests on two crucial assumptions: First, the assumption that the economy is not 

in an optimal state to begin with, and second, the assumption that climate policy can bring the economy 

closer to its optimal state. If either of these assumptions fail, climate policy can only lead to net positive 

(or in the best case zero) costs.  

 

43 This is different from including the environment into the utility function in order to express its so-called amenity 

value: arguing that the environment is important because it contributes directly to utility is different from arguing 

that it is a factor of production that contributes to economic output (which again contributes to utility).  
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The same is true for CGE models (which are responsible for 21% of the scenarios generated by general 

equilibrium IAMs in AR5). While optimal growth models allocate consumption and investment so as 

to maximise the discounted utility of a representative household’s utility over its lifetime, CGE models 

adds to this an optimization also of the allocation of resources between different sectors of the economy 

(Wolf, Schutze, et al., 2016). In either case, if the baseline is optimal, climate policy will come at an 

economic cost. Essentially, what the modifications applied by Hallegatte et al. (2012) to the above 

optimal growth framework do, is allow for climate policy to correct for market failures that are present 

in the baseline.  

 

With this in mind, we can look back at the examples of optimal growth and CGE models that have 

produced net negative costs presented in section 4.2.2 and get a better understanding of why they were 

able to do so.   

 

First, FEEM-RICE-FAST assumed market imperfections due to externalities in R&D investment. When 

climate policy was introduced, regions increased their R&D investments, thereby bringing these 

investments closer to the optimal level. Thus, an existing market failure was corrected in this model by 

introducing climate policy. In addition to this, FEEM-RICE-FAST also included learning-by-doing. 

Second, the version of GEM-E3 that produced net negative costs in Jaeger et al. (2011) allowed labour 

to be under-employed in the baseline. This meant that climate policy could increase employment, which 

acted as a stimulus on the economy. This version of GEM-E3 also included learning-by-doing. Lastly, 

IMACLIM also included learning by doing. In order for IMACLIM to predict net negative costs, 

however, two additional assumptions were imposed by Jaeger et al. (2015): revenue recycling and the 

implementation of a stimulus package targeted at low-carbon technology. 

 

In both of these CGE models, it should be noted, decision-making is myopic. That is, agents do not 

have perfect foresight. This means that these models in general don’t depict optimal baselines. 

However, unless these myopic (non-optimal) behaviours are corrected for by the climate policies that 

are implemented, the lack of foresight in these models often means that costs become even higher, not 

lower. In fact, myopic IAMs are known to predict high costs compared to perfect foresight IAMs 

(Babiker et al., 2009). Myopic behaviour, however, is also key to negative costs: It opens the possibility 

that climate policy can correct non-optimal behaviour and thus bring the economy closer to its optimum. 

 

In summary, both optimal growth and CGE models can produce net negative cost results if they are 

modified such that the baseline is not optimal and if climate policy can correct economic imperfections 

in the baseline. Several of the green growth mechanisms listed in Table 4.1 play a key role in enabling 

net negative costs in the modelling examples reviewed in this chapter.  
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4.4.3 A closer look at the IAMs that produce economy-wide cost estimates in AR5 

It follows from the above that not including existing market imperfections in optimal growth and CGE 

models means that they cannot depict net negative cost results. According to Hallegatte et al., “since 

the potential for accelerated income growth thanks to green growth policies arises from market failures, 

they cannot be assessed using models unable to represent these market failures” (Hallegatte et al., 2012, 

p. 4). Given the lack of net negative cost results in AR5 (Figure 4.1), one might hypothesise that the 

reason behind this is that most IAMs in AR5 do not represent such market failures.  

 

In order to find out whether this is the case, this section reviews AR5 scenario publications and model 

documentation to find out whether market imperfections and other negative cost mechanisms are 

included in the IAMs used to generate the AR5 cost estimates. The imperfections that are considered 

are informed by the mechanisms identified and discussed in section 4.2 (listed in Table 4.1). The AR5 

scenario publications consist of 16 model intercomparison overview publications and two studies that 

present additional scenarios used to estimate costs in AR5 (Prinn et al., 2011; Riahi et al., 2011). All 

scenarios responsible for economy-wide cost estimates in AR5 are captured by these publications. The 

model documentation is the same as the documentation that was gathered in Chapter 2 and used to 

create the model family tree.  

 

In order to find out whether market imperfections and associated green growth mechanisms are present 

in the IAMs used to estimate the cost of mitigation in AR5, a search of terms that are typically used to 

describe such market imperfections and green growth mechanisms was conducted for the scenario 

publications on the one hand and the model documentation on the other hand. In addition to this, general 

terms relating to the possibility of net negative costs (e.g. “negative costs” and “economic gain”) were 

searched for. The results are presented in Table 4.3 and Table 4.4. The publications that were included 

in the searches are listed in Appendix C (which also shows what general equilibrium IAMs were part 

of what model inter-comparison exercises and what general equilibrium IAMs were not part of any 

model inter-comparison exercises). The tables indicate only hits where the terms are used in association 

with market imperfections or green growth mechanisms. That is, the tables do not show hits where the 

terms listed are used in relation to something else. For example, the term “failure” is frequently used to 

refer to the failure of the Copenhagen climate summit and the term “net negative” is often used when 

discussing emissions, but only uses of the terms associated with market imperfections and green growth 

mechanisms are shown in the table. 
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Table 4.3 Search of terms associated with net negative mitigation costs and green growth mechanisms in AR5 

scenario publications (including 16 AR5 Model Intercomparison overview publications and two other scenario 

publications). 

Terms related to net negative costs Model hits In relation to 

“win-win”°, “negative cost”, “net 

negative”, “GDP gain”, “economic 

gain”, “costless”, “revenue recycling”, 

“Keynes”, “Schumpeter”  

No hits*  

“double-dividend”°, “distortion”, “no-

regret”, “sub-optimal”°, “economic 

benefit”, “benefit”, “imperfect”, 

“learning”, “external”, “failure” 

IMACLIM IMACLIM includes all of the mechanisms 

listed (G. J. Blanford et al., 2014; Kriegler 

et al., 2014; Luderer et al., 2012) 

“learning”, “external”, WITCH WITCH includes learning-by-doing and 

accounts for technology externalities 

generated by R&D (Luderer et al., 2012, 

2016) 

“learning” REMIND REMIND includes learning-by-doing 

(Luderer et al., 2012, 2016) 

“learning” MERGE-ETL MERGE-ETL includes learning-by-doing 

(Kriegler et al., 2015a) 

* Only hits related to the ability of models to depict net negative costs are included. E.g. discussions of “net 

negative” emissions technologies or” co-benefits” are not considered.  

° All hyphenated terms are also searched for without the hyphen. 

 

Table 4.3 shows two things. First, none of the terms associated with net negative cost results in general 

(such as “win-win”, “negative cost”, “net negative”, “GDP gain”, and “economic gain”) are found in 

any of the AR5 scenario publications. This shows that the possibility of net negative costs (or economic 

gains) was not discussed explicitly in the scenario publications, and it indicates that it was not 

considered in the model intercomparison studies that generated most of the scenarios in the AR5 

ensemble, a finding that will be further corroborated in section 4.4.5.  This finding is confirmed by 

carefully going through the presentations of cost results in the AR5 scenario publications. Figures and 

tables presenting economy-wide cost estimates can be found in eight of the 19 publications. In none of 
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these is the possibility of net negative costs or the absence of such results mentioned or discussed. Most 

of the intercomparison overview sources do, however, discuss increases in mitigation costs due to either 

delayed or fragmented action, or limited technology availability (section 4.4.5 will discuss this in more 

detail).  

 

Second, for the terms that are used to capture net negative cost mechanisms, almost all appear in relation 

to one AR5 IAM only, namely IMACLIM. For IMACLIM, several publications discuss a number of 

features that are associated with green growth mechanisms, including existing distortions, sub-optimal 

baselines, no regret potentials, and the possibility of double dividends and economic benefits. The fact 

that IMACLIM features imperfect foresight is also frequently referred to (even though this is the case 

for several other IAMs in AR5 (see Table 3.1), this is not highlighted in these publications). The 

emphasis on the inclusion of such features in IMACLIM by multiple authors, makes IMACLIM stand 

out. Recall that IMACLIM is also one of the CGE models that were used to demonstrate the possibility 

of net negative costs in Jaeger et al. (2015). The fact that IMACLIM, in AR5 produced only positive 

cost results is discussed in the next section. The only two mechanisms that are mentioned in relation to 

other AR5 IAMs is learning-by-doing and innovation externalities. Learning-by-doing is included in 

REMIND and MERGE-ETL, and WITCH includes both learning-by-doing and innovation externalities 

(from R&D). The fact that none of the mechanisms (listed in Table 4.2) appear to be included in any of 

the other IAMs in AR5 indicates that these IAMs do not represent market imperfections and sub-

optimalities to a significant degree (if at all). The inclusions only of learning and innovation externalities 

in WITCH, REMIND, and MERGE-ETL, might also be insufficient for generating net negative cost 

results, as discussed further below. 

 

In order to find out whether market failures and associated green growth mechanisms might have been 

included in other versions of the same IAMs, however, the model documentation collected in Chapter 

2 – which captures the entire lifespans of the 14 most influential IAMs (eight of which are general 

equilibrium models) – is also analysed. Since model documentation covers technical aspects of 

individual IAMs in much more detail, one might also expect information about market failures and 

green growth mechanisms that may not be listed in scenario publications to be present here. The results 

are shown in Table 4.4.  
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Table 4.4 Search of terms associated with net negative cost results and green growth mechanisms in the model 

documentation for the eight most influential of the general equilibrium IAMs in AR5. 

Terms related to net negative costs Model hits In relation to 

“net negative”, “GDP gain”, 

“economic gain”, “distortion” 

No hits*  

“double-dividend”°, “no-regret”°, 

“negative cost”, “economic 

benefit”, “sub-optimal”°, “revenue 

recycling”, “imperfect”, “learning” 

IMACLIM IMACLIM allows revenue recycling as an option 

(Kriegler et al., 2015a). Imperfect foresight (Crassous 

et al., 2006). Other (Bibas & Méjean, 2014; Kriegler et 

al., 2015a; Waisman et al., 2012). 

“revenue recycling” GEM-E3 The model allows revenue recycling as an option 

(Kriegler et al., 2015a). 

“revenue recycling” SGM The model allows revenue recycling as an option 

(Brenkert et al., 2004). 

“imperfect” Worldscan Dedicated versions, which extend the core version, 

that take into account R&D spillovers and imperfect 

competition, exist (Kriegler et al., 2015a) 

“no-regret”°, “costless” MERGE Inclusion of “no-regrets” options, but with a limit to 

their extent (Manne et al., 1995). Exclusion of “free 

lunch” (Manne & Richels, 1990). 

“learning”, “external” MERGE-

ETL 

MERGE-ETL includes learning-by-doing for several 

technologies and thus assumes positive externalities 

from knowledge (S. Kypreos & Bahn, 2003; Socrates 

Kypreos, 2007). 

“negative cost”, “learning”, 

“external”, “failure” 

WITCH  Exclusion of zero and negative cost options, but 

inclusion of learning-by-doing and accounting for 

positive externalities due to R&D, i.e. representation 

of innovation market failures (Bosetti et al., 2009). 
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“sub-optimal”°, “imperfect”, 

“learning”, “learning” 

REMIND Learning-by-doing is included in REMIND (Bauer, 

Baumstark, et al., 2012), but exclusion of sub-

optimalities in the baseline in the default setting 

(Luderer et al., 2011). Imperfections in the baseline 

are not analysed (Bauer et al., 2012). I.e. the model 

solves for the optimal solution in the absence of 

externalities (Leimbach; et al., 2010). 

* Only matches related to the ability of models to depict net negative costs are reported. E.g. discussions of “net 

negative” emissions technologies or non-climate ancillary “benefits” are not counted.  

° All hyphenated terms are also searched without the hyphen. 

 

Table 4.4 again shows that generic terms associated with net negative cost results and win-win 

opportunities (“net negative”, “GDP gain”, and “economic gain”) never appear in the model 

documentation for the eight most influential of the general equilibrium IAMs in AR5. Table 4.4 also 

confirms the finding in Table 4.2 for IMACLIM, namely that it includes a number of features associated 

with the possibility of net negative cost results. In addition to IMACLIM, however, seven other IAMs 

also appear in Table 4.3. Among other things, it is found that revenue recycling is an option in the two 

CGE models GEM-E3 and SGM, and that dedicated versions that incorporate multiple market 

imperfections exist for the CGE model Worldscan. Although, judging by the publications that are 

specific to AR5 (presented in Table 4.3), these features are not included in the versions of these IAMs 

that were used to generate the scenarios that are included in the AR5 ensemble, we cannot know for 

sure whether or not these possibilities are included or excluded from the corresponding AR5 scenarios. 

When it comes to the four optimal growth models that are listed in Table 4.3 (MERGE, MERGE-WTL, 

WITCH, REMIND), both the inclusion and the exclusion of green growth possibilities associated with 

the terms are found. In MERGE, although some level of no-regret options is included, the overall 

assumption is that “there is no free lunch” (A. S. Manne & Richels, 1990). In the case of WITCH, zero 

and negative cost options (i.e. no-regret options) are excluded (Valentina Bosetti, Tavoni, De Cian, & 

Sgobbi, 2009), but the model incorporates market failures associated with R&D and learning-by-doing. 

As already noted in Table 4.3, MERGE-ETL and REMIND also include learning-by-doing. 

 

In summary, thus, IMACLIM appears to include a range of mechanism that could lead to net negative 

cost results. The three CGE models, GEM-E3, SGM and WorldScan, are set up in such a way that they 

allow for the representation of revenue recycling and spillovers, although there are no signs of the 

inclusion of these options in the AR5 scenario documentation (Table 4.3). When it comes to the three 

optimal growth models, MERGE-ETL, WITCH and REMIND, these incorporate knowledge 

externalities caused by learning-by-doing and, in WITCH, also by R&D, but there is no sign of other 
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green growth mechanisms. MERGE, according to early model documentation (which may or may not 

still be accurate), explicitly excludes the possibility of a “free lunch”. 

 

An important question is whether the inclusion of learning-by-doing and R&D is sufficient to allow for 

net negative cost results in MERGE-ETL, WITCH, and REMIND. Learning-by-doing is primarily seen 

as a source of inter-temporal market failure: imperfect capture of future payoffs from current actions 

(Gillingham & Sweeney, 2010). In IMACLIM, because agents don’t have perfect foresight in the 

baseline (or in any other scenarios), climate policies can correct for this imperfection. That is, policies 

can push agents’ behaviour in the direction of what they would have done had they had perfect foresight. 

Thus, climate policy can have a positive impact on economic output. In MERGE-ETL, REMIND, and 

WITCH, however, agents have perfect foresight. This means that future cost reductions will already be 

taken into account in the baselines. Thus, the inter-temporal aspect of the innovation market failure is 

removed and the incorporation of learning-by-doing does not necessarily lead to a sub-optimal baseline, 

unless other aspects mean that it does. 

 

In REMIND, it appears, the effects of learning-by-doing are already taken into account in the baseline, 

meaning that the baseline is already optimal (Luderer et al., 2012). Thus, the inclusion of learning-by-

doing in REMIND (although it might lower the cost of mitigation) cannot lead to net negative mitigation 

costs; knowledge spillovers are already internalized in the baseline and there is no room for 

improvement. In WITCH, similarly, agents also make inter-temporally optimal decisions in the 

baseline. However, WITCH also accounts for non-cooperative behaviour between regions. In addition 

to the inter-temporal aspect of the innovation market failure, learning-by-doing can also lead to 

underinvestment in new technologies if there is significant knowledge spillover to other actors (Luderer 

et al., 2012). Regions, in this case, are more likely to free ride on other regions and wait until sufficient 

global deployment (paid for by others) has taken place for technologies to become cheaper. This effect 

is indicated by Bosetti et al. (2006) for the WITCH model. That is, WITCH considers positive 

externalities from learning-by-doing (and R&D) and thus allows climate policies to have a positive 

impact on economic output. When it comes to MERGE-ETL, all model publications run baselines with 

and without learning and show that costs and emissions decline when learning is taken into account. 

Although it is not clear whether the AR5 MERGE-ETL baselines includes learning-by-doing (Kriegler 

et al., 2015), it would appear inconsistent to compare mitigation scenarios that include learning-by-

doing with baselines that exclude learning-by-doing. Thus, in all likelihood, learning-by-doing in 

MERGE-ETL is not sufficient to allow for net negative mitigation costs. 

 

Overall, the analysis of the AR5 scenario publications and the analysis of the model documentation for 

the most influential of the general equilibrium IAMs in AR5 suggests that only IMACLIM includes 

existing market imperfections and associated green growth mechanisms to a significant extent. These 
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findings give reason to believe that the mechanisms that enable net negative cost results in optimal 

growth and CGE models are either not present, or only present to a limited extent, in most of the IAMs 

used to estimate economy-wide costs in AR5.  

4.4.4 Modifying is difficult, and few general equilibrium models do 

The previous section suggests that the general equilibrium IAMs in AR5 include market imperfections 

and sub-optimalities only to a limited extent. One of the reasons for this might be that there are no 

general rules for making such modifications. According to Krugman 

“we have a body of economic theory built around the assumptions of perfectly 

rational behavior and perfectly functioning markets. Any economist with a grain of 

sense — which is to say, maybe half the profession? — knows that this is very much 

an abstraction, to be modified whenever the evidence suggests that it’s going wrong. 

But nobody has come up with general rules for making such modifications.” 

(Krugman, 2014). 

In short, using general equilibrium models to depict the possibility of net negative costs appears to 

require what we might call “non-standard” assumptions. Introducing non-standard assumptions requires 

justification. In applied IAMs it also requires data. Krugman writes that what economists “really do is 

combine maximization-and-equilibrium as a first cut with a variety of ad hoc modifications reflecting 

what seem to be empirical regularities about how both individual behavior and markets depart from this 

idealized case” (Krugman, 2014). One of the problems for climate economics, however, is that there 

are few empirical regularities to draw from. It is not possible to empirically test whether we can have 

net economic benefits from climate mitigation at the level necessary to meet the Paris target because 

data on the economic consequences of mitigation at this level is not yet available (Scrieciu et al., 

2013)44. Although the existence of a number of market failures, such as positive knowledge spillovers 

from technology R&D and under-investment in energy efficiency improvements, is apparent, and even 

though the existence of these market failures clearly indicates that the current situation is not optimal, 

we have no empirical data on the role of such market failures during a complete transformation of the 

energy system.  

 

Without agreed upon rules and with only limited empirical evidence, the inclusion of non-standard 

assumptions in models can easily be perceived as arbitrary and unfounded. Under such circumstances, 

 

44 Rosen and Guenther (2015) also point out that since we can never know what the cost of the counterfactual 

baseline would have been, we will never be able to determine the net economic benefits of mitigating climate 

change, even in hindsight. 
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it might be safer to stick to standard assumptions, which in the case of optimal growth and CGE models 

imply optimal baselines and perfectly competitive markets that maximize consumer and producer 

surplus. If modelers lack both data and an accepted framework in which to incorporate existing sub-

optimalities into their models, they might conclude, even though such sub-optimalities are known to 

exist, that it is not epistemically justifiable to do so.  

 

In fact, if we look back at the examples of model studies that predicted net negative costs, we find clear 

indications that the necessary modifications were difficult to make. According to the study, A New 

Growth Path for Europe, the feedbacks between investment, learning-by-doing, and expectations that 

allow net negative cost results “are hard to implement in existing models and have been neglected so 

far” (Jaeger et al., 2011, p. 23). This study was based on a concerted effort to enhance the GEM-E3 

model in order to allow for the identification of potential win-win strategies. According to Jaeger et al., 

“developing enriched models along these lines is a major research program that will keep many 

researchers busy for many years” (2011, p. 25 my italics). According to IMACLIM modelers, also, “it 

remains hard to identify and assess market imperfections” (Guivarch et al., 2011, p. 2). 

 

It would make sense that it is easier to get hold of evidence and empirical data that can support non-

standard assumptions when studies are limited to a specific time and place. According to Hallegatte et 

al., “one can identify channels that are theoretically able to make green policies contribute to economic 

growth; however, detailed and country- and context-specific analyses of each of these channels are 

required to conclude that this will in fact happen in any specific situation” (2012, p. 4). It is telling that 

both of the Jaeger studies focused on Europe only, and that both of these studies were also conducted 

in the aftermath of the great financial crisis, which reduced European GDP by several percentage points 

(Jaeger et al., 2011). Among other things, Jaeger et al. write, “in the current European situation, there 

is evidence for a suboptimal use of capital” (2015, p. 56). Thus, it seems, the sub-optimal nature of the 

situation was particularly obvious in these studies.  

 

Even though the two studies by Jaeger et al. demonstrate that it is possible to generate net negative cost 

results using CGE models (notably GEM-E3 and IMACLIM, both of which are also included in the 

AR5 ensemble), these studies still appear to be unique. In particular, these studies were conducted in a 

context in which European climate policy models (which are primarily CGE models) were seen to be 

in need of major adjustments. According to Jaeger et al. “the experience of the global financial crisis 

shows that the existing economic models were seriously limited. Against this background, a 

fundamental overhaul of European climate policy models is required” (Jaeger et al., 2011, p. 6). In fact, 

Jaeger et al. write, “the canonical models of climate economics [which includes optimal growth and 

CGE models]…exclude win-win options by design. For climate policy, however, it is exactly these 

options that matter” (2011, p. 39). Thus, Jaeger et al. end up mirroring the claims made by authors such 
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as DeCanio (1997) and Barker (2004). Clearly, GEM-E3 and IMACLIM are, according to Jaeger et al. 

exceptions to the rule: “for the first time in the academic climate modeling field, the present study has 

taken a state-of-the-art model of climate economics and enhanced it…” (2011, p. 6). Two years after 

this study was published (and two years before the AR5 WGII report was published), Scrieciu et al. 

(2013, p. 256) still note that “CGE models that allow for externalities and ‘inferior’ equilibria in their 

depiction of economies are extremely sparse in the literature.”  

 

When it comes to IMACLIM, the previous section already indicated that this model stands out when it 

comes to the inclusion of mechanisms that can enable net negative cost results. Recall that, while GEM-

E3 was specifically enhanced for the Jaeger et al. (2015) study, IMACLIM was not (although particular 

policy assumptions had to be imposed in order for IMACLIM to produce net negative rather than net 

positive cost results). According to IMACLIM modelers themselves, “almost all numerical models used 

in climate policy studies assume a perfect labour market and neglect unemployment issues, even those 

complex computable general equilibrium models whose comparative advantage is intended to represent 

subtle macro feedbacks” (Guivarch et al., 2011, p. 4). The IMACLIM cost profiles, which depict short-

term losses followed by long-term catch-up, are, according to Waisman et al., also “non conventional” 

(2012, p. 109) and characterised by a “peculiar shape…compared to those in most models, including 

WITCH and REMIND” (2012, p. 102).  

 

When it comes to the reasons why IMACLIM does not produce net negative cost results in AR5, two 

things should be noted. First, as already noted, specific policy assumptions were imposed in the Jaeger 

et al. (2015) study in order for IMACLIM to predict net negative as opposed to net positive costs. These 

assumptions included revenue recycling and a targeted stimulus package. In AR5, only carbon taxes 

are used to reduce emissions. This might be one of the reasons why IMACLIM does not predict net 

negative costs in AR5 (but in the Jaeger et al. (2015) study). Second, as noted by Edenhofer et al., 

IMACLIM “adopts a pessimistic view of technological change by assuming strong inertia and by 

neglecting carbon-free energy sources from backstop technologies” (2006, p. 68). Among other things, 

IMACLIM “show[s] that taking into account labour market imperfections leads to higher 

macroeconomic costs of climate mitigation than in the case of perfect labour markets” (Guivarch et al., 

2011, p. 12). This leads us to a crucial point: assuming a non-optimal baseline does not automatically 

imply that climate mitigation represents a win-win option. Whether it does or not depends on a plethora 

of assumptions and policy options. Under certain assumptions of the labour market (very low absolute 

values of the wage curve elasticity), for example, and using a relatively low discount rate45 (3%), the 

 

45 The discount rate is particularly important for the NVP of mitigation costs in IMACLIM because IMACLIM 

shows high short-term costs of mitigation but low or even negative long-term costs. 
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mitigation cost in IMACLIM can also become net negative (Guivarch et al., 2011).46 Assumptions that 

baselines are optimal, however, nonetheless excludes the possibility of win-win opportunities. In short, 

as Waisman et al. write, “one can argue that imperfect foresight, incomplete markets and institutional 

failures will lead to higher costs that those reported so far, or, conversely, that non optimal baselines 

offer opportunities for relative gains under climate policy” (Waisman et al., 2012, p. 102). Both are 

possible.  

 

In summary, the CGE models that have been shown to predict net negative cost results, IMACLIM and 

GEM-E3, appear to represent exceptions from the rule. GEM-E3 had to be specifically enhanced in 

order to be able to depict win-win possibilities and IMACLIM is by all accounts an outlier among CGE 

models. Before discussing the roe of such examples, the next section shows that, contrary to enabling 

IAMs to depict net negative costs, the model intercomparison studies that generated the vast majority 

of the scenarios in the AR5 ensemble focused on aspects that can only increase the cost of mitigation.   

4.4.5 AR5 model intercomparison studies focus on increasing costs 

While the estimates of the cost of mitigation are presented in the AR5 Synthesis Report and the WGIII 

SPM, the most detailed discussion of these estimates is found in section 6.3.6.5 of the AR5 WGIII 

report. This section notes that the reported costs (shown in figure 4.1) “have assumed an idealized policy 

implementation and in many cases an idealized implementation environment with perfectly functioning 

economic markets devoid of market failures, institutional constraints, and pre-existing tax distortions” 

(IPCC, 2014a, p. 455 my italics). These two assumptions map almost perfectly onto the two conditions 

highlighted by Nordhaus in 1991, quoted in section 4.4.1: a competitive economy with no other 

externalities, and efficiently designed policies. ‘Idealized policy implementation’ describes the situation 

in which policies are efficiently designed and an ‘idealized implementation environment’ means that 

there are no other existing market failures. When policies are not implemented efficiently, the idealized 

policy implementation assumption fails. In this case, costs can only be higher (by definition). If the 

implementation environment is not idealized, this means that there are other existing market failures. 

In this case, as indicated above, the impacts on costs can go in both directions. As we have already seen 

in this chapter, however, capturing the existence of other market failures is crucial for arriving at net 

 

46 Waisman et al. (2012) also show that the adoption of certain policies in the transport sector leads to a significant 

reduction in policy costs and even negative costs in the long term. Waisman et al., however, refer to annual costs, 

i.e. the difference in GDP between the baseline and the mitigation scenario in every year. Saying that annual costs 

in a mitigation scenario might be net negative is different from saying that the total (discounted) costs in a 

mitigation scenarios might be net negative (the latter might be positive or negative when annual costs in some 

years are positive and in other years are negative). 
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negative cost results. Thus, assuming an idealized implementation environment excludes the possibility 

of net negative costs. 

 

In order to increase realism, the AR5 scenario ensemble includes a large number of ‘non-idealized 

policy implementation’ scenarios. The outputs of these scenarios are reported in separate figures and 

tables in the WGIII SPM and the Synthesis Report just after the idealized scenario results (shown in 

figure 4.1). If we look closely, we find that 86% of the scenarios in the AR5 ensemble stem from model 

intercomparison studies that are focused explicitly on non-idealized implementation in the form of 

delayed or fragmented climate action (or both)47. Delayed action implies that “mitigation is not 

undertaken ‘when’ it would be least expensive” and fragmented action implies that “mitigation is not 

undertaken ‘where’ it is least expensive” (IPCC 2014 p. 421). Both departures from idealized 

assumptions necessarily lead to an increase in mitigation costs compared to the idealized case. In short, 

they represent ways in which “society does worse” by not implementing climate policies efficiently, as 

noted by Nordhaus. In addition to these departures, many of the model intercomparison studies in AR5 

also explore the effects of limited technology availability48. Because limiting technology availability 

necessarily implies a reduction in mitigation options, this also leads to an increase in the cost of 

mitigation by necessity. In total, this means that eight out of the nine model intercomparison studies, 

responsible for 88% of the scenarios in AR5, focus on either ‘non-idealized policy implementation’ or 

limited technology availability49 or both. All necessarily lead to an increase in the cost of mitigation.  

 

While the potential effects of a ‘non-idealized implementation environment’ is recognised in AR5, it 

seems few scenarios include such departures. Certainly, none of the model intercomparison studies 

focus on this. 

The potential impacts of assuming a ‘non-idealized implementation environment’ are only discussed 

briefly in section 6.3.6.5 of the WGIII report: 

 

47 Model intercomparison studies investigating the effects of delayed and/or fragmented action include EMF 22 

(Clarke et al., 2009), EMF 27 (Kriegler et al., 2014), AMPERE (Kriegler et al., 2015a; Riahi et al., 2015a), 

LIMITS (Kriegler et al., 2013), RoSE (Chen et al., 2016), POeM (Lucas et al., 2013), and RECIPE (Luderer et 

al., 2012). 

48 Model intercomparison studies that investigate the effects of limited technology (sometimes called ‘technology 

failure’) include EMF 27 (Kriegler et al., 2014), ADAM (Edenhofer, Knopf, Leimbach, & Bauer, 2010), RECIPE 

(Luderer et al., 2012), and AMPERE (Kriegler et al., 2015a; Riahi et al., 2015a). These multi-studies are together 

responsible for 65% of the scenarios in the AR5 ensemble.  

49 The only model intercomparison study that did not focus on these issues, AME (Calvin et al., 2012), explores 

the role of Asia in mitigation. 
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 “Climate policies will interact with pre-existing policy structures as well as with 

other market failures beyond the market failure posed by climate change — that is, 

a non-idealized implementation environment — and these interactions can either 

increase or decrease policy costs. A number of authors have argued that costs could 

be much lower or even negative compared to those produced by studies assuming 

idealized policy and implementation environments (Bosquet, 2000; Bye et al., 2002; 

Waisman et al., 2012). The results of these studies rest on one or several 

assumptions — that mitigation policy be used not only to address the climate 

externality, but also to achieve other policy priorities such as sustainable 

development; the use of mitigation policy instruments for the correction of the 

implementation environment including removal of market failures and pre-existing 

distortions; and/or on optimistic views of climate-related innovation and technology 

development, adoption, and penetration.” (p. 456). 

Despite noting the potential impact of such assumptions, however, section 6.3.6.5 states that “many 

models represent some of these distortions, but most models represent only a small portion of possible 

distortions and market failures” (IPCC 2014, p. 455). Given the importance of pre-existing market 

failures for net negative cost results, this statement gives further reason to believe that most of the IAMs 

in AR5 are unable to depict situations in which climate policies imply economic gains. In addition to 

this, none of the model intercomparison studies that generated scenarios for AR5 focused explicitly on 

representing aspects of ‘non-idealized implementation environments’. 

 

Ultimately, section 6.3.6.5 acknowledges, “the reality that assumptions of idealized implementation and 

idealized implementation environment will not be met in practice means that real-world aggregate 

mitigation costs could be very different from those reported here” (IPCC, 2014a, p. 455). Given the 

argument put forth in this chapter regarding the importance of the uncertainty of the cost of mitigation, 

this is a crucial point. Yet, this caveat is only stated once deep inside Chapter 6 of the WGIII report, not 

in the SPM nor in the AR5 Synthesis Report, where mitigation costs are presented to the wider public50. 

Thus, this caveat will most likely be missed by the majority of those who use the cost of mitigation 

reported in AR5. Furthermore, even though section 6.3.6.5 acknowledges that costs in principle could 

go both ways, AR5 overall gives the opposite impression. The scenarios that assume ‘idealized policy 

implementation’ are “referred to as ‘cost-effective’ scenarios, because they lead to the lowest aggregate 

global mitigation costs under idealized assumptions about the functioning of markets and economies”  

(IPCC, 2014a, p. 421 my italics). Although a trained eye might realise that these scenarios only 

 

50 The closest we get to such an acknowledgment in the SPM is a footnote stating that “projections from all models 

can differ considerably from the reality that unfolds” (IPCC, 2014a, p. 10). 
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represent the lowest cost given idealized assumptions, which implies that real costs can go both ways, 

it clearly suggests that costs can only be higher. The language used by AR5 to describe IAM scenarios 

strongly indicates that mitigation costs in reality will be higher than those reported, not lower. This is 

especially true in the SPM, where the AR5 scenarios are “used as a cost-effective benchmark for 

estimating macroeconomic mitigation costs” (IPCC, 2014a, p. 15). The technical summary adds to this 

that “substantially higher cost estimates have been obtained based on assumptions about less idealized 

policy implementations and limits on technology availability” (IPCC, 2014a, p. 57). Overall, this sends 

a clear message in AR5 that we should not expect anything but positive, and likely higher than 

estimated, mitigation costs. 

4.4.6 Bias in AR5 

This section has shown that all the economy-wide cost estimates in AR5 are based on optimal growth 

or CGE IAMs. Although it is incorrect to say that these models exclude net negative costs by 

construction, these models cannot produce net negative costs if the baselines are optimal, which appears 

to be the case when “standard assumptions” are adopted. To depict non-optimal baselines, market 

imperfections and other sub-optimalities have to be included in optimal growth and CGE models. From 

an analysis of the AR5 scenario publications and the model documentation for the most influential 

IAMs, this section has shown that there are few signs that such modifications have been made in the 

IAMs in AR5 to a significant degree. The main exception to this is IMACLIM, which, under certain 

conditions have been shown to predict net negative costs. In addition to this, WITCH allows climate 

policies to correct innovation externalities. The exact reasons why these two IAMs in AR5 generate 

only net positive cost results requires further investigation. 

 

Overall, very few optimal growth and CGE models in AR5 appear to be modified in ways that enable 

net negative cost results. Although it is incorrect to say that all general equilibrium IAMs exclude net 

negative costs by construction, this section gives reasons to believe that many general equilibrium IAMs 

exclude net negative costs in practice. Basing cost estimates exclusively on general equilibrium models, 

thus, appears to introduce a bias against net negative cost results. This might be explained in part by the 

fact that such modifications are difficult to implement. The examples presented in this chapter of 

optimal growth (FEEM-RICE-FAST) and CGE (IMACLIM and GEM-E3) models that have predicted 

net negative costs appear to represent the exceptions rather than the rule.  

 

This implies that, although model frameworks on their own do not determine cost results – every IAM 

output depends on a range of assumptions, many of which can be varied within and across frameworks 

– model frameworks impact the direction of cost results. A broader diversity of modelling approaches 

in IAM ensembles will, everything else being the same, reduce the risk of being wrong.   
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Lastly, this section has also shown that the AR5 IAM ensemble depends heavily on the model 

intercomparison studies that were conducted after AR4. This means that the focus of these model 

intercomparison studies – and the assumptions that are explored in these – have a significant impact on 

the cost estimates in AR5. While AR4 model intercomparison studies focused on the role of induced 

technological change (Edenhofer et al., 2006), which is widely known to reduce the cost of mitigation 

(Grubb et al., 2006), AR5 model intercomparison studies focused on the effects of delayed and 

fragmented action and limited technology availability, aspects that are known to increase the cost of 

mitigation. Thus, not only model frameworks, but also model intercomparison exercises represent 

potentially important sources of ensemble bias. 

4.5 Conclusion 

This chapter has argued, based on a recently revitalised debate in the philosophy of science, that the 

possibility that the cost of mitigation might be negative should be taken seriously. Even if we believe 

that net negative mitigation costs are unlikely, their possibility should be taken into account in IPCC 

reports because being wrong about the sign of the mitigation cost could have large negative 

consequences. This comes in addition to the mandate that the IPCC already has to communicate the 

strength of and uncertainties of findings. In some ways, it explains exactly why this mandate is 

important: given the high stakes involved in climate policy, ignoring the uncertainties of findings 

implies a significant risk of being wrong. The literature reviewed in this chapter suggests a possibility 

that mitigation costs might be net negative; experts disagree. This, however, is not reflected in the AR5 

results that are provided in the Synthesis Report and the WGIII SPM.  

 

All the cost estimates in AR5 are generated by optimal growth and CGE IAMs, both of which go under 

the umbrella of general equilibrium models (as seen in Chapter 3). Although it would be incorrect to 

say that general equilibrium models cannot generate net negative costs by construction, this chapter 

suggests that the modifications that are needed to enable net negative cost results in these models are 

difficult to implement in practice. A review of the AR5 scenario publications and the model 

documentation for the most influential IAMs in AR5 indicates that such modifications are only 

implemented to a significant degree in one CGE IAM (IMACLIM) and to some degree in one optimal 

growth IAM (WITCH). This finding confirms what is stated inside Chapter 6 of the AR5 WGIII report, 

namely that most of the IAMs used to assess the costs of mitigation “represent only a small portion of 

possible distortions and market failures” (IPCC 2014, p. 455). 

 

Given that the general equilibrium models that have been used to produce net negative cost results 

reviewed in this chapter appear to represent either “non-conventional” models (IMACLIM), to impose 
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“optimistic” assumptions (FEEM-RICE-FAST), or to be specifically “enhanced” for the purpose of 

identifying win-win opportunities (GEM-E3), one might wonder if the net negative cost results are 

realistic. Do the assumptions and policies imposed by Jaeger et al. (2011, 2015) not amount to cherry 

picking? In these studies, GEM-E3 was specifically enhanced and IMACLIM was run (using the default 

setup) under very specific policy assumptions to depict pathways in which emissions reductions 

produce net economic gains. Two things can be said in response to this: First, as long as the assumptions 

are plausible, the results indicate real possibilities51. Second, the fact that some of the policy 

assumptions are chosen specifically in order to arrive at net negative costs does not pose a problem as 

long as these assumptions reflect real policy choices. Policies, after all, represent control (independent) 

variables in policy models: If IAMs show that revenue recycling can lead to net economic benefits of 

climate mitigation, this is an insight that can be used to inform the design of climate policies in such a 

way that net negative costs can be realised. The point in this chapter is not that net negative costs are 

more likely than net positive costs but that net negative cost – according to the literature and applied 

modelling studies – represent a real possibility that is excluded from AR5 results and that this possibility 

is important. A direct implication of this is that we don’t simply want to provide best guess estimates 

of the cost of mitigation, but that the tails – i.e. unlikely but nonetheless plausible outcomes – are also 

important. By extension, non-conventional general equilibrium IAMs – as well as “optimistic” and 

“pessimistic” assumptions (as long as these are plausible) – serve an important purpose and deserve a 

place in IPCC reports.   

 

Although optimal growth and CGE IAMs can depict win-win possibilities given certain assumptions, 

the ability to use such IAMs to depict win-win possibilities hinges on our ability to first identify, and 

secondly implement in the models, any market imperfections that may be removed with climate 

policies. For macroeconometric IAMs, the situation is different, because optimality does not enter in 

the same way (the difference between the baselines and the mitigation scenarios depend on the 

econometrically estimates equations, which are based on historical data). For the same reason as above, 

IAMs (outside the general equilibrium category) that are seen as non-conventional should – as long as 

these are based on plausible and theoretically justified assumptions52 – also be included in IPCC reports, 

to the extent possible, in order to capture the full uncertainty of the cost of mitigation. Two of the models 

 

51 Unless, of course, one doubts the models themselves, in which case it doesn’t matter what the assumptions are. 

52 There will of course always be debate and disagreement within the economics and integrated assessment 

modelling community regarding what is plausible and implausible, and what is and isn’t theoretically justifiable. 

But, shifting the burden of proof from those who want to include certain IAMs to those who want to exclude 

certain IAMs might help increase the diversity of IAM ensembles, which was argued in Chapter 2 to be important 

for our ability to draw robust insights, and which is argued in this chapter to be important in order to capture the 

uncertainty of key IAM outputs.  
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that have predicted net negative costs reviewed in this chapter are not general equilibrium models. T21 

is a systems dynamics model and E3MG is a macroeconometric model. No model types of this sort are 

included in the AR5 ensemble53. Whereas costs in AR5 are exclusively positive, the inclusion of E3MG 

in AR4 contributed to a picture in which the cost of mitigation could be both positive and negative. 

While it is beyond the scope of this chapter (and thesis) to examine the processes by which IAMs are 

included or excluded from IPCC reports, the argument presented in this chapter suggests that this is an 

important area for future research. As of now, IIASA and the Integrated Assessment Modelling 

Consortium (IAMC) are responsible for putting together the IPCC scenario databases and checking that 

scenarios meet criteria. How those criteria are chosen and what they imply for the IAMs that are 

included in IPCC reports is, however, not clear.  

 

In terms of what the IPCC can and should do, the options are similar to those laid out in the conclusion 

to Chapter 2. First, the IPCC should acknowledge and discuss the uncertainty of mitigation cost 

estimates in synthesis reports and the SPMs. A few sentences within one chapter in the WGIII report is 

not sufficient for this message to be taken up by the wider public and policymakers. Second, the goal 

of including a variety of different perspectives could be built into the process by which IAMs are 

selected for inclusion in IPCC reports. Identifying IAMs that stand out is not difficult. The publications 

and documentation for not only IMACLIM, but also E3MG and T21, explicitly present these models 

as different from most other macroeconomic models (Barker & Şerban Scrieciu, 2010; UNEP, 2011). 

Third, the IPCC could use their authority to call for more research into e.g. the feasibility and the 

likelihood of net negative mitigation costs. This could be used to provide a better picture of the tails of 

the cost distribution. Additionally, this might also incentivise modelers to expand the approaches 

commonly taken and include non-standard assumptions (and frameworks). Fourth, this chapter has 

shown that one of the issues with AR5 is its dependence on model intercomparison studies that focus 

on aspects that can only increase the cost of mitigation. A fourth option, if the goal is to reflect the 

“true” uncertainty of cost estimates, could therefore be for IPCC reports to not only include results that 

are produced in between assessment reports, but to also include the results from previous model 

intercomparison studies. In that way, IPCC cost estimates could be based on a larger set of feasible 

assumptions, which is also a precondition for robust insights.  

 

Finally, IAM modellers can better communicate the assumptions that determine cost results, the ability 

of their models to produce net negative (and net positive) values, and their level of confidence and 

reasons for making said assumptions. According to the argument in this chapter, integrated assessment 

 

53 There is one IAM in the AR5 ensemble that is described as ‘econometric’ (see Table 3.1). This IAM, however, 

does not contribute to the economy-wide cost estimates in AR5. 
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modelers have a moral responsibility for the consequences of making inaccurate or unreliable claims. 

Better communicating the conditions under which their claims are thought to hold, would be a good 

place to start to increase their accuracy.   
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5 A different simulation model: introducing FTT 

Reaching the Paris target requires a rapid turnaround in emissions trends. As seen in Chapter 1, CO2 

emissions need to reach net zero around 2050 to limit global warming to below 1.5˚C and 2070 to limit 

global warming to below 2˚C54. A key question is therefore whether emissions can be reduced quickly 

enough to limit global warming to “well below 2˚C”. This question usually contains within it a question 

of whether there is or will be sufficient political will to implement necessary policies. However, even 

if we ignore the (crucial) question of political will, there is a question of the impacts of policies on the 

speed and magnitude of technological change. What is the impact of climate policies on the energy 

system, and related emissions, and how reliably can we predict it? 

 

So far, this thesis has argued for the importance of a diversity of modelling approaches. This chapter 

and the next focus on the use of the Future Technology Transformations (FTT) model – a relatively 

new energy system model that is seen as different from most energy system models – to predict the 

impact of climate policies on emissions. While Chapter 6, which presents the brunt of the work on FTT, 

analyses the sensitivity of FTT predictions to parameter values, this chapter provides the context and 

motivation for so doing. One of the main reasons for choosing the FTT model is that it incorporates 

features that are seen to distinguish it from more widely used energy system models based on 

optimisation (ESOMs) such as MESSAGE and MARKAL/TIMES. Importantly, FTT is seen by 

Mercure et al. to offer a “a more realistic modelling approach” (2016, p. 102) than what ESOMs 

generally do. This and other features that, according to FTT modelers, represent improvements 

compared to ESOMs are presented in this chapter. The point of so doing is not to argue that FTT is 

superior or “better” than ESOMs, nor is it to criticise ESOMs, but to examine whether FTT meets the 

goals that it (according to those who built it) was designed to meet. Despite neoclassical assumptions 

and exogenous technology deployment constraints posing issues for ESOMs, this chapter argues, we 

cannot claim that FTT offers more reliable predictions of policy impacts without (at least) assessing the 

sensitivity of said predictions to assumptions. This is what Chapter 6 begins to do. Although relatively 

comprehensive sensitivity analyses have been conducted for some other IAMs (e.g. Bosetti et al. (2015), 

Rogelj et al. (2013), Iyer, et al. (2014), Barron and McJeon (2015), Olaleye and Baker (2015), McJeon 

et al. (2010), Lemoine and McJeon (2013), Lehtveer and Hedenus (2015)), no comprehensive 

sensitivity analysis of the kind performed in Chapter 6 has so far been conducted for FTT. As such the 

analysis in Chapter 6 offers a first step towards and improved understanding of the behaviour of the 

FTT model and the sensitivity of its predictions to parametric assumptions. 

 

 

54 This corresponds to a 50% chance of staying below 1.5˚C and a 66% probability of staying below 2˚C.  
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Section 5.1 presents the FTT model and section 5.2 discusses the distinction between optimisation and 

simulation in the climate policy and modelling literature more generally. Section 5.3 explains how 

ESOMs have been used both to identify optimal policies and to predict the evolution of energy systems 

and presents some of the assumptions such predictions rely on. Section 5.4 presents the two features 

that FTT was designed with in order to increase the realism of predictions of policy impacts: a fine-

grained representation of policies and an endogenous derivation of technology deployment rates based 

on diffusion theory. Focusing on the latter, section 5.4 then explains why technology deployment 

constraints can have a strong influence on scenarios generated by ESOMs, but how related assumptions 

are no less important for FTT. Section 5.5 concludes. 

5.1 Future Technology Transformations (FTT) 

FTT was designed by Jean-Francois Mercure at the Cambridge Centre for Climate Change Mitigation 

Research (4CMR)55 in the Department of Land Economy in order to predict the impacts of climate 

policies on technology diffusion. Understanding the impacts of policies on technology diffusion is 

crucial because it determines the future technology mix, which is a key determinant of emissions. FTT 

was designed specifically to capture technology dynamics, including learning, at a global level. 

 

FTT currently consists of four different sub-models, capturing the power, passenger vehicles, steel 

production, and household heating sectors56 (Cambridge Econometrics, 2019). Given demand (for 

electricity, transportation, steel, and heating), and policies, each FTT sub-model simulates technology 

diffusion in each of these sectors. The simulations start in 2013 and end in 2050. Any sub-model can 

be run either as a stand-alone model or in combination with the macro-econometric model E3ME57 

(Cambridge Econometrics, 2019) to create the much larger, integrated E3ME-FTT model (Mercure et 

al., 2014). In the integrated model, E3ME provides a disaggregated (‘top-down’) representation of the 

macroeconomy based on econometric relationships (Cambridge Econometrics, 2019) and FTT provides 

a (‘bottom-up’) description of technology dynamics. When running the full E3ME-FTT model, demand 

(for electricity, transportation, steel, and heating) is computed endogenously by E3ME (based on 

macroeconometric equations). The main difference when running FTT as a stand-alone model is that 

demand (e.g. for electricity) becomes an exogenous input. The run time is significantly longer for the 

full E3ME-FTT model than for FTT on its own: It takes about 30 seconds to run a scenario using the 

 

55 This centre no longer exist. A part of the research that previously took place in 4CMR now takes place in the 

Cambridge Centre for Environment, Energy and Natural resource Governance (C-EENRG). 

56 A sub-model for agriculture is also being developed this year.  

57 Previously called E3MG, also discussed in Chapter 4.  
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FTT power sub-model and about 30 minutes using E3ME-FTT58. E3ME-FTT can also be linked to the 

climate model GENIE in order to create a fully integrated IAM, called E3ME-FTT-GENIE (Mercure, 

Pollitt, Edwards, et al., 2018). Otherwise, emissions pathways from FTT and E3ME-FTT can be 

inserted manually into the GENIE model in order to obtain impacts of emissions e.g. on global 

temperature.  

 

Mercure et al. describe E3ME-FTT-GENIE as “a fully descriptive, simulation-based integrated 

assessment model designed specifically to assess policies “ (2018, p. 195). More specifically, the team 

who designed the full model write,  

“the modelling approach…is one of simulation. Each part of the E3ME-FTT-

GENIE modelling framework attempts to represent real world [sic] relationships, 

in terms of accounting balances, physical interactions and human behaviour… The 

results from the model are predictions of outcomes based on empirical, behavioural 

and physical relationships observed in the past and the present.” (Mercure, Pollitt, 

Edwards, et al., 2018, p. 196, my italics).  

Thus, the term ‘simulation’ is used by Mercure et al. to denote a modelling approach that aims to 

represent real-world relationships as closely as possible. This use of the term ‘simulation’ is closely 

related to the etymology of the word: simulation stems from the Latin term simulat- which means copied 

or represented, and the verb simulare, which again stems from similis, means like (Oxford Dictionary 

of English, 2010). Thus, used in this way, ‘to simulate’, means ‘to imitate’ or ‘to copy’. 

 

For Mercure et al., the overarching goal of the modelling approach that is exemplified by the 

development of FTT, E3ME-FTT, and E3ME-FTT-GENIE is to “improve our ability to anticipate the 

effects of climate policies” compared to what can be done using “equilibrium and optimisation-based” 

(2016, p. 103) models. In meeting this goal, the ability of FTT (and associated models) to offer a “a 

more realistic modelling approach” (2016, p. 102) is seen as key. Thus, for Mercure et al., the reason 

for simulating as opposed to optimising is intimately related to the goal of providing better predictions 

of the impacts of climate policies. In fact, Mercure et al. do not only want to improve predictive 

capacity, but propose “a fundamental methodological shift in the modelling of policy” (2016, p. 102).  

 

This is relevant because the majority of scenarios in the AR5 ensemble (at least 72% of the scenarios 

generated by the 14 most influential IAMs) are based on IAMs that rely on equilibrium or optimisation 

 

58 This difference in run time makes the sensitivity analysis conducted in Chapter 6 infeasible for the full model, 

which is why Chapter 6 runs FTT as a stand-alone model. 
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in some way (see Chapter 3). Among other things Chapter 4 suggested that optimality assumptions 

might bias the sign of mitigation costs in the AR5 ensemble. Chapters 2-4 of this thesis have all called 

for a diversity of approaches. Thus FTT, which by all accounts represents a “different” approach, should 

be worth looking into. According to Mercure et al. (2018), what they call the “descriptive” purpose of 

FTT distinguishes it from the vast majority of other energy system models, which are primarily based 

on optimisation59.  

 

In order to understand the context in which FTT was developed and why it is seen by Mercure et al. to 

offer a “more realistic modelling approach” (2016, p. 102) compared to optimisation-based models, it 

is useful to revisit some of the terms related to the distinction between optimisation and simulation in 

the climate policy and modelling literature.  

5.2 Simulation and optimisation 

The distinction between simulation and optimisation for policy models, of which IAMs can be 

considered a subset, is not new. Morgan and Henrion (1990) distinguish between models used for 

‘classical decision analysis’ and ‘predictive policy models’. In models used for classical decision 

analysis, the goal is to discover the optimal decision, D*, given a range of parameters, X. In classical 

 

59 Mercure et al. (2014; 2016; 2018), and some other authors (DeCarolis et al., 2017; Dodds et al., 2015), refer 

to optimisation models as “normative” models. I will not use this term in this way because it contradicts the way 

that the term normative is often used (including in AR5). For economists, the computation of a solution that 

minimises the cost (or some other variable) would be considered a “descriptive” exercise because the solution 

describes the pathway that – according to assumed parameter values and relationships – minimises the cost. 

Such statements are part of what economists normally call “descriptive” (or “positive”) economics, i.e. 

statements about the world that can be considered objective or verifiable. “Normative” economics instead 

concerns itself with what should or ought to be. Normative statements rely on value judgments and cannot be 

tested or verified. According to this use of the terms, identifying the pathway that minimises cost would be 

descriptive, but advising policymakers that this is the best pathway (and thus the one to strive for) would be 

normative. In other words, whether or not a pathway that is computed by an IAM is desirable is a normative 

question, but the computation of the pathway itself is not. (This is not to say that descriptive statements cannot 

also involve value judgment. Both the choice of questions to analyse and the choices that have to be made in 

order to compute an answer often involve value judgments. This, however, is true for all of science and thus not 

particular to IAMs.) It is perhaps because outputs of optimisation models are often perceived to be, or in 

practice becomes recommendations that optimisation IAMs are sometimes described as “normative” models. 

That is, IAMs might be used to provide answers not only to how we can get from here to there, but how we 

should get from here to there. In order to avoid the confusion, the term optimisation model is used in this thesis 

to refer to models that rely on mathematical optimisation techniques. 
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decision theory the criterion used to determine the optimal decision is the maximum expected utility 

(MEU). Models used for ‘classical decision analysis’ can thus be depicted as 

 

𝑓(𝑋, 𝑀𝐸𝑈) → 𝐷 ∗ 

 

In ‘predictive policy models’, the decision, D, is instead a model input. Usually, in these models, the 

output is the quantity of some criterion, such as net present value or utility, U. ‘Predictive policy models’ 

can be depicted as 

 

𝑓(𝑋, 𝐷) → 𝑈 

 

A similar distinction is used by AR2 (IPCC, 1995) to distinguish between two different types of IAMs: 

‘policy evaluation models’ (PEMs) and ‘policy optimization models’ (POMs). Whereas PEMs resemble 

‘predictive policy models’, POMs resemble the models used for ‘classical decision analysis’. More 

specifically, PEMs evaluate the effects of a given climate policy and POMs identify an efficient or cost-

effective climate policy. PEMs are also described by AR2 as ‘projection models’ (IPCC, 1995). In 

general, PEMs are “process-based models that attempt to provide a thorough description of the 

complex, long-term dynamics of the biosphere-climate system” (IPCC, 1995, p. 372). While PEMs are 

rich in physical detail, they tend to include only a limited representation of the socioeconomic system. 

Typical outputs from PEMs include emissions, GHG concentration levels, temperature, sea level, land 

use, and physical impacts such as ecosystems at risk, coastal land area lost, and mortality rates (IPCC, 

1995). POMs instead optimise over control variables to achieve specified policy goals (e.g. emissions 

reductions) in a way that maximises some quantity (e.g. utility or profit). POMs include both cost-

benefit and cost-effectiveness models. In cost-benefit POMs, the policy goal might be the maximisation 

of welfare and the control variable might be the level of emissions reductions. In cost-effectiveness 

POMs, the policy goal is the minimisation of the cost of meeting a given emissions target and the control 

variable might be the carbon tax profile. The distinction between POMs and PEMs was also used in the 

third and fourth IPCC assessment reports (reflecting the IAM literature (e.g. Kann & Weyant, 2000; 

Löschel, 2002)) to describe key differences between IAMs. The distinction is not, however, used in 

AR5.  

 

As already mentioned, the majority of the scenarios in the AR5 ensemble stem from IAMs that use 

optimisation in some form to compute transformation pathways. All the perfect foresight IAMs in AR5 
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(see Chapter 3), i.e. the optimal growth and ESOMs, can be considered POMs.60 In these models, the 

quantity that is optimised is welfare or consumption (in optimal growth models) or total energy system 

costs (in ESOMs). In addition to this, optimisation is also central to CGE models. The latter models are 

(as noted in Chapter 3) similar to optimal growth models in that they compute a solution that 

corresponds to the optimising behaviour of agents61, but CGE models add to this an optimisation over 

economic sectors (Wolf, Schutze, et al., 2016). CGE models are, however, frequently used in 

“simulation mode” for policy impact analysis, i.e. to predict the effects of policies rather than to 

optimise policies. Böhringer and Löschel (2006) provide a useful review of the use of CGE models for 

sustainability impact assessment and Scrieciu (2007) provides a critical response to this.  

 

It is in the last category, the Partial Equilibrium – Myopic category, in Table 3.1 that we might find 

non-optimising IAMs. While neither Morgan and Henrion (1990) nor AR2 (1995) use the term 

simulation, other authors (Edenhofer et al., 2006; Nikas et al., 2019) have used this term to distinguish 

non-optimising models from optimising models62. Chapter 3 described simulation models (in line with 

Edenhofer et al. (2006)) as models that are based on algorithms that compute solutions at each point in 

time based on the state of the modelled system at the previous point in time. This stepwise computation 

process is based on assumptions about how the system behaves and responds to changes (e.g. as a result 

of agent behaviour). Thus, climate policies in simulation models are inputs, not outputs. Simulation 

models thus have a lot in common with the ‘predictive policy models’ and the PEMs described in this 

section. Some authors (e.g. Löschel, 2002) use the term simulation model synonymously with PEM.  

 

Thus, the distinction between optimisation and simulation is closely related to the use of climate policies 

as inputs or outputs in the modelling: For optimisation models, in general, emissions targets are the 

inputs and climate policy (usually a carbon price profile) is the output (together with other outputs such 

as the cost of mitigation). For simulation models, in general, climate policy (carbon prices and often 

other policies such as subsidies and feed-in-tariffs) is the input and an emissions profile is the output 

 

60 However, these models can also be used in “simulation mode” to evaluate the impacts of policies. This will be 

discussed in section 5.3.  

61 It should be noted that the lack of foresight (i.e. myopic behaviour) in the CGE IAMs in AR5 generally means 

that the solutions computed by these models are not globally optimal. Still, agents in these models make their 

decisions by optimising (with limited foresight) at each point in time. See Keppo and Strubegger (2010) for a 

demonstration of the impacts of lack of foresight in energy system models.  

62 The term ‘simulation’ is sometimes used synonymously with ‘computer simulation’, which simply means 

running a computer program. If used in this way, simulation is not opposed to optimisation, because any computer 

program might also be optimising, and optimisation IAMs are always run on computers. ‘Simulation’ in this thesis 

refers to the solution algorithm that is used in an IAM, as explained in this chapter.  
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(together with other outputs such as the deployment of different technologies). Thus, the distinction 

between simulation and optimisation is intimately related to the distinction between “backcasting”, in 

which the end goal (such as an emissions target) is set, and “forecasting”, in which the model is used to 

predict where we are headed (see Robinson (1982) for an early discussion of backcasting versus 

forecasting). Optimisation models can, however (as already noted), also be used in “simulation mode” 

to simulate the impacts of policies (i.e. optimisation models can be used as PEMs). For simulation 

models, however, the opposite is generally not the case: simulation models cannot be used to compute 

optimal policies63.  

 

Because FTT was designed to offer an improved representation of energy system dynamics relative to 

ESOMs, this chapter focuses on ESOMs (as opposed to optimal growth and CGE models). The next 

section explains how ESOMs, from their inception, have been used both to identify optimal policies (in 

“optimisation mode”) and to predict the evolution of energy systems (in “simulation mode”). 

5.3 Optimisation as prediction 

Well known ESOMs such as MARKAL and MESSAGE64 (and their forerunners, see Figure 2.3) have 

been used since the 1970s to compute technology pathways that minimise overall energy system costs 

subject to emissions constraints, based on linear programming techniques. These models were designed 

to analyse the transition away from fossil fuels. If we look at their history, we find that they have been 

seen both as tools for the identification of optimal solutions – which is useful for energy planning – and 

as tools that describe the actual evolution of the energy system. 

 

This dual role can be seen, for instance, in the history of the MESSAGE energy system optimisation 

model. Despite the Hafele/Manne model being the “grandfather” of MESSAGE and the fact that the 

two models share the same model structure, the interpretation of the pathways generated by the two 

models differed. Optimisation in the Hafele/Manne model was seen to offer a way of representing the 

real-world dynamics of the energy system (Häfele & Manne, 1974). That is, the energy system was 

 

63 Or rather, it would be very cumbersome to do so, as one would have to go through every possible option. 

64 Much like FTT has been integrated with the macro-econometric model E3ME, MESSAGE and MARKAL have 

been integrated with the macroeconomic model MACRO. All three models can be run either as stand-alone 

models or as part of larger integrated models. The integrated models are sometimes referred to as ‘hybrid’ models 

because they combine detailed energy system models with macroeconomic models. The terms ‘bottom-up’ and 

‘top-down’ are also used to refer to energy system IAMs and macroeconomic IAMs respectively. Although this 

distinction has been used widely to explain differences between IAMs in the past, it has recently become much 

less relevant because many IAMs are now hybrid.  
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seen to evolve roughly along the lines of the least-cost pathway. Optimisation in MESSAGE, instead, 

was seen to reflect the centralised structure of decision making in the energy system (Agnew et al., 

1979b). More specifically, Agnew et al. write, “the structure of the energy supply system is the result 

of a few crucial and far reaching decisions taken at governmental or supra-national level” rather than 

“the perfect market of the classical economists – which assumes a large number of independent actors” 

(1979b, p. 5). MESSAGE was thus designed to answer questions such as: “What is the optimal timing 

for the implementation of new energy supply technologies?”, and “What constraints does the 

environment impose on the “optimal” energy strategy?” (Agnew et al., 1979b, pp. vii–viii). In other 

words, MESSAGE was conceived of by Agnew et al. (1979b) as a planning instrument to be used by 

national and international decision makers in order to achieve an optimal allocation of resources (given 

energy demand and environmental constraints), not as a tool to predict the evolution of the energy 

system.  

 

EFOM (the forerunner to MARKAL), which was developed around the same time as the Hafele/Manne 

model, was also seen to describe the evolution of the energy system. In describing EFOM, Finon writes 

that “our choice was directed towards a tool for economic calculation, which immediately implies the 

representation of the real world by means of the relations between economic agents or operations 

expressed quantitatively in terms of physical flows and internal prices. A sectorial optimisation model 

has thus been worked out, integrating the internal interdependences (relations between economic 

operations) and external interdependences (constraints or exogenous parameters)” (Finon, 1974, p. 138 

my italics). In short, both EFOM and the Hafele/Manne model used optimisation to describe the real-

world evolution of the energy system, not just to identify the least-cost solution, which might be 

implemented by a centralized planner.  

 

Thus, optimisation in ESOMs played a dual role from the beginning. On the one hand optimisation 

models were seen to represent the actual behaviour of systems, and on the other hand it was seen as a 

tool to help energy planners identify and enact the most rational decisions65 (for a system that might not 

otherwise behave rationally). Both perspectives are still evident today and explanations of how ESOMs 

describe the real-world evolution of the energy system can be found in the model documentation also 

for more recent ESOMs (e.g. Loulou and Labriet (2008)). The next section explains the assumptions 

that are either explicitly or implicitly made when one uses ESOMs to predict the evolution of energy 

systems including its response to policies.  

 

65 It should be noted that if one believes that the central planner will make the cost optimal decisions, then the 

energy system will evolve according to least cost. Still, the reason for why it would do so differs.  
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5.3.1 Limitations to neoclassical economics assumptions 

In short, the assertion that optimisation can be used to represent the real-world response of the energy 

system to climate policies is based on a number of well-known neoclassical economics assumptions: If 

we assume perfect (energy) markets and fully rational agents with full information, energy supply and 

demand will meet (equilibrium will be achieved) in such a way that consumer and producer surplus is 

maximised (Mas-Colell et al., 1995). Loulou and Labriet’s (2008) description of TIMES/MARKAL, 

for example, is based on these assumptions. An equilibrium, they write, is the state in which prices and 

quantities are such that no consumer would want to purchase less than quantity q* at price p*, and no 

producer would want to produce more than quantity q* at price p*. Under these conditions, total surplus 

is maximized. If we believe that the assumptions of perfect markets and fully rational agents provide a 

sufficiently good approximation of the real world, we might use maximisation of total surplus as a way 

of deriving the real-world response of the energy system to changes, such as those caused by climate 

policies. Several examples of such usage of ESOMs can be found in the literature.  

 

Hu and Hobbs (2010), for example, use MARKAL to “simulate[] the operation of a competitive market 

with zero price elasticity for energy services”. Altamirano et al. (2008) couple the MARKAL model for 

Switzerland with a CGE model (GEMINI-E3) in order to simulate the impacts of suggested climate 

policies. MARKAL is also used e.g. on EU level to assess the implications (i.e. the response of the 

energy system) of selected policy instruments including white and green certificates and emissions 

trading (Mundaca & Santi, 2004). Babaee et al. (2014) use TIMES to explore how the deployment of 

electric vehicles in the future is affected by natural gas prices, oil prices, battery costs, renewable 

portfolio standards and CO2 prices. Pye et al. (2015) use another ESOM, ESME66, to predict the impacts 

of policies on emissions. 

 

The issue when it comes to the use of ESOMs in “simulation mode” to describe the evolution of real-

world energy systems, including the impacts of policies, has to do with the limitations to the above 

assumptions. The assumptions of fully rational and perfectly informed optimising agents have long 

been criticised in the economics literature (Veblen, 1898). Important contributions from within 

economics, such as the Sonnenchein-Mantel-Debreu theorem from the 1970s, and the Greenwald-

Stiglitz theorem from the 1980s, have even led to the questioning of the existence of equilibria and the 

view that market failure is not the exception, but the norm in economics (Mas-Colell et al., 1995). More 

recently, the economics discipline has also evolved to incorporate new areas of research, such as 

behavioural economics, which is set out specifically to study behaviour that deviates from the purely 

rational. It is increasingly accepted that neoclassical assumptions of perfect markets and fully rational 

 

66 The Energy Systems Modelling Environment (ESME) model is mathematically similar to MARKAL-TIMES. 



 

106 

agents provide an overly simplistic picture of how the real economy works (see e.g. Chang (2014)). In 

particular since the great financial crisis, the economics discipline has been under increasing scrutiny 

(A. Turner, 2012). For all these reasons, assuming perfect markets and rational behaviour could be 

viewed, not only as unrealistic, but outdated. Although few examples exist of studies that attempt to 

test whether ESOMs provide a good description of real-world energy systems, one such study 

(Trutnevyte, 2016) suggests that this is not the case. 

 

It is in this context that FTT, according to Mercure et al. provides “a more realistic modelling approach” 

(Mercure, Pollitt, et al., 2016). ESOMs are generally characterised by minimisation of overall energy 

system cost using linear programming and ESOMs generally assume perfect foresight. According to 

DeCarolis et al. (2017, p. 188) “in its most basic form, an ESOM makes optimal technology investment 

and utilization decisions based on differences in the relative cost of competing technologies, 

thermodynamic performance limits, fixed end-use demands, and constraints that reflect known physical 

resource limits or policy objectives. The associated model-based results provide a prescription that 

indicates what should happen if a single rational economic decision maker acts from a social planning 

perspective to minimize cost”. It is important to recognise, however, that ESOMs have also been 

modified in many ways in attempts to increase realism. Additional features include ETL, lumpy 

investments (i.e. discrete sizes of certain technologies) and hurdle rates, to name a few (see DeCarolis 

et al. (2017) for more examples). The point here is not to criticise ESOMs, however, but to understand 

the motivation behind the construction of FTT and the ways in which FTT was seen, by those who built 

it, to offer an improved representation of the response of the energy system to climate policies.  

 

The main distinguishing features of FTT are described in the next section. Before so doing, the 

following point should be noted. Although neoclassical assumptions of rational behaviour and perfect 

foresight have been widely criticised and are viewed by many as overly simplistic, all models represent 

simplifications of the real world and all model outputs depend on assumptions. Unless we can show 

that FTT is based on more accurate or better justified assumptions, we cannot claim that FTT provides 

more accurate descriptions of energy systems and thus more accurate predictions than ESOMs. The 

next section presents the key features that distinguishes FTT from ESOMs before explaining why 

technology deployment assumptions play a crucial role in both FTT and in ESOMs.  

5.4 The importance of technology deployment rates 

FTT was designed with two specific features in order to improve the realism of the energy system 

pathways it depicts: 

(i) A more fine-grained representation of policies (including carbon prices, subsidies, regulations, 

feed-in-tariffs, and kick-start policies (Mercure, Pollitt, Edwards, et al., 2018)). 
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(ii) An endogenous derivation of technology deployment rates based on diffusion theory (Mercure, 

2015).  

 

So far, FTT publications have focused on the first feature. E3ME-FTT has, for instance, been used to 

demonstrate how baskets of policies can be used to achieve desired emissions reductions (Mercure, 

Pollitt, Edwards, et al., 2018). But the second feature is equally crucial for the predictions of policy 

impacts. Diffusion theory has, according to Mercure (2015, p. 3), “yet to be even considered in large 

scale mainstream models such as those for energy system modelling and related energy policy analysis”. 

The endogenous derivation of deployment rates is thus a unique feature of FTT seen by Mercure (2015) 

to offer improved and theoretically grounded predictions of the impacts of policies on technological 

change.  

 

Given the limited emphasis on this feature in FTT publications so far, however, a better understanding 

of what the diffusion theory that underpins FTT implies for the reliability of predictions is needed. In 

order to begin to assess the accuracy of FTT predictions, Chapter 6 conducts the first comprehensive 

sensitivity analysis focused specifically on the assumptions that determine the endogenous derivation 

of technology deployment in FTT. Before then, we take a brief look at how technology deployment is 

determined in ESOMs, which represents the main contender to the approach taken in FTT. 

5.4.1 Exogenous technology deployment rates 

ESOMs are solved using linear programming (also called linear optimisation) techniques. A well-

known feature of these techniques is that that small changes in parameter values or variables can result 

in dramatic changes to outputs, a feature that is sometimes referred to as ‘penny-switching’ or ‘flip-

flopping’ behaviour (Keepin & Wynne, 1984; Wilson et al., 2013). The reason for this is that in linear 

programs, the optimal solution is always found in one of the corners (so-called “corner solutions”). This 

means that an infinitesimal change in parameter values can lead the hyperplane that defines the feasible 

set of solutions to change its tilt from one direction to another, causing the optimal solution to move 

from one corner to another (see Keepin & Wynne (1984) for a graphical depiction of this).  

 

For ESOMs, this means that tiny changes, in for instance technology costs or learning assumptions, can 

lead to sudden changes in technology choices. In order to avoid situations in which all investments are 

suddenly moved from one technology to another – which would be considered unrealistic67 – ESOMs 

are constrained by maximum deployment rates, which are provided as input assumptions. Such 

 

67 I thank Will McDowall for an insightful discussion regarding this.  
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constraints are present in all of the 14 most influential IAMs in AR5 analysed in Chapter 2 that are 

based on energy system optimisation68.   

 

The issue with maximum deployment constraints is that they are often binding – meaning that the rate 

of deployment (of some technologies) will be defined by them – but based on limited empirical 

evidence. A sensitivity analysis of the widely used MARKAL model, for example, showed that the 

deployment constraints for electricity generating technologies had significant impacts on results 

(Johnson et al., 2006). The issue becomes even more pertinent when learning-by-doing is included. The 

TIMES manual states that when endogenous learning is switched on, the model might produce 

“unrealistically large early investments in some learning technologies” (Richard Loulou & Labriet, 

2008, p. 30). For this reason, modelers “impose additional constraints to control the penetration of 

learning technologies…reflecting what is deemed realistic. These upper bounds play a determining role 

in the solution of the problem, and it is most often observed that the capacity of a learning technology 

is either equal to 0 or to the upper bound. This last observation indicates that the selection of upper 

bounds by the modeler is the predominant factor in controlling the penetration of successful learning 

technologies” (Richard Loulou & Labriet, 2008, p. 31 my italics). For this reason, Loulou and Labriet 

question whether it is “worth-while for the modeler to go to the trouble of modeling endogenous 

learning (with all the attendant computational burdens) when the results are to a large extent conditioned 

by exogenous upper bounds” (Richard Loulou & Labriet, 2008, p. 31). If we had solid information on 

which to base the maximum deployment constraints, this dependency would not be such a problem. 

However, deployment constraints appear to be based on limited empirical evidence. According to 

Wilson et al. “constraints on technological growth is significantly less well substantiated and 

documented compared to the techno-economic parameterization…systems interactions…and learning 

processes” (2013, p. 383). What this means is that technology deployment in pathways generated by 

ESOMs might be determined entirely by assumptions that are based on weak (or even missing) 

empirical data. This poses a threat to the predictive value of ESOMs. The few studies on this that exist 

indicate that exogenous deployment constraints imply a conservative picture of change (Wilson et al., 

2013). 

 

68 In fact, constraints on the deployment of technologies are present in all the Perfect foresight of the 14 IAMs 

(which all rely on global optimisation). That is REMIND, MESSAGE-MACRO, WITCH, MERGE-ETL, 

MERGE, DNE21+, TIAM-World, and BET all have built-in assumptions regarding either the maximum 

percentage growth of technologies from one year to the next (MESSAGE, TIAM-World, BET) or adjustment 

costs that makes it increasingly expensive to deploy technologies faster (REMIND, MACRO). This information 

is obtained from the model documentation and from two papers (Bauer et al., 2018; Pietzcker et al., 2017). 
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5.5 Conclusion 

This chapter has shown that not only neoclassical assumption, which have been widely criticised, but 

also deployment rate constraints, which appear to be based on limited empirical evidence, challenge the 

realism of transformation pathways generated by ESOMs. In short, transformation pathways generated 

by ESOMs cannot be expected to describe the real-world evolution of the energy system if (i) 

neoclassical assumptions of perfect markets and fully rational agents do not hold (sufficiently), or if (ii) 

exogenous deployment constraints do not accurately capture real-world constraints.  

 

According to Mercure et al. (2014; 2016), the simulation approach taken in FTT (and E3ME-FTT) 

distinguishes it from the majority of IAMs, which mostly rely on optimisation. In particular, the 

endogenous derivation of deployment constraints is seen by Mercure et al. to make FTT unique 

compared to all other energy system models. Together, these features are seen to offer a more realistic 

depiction of the impacts of policies on future technology transformations, grounded in the theory of 

technology diffusion.  

 

The fact that technology deployment rates are determined endogenously in FTT, however, does not 

imply that they do not depend on exogenous assumptions. All model outputs depend on exogenous 

assumptions (this is, in many ways, what defines a model). The difference is that, while it is clear what 

assumptions determine deployment rates in ESOMs, the answer is more complex for FTT.  

 

In order to determine whether FTT provides more accurate predictions of technology evolution 

compared to ESOMs, we need to determine both whether the endogenous description of technology 

deployment represents an accurate description of technology deployment in the real world and whether 

the parametric assumptions that determine technology deployment in FTT are better justified than the 

maximum deployment constraints that are used in ESOMs. The next chapter takes the first step in 

answering the latter question by conducting the first global sensitivity analysis of the core FTT equation.  

 

  



 

110 

  



 

111 

6 Assessing FTT predictions 

In order to begin to assess the uncertainty of FTT predictions, this chapter conducts the first global 

sensitivity analysis of the FTT model. In order to render the task feasible, the analysis is applied to the 

power sector sub-model, FTT:Power, only. The power sector is, because of its contribution to global 

GHG emissions and because it is one of the cheaper sectors to decarbonise, seen as one of the most 

important sectors to decarbonise first (IPCC, 2014a). In 2018, total CO2 emissions were estimated at 

41.5GtCO2 (Quéré et al., 2018). Of these, 13 GtCO2 came from the power sector alone (IEA, 2019).  

 

Power sector CO2 emissions can be reduced in three different ways: by reducing end-use electricity 

demand, by increasing efficiency of production and consumption, and by substituting low-carbon 

technologies69 for unabated fossil fuel technologies. Global electricity demand is expected to increase 

(due in particular to the increase from developing countries), however, and efficiency can only be 

improved up to a certain limit. It therefore follows that, in order for power sector emissions to reach net 

zero, electricity generation can no longer be based on unabated fossil fuel technologies. Thus, while 

reducing demand and increasing efficiency represent crucial avenues for emissions reductions, these 

measures will not be sufficient to meet the Paris target. As long as there is demand for electricity, the 

rate of emissions reductions in the power sector will depend crucially on the rate at which low-carbon 

technologies replace unabated fossil fuel technologies. FTT:Power was designed specifically to predict 

the impacts of policies on technology substitution in the power sector.  

 

So far, only best guess predictions from FTT have been published in the literature (Mercure, 2012; 

Mercure et al., 2014; Mercure, Pollitt, Viñuales, et al., 2018). In order to provide a better picture of the 

uncertainty of FTT predictions, which is a prerequisite for evaluating their accuracy, this chapter 

conducts a global sensitivity analysis of FTT:Power predictions. Although the analysis does not include 

all FTT:Power parameters, it does include all the parameters that define the core equation, which is 

shared between all FTT models. The goals of the analysis are to i) provide a first conservative estimate 

of the uncertainty of FTT:Power predictions and, ii) to identify the parameters in the FTT core equation 

that have the biggest influence on FTT predictions. In order to provide an initial (conservative) estimate 

of the uncertainty, uniform and independent distributions based on varying default parameter values by 

±50% are assumed. The results should only be interpreted as a first order, conservative, estimate of the 

full uncertainty of FTT:Power predictions: a full uncertainty assessment would need to take into account 

not only the uncertainty of all parameters but also structural uncertainty.  

 

69 Low-carbon technologies include renewables, nuclear, fossil fuel technologies with carbon capture and storage 

(CCS), and negative emission technologies (NETs). 
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The results of the sensitivity analysis conducted in this chapter show that, although FTT:Power 

predictions indicate that policies are necessary to reduce emissions sufficiently to meet the Paris target, 

the impacts of policies depend crucially on a scaling parameter whose correct value is deeply uncertain. 

This finding challenges the reliability of best guess FTT:Power predictions. Given the importance of 

the uncertainty of the emissions reductions caused by climate policies, this chapter argues, providing a 

range of output values is more appropriate than providing single best guess predictions.  

 

Section 6.1 presents the best guess predictions of the impacts of policies aimed at limiting global 

warming to 1.5˚C and 2˚C generated by FTT:Power. Section 6.2 explains the logic behind FTT:Power, 

the core equations, and the parameters that will be included in the sensitivity analysis. Section 6.3 

reviews previous sensitivity analyses of FTT and uncertainty assessment of IAMs in general. Section 

6.4 explains the methods used for the sensitivity analysis – Monte Carlo analysis and Latin Hypercube 

Sampling – and discusses the use of independent and uniform distributions to define the ranges of 

parameter values. Section 6.5 presents the results. Policy implications are discussed in section 6.6 and 

concluding remarks are provided in section 6.7. 

6.1 Best guess predictions 

The modelling team behind E3ME-FTT-GENIE has used the model to identify two different sets of 

policies that, if implemented, will ensure that the Paris target is met. The ‘2C Policies’70 will, according 

to the model, limit warming to below 2˚C, and the ‘1.5C Policies’71 will limit warming to below 1.5˚C. 

These policy sets thus generate two distinct mitigation scenarios. In addition to this, there is also a 

baseline scenario that corresponds to what happens when ‘No Policies’ are implemented.  

 

Optimisation models can take climate targets as inputs and compute optimal policies as outputs. In 

E3ME-FTT policies are instead given as inputs. This means that the identification of policy sets that 

meet specified climate targets has to be done by a process of trial and error: Policies deemed plausible 

are added one by one and resulting emissions are recorded. If emissions are too high, policy measures 

are tightened. If emissions are too low, policies are relaxed. This is repeated until the desired target is 

achieved. A detailed example of the process of trial and error for identifying policies in the power sector 

can be found in Mercure et al. (2014).  

 

 

70 See (Mercure, Pollitt, Edwards, et al., 2018). 

71 No scenarios based on the 1.5C policy set have yet been published. At the time of writing, an E3ME-FTT-

GENIE paper presenting this policy set was considered for re-submission. 
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The policies that are identified using E3ME-FTT (or FTT) are not unique. That is, different 

combinations of policies could have equally well been used to achieve the same climate target. 

FTT:Power, for example, takes five different policies as inputs: carbon prices, subsidies, feed-in tariffs 

(FiTs), regulations, and kick-start policies. This means that identical emissions pathways could be 

generated by for instance decreasing renewables subsidies and increasing the carbon price. Because 

E3ME-FTT is not an optimisation model, the policy sets that are identified do not represent the optimal 

policy sets. The policies chosen by the modelers are instead based on their judgments of what is deemed 

realistic72.  

 

The impact of ‘2C Policies’, ‘1.5C Policies’, and ‘No Policies’ on the deployment of the 24 technologies 

that are represented by FTT:Power is shown in figure 6.1. These results are obtained by using the three 

policy sets as inputs to FTT:Power and by taking the electricity demand from the corresponding 

scenarios computed by the full model73. The use of coal for electricity generation is significantly 

reduced in the two mitigation scenarios. This is not surprising, given the carbon intensity of electricity 

produced from coal. The 1.5C and 2C policies also lead to a reduction in the use of gas (CCGT). The 

reduction in the use of coal and gas is compensated for by the deployment of solar PV and wind 

(primarily onshore). We also see an increase in the use of nuclear, solid biomass, and biomass (BIGCC) 

with carbon capture and storage (CCS) as a result of the two policy sets. As expected, the effects are 

more pronounced in the 1.5C scenario than in the 2C scenario. Especially the deployment of BIGCC + 

CCS, which is a negative emissions technology (NET), is significantly higher in the 1.5C scenario than 

in the 2C scenario74. 

 

72 Personal communication with Jean-Francois Mercure and Hector Pollitt (Cambridge Econometrics). Cambridge 

Econometrics, which is responsible for E3ME-FTT, has many years of experience working with policy analysts, 

in particular on EU level. This experience is partly what shapes the judgments regarding the realism of policy 

baskets. 

73 In the full E3ME-FTT model, E3ME and FTT:Power are solved iteratively until the (regional) electricity 

demands computed by E3ME and the (regional) electricity prices computed by FTT:Power are consistent. 

Everything else being the same, an increase in the price of electricity leads to a reduction in electricity demand. 

The projections in Figure 6.1, however, were obtained by running FTT:Power as a stand-alone model. In order to 

re-produce the power sector predictions caused by the policy sets in the full model using FTT:Power alone, the 

electricity demand that was computed endogenously with the full model is used as an input to FTT:Power.  

74 The use of NETs in scenarios that reach the Paris target have been heavily debated in the last few years 

(Anderson & Peters, 2016; Fuss et al., 2014). Even though the use of NETs is limited in the FTT projections, it is 

worth keeping in mind that FTT projections only extend to 2050. The use of NETs in scenarios increase primarily 

in the latter half of the century. 
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Figure 6.1 Predictions (‘best guess’) of technology deployment in the power sector caused by No Policies (top), 

2C Policies (middle), and 1.5C Policies (bottom). The dashed line shows the start date of the simulations (2013). 

The figure is produced by the author using FTT:Power with electricity demands taken from the corresponding 

runs in the full E3ME-FTT model.  

Figure 6.2 shows the resulting power sector emissions and cumulative emissions. The figure shows 

rapid emissions reduction in the two mitigation scenarios. The cumulative emissions in the 2C scenario 

is roughly half of the emissions in the baseline scenario. The difference in cumulative emissions 

between the 2C and 1.5C mitigation scenarios (80 GtCO2), however, corresponds to only six years of 

power sector emissions at the current rate (13 GtCO2/yr).  
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Scenario 

Cumulative emissions 

(GtCO2) 2013-2050 

No Policies 749 

2C 372 

1.5C 292 

 

 

 

 

 

 

 

 

So far, the emphasis in FTT and E3ME-FTT publications has been on using the distinguishing features 

of these models – in particular the simulation approach and the fine-grained representation of policies 

– to either identify policies that will lead to the desired emissions reductions, or to predict the impacts 

of given policies, with an emphasis on realism. So far, this has been done (e.g. by Mercure (2012) and 

Mercure et al. (2014; 2018)) using ‘best guess’ parameter values. In order to understand how 

FTT:Power computes the impacts of policies on technology deployment and emissions in the power 

sector (shown in figures 6.1 and 6.2), and the parameters involved, the next section presents the core 

FTT:Power equations. 

6.2 FTT core equation 

FTT is best described as a set of technology diffusion models. Diffusion represents the gradual adoption 

of innovations by firms and individuals. It is the third stage in the process of technological change as 

described by Schumpeter (1942), the first stage being invention, and the second stage being innovation. 

Diffusion follows two key observed characteristics. First, it is never instantaneous (Rogers, 1962). 

Second, it  follows S-shaped curves – a characteristic that has been confirmed many times in the case 

of the evolution of competing energy technologies (e.g. Grübler et al., 1999; Marchetti & Nakicenovic, 

1979). 

 

All the FTT models are based on the same mathematical structure. That is, a set of coupled logistic 

differential equations based on the Lotka-Volterra family - also known as the predator-prey equations. 

This well-known set of equations is commonly used to describe the dynamics of biological systems. In 

FTT, it is used to represent the nature of technology diffusion. According to Mercure (2012), 

FTT:Power is the first power sector model to be based on this set of equations. Mercure (2012) also 

Figure 6.2 Predictions (‘best guess’) of power sector emissions caused by No Policies, 2C Policies, and 

1.5C Policies in FTT:Power. 



 

116 

shows that it gives rise to classic S-shaped technology transitions, similar to those observed in history. 

This section describes how the set of coupled logistic differential equations that make up the core of 

FTT:Power is derived.  

6.2.1 Species analogy 

Mercure (2011) introduces FTT for the first time using the following analogy: Imagine a biological 

system made up of one species of birds only, which can nest only in a certain type of tree. If the species 

has fertility factor 𝑏, the rate of change of the fraction of trees occupied by it, 𝑁(𝑡), is given by the 

Verhulst equation, 

 

𝑑𝑁(𝑡)

𝑑𝑡
= 𝑏𝑁(𝑡)(1 − 𝑁(𝑡)). (1) 

 

The solution to this equation is the logistic function 

𝑁(𝑡) =
𝑒𝑏𝑡

1 + 𝑒𝑏𝑡
, (2) 

 

which exhibits exponential growth at low levels of 𝑁 and saturation at high levels of 𝑁, as shown in 

figure 6.3. Over time (provided 𝑁(0) > 0), the solution converges to 𝑁 = 1. The time that it takes for 

𝑁 to reach 1 is determined by the parameter 𝑏. 

 

 

Figure 6.3 The logistic function for different values of 𝑏. 
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Mercure (2011) continues this analogy by imagining instead that there are two species of birds, 𝑁1 and 

𝑁2, competing for space in the same type of trees. The parameter 𝑏 in this case represents the ability of 

species one to capture nesting space at the expense of species two75. In this case, the rate of change in 

the fraction of space occupied by species one is given by: 

 

𝑑𝑁1(𝑡)

𝑑𝑡
= 𝑏𝑁1(𝑡)𝑁2(𝑡) = 𝑏𝑁1(𝑡)(1 − 𝑁1(𝑡)) (3) 

 

As we can see, the expression for 𝑁1 in equation (3) ends up being the same as the expression for 𝑁 in 

equation (1) (as expected, given that 𝑁2 simply represents what was previously the remaining empty 

trees). For positive 𝑏 (and 𝑁1 > 0), species 1 will eventually occupy all the space (for negative 𝑏, 

species 2 will).  

6.2.2 Shares equation 

In FTT, instead of species, there are technologies, and instead of nesting space or trees there are market 

shares. The fundamental assumption is that technologies within a specific sector (such as power or 

transportation) compete for market shares in a way that is analogous to the way in which species 

compete for resources. This assumption captures two aspects of technology systems dynamics: first, 

the role of competition between different technologies, and second, the idea that more established 

technologies can increase their market shares faster than nascent technologies. This set of assumptions 

are shared among all FTT models. The specific implementation, however, varies between FTT models. 

 

In FTT:Power, the market share of each electricity generating technology, 𝑆𝑖(𝑡) is defined as 

 

𝑆𝑖(𝑡) =
𝑈𝑖(𝑡)

𝑈𝑡𝑜𝑡(𝑡)
, (4) 

 

where 𝑈𝑖(𝑡) denotes the total installed capacity (in GW) of technology 𝑖, and 𝑈𝑡𝑜𝑡(𝑡) is the sum of 

𝑈𝑖(𝑡) over all technologies, 𝑈𝑡𝑜𝑡(𝑡) = ∑ 𝑈𝑖(𝑡)𝑖 . The shares evolve, as will be shown, according to a 

generalised version of equation (3), called the shares equation. It is the shares equation that 

(endogenously) determines the rates of deployment for technologies in FTT. The parameters analogous 

to the parameter 𝑏 in equation (3), i.e. the technology substitution parameters, determine the ability of 

one technology to take market shares from another technology. In FTT:Power, the substitution 

parameters depend on two aspects. First, the costs of different technologies, which is seen to determine 

 

75 The implicit assumption here is that all the nesting space is always occupied. If it is not occupied by species 1 

it is occupied by species 2.  
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investor preferences. And second, characteristic time constants, which determine potential turnover 

rates. 

 

Investor preferences 

The role of costs in defining the substitution parameters has to do with how FTT:Power models 

technology diffusion by “mimicking the decision-making of investors” (Mercure, 2011, p. 7). 

Essentially, investors’ preferences for electricity generating technologies are assumed to depend on the 

cost of generating electricity using that technology, that is, the levelized cost of electricity (LCOE). The 

LCOE for technology 𝑖 is given by  

 

𝐿𝐶𝑂𝐸𝑖(𝑡) =
∑

𝑇𝐼𝑖(𝑡) + 𝑂𝑀𝑖(𝑡) + 𝐹𝐶𝑖(𝑡) + 𝐶𝐶𝑖(𝑡)
(1 + 𝑟)𝑡

𝜏𝑖
𝑡=0

∑
𝐸𝑃𝑖(𝑡)

(1 + 𝑟)𝑡
𝜏𝑖
𝑡=0

, (5) 

 

where 𝑇𝐼𝑖(𝑡) denotes the investment cost, 𝑂𝑀𝑖(𝑡) the operation and maintenance cost, 𝐹𝐶𝑖(𝑡) the fuel 

cost, 𝐶𝐶𝑖(𝑡) the carbon cost for technology 𝑖, 𝑟 the investor discount rate (hurdle rate), and 𝐸𝑃𝑖(𝑡) the 

amount of electricity produced per year. Because of local variations, the investment costs (𝑇𝐼𝑖(𝑡)), 

operation and maintenance costs (𝑂𝑀𝑖(𝑡)), and fuel costs (𝐹𝐶𝑖(𝑡)) are expressed as distributions rather 

than as point estimates. This means that the LCOEs themselves are also distributions. Data for 

investment, operation and maintenance, and fuel costs in the most recent version of FTT (v7) are 

obtained from the International Energy Agency’s (IEAs) Projected Costs of Generating Electricity 

2015 (IEA & NEA, 2015). (The values of these parameters and their standard deviations are also listed 

in Appendix E.) The carbon cost (𝐶𝐶𝑖(𝑡)) is a variable that represents the carbon price, which is 

determined by policies in FTT:Power (more on policy variables below).  

 

The inclusion of learning-by-doing, is also a key feature of FTT:Power. This is incorporated via 

experience curves, which means that the cost of a technology decreases with cumulative installed 

capacity. In FTT:Power, it is the investment cost that is reduced via learning. This is done according to 

𝑇𝐼𝑖(𝑡) = 𝑇𝐼0,𝑖 (
𝑊𝑖(𝑡)

𝑊0,𝑖
)

−𝛽𝑖

, (6) 

 

where 𝑇𝐼0,𝑖 denotes the investment cost when cumulative installed capacity is 𝑊0,𝑖, and 𝛽𝑖 is the learning 

coefficient for technology 𝑖. The total installed cumulative capacity, 𝑊𝑖 also takes into account installed 

capacity of related technologies according to a learning spillover matrix (see Mercure, 2012). The 

learning rate, which describes the fractional reduction in cost for each doubling of cumulative capacity 

(Rubin et al., 2015), is then given by  
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𝐿𝑅𝑖 = 1 − 2−𝛽𝑖  (7) 

 

The fact that technology costs are represented by distributions rather than point estimates in FTT:Power 

means that even if a technology on average is more expensive than another technology, there can still 

be cases in which the opposite is true. This is illustrated in figure 6.4, which shows that, as long as there 

is sufficient overlap between the cost distributions, there are cases in which the (on average) more 

expensive technology is cheaper than the (on average) cheaper technology. 

 

Figure 6.4 Probability distributions for the cost of two different technologies (with average costs Ci and Cj). 

Source: Mercure (2012). 

This can be used to derive the cumulative probability distributions, 𝐹𝑖(𝐶, 𝐶𝑖), which give the probability 

that the cost of technology 𝑖, with average cost 𝐶𝑖, will be less than 𝐶. Based on this, investor preferences 

for electricity generating technologies in FTT:Power are assumed to be proportional to the probability 

that the cost of a unit of technology 𝑖 is less than the median value of the cost of technology 𝑗. This is 

given by 

  

𝐹𝑖𝑗 = 𝐹𝑖(𝐶𝑗, 𝐶𝑖) =
1

1 + exp (
𝐶𝑗 − 𝐶𝑖

𝜎𝑗𝑖
)

, (8)
 

 

where 𝜎𝑗𝑖 = √𝜎𝑖
2 + 𝜎𝑗

2, and 𝜎𝑗 and 𝜎𝑖 are the standard deviations for the LCOE distributions for 𝑖 and 

𝑗, and 𝐹𝑖𝑗 + 𝐹𝑗𝑖 = 1 (Mercure, Pollitt, Edwards, et al., 2018). The shaded area in figure 6.4 corresponds 

to 𝐹𝑗𝑖 = 𝐹𝑗(𝐶𝑖, 𝐶𝑗). This way of representing investor preferences ensures smoother transitions. (If costs 

instead were represented as point estimates, investor preferences would suddenly switch when the 

LCOE of one technology, due for instance to learning, drops below the cost of another.)  

 

Characteristic time constants 
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The substitution parameters also depend on technology characteristics that in FTT:Power determine 

potential turnover rates (Mercure, 2015). These are: the rate of retirement of technology 𝑗, 1/𝜏𝑗 where 

𝜏𝑗 is the lifetime of technology 𝑗, and the rate at which units of 𝑖 can be built, 1/𝑡𝑖 where 𝑡𝑖 is the build 

time for technology 𝑖. 

 

Based on investor preferences, and retirement and build rates, Mercure (Mercure, 2012) defines the 

(gross) flow of market shares from technology 𝑗 to technology 𝑖 to be proportional to 

 

𝑑𝑆𝑖→𝑗

𝑑𝑡
∝ 𝐹𝑖𝑗

𝑆𝑖

𝑡𝑖

𝑆𝑗

𝜏𝑗
, (9) 

 

and the (gross) flow of market shares from technology 𝑖 to technology 𝑗 to be proportional to 

 

𝑑𝑆𝑗→𝑖

𝑑𝑡
∝ 𝐹𝑗𝑖

𝑆𝑗

𝑡𝑗

𝑆𝑖

𝜏𝑖
. (10) 

 

The flows in equation (9) and (10) are independent. This means that the net flow of shares from 𝑖 to 𝑗 

is given by 

 

𝑑𝑆𝑖𝑗

𝑑𝑡
= 𝐾𝑆𝑖𝑆𝑗 (𝐹𝑖𝑗

1

𝑡𝑖

1

𝜏𝑗
− 𝐹𝑗𝑖

1

𝑡𝑗

1

𝜏𝑖
) = 𝑆𝑖𝑆𝑗(𝐹𝑖𝑗𝐴𝑖𝑗 − 𝐹𝑗𝑖𝐴𝑗𝑖), (11) 

 

Where K is a scaling factor, and 𝐴𝑖𝑗 = 𝐾/𝑡𝑖𝜏𝑗. Equation (9) takes the same form as equation (3). From 

this it follows that the substitution parameters in FTT:Power, which are defined for each technology 

pair,  are given by 𝑏𝑖𝑗 = 𝐹𝑖𝑗𝐴𝑖𝑗 − 𝐹𝑗𝑖𝐴𝑗𝑖. Note that 𝑏𝑖𝑗 = −𝑏𝑗𝑖.  

 

The shares equation, which determines the total rate of change of technology shares for technology 𝑖, 

is thus given by adding all the net flows: 

 

𝑑𝑆𝑖

𝑑𝑡
= ∑

𝑑𝑆𝑖𝑗

𝑑𝑡
𝑗

= ∑ 𝑆𝑖𝑆𝑗(𝐹𝑖𝑗𝐴𝑖𝑗 − 𝐹𝑗𝑖𝐴𝑗𝑖)

𝑗

. (12) 

 

It follows from this equation that the total shares are always equal to one (∑ 𝑑𝑆𝑖𝑗 𝑑𝑡⁄𝑖𝑗 = 0 and 

∑ 𝑆𝑖 = 1)𝑖 .  
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Given initial shares (in 2013), and electricity demand (from 2013-2050), equation (12) is used in 

FTT:Power to compute global technology deployment in the power sector. Note that the shares equation 

is computed independently in each of the 59 regions that are represented by FTT. Based on the shares, 

it is relatively straight-forward to calculate the total installed capacity and electricity produced globally 

by each technology (as shown in figure 6.1) over time76. Total power sector emissions (as shown in 

figure 6.2) are then given by 𝐸(𝑡) = ∑ 𝛼𝑖𝐺𝑖(𝑡)𝑖 , where 𝛼𝑖 are the emissions factors. 

6.2.3 Policies in FTT:Power 

With the exception of regulations and kick-start policies, all policies in FTT:Power are represented as 

changes to the LCOEs. In this sense, policies are seen to impact investor preferences and thus market 

dynamics. As already seen, carbon prices are represented by a variable in the LCOE (the carbon cost 

(𝐶𝐶𝑖(𝑡)). Subsidies are modelled as reductions in the investment costs, 𝑇𝐼𝑖, of technologies, and FiTs 

are modelled as effective subsidies, which cover the differences between the LCOE and the price of 

electricity plus a margin (Mercure et al., 2014). Lastly, regulations are modelled as a limit to the 

construction of new units of technologies and kick-start policies are modelled as a small increase in 

shares. 

 

The impacts of different combinations of policies on technology deployment and emissions in FTT and 

E3ME-FTT have been explored in several papers (e.g. Mercure et al., 2014). This chapter instead asks 

how certain we can be that given policy sets, if implemented in the real world, will lead to the modelled 

results. An understanding of the uncertainties involved is key to assessing the predictive value of 

FTT:Power and evaluating the usefulness of simulation models compared to energy system 

optimisation models. It is also key to assessing the chance that model outputs might be wrong, which – 

as argued in Chapter 4 – is crucial in this area of research. 

 

To properly assess the reliability of FTT predictions we would have to assess whether the shares 

equation represents an accurate description of technology dynamics and whether the impacts of policies 

are adequately captured. These are both crucial, but huge, questions. This chapter, instead, conducts a 

global sensitivity analysis of the FTT:Power parameters that define the core FTT equation presented in 

this section. Any interpretation of the results of the sensitivity analysis as representative of the 

uncertainty of policy impacts will implicitly assume not only that the distributions of parameter values 

used in the analysis represent the “true” uncertainty of parameter values, but also that the structure of 

FTT:Power offers an adequate representation of power sector dynamics. Given that this chapter only 

examines parametric uncertainty, and only do so for a subset of FTT:Power parameters, the results of 

 

76 See (Mercure, 2012) for the full set of equations. 
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the analysis can be viewed as a conservative estimate of the uncertainty of FTT:Power predictions (see 

discussion of parameter ranges in section 6.4.2). The method employed and the distributions of 

parameter values used in the analysis are presented in section 6.4. Before so doing, a review of previous 

sensitivity analyses of the FTT model and other IAMs is provided.  

6.3 Past uncertainty assessments 

The goals of the analysis conducted in this chapter are to i) provide a first conservative estimate of the 

uncertainty of FTT:Power predictions and, ii) to identify the parameters in the FTT core equation, the 

shares equation, that have the biggest influence on FTT predictions. The analysis represents a 

significant extension of earlier FTT sensitivity analyses because it employs a global instead of a one-

factor-at-a-time approach (explained in the next section) and because it covers all the parameters that 

define the shares equation, several of which have not yet been included in sensitivity analyses of FTT. 

 

The most comprehensive sensitivity analysis of FTT:Power thus far is found in Pablo Salas’ PhD thesis 

(Salas, 2017). Salas considers the uncertainty of energy resource availability, learning rates, and power 

grid flexibility on power sector emissions. With the exception of one case study (of the uncertainty of 

the availability of hydroelectricity in Brazil), however, Salas considers only the extreme values of each 

parameter using a one-factor-at-a-time approach. In addition to Salas (2017), two papers presenting 

results from the full E3ME-FTT model include brief sensitivity analyses in the supplementary material 

(Mercure, Pollitt, Edwards, et al., 2018; Mercure, Pollitt, Viñuales, et al., 2018). In both cases, a one-

factor-at-a-time approach based on only extreme values is used. Three FTT:Power parameters are 

varied by Mercure et al. (2018; 2018): renewables capital costs, renewables learning rates, and the 

investor discount rate. The sensitivity of only one FTT:Power output, the renewables technology share, 

is examined (i.e. the sensitivity of emissions or the deployment of other technologies to the three 

parameters is not reported) and found to be most sensitive to the investor discount rate. In all of the 

above examples, it is the sensitivity of the predicted impacts of ‘2C Policies’ and ‘No Policies’ that are 

examined. No sensitivity analysis has so far been conducted of the predicted impacts of the ‘1.5C 

Policies’. 

 

Uncertainty assessments of IAMs have been repeatedly called for in the literature (e.g. Kann & Weyant, 

2000). The criticism of CBA IAMs, in many ways, boils down to the argument that the results are 

determined by parameters that are either unknown (climate damages) or highly value-laden (the 

discount rate). Most modelers working on CBA IAMs have recognized that uncertainty is a key 

challenge. As a consequence, there are numerous studies assessing the uncertainty of assumptions in 

CBA IAMs (Beck & Krueger, 2016). 
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Comprehensive uncertainty assessments are much rarer for large-scale IAMs than for CBA IAMs, in 

part due to their size and complexity. But several studies exist that assess uncertainties associated with 

large-scale IAMs focusing on select groups of parameters. Optimal pathways generated by IAMs have 

long been known to be highly sensitive to technology cost assumptions (Keepin & Wynne, 1984) and 

AR5 highlighted the importance of assumptions regarding both the availability and costs of future 

technologies for mitigation costs (IPCC, 2014a). The EMF 27 study (Kriegler et al., 2014) and the 

AMPERE Project (Riahi et al., 2015a) were both specifically dedicated towards assessing the impacts 

of technological uncertainty on the cost of mitigation. Overall, the IAM community has studied the 

influence of technological and socio-economic assumptions on low-carbon transformation pathways 

and mitigation costs extensively (e.g. Krey and Riahi (2009), van Vliet et al. (2009), Edenhofer et al. 

(2010), McJeon et al. (2010), and Bosetti et al. (2015)).  

 

The outputs that are examined in most IAM uncertainty assessments, however, differ from the outputs 

analysed in FTT:Power in this chapter. This has to do with the “mode” in which IAMs are run, as 

discussed in Chapter 5. Because the majority of IAMs identify cost-effective emissions pathways that 

meet predetermined climate targets – typically utilizing techniques of constrained optimisation where 

emissions is one of the key binding constraints – emissions normally remain constant during sensitivity 

analyses. IAMs might, for example, be run in an climate constrained scenario with and without the 

availability of key technologies and with a range of parameter values in order to assess the increase in 

mitigation costs or carbon prices (Bosetti et al., 2015; Kriegler et al., 2014). The EMF 27 study for 

example, which “investigated the importance of individual mitigation options such as energy intensity 

improvements, carbon capture and storage (CCS), nuclear power, solar and wind power and bioenergy 

for climate mitigation” (Kriegler et al., 2014, p. 353), did so by examining the impact of varying these 

options on the cost of mitigation. Bosetti et al. (2015) similarly investigated the sensitivity of mitigation 

costs to energy technology costs (informed by expert elicitations) in climate constrained scenarios in 

WITCH, GCAM, and MARKAL. The sensitivity of emissions to assumptions was only investigated in 

the baseline scenario, which is the only scenario in which emissions are unconstrained and thus allowed 

to vary. Overall, the output whose uncertainty is most often analysed in uncertainty assessments of 

IAMs is the cost of mitigation (e.g. Rogelj et al. (2013), Iyer, et al. (2014), Barron and McJeon (2015), 

Olaleye and Baker (2015), McJeon et al. (2010), Lemoine and McJeon (2013), Lehtveer and Hedenus 

(2015)). 

 

Thus, the sensitivity of emissions in non-baseline (mitigation) scenarios to assumptions is less often 

explored in IAM uncertainty assessments. As discussed in Chapter 5, when IAMs are run in 

“optimisation mode” (or, more or less equivalently, in “backcasting” mode) emissions are inputs and 

variables such as the carbon price and the cost of mitigation are outputs. The exception is when these 

IAMs are run without the emissions constraint, to generate baselines. In this case, the effect of varying 
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input assumptions on the model’s technology choice will also have an impact on emissions (e.g. Bosetti 

et al. (2015)).  

 

Examples of analyses in which the sensitivity of emissions to input assumptions are investigated can, 

however, be found if we look to sensitivity analyses of simulation models such as IMAGE 

(Campolongo & Braddock, 1999; Van der Sluijs et al., 2002). The sensitivity analysis conducted in this 

thesis is much closer to these than it is to the preceding examples because FTT:Power is always run in 

“simulation mode”, meaning that policies (the input variables) are given while technology deployment 

and emissions (the output variables) are allowed to vary not only in the baseline, but in all scenarios.  

 

Lastly, it should be noted, despite efforts to examine uncertainties in IAMs, fewer studies have, 

according to Usher (2016), examined uncertainties in ESOMs (which in this thesis are treated as a sub-

category of IAMs, see Chapter 3). This is despite a long-standing strong awareness of the importance 

of structural and parametric uncertainty in ESOMs (Keepin & Wynne, 1984). Yue et al. (2018) express 

concerns that uncertainties in model structures and input parameters in ESOMs are underplayed or 

ignored. Based on a comprehensive review of 2100 studies, Yue et al. identify little over 100 studies 

that use deterministic scenarios to explore uncertainty and only 34 studies that apply formal uncertainty 

techniques, nine of which use MCA. This is despite MCA being the most well-known method of 

uncertainty analysis (Anadon et al., 2017) (other formal techniques identified by Yue et al. are stochastic 

programming, robust optimization, and modelling to generate alternatives). Thus, uncertainty 

assessments of energy system models that go beyond scenario analysis are still relatively uncommon. 

In a recent review of the IAM literature, Gambhir et al. (2019) also write that it is (still) not common 

practice to delve into the assumptions that drive IAM results and that more frequent used of sensitivity 

analyses would be beneficial for IAM research. The analysis conducted in this chapter is partly a 

response to this.  

6.4 Method 

6.4.1 Global sensitivity analysis 

Sensitivity analyses are often conducted using a one-factor-at-a-time approach (Morris, 1991), that is, 

by varying one parameter at a time and recording outputs while keeping all other parameters constant. 

Often, when using a one-factor-at-a-time approach, only the extreme values of input parameters are 

considered (which, as shown in the previous section, has been the case for almost all of the sensitivity 

analyses conducted of FTT thus far). A global sensitivity analysis (GSA), by contrast, is based on 
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varying parameters simultaneously over their entire ranges (Johnson et al., 2006; Saltelli et al., 2006)77. 

A GSA is preferable for two reasons. First, it captures potential interaction effects between parameters. 

Second, by capturing the entire ranges of input values, it ensures that the entire ranges of output values 

(corresponding to the input values) are captured, including when the extreme values are found on the 

interior of the input ranges. Both are important when analysing the sensitivity of complex models that 

exhibit strong non-linearities such as FTT:Power (Saltelli et al., 2006).  

 

The GSA in this chapter is conducted using a Monte Carlo analysis (MCA). In an MCA, distributions 

of inputs are sampled at random to compute the corresponding distributions of outputs. An MCA thus 

provides a picture of the variability of outputs conditional on the variability of inputs. An additional 

benefit of MCA, compared to other sensitivity analysis methods, is that the accuracy of the analysis 

depends on the sample size, but not on the number of input parameters (Morgan & Henrion, 1990). 

MCA is the most well-known method for uncertainty analysis (Anadon et al., 2017) and it is well suited 

for GSA. 

 

In conventional MCA, inputs are sampled completely at random from their distributions. For each new 

run, parameters are drawn independently from previous runs. This procedure can, however, lead to 

clustering of parameter values, which means that other regions of the input parameter space are less 

well represented (Loucks et al., 2005). Because the aim of the analysis conducted in this chapter is to 

better reflect the variability of outputs contingent on the variability of inputs, such clustering is best 

avoided. A stratified sampling method is useful in this context because it ensures an even coverage of 

the input parameter space (Loucks et al., 2005).  

 

Latin Hypercube Sampling (LHS) represents a commonly used stratified sampling method (Iman & 

Conover, 1982). LHS divides each input distribution into section of equal probability before drawing 

one value at random from each section. Values from each section for each parameter are randomly 

assigned to values from sections from the other parameters. Because LHS reflects the mean, variance, 

and other aspects of the input distributions more accurately (for the same sample size) than completely 

random sampling, it represents a very efficient sampling method (Morgan & Henrion, 1990). This 

means that the distribution of outputs also reflects the distribution of inputs more accurately (for the 

same sample size). LHS has been used in several uncertainty analyses of the CBA IAMs DICE, RICE, 

and PAGE (Butler et al., 2014; Stanton et al., 2008). LHS is used more recently by Chan and Anadon 

 

77 A ‘global’ sensitivity analysis is used in this thesis in line with Johnson et al. (2006) and Saltelli et al. (2006) 

to denote the perturbation of multiple model inputs simultaneously (as opposed to individually) and the evaluation 

of the effects of doing so on model outputs. ‘Global’ does not mean that all the parameters in a model are included 

in the sensitivity analysis. 
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(2016) to propagate uncertainty through MARKAL to estimate the benefits of R&D portfolios, and 

Anadon et al. (2017) review numerous efforts to incorporate approaches, including LHS, to facilitate 

public R&D decision-making under uncertainty. 

6.4.2 Selected parameters and their distributions 

The rate of technology deployment (and thus emissions reductions, since electricity demand is 

exogenous) in FTT:Power is determined by the shares equation (equation 12). It follows from this that 

the rate of growth of a given technology depends on the market shares of all the other technologies and 

on the substitution parameters between the given technology and all the other technologies. The 

dependence of the rate of growth on the existing market shares of all technologies is what gives rise to 

the characteristic shape of diffusion (the S-shape). A technology with a very small market share will 

grow slowly because the rate at which it can replace other technologies is proportional to its own share. 

However, if the market share of a technology becomes very large, approaching unity, all the other shares 

necessarily approach zero, which again limits the rate of growth of the technology with a large share. 

Thus, the form of the shares equation determines the shape of technology deployment. The rates of 

deployment, given shares, however, are determined by the substitution parameters, 𝑏𝑖𝑗 = 𝐹𝑖𝑗𝐴𝑖𝑗 −

𝐹𝑗𝑖𝐴𝑗𝑖. The global sensitivity analysis conducted in this chapter targets the parameters that define the 

substitution parameters, which are similar for all FTT models. Due to time constraints of this doctoral 

research, remaining FTT:Power parameters are left for future sensitivity analyses. Appendix E lists 

parameters in FTT:Power that are not included in the sensitivity analysis conducted in this chapter. The 

fact that not all parameters are included means that the results presented do not capture the full 

variability of FTT:Power outputs and thus likely represent (see discussion of parameter ranges below) 

a conservative estimate of the uncertainty of FTT:Power predictions.  

 

This chapter includes five groups of parameters: three related to 𝐴𝑖𝑗 and two to 𝐹𝑖𝑗. The parameters that 

define 𝐴𝑖𝑗 are the characteristic time constants: the lifetimes, 𝜏𝑗, build times, 𝑡𝑖 and overall scaling 

factor, 𝐾. None of these parameters have been investigated in sensitivity analyses of FTT:Power thus 

far. The parameters that define 𝐹𝑖𝑗 include the parameters that define the LCOEs and the learning rates. 

(In addition to these, 𝐹𝑖𝑗 also includes policy variables. Because the point of the sensitivity analysis is 

to get a better understanding of the uncertainty of the impacts of given policies, however, these variables 

are held constant.) The cost parameters that are already treated as distributions in FTT:Power are not 

included (that is, the investment costs, operation and maintenance costs, and fuel costs). This leaves us 

with two parameters to investigate: the investor discount rate, 𝑟, which determines how costs are 

aggregated over time, and the learning rates, 𝐿𝑅𝑖, which determine how costs decrease with total 

installed capacity.  
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Because all of the parameters except for the scaling factor are technology specific, and there are 24 

technologies in FTT:Power, this gives rise to 97 different parameters (96 technology-specific and one 

global). Table 6.1 lists the parameters and their impact on the rate of technology deployment. 

 

Table 6.1 Parameters included in the global sensitivity analysis 

Parameters Impact on the rate of technology deployment Global or technology 

specific variation 

 

𝜏𝑗 

 

Lifetimes Longer lifetime of a technology makes it harder for 

other technologies to replace it 

  

Technology specific 

𝑡𝑖 Build times Longer build time of a technology makes it harder 

for it to replace other technologies 

 

Technology specific 

𝐾 Overall 

scaling factor  

Higher values of K will speed up technology 

diffusion overall 

 

Global 

𝑟𝑖 Investor 

discount rates 

A higher discount rate for a technology makes it 

cheaper 

 

Technology specific 

𝐿𝑅𝑖 

 

Learning rates A higher learning rate for a technology implies 

faster cost reductions over time 

Technology specific 

 

For the purpose of the GSA conducted in this chapter, the parameter values are assumed to be 

independently and uniformly distributed around ±50% of their default values. All the parameter values, 

including the default and ±50% ranges, are shown in Table 6.1.  
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Table 6.2 Best guess parameter values and ±50% ranges (in parenthesis) used in MCA. 

Technology Lifetimes 𝝉𝒋 

[years] 

Build times 𝒕𝒊 

[years] 

Investor 

discount rates 

𝒓𝒊 

Learning rates 

𝑳𝑹𝒊 [%] 

Overall 

scaling 

factor 𝑲 

Nuclear 60 (30, 90) 7 (3.5, 10.5) 0.1 (0.05, 0.2) 5.8 (2.9, 8.7)  

 

 

 

 

 

 

 

 

 

 

4 (2, 8) 

Oil 40 (20, 60) 4 (2, 6) 0.1 (0.05, 0.2) 1.0 (0.5, 1.5) 

Coal 40 (20, 60) 4 (2, 6) 0.1 (0.05, 0.2) 3.0 (1.5, 4.5) 

Coal + CCS 40 (20, 60) 4 (2, 6) 0.1 (0.05, 0.2) 5.0 (2.5, 7.5) 

IGCC 40 (20, 60) 4 (2, 6) 0.1 (0.05, 0.2) 3.0 (1.5, 4.5) 

IGCC + CCS 40 (20, 60) 4 (2, 6) 0.1 (0.05, 0.2) 5.0 (2.5, 7.5) 

CCGT 30 (15, 45) 2 (1, 3) 0.1 (0.05, 0.2) 4.0 (2.0, 6.0) 

CCGT + CCS 30 (15, 45) 2 (1, 3) 0.1 (0.05, 0.2) 5.0 (2.5, 7.5) 

Solid Biomass 40 (20, 60) 4 (2, 6) 0.1 (0.05, 0.2) 5.0 (2.5, 7.5) 

S Biomass CCS 40 (20, 60) 4 (2, 6) 0.1 (0.05, 0.2) 7.0 (3.5, 10.5) 

BIGCC 40 (20, 60) 4 (2, 6) 0.1 (0.05, 0.2) 5.0 (2.5, 7.5) 

BIGCC + CCS 40 (20, 60) 4 (2, 6) 0.1 (0.05, 0.2) 7.0 (3.5, 10.5) 

Biogas 30 (15, 45) 2 (1, 3) 0.1 (0.05, 0.2) 5.0 (2.5, 7.5) 

Biogas + CCS 30 (15, 45) 2 (1, 3) 0.1 (0.05, 0.2) 7.0 (3.5, 10.5) 

Tidal 80 (40, 120) 7 (3.5, 10.5) 0.1 (0.05, 0.2) 1.4 (0.7, 2.1) 

Large Hydro 80 (40, 120) 7 (3.5, 10.5) 0.1 (0.05, 0.2) 1.4 (0.7, 2.1) 

Onshore 25 (12.5, 37.5) 1 (0.5, 2) 0.1 (0.05, 0.2) 7.0 (3.5, 10.5) 

Offshore 25 (12.5, 37.5) 1 (0.5, 2) 0.1 (0.05, 0.2) 9.0 (4.5, 13.5) 

Solar PV 25 (12.5, 37.5) 1 (0.5, 2) 0.1 (0.05, 0.2) 17.0 (8.5, 25.5) 

CSP 25 (12.5, 37.5) 1 (0.5, 2) 0.1 (0.05, 0.2) 10.0 (5.0, 15.0) 

Geothermal 40 (20, 60) 4 (2, 6) 0.1 (0.05, 0.2) 5.0 (2.5, 7.5) 

Wave 20 (10, 30) 1 (0.5, 2) 0.1 (0.05, 0.2) 14.0 (7.0, 21.0) 

Fuel Cells 20 (10, 30) 2 (1, 3) 0.1 (0.05, 0.2) 15.0 (7.5, 22.5) 

CHP 40 (20, 60) 4 (2, 6) 0.1 (0.05, 0.2) 3.0 (1.5, 4.5) 

 

The ±50% range is commonly used in sensitivity analyses of IAMs. In a comprehensive review of 2100 

ESOM studies, Yue et al. (2018) identify only nine studies that use MCA to assess uncertainty. In seven 

of these, input parameter ranges are defined by multiplying default values by an arbitrary percentage 

(both Lehtveer and Henedus (2015) and Pye et al. (2015) use ±50% ranges for all or some parameters 

in their sensitivity analyses) and the distributions tend to be simple (uniform or triangular). (Only two 

of the studies (Bosetti et al., 2015; Fragkos et al., 2015) offer more comprehensive assessments of input 

parameter ranges and distributions.) Van der Sluijs et al. (2002) also use the ±50% range in their global 

sensitivity analysis of the TIMER model. Uniform distributions are often used when little is known 
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about a distribution; The more “complicated” the shape of a distribution is, the more information is 

needed to specify it78.  

 

A more comprehensive assessment of FTT:Power input parameter ranges and distributions is beyond 

the scope of this thesis. For the purpose of identifying the parameters in the FTT shares equation that 

have the largest impact on FTT:Power predictions, however, the parameter distributions (i.e. the ranges 

and shapes) do not matter as long as the sensitivities are measured in relative terms, which they are in 

this thesis (using Pearson’s correlation coefficient). The recommendation in this chapter is that future 

uncertainty analyses of FTT:Power consider the uncertainty of the parameters that – based on the 

sensitivity analysis in this chapter – turn out to have a larger impact on FTT:Power predictions (the 

parameter with the largest impact on predictions, we will see, is the overall scaling factor). For the 

purpose of providing a first conservative estimate of the uncertainty of FTT:Power predictions, it is 

enough to show that the ranges obtained by varying the best guess parameter values by ±50% are not 

unreasonably large79. Appendix D compares the ±50% ranges for learning rates, lifetimes, and investor 

discount rates with ranges found in the literature, reflecting either empirical estimates or ranges used 

by other modelers. Even though the information in Appendix D is not based on a comprehensive review, 

the findings indicate that the ±50% ranges are within the bounds of what is believed to be possible (a 

more comprehensive review can only increase the ranges found in the literature). The scaling factor is 

not reviewed because there is no literature on it (it is a parameter that is specific to FTT, which is not 

even discussed in FTT publications) and no information was gathered for the build times, whose unclear 

specification is discussed in the next section. 

 

A caveat of the sensitivity analysis conducted in this chapter is that correlations between parameter 

values are not taken into account. The independence assumption may in general both underestimate and 

overestimate the uncertainty in outputs (Parkinson & Young, 1998; Shackley et al., 1998). The fact that 

the directions of the impacts of parameters on the rates of technology deployment and thus emissions 

are known in FTT:Power (Table 6.1), however, enables us to make an educated guess regarding the 

effects of the independence assumptions. First, it is not implausible that parameters such as e.g. the 

hurdle rates (investor discount rates) are correlated for renewable technologies. If this is the case, it 

means that situations in which some renewable hurdle rates are high and some are low are less likely 

than situations in which all renewable hurdle rates are either high or low. This, it seems, will increase 

 

78 The uniform distribution corresponds to the maximum entropy probability distribution if we know only the 

minimum and maximum values. 

79 The fact that only a sub-set of FTT:Power parameters are included and that structural uncertainty is ignored 

also contributes to the conservatism of the estimates in this chapter. It is possible that even with relatively large 

parameter ranges, the results of the analysis will still represent a conservative estimate of the uncertainty. 
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the frequency of high and low emissions outcomes relative to median emissions outcomes, i.e. the 

variance of the distribution of emissions, which may be interpreted as an increase in the uncertainty of 

emissions. This is because when all renewable hurdle rates move together this has a stronger impact on 

emissions (in either direction) than when renewable hurdle rates move in different directions. In general, 

for FTT:Power, if hurdle rates, build times, lifetimes, or learning rates are correlated for either low-

carbon technologies as a group or for fossil fuel technologies as a group, this seems to increase the 

frequency of high and low emissions outcomes relative to median emissions outcomes. Thus, it is not 

unlikely that in FTT:Power, the independence assumption leads to an underestimate of the uncertainty 

of emissions (if, however, parameters for low-carbon technologies are correlated with parameters for 

fossil fuel technologies, the opposite might be the case). Although future uncertainty analyses of 

FTT:Power would benefit from considering potential correlations, the assumption does not stop us from 

using the sensitivity analysis to identify the individual parameters that influence emissions and 

technology deployment in FTT:Power the most. Additionally, given little reason to believe that the 

independence assumption leads to a vast exaggeration of the uncertainty of technology deployment and 

emissions, the results of the GSA can still be interpreted as a first conservative estimate of the 

uncertainty of FTT:Power predictions. 

 

It is nonetheless important to highlight that the analysis conducted in this chapter represents only the 

first step towards a more comprehensive uncertainty assessment of FTT:Power and that the uniform 

and independent distributions represent only first order approximations of the uncertainties associated 

with selected FTT:Power parameters. The advantage of starting with a relatively simple global 

sensitivity analysis is that future efforts can be directed towards those parameters that turn out to have 

a large impact on model results. When it comes to potential correlations between parameters, it might 

be worthwhile trying out possible values and see whether this affects results. Based on this, efforts can 

again be directed towards those correlations that matter for FTT:Power predictions. 

6.4.3 Uncertainty of selected parameters 

An uncertainty analysis goes beyond a sensitivity analysis because it does not only compute the effects 

of varying input parameters on model outputs but interprets the variability as representative of 

uncertainty. When the input distributions used in the MCA are seen to reflect the uncertainty of input 

parameter values, the output distributions can be interpreted as the uncertainty of outputs.  

 

The parameter distributions used in this chapter, however, do not, as already discussed, reflect the ‘true’ 

uncertainty of the input parameters. In order to determine what the ‘true’ uncertainty of the input 

parameters are, more research needs to be done. Uncertainty, however, will always remain subjective 

in the sense that some people will know more than others and more research might reduce it (Morgan 
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& Henrion, 1990). In that respect, the uniform distributions employed in this chapter can be interpreted 

as the “maximum ignorance” estimates of the uncertainty of the selected parameter values in 

FTT:Power. The brief comparison of parameter distributions used in this chapter and the ranges found 

in the literature (shown in Appendix D and discussed in the previous section) also suggests that the 

±50% ranges are within the bounds of what is thought to be possible. 

 

In any case, the GSA computes the variability of FTT:Power predictions contingent on specified input 

distributions. The results of the analysis can be used to prioritise future uncertainty analyses, in which 

more attention can be paid to capturing the ‘true’ uncertainty of the parameters that have a large impact 

on results. A qualitative discussion of the uncertainty of the selected parameters is included here.  

 

The uncertainty of the build times (𝑡𝑖) and lifetimes (𝜏𝑗) in FTT:Power has two main sources. First, the 

data (obtained from (IEA & NEA, 2015) is not perfect. Both build times and lifetimes vary for different 

units of the same type of technology, between regions, and over time. In addition to that, lifetimes of 

power plants can be actively extended and build times might be actively shortened (more on the ability 

to control parameter values in section 6.6). Second, there is uncertainty regarding the appropriate 

specification of these parameters in FTT:Power. This uncertainty arises partly from the novelty of the 

FTT framework, which means that different specifications have not yet been tested.  In particular, it is 

unclear whether the construction times of different technologies reported by the IEA are the right values 

for the 𝑡𝑖 parameters in FTT:Power. Because 𝑡𝑖 represent the “birth rates” of technologies (Mercure, 

2015), an equally plausible measure might be the time from the inception of a new power plant until 

the time it starts operating. This would, however, be different from the construction times of different 

technologies (which are currently used). Changing this measure would likely increase the build times 

of more unpopular technologies (such as nuclear). We might also expect that build times measured in 

this way are more likely to change with experience over time. In summary, thus, the uncertainty of build 

times includes both the uncertainty of the IEA data and the uncertainty regarding the correct 

specifications according to the underlying theory. While more and better data would reduce the first 

type of uncertainty, this would not reduce the second type of uncertainty.  

 

Of all the selected parameters the scaling factor (𝐾) is the one that is characterised by the most 

fundamental uncertainty. The value of this parameter is not discussed in FTT publications. It is based, 

however, on a judgment of how long it takes to achieve a full turnover of technologies. More 

specifically, the value of the scaling factor is chosen so as to match Arnolf Grübler’s timescale of a full 

turnover every 100 years80. 

 

80 Personal communication with Jean-Francois Mercure 
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In the limited sensitivity analyses that have been conducted of FTT:Power so far the investor discount 

rate (𝑟) had the largest impact on results (Mercure, Pollitt, Edwards, et al., 2018; Mercure, Pollitt, 

Viñuales, et al., 2018). The investor discount rate, also known as the hurdle rate, represents the 

minimum rate of return that an investor needs to earn in order to make an investment. In FTT:Power, 

the investor discount rate is set to 10% for all technologies in all regions. Recent literature, however, 

has shown that investor discount rates vary based on the technology in question (Egli et al., 2018) and 

from region to region (Ondraczek et al., 2015) due to differences in risk perceptions and the cost of 

capital. At the same time, it is extremely difficult to obtain data from investors on the discount rates 

they employ (due in part to commercial reasons). While previous sensitivity analyses of FTT:Power 

only investigated the impacts of changing 𝑟 by the same factor for all technologies, the analysis in this 

chapter captures technology-specific variations of the investor discount rates, 𝑟𝑖.  

 

When it comes to the learning rates, 𝐿𝑅𝑖, it has long been known that the assumptions of technology 

costs and dynamics have a large impact on mitigation costs (Löschel, 2002). The inclusion of 

endogenous learning will, everything else being the same, lead to significant cost reductions. AR5 

highlights the importance of technology cost assumptions for mitigation costs (IPCC, 2014a) and the 

analysis of these aspects has since been at the centre of a growing literature (Bosetti et al., 2015). 

FTT:Power is unique in this regard because it allows us to investigate the impacts of learning rates on 

technology deployment, and thus emissions, as opposed to the cost of meeting a given target. 

6.5 Results 

6.5.1 Technology deployment 

The results of the MCA (for n=200 runs) for the deployment of key FTT:Power technologies given 

1.5C policies and 2C policies are shown in figures 6.5 and 6.6 respectively. The technologies shown 

include the five technologies that saw the largest changes in the best guess predictions compared to the 

baseline: Coal, Gas, Solar PV, Wind, and NETs (which in FTT:Power consist of three kinds of 

bioenergy with CCS (BECCS)). The figures show a wide range of trajectories surrounding the best 

guess predictions for each of the five technologies. If we interpret the spread of trajectories as the 

uncertainty of technology deployment (contingent on the assumed uncertainty of input parameters), this 

indicates a very large uncertainty with regards to the impacts of policies on technology deployment.  
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Figure 6.5 Ranges of MCA runs (n=200) for electricity generation for coal, gas, wind, solar PV, and CDR (NETs) 

in the 1.5C scenario. The lightest shade shows the full range, and the darker shades show the 5-95% range and 

the 25-75% range. The solid line shows the 50% and the dashed lines show the best guess predictions. 

Figures 6.5 and 6.6 also show that the uncertainty of technology deployment caused by policies 

increases over time. This is in accordance with expectations: the further into the future we look, the 

harder it is to predict the impacts of policies. Figures 6.7 and 6.8 show more clearly how the 

distributions of technology deployment in the MCA runs evolve over time. While figure 6.6 also show 

that distributions generally widen over time, it also shows that the deployment of coal in the MCA runs 

is more spread out in 2030 than in 2050. This can be explained by the fact that the 2C policy set includes 

regulations that are used to phase out and cap coal in some regions. Because regulations are modelled 

as hard limits on shares, they necessarily reduce the uncertainty of technology deployment (of the 

regulated technologies).   
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Figure 6.6 Ranges of MCA runs (n=200) for electricity generation for coal, gas, wind, solar PV, and CDR (NETs) 

in the 2C scenario. The lightest shade shows the full range, and the darker shades show the 5-95% range and the 

25-75% range. The solid line shows the 50% and the dashed lines show the best guess predictions. 

Figures 6.7 and 6.8 also show a large spread in the level of technology deployment for most 

technologies already in 2030. Despite narrower ranges in absolute terms for renewable technologies, 

their coefficients of variation (i.e. the standard deviations divided by the means) are comparable to other 

technologies. For coal, the level of deployment is already significantly spread out in 2020, which is 

only 7 years after the start date of FTT:Power simulations. 
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Figure 6.7 MCA runs (n=200) for electricity generation at different points in time for the 1.5C scenario. The 

dashed lines show the best guess prediction and the solid lines show the median values of the Monte Carlo runs. 
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Figure 6.8 MCA runs (n=200) for electricity generation at different points in time for the 2C scenario. The dashed 

lines show the best guess prediction and the solid lines show the median values of the Monte Carlo runs. 
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Figure 6.9 shows the same results interpreted in probabilistic terms for the 1.5C runs. The figure shows 

the probabilities of generating less than x TWh/y in the case of coal and gas, and more than x TWh/y 

in the case of wind, solar, and NETs.  The probabilities are defined as the fraction of Monte Carlo runs 

below and above x TWh/y. 

 

 

 

Figure 6.9 Cumulative probability distributions for generating less than and more than a given level of electricity 

(TWh/y) calculated as fractions of MCA runs in the 1.5C scenario. Dashed lines indicate best guess levels of 

electricity generation in the corresponding years. 

Since FTT:Power is used (as part of E3ME-FTT) to inform energy and climate policy, a key question 

is how well the model can predict the impacts of policies on technology deployment in the power sector. 

While we might not expect to be able to predict policy impacts many decades into the future, we might 

expect to be able to predict the impacts of policies in the near term. The parametric uncertainty of model 

outputs represents only a part of the total uncertainty. Even then, the results of the MCA analysis 

conducted here indicate that the uncertainty of policy impacts on technology deployment is high. The 

next section presents the results of the MCA for emissions.  
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6.5.2 Uncertainty of power sector emissions 

Figure 6.2 showed the best guess predictions from FTT:Power for the impacts of policies designed to 

meet the 1.5˚C and the 2˚C targets on power sector emissions. Figure 6.10 shows the spread of emissions 

trajectories obtained from the MCA for the two policy scenarios and the baseline. This figure provides 

a very different image of policy impacts compared to figure 6.2. If we take the uncertainties of core 

parameters into account, a wide range of emissions trajectories result. The first finding, thus, is that 

predictions of power sector emissions from FTT:Power are sensitive to selected core FTT parameters. 

At the same time, however, taking parametric uncertainty into account does not imply that “anything is 

possible”. It is still clear from figure 6.10 that few of the No Policies runs reach levels of emissions 

comparable to the best guess predictions for the 2C and 1.5C policy sets. The ‘worst cases’, i.e. the runs 

with the highest emissions, also involve much lower emissions when policies are implemented. The 

fact that FTT:Power is based on diffusion theory means that new technologies can increase their markets 

shares even when no policies are in place, especially if learning leads to large cost reductions. It is 

therefore possible in principle that some of the baseline runs could also lead to a fast diffusion of low-

carbon technologies. The MCA, however, indicates that the effects of policies on emissions in 

FTT:Power is robust with respect to the uncertainty of core parameters. This is in line with the finding 

in AR5 that policies are necessary to reduce emissions (IPCC, 2014a). Thus, the second finding is, if 

we believe that FTT:Power sufficiently captures the dynamics of technology diffusion in the electricity 

sector, parameters would have to take on very extreme values in order for emissions in the baseline to 

reach levels near those that are required to meet the Paris target. 

 

Figure 6.10 Range of emissions in MCA runs for the No Policies policy set (brown), 2C policy set (blue), and 

1.5C policy set (green). The ranges indicate the maximum and minimum values. The dashed lines show the best 

guess predictions. (For each policy scenario n=200.) 
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Figure 6.11, which shows the spread of cumulative emissions in the MCA runs for each policy scenario, 

illustrates the second finding even more clearly. Figure 6.11 also shows that, while almost all baseline 

runs result in cumulative emissions that are higher than all the policy runs, there is a significant overlap 

in cumulative emissions between 2C policy runs and 1.5C policy runs. This leads to the third finding: 

the certainty with which we can distinguish the impacts on emissions of policies designed to meet 1.5˚C 

and 2˚C using FTT:Power is limited. 

 

Table 6.3 Properties of MCA runs 

Policy Set 

Default values 

(GtCO2) Mean (GtCO2) 

Standard 

Deviation 

(GtCO2) 

Runs below 

best guess (#) 

Runs above best 

guess (#) 

No Policies 749 703 89 125 75 

2C Policies 372 337 75 136 64 

1.5C Policies 292 254 74 142 58 

 

 

Figure 6.11 Histograms (left) and Box plots (right) showing cumulative emissions in the MCA runs for the No 

Policies (brown), the 2C (blue), and the 1.5C (green) Policy scenarios (n=200). Dashed lines show best guess 

predictions of cumulative emissions. 

 

The overlap in cumulative emissions in the MCA runs for the 1.5C and 2C policy sets indicates that 

policies aimed at reducing emissions to levels that are compatible with 1.5˚C might lead to emissions 

that are closer to a 2˚C target. Of course, the level of global warming depends on the total emissions 

from all sectors, not just the power sector. (Furthermore, even if we knew the total emissions, there are 

significant uncertainties involved in predicting the impacts of emissions on temperature increases.) At 

the same time, power sector emissions represent the single largest source of global emissions (about 

32% in 2018). Given the huge environmental impacts of a difference in global warming between 1.5˚C 



 

140 

and 2˚C, even a fraction of this is likely to have large detrimental environmental consequences. The 

uncertainty of power sector emissions, therefore, should not be taken lightly when using models to 

inform policies and long-term strategies. As argued in Chapter 4, even a small chance of being wrong 

implies great risks.  

 

In order to summarise the uncertainty associated with predicting policy impacts, two simple indicators 

are constructed. These indicators summarise the extent to which emissions might deviate from best 

guess predictions if we take into account the uncertainty of core parameters. The first indicator, O, 

represents a simple measure of overlap, which tells us the extent to which the impacts of different policy 

sets are distinguishable. This is given by the fraction of runs in the shaded area of the histogram in 

Figure 6.11. The second indicator, R, represents a simple measure of the risk of policy failure. It is 

defined as the fraction of 1.5˚C runs that result in cumulative emissions closer to the 2.0˚C best guess 

prediction than the 1.5˚C best guess prediction. 

 

Table 6.4 Indicators for overlap (O) and risk of policy failure (R) 

R = Fraction of 1.5˚C runs that result in cumulative emissions closer to 2˚C than 1.5˚C. 

O = Fraction of runs in the area of the histogram covered by both the 1.5˚C simulations and the 2˚C simulations 

(i.e. the shaded turquoise area).  

 

R = 0.15 

O = 0.61 

 

The value of O of 0.61 confirms that the overlap between the 1.5C runs and the 2C runs is large: 61% 

of the runs for the two scenarios fall within this region. Of course, O, would be smaller if we compared 

impacts of policies designed to reach targets that were further apart. The reason why there is a much 

bigger overlap between emissions in the two policy scenarios than between emissions in the baseline 

and the policy scenarios is because the distance between the targets in the first case is much smaller. 

The spread in emissions in all three cases is actually very similar (as can be seen from the standard 

deviations in Table 6.3). At the same time, however, and as already noted, the difference between 1.5˚C 

and 2˚C is significant because of the large environmental impacts.  

 

Despite the big overlap, the risk of policy failure as defined by R is relatively small (0.15). In fact, this 

points us to an interesting observation regarding the three distributions: they are all left skewed (i.e. the 

mean is higher than the median). The mean in all three cases also lie below the best guess predictions. 

Since input parameter distributions are completely symmetric, this indicates a non-linear response in 

FTT:Power to changes in core parameter values. If higher and lower deviations from the best guess 

parameter values are equally likely (as they are in the ±50% distributions used in this Chapter), this 
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means that the best guess FTT:Power predictions provide conservative estimates of the emissions 

reductions potentials of policies.  

 

In summary 

1. Predictions of power sector emissions produced by FTT:Power are sensitive to  core parameter 

values.  

2. Policies, however, lead to significant emissions reductions compared to the baseline, even if 

we take into account variability of core parameters. In other words, low-carbon technology 

diffusion will not, on its own, be enough to reach the Paris target.  

3. At the same time, the significant overlap in cumulative emissions in the 1.5C and 2C MCA 

runs indicate that the certainty of best guess FTT:Power predictions of the impact of policies 

on power sector emissions is limited. Recall that the analysis conducted her includes only a 

sub-set of FTT:Power parameters. Given the environmental significance of even small 

differences in emissions, such uncertainties should, according to the argument in Chapter 4, not 

be taken lightly. 

 

So far, nothing has been said about which of the parameters have the largest impact on FTT:Power 

predictions. This is what the next section looks at.  

6.5.3 Correlation analysis – most influential parameters 

Pearson’s correlation coefficient, which measures the strength and sign of the linear relationship 

between two variables, can be used as a simple measure to identify the strength of influence of 

parameters on emissions81. 

 

Figure 6.12 Parameters ranked according to their correlation coefficients (Pearson’s) in each of the three Policy 

scenarios. Parameters with correlation coefficients less than 0.10 (and larger than -0.10) are not included. 

 

81 Note that this does not capture non-linear relationships 
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Figure 6.12 shows the parameters with the highest correlation with cumulative emissions in each of the 

three policy scenarios ranked according to the value of the coefficients. The figure shows all parameters 

with correlation coefficients larger than 0.1 and smaller than -0.1. The first thing to note is that only a 

handful of parameters in each policy scenario show a strong correlation. This is generally the case when 

performing sensitivity analyses, i.e. only a few inputs tend to substantially influence the value of a 

particular output (Loucks et al., 2005). Second, the parameters with the largest influence on cumulative 

emissions vary from one scenario to another. In the baseline, 𝜏𝐶𝑜𝑎𝑙 shows the strongest linear 

correlation, with a coefficient of 0.51. This is followed by 𝑟𝐶𝑜𝑎𝑙 at -0.46, 𝑡𝐶𝑜𝑎𝑙 at -0.33, and 𝜏𝐻𝑦𝑑𝑟𝑜 at 

0.22. For the 2C policy set, the scaling factor, 𝐾, shows the strongest correlation with emissions, with 

a coefficient of 0.68. This is followed by  𝜏𝐶𝑜𝑎𝑙 at 0.43. For the 1.5C policy set, the scaling factor is 

even more significant, with a correlation coefficient of 0.72. After this, four parameters have correlation 

coefficients in a similar region: 𝜏𝐶𝑜𝑎𝑙 at 0.29, 𝑡𝐵𝐼𝐺𝐶𝐶+𝐶𝐶𝑆 at 0.25, 𝜏𝑆𝑜𝑙𝑎𝑟 𝑃𝑉 at 0.23 and 𝜏𝐺𝑎𝑠 at 0.21. 

 

Overall, parameters for coal (including the lifetime, build time, and investor discount rate) have a large 

influence on emissions in all scenarios. This is not surprising given that coal has the highest emissions 

coefficient of all the in FTT:Power. This means that the market share of coal, which again is particularly 

affected by coal-specific parameters, is a strong determinant of emissions. The parameter showing the 

strongest overall correlation, however, is the scaling factor. This is also not surprising given that this is 

a global parameter, meaning that it can have a large effect on the rate of diffusion overall. At the same 

time, it is worth noting that this parameter does not even show up among the most influential parameters 

in the baseline. This can be explained in the following manner: because the entire shares equation is 

multiplied by 𝐾, it means that 𝐾 affects the rate of change of all technology shares simultaneously. 

Thus, when low-carbon technology diffusion is already set in motion by policies that render these 

technologies preferable to unabated fossil fuel technologies, an increase in the value of  

𝐾 will simply speed up this process. However, if technology diffusion is headed in a more neutral 

direction, making the power sector neither cleaner nor dirtier, the value of  

𝐾, although it will also speed everything up in this case, will not have a significant impact on emissions. 

Thus, it seems, 𝐾 only influences emissions when an increase in low-carbon deployment is already “set 

in motion” by policies. Clearly then, the value of 𝐾 is key to FTT:Power predictions of the impacts of 

stringent climate policies. If the value of this parameter cannot be determined with a high degree of 

accuracy, predictions will be uncertain. In addition to this, renewable technology parameters also 

become more influential when policies are in place. For the 1.5C policy set, CCS technology parameters 

also start influencing emissions more. This makes sense given the importance of these technologies for 

reaching low levels of emissions. 
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The group of parameters with the least significant influence on emissions in FTT:Power are the learning 

rates. Given the well-known influence of learning on mitigation costs in IAMs, it is somewhat surprising 

to see that learning parameters have such a limited impact on emissions. This might be explained in 

part by the limited time period explored in FTT (2013-2050) compared to most IAMs (which typically 

run to 2100). Recall that the logistic equation, which gives rise to the S-shaped diffusion curves, implies 

that it takes time for new technologies, such as wind and solar PV, to grow. Because learning takes 

time, it might simply be that FTT:Power doesn’t run long enough to capture the effects of learning on 

technology deployment. In comparison, changes to the other parameters have instantaneous effects on 

the competitiveness of technologies and the rates at which they can replace other technologies. This 

allows new technologies to reach larger market shares earlier on in the simulation period, which again 

has an impact on their ability to grow even more later on. 

 

Lastly, it is worth noting that the MCA runs do not take into account the impacts of changing electricity 

prices (as a result of changing parameter values) on electricity demand, which again affects emissions. 

This means that MCA runs with parameter values that lead to a reduction in electricity prices will tend 

to underestimate the impacts on emissions and that MCA runs with parameter values that lead to an 

increase in electricity prices will overestimate emissions. Such price-demand feedbacks are included in 

the full E3ME-FTT model. As already noted, however, due to computational constraints, it is not 

feasible to perform the GSA that is conducted in this chapter for the full model82.  

  

Scatter plots for the parameters with the highest correlation coefficients are shown in figure 6.13. The 

scaling factor shows a clear linear relationship. In the baseline we see that the variance in cumulative 

emissions appears to be higher for low values of 𝜏𝐶𝑜𝑎𝑙 than for high values. This might be explained as 

follows: when the lifetime of coal is long, it is very difficult (or impossible) for other technologies to 

replace coal. This means that it is very difficult (or impossible) for cumulative emissions to reach low 

levels. The coal simply stays in the system for too long. For short coal lifetimes, we see instances of 

both high and low cumulative emissions. This implies that emissions in these cases depend more on 

other parameters. We see the opposite trends for 𝑡𝐶𝑜𝑎𝑙 and 𝑟𝐶𝑜𝑎𝑙, as expected given they both have the 

opposite impact on the rate of change of the share of coal compared to 𝜏𝐶𝑜𝑎𝑙 (whereas a longer lifetime 

increases the growth rate of coal shares, a longer build time and a higher discount rate decrease the 

growth rate). 

 

 

82 While 200 runs can be done in just under two hours using FTT, it would take 100 hours using the full model. 
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Figure 6.13 Scatter plots showing the relationships between cumulative emissions and the three parameters with 

the highest correlation coefficients for each of the scenarios. 

In summary 

1. The scaling factor is the single most influential parameter. 

2. Of the technology-specific parameters, the parameters for coal have the largest influence.  

3. The parameters with the least influence are the learning rates.  

 

Given that FTT:Power includes 24 different technologies, we might not expect any single parameter 

value to have a large impact on emissions. Aside from the scaling factor, that is also what the correlation 

analysis shows. Although we have identified a handful of technology parameters (for coal in particular) 
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that appear to have a significant impact on emissions, the runs in which emissions deviate significantly 

from the best guess predictions will be characterised by particular combinations of parameter values 

which on their own would not have very strong impacts on emissions. For instance, an MCA run that 

combines high build times for low-carbon technologies with low build times for fossil fuel technologies 

would lead to high emissions. A GSA is particularly useful in this regard because it automatically 

captures the likelihood of such events (given the specified input distributions). In other words, the 

distributions of outputs obtained from the MCA runs, which are shown in figures throughout this 

chapter, also take such possibilities into account.  

 

Overall, the sensitivity analysis conducted in this chapter has shown that the uncertainty of FTT:Power 

predictions are large and that the scaling factor has the largest influence on results.   

6.6 Levers of change 

A sensitivity analysis can be used for more than just determining the robustness of predictions to the 

uncertainty of model parameters. It can also be used to identify additional levers of change. This section 

explains how this might be done. 

 

Parameters differ along two important dimensions. First, in how sensitive they are. Secondly, in how 

much control we83 have over them. When parameters are not sensitive, our degree of control matters 

little for outcomes. When parameters are sensitive, however, our degree of control becomes important; 

if we can influence parameter values, this can be used to push outcomes in a desired direction. 

Essentially, if we can influence the value of a parameter, that parameter starts to become a control or 

decision variable, not just a parameter to be estimated. A sensitivity analysis, at its core, shows how 

model outputs depend on model inputs. Whether the model inputs are considered parameters or 

decision (or control) variables, however, depends on the person who is using the model (Morgan & 

Henrion, 1990). The influence that a firm exerts is different from the influence that a national 

government exerts. Since E3ME-FTT has been used to inform policymaking at both European and 

national levels, it makes sense to consider policymakers at these two levels.  

 

If policymakers can influence the value of a parameter, sensitivity to that parameter might be a good 

thing because it represents an additional lever of change. Lack of influence, on the other hand, when a 

parameter is sensitive, implies an increase in the uncertainty of predictions, which might imply 

 

83 Who “we” is referring to will depend on who is using the model predictions – see the discussion that follows.  
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increased risks84. Figure 6.14 places the five parameters analysed in this chapter according to the two 

dimensions, sensitivity and degree of control.  

 

Sensitive 

 

𝐾 

     𝑡𝑖 

     

𝑡𝑖            𝑟𝑖 

 

Not sensitive 

 

𝐿𝑅𝑖                    

 

 Low control  High control  

Figure 6.14 Sensitivity and degree of control over parameters analysed in this chapter.  

Policymakers have little control over learning rates (or at least limited knowledge of how to control 

them, which for all practical purposes is the same). Given their low sensitivity, however, this does not 

(according to FTT:Power) have a big impact on emissions reductions in the power sector85. Build times 

have some impact on emissions. There are elements of the build times that are outside policymakers’ 

control, including supply chains, construction times, and availability of labour. If we include planning 

and permissions into build times, however, as the acceptance of new energy technologies improve and 

institutions gain experience (a process that might be labelled ‘institutional learning’) the build times 

might decrease for new technologies. Related, it is also conceivable that governments could decide to 

prioritise low-carbon technology roll-out and thus speed up build times. In this sense, policymakers 

might exert some influence over build times as represented in FTT:Power.  

 

Lifetimes are similar to build times, but perhaps more straight-forward in terms of control. Just as 

lifetimes for power plants are often extended beyond what was initially intended, lifetimes can also be 

shortened by early retirement. In this sense, policymakers might also exert some influence over 

lifetimes as represented in FTT:Power.  

 

Investor discount rates are determined by the cost of capital and the risks associated with an investment 

as well as the extent to which investors are far- or short-sighted (see e.g. Peters et al. (2011)). This again 

is influenced by financing structures and institutions (Egli et al., 2018), which again are influenced by 

policies. For instance, different institutional structures appear to make German companies more far-

sighted than English companies. There is currently a suggestion to include workers on boards in the UK 

 

84 Assuming that risk is defined as the likelihood times the consequences of an event, an increase in uncertainty 

will generally imply an increase in risks.  

85 As already noted, however, learning rates might still be important in the longer run. FTT:Power is limited in 

that it only provides predictions up to 2050. Additionally, learning rates will have an impact on costs, and therefore 

be important for climate policy in general. 
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(Pratley, 2018) with the goal being that this would make decision making more far-sighted (following 

the German model). In addition to this, governments can also influence the risks of different investments 

directly by issuing insurances and guarantees. Thus, policymakers have an influence over investor 

discount rates.  

 

In short, policymakers may thus exert some influence over the build times, lifetimes, and investor 

discount rates that are represented in FTT:Power as input parameters. FTT:Power tells us that the 

relative values of these parameters for different technologies impact the diffusion of low-carbon 

technologies. The point here is that this can be considered an insight (if one believes FTT:Power to 

provide a good description of power sector dynamics86) for policymaking: in addition to the design of 

carbon pricing, subsidies, feed-in tariffs, and kick-start policies – which are all considered policy 

variables in FTT:Power – policymakers might also want to think about the other ways in which policies 

might have an impact on low-carbon technology diffusion. This is one of the ways in which FTT:Power 

might be used to provide insights – not just numbers87 – for policymaking. 

6.7 Conclusion 

In this chapter, a global sensitivity analysis (GSA) has been conducted in order to identify the 

parameters in the FTT shares equation that have the largest impact on FTT:Power predictions and to 

provide a first conservative estimate of the uncertainty of FTT:Power predictions. This was done by 

using a Monte Carlo analysis with LHS and assuming that parameter values are uniformly and 

independently distributed around ±50% of their default values. A GSA was chosen in order to provide 

a more accurate picture of how the uncertainty of key parameters in the FTT model affect the value of 

emissions and technology deployment in FTT:Power, which is a complex non-linear model, than what 

a one-factor-at-a-time  approach would have done.  

 

The results of the analysis show three things. First, if we assume that FTT:Power provides a sufficiently 

accurate description of  power system dynamics and the ways in which these dynamics are impacted by 

policies, the results show that the diffusion of low-carbon technologies on its own, even when we allow 

for optimistic assumptions regarding the values of technology parameters, is unlikely to lead to 

transformation pathways compatible with the Paris target in the power sector. In other words, policies 

are necessary to reduce emissions.  

 

 

86 It should be noted that the fact that build times, lifetimes, and investor discount rates affect technology diffusion 

is really an assumption in FTT that stems from diffusion theory (see e.g. Mercure (2015)). 

87 Harking back to the often repeated statement by Peace and Weyant (Peace & Weyant, 2008). 
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Second, the sensitivity analysis shows that the scaling factor – a constant that represents the time it 

takes to achieve a full turnover of technologies – has a large influence on FTT:Power predictions of the 

impacts of policies on technology deployment and emissions in the power sector. The fact that the 

correct value of this parameter is deeply uncertain poses a serious issue for the accuracy of FTT:Power 

predictions.  

 

Third, the analysis suggests that policymakers might be able to exert some influence over some of the 

parameters that, according to FTT:Power, determine the rate of technology deployment. In other words, 

some of the parameters investigated in this chapter might be viewed not simply as parameters whose 

values need to be determined, but as decision (or control) variables. Based on an assessment not only 

of the sensitivity of different parameters, but also of policymakers degree of control over them, it 

appears policymakers could speed up the diffusion of low-carbon technologies by reducing the risks 

associated with low-carbon investments, and by prioritising the roll-out of low-carbon projects over 

fossil fuel projects. Given the influence of coal parameters on results, not letting coal power plants run 

beyond their lifetimes (or retiring coal power plants early), would also help by leaving space for other, 

less emissions intensive electricity generating technologies to diffuse. Investments in dirty technologies 

can also be made less desirable by influencing the risks associated with different technologies (several 

insurance companies are, for instance, starting to decline to insure coal investments).  

 

A number of caveats are important to note when interpreting the results of the analysis conducted in 

this chapter. First, the GSA does not include all FTT:Power parameters. Although all the parameters 

that define the FTT core equation, the shares equation, were included, the fact that only a sub-set of all 

the parameters were included means that the GSA does not necessarily identify the parameter that 

influence FTT:Power predictions the most. Future analyses should therefore expand the number of 

parameters to include those that are left out here (a list of the remaining parameters is provided in 

Appendix X). Due to the way that the model is implemented in MATLAB (with multiple functions that 

are called in different parts of different programs), this would require some work. Second, parameter 

values are treated as independent of each other in the current analysis. This means that some 

combinations of input parameters, all of which are treated equally in the MCA in this chapter, are more 

likely than others. This again will have an impact on the distribution of outputs. Third, the results say 

nothing about costs. FTT computes the impacts of policies on technology deployment and emissions. 

It does not tell us anything about the costs of different scenarios. While the sensitivity analysis might 

give the impression that the lower emissions are, the better, it is possible that for some of the low 

emissions runs, costs are also higher. This is clearly important to policymakers when deciding what 

policies and additional measures to implement. To assess macroeconomic costs, E3ME would have to 

be included in the analysis. This, however, would not be feasible given the large number of runs required 

for the MCA. One alternative could therefore be to develop an FTT:Power version that uses price 
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elasticities to approximate macroeconomic impacts. Another alternative could be to use estimates of 

the costs of generating electricity in different regions in FTT:Power to develop an aggregate proxy for 

the cost of generating electricity. All of these possibilities represent non-trivial options, which may be 

pursued in future uncertainty analyses of FTT:Power. The goals of the analysis conducted in this chapter 

were to provide a first conservative estimate of the uncertainty of FTT:Power predictions and to identify 

the parameters in the FTT core equation that have the biggest influence on FTT:Power predictions. 

 

If one wanted to claim that the distributions of outputs from the MCA runs reflect the “true” uncertainty 

of FTT:Power predictions – not just their sensitivity to the parameters that are included in the analysis 

or a conservative first estimate – one would have to not only include all (uncertain) model parameters, 

but also make sure that the parameter distributions reflect the “true” uncertainty of the parameter values. 

This, by all accounts, is no small endeavour. In fact, the GSA conducted in this chapter already shows 

that the parameter that influences FTT:Power predictions the most is characterised by deep uncertainty; 

It is not clear how one would determine the likelihood with which this parameter would take on different 

values. Nonetheless, future uncertainty analyses of FTT:Power may benefit from basing parameter 

distributions on more comprehensive literature reviews or expert elicitations (such as is done by e.g. 

Chan and Anadon (2016) and Bosetti et al. (2015)). Given that any attempt to determine the “true” 

uncertainty of parameter values in FTT:Power will require time and effort, the GSA conducted in this 

chapter provides valuable information regarding what parameters to focus on: the overall scaling factor 

and coal parameters (the lifetime, build time, and investor discount rate).  At the same time, unless one 

also assesses the structural uncertainty of FTT:Power, one should still be careful to interpret the results 

of a parametric uncertainty analysis of FTT:Power as reflective of the “true” uncertainty of the impacts 

of policies on technology deployment and emissions in the power sector.  

 

Despite the above limitations, the GSA conducted in this chapter shows that the impacts of policies on 

technology deployment and emissions predicted by FTT:Power are sensitive to uncertain parameter 

values. In particular the sensitivity of FTT:Power predictions to the overall scaling factor, whose “true” 

value is deeply uncertain suggests that FTT:Power is not able to predict the impacts of policies on 

technology deployment and therefore emissions in the power sector to a high degree of accuracy. This 

is true even in the near-term, where we might expect predictions to fare better. Although the 

distributions of outputs computed in this chapter should not be interpreted as reflecting the “true” 

uncertainty of the respective outputs, there are reasons to believe that the distributions represent 

conservative estimates of the uncertainty of FTT:Power outputs. First, the comparison of parameter 

distributions used in this chapter with the ranges found in the literature (shown in Appendix D) suggests 

that the ±50% ranges are within the bounds of what is thought to be possible. Second, even if some of 

the ranges are slightly wider than what is found in the (brief) review shown in Appendix D, the analysis 

only includes a sub-set of all FTT:Power parameters (the full list of FTT:Power parameters is provided 
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in Appendix X). If more parameters were included in the GSA, the distribution of output values could 

only increase. The analysis conducted in this chapter shows that the range of outputs that results from 

varying even just a sub-set of FTT:Power parameters within what is seen to reflect a plausible range is 

large. Third, the analysis conducted in this chapter completely ignores structural uncertainty. According 

to Morgan and Henrion (1990), experienced analysts tend to argue that structural uncertainty is more 

likely to have a significant impact on results than parametric uncertainty. Future work is needed to 

investigate, among other things, the extent to which the species competition analogy used to derive the 

core equation in FTT:Power provides a good analogy for the dynamics of technological change in the 

power sector. In part because FTT is a new and different model, relatively little attention has so far been 

paid to verifying (to the extent this is possible) the structural assumptions. The assumed decision making 

of investors based on LCOEs could also be better backed up. Based on all of the above, it is reasonable 

to argue that the output distributions presented in this chapter represent conservative estimates of the 

uncertainty of FTT:Power predictions.  

 

The goal of FTT is to predict the impacts of energy and climate policies on technology deployment and 

emissions. The fundamental uncertainty of the overall scaling factor in FTT:Power and its influence on 

results, on its own, challenges the reliability of FTT:Power best guess predictions. As argued in Chapter 

4, the importance of the uncertainty of the impacts of policies depend on the consequences of being 

wrong. In climate policy, the environmental consequences of acting too late or too little are generally 

irreversible, and potentially dire88. If parameters that have a large influence on results are characterised 

by fundamental uncertainty, providing policymakers with best guess predictions in this domain is not 

defensible. When the uncertainty is important, it is more appropriate to provide policymakers with 

ranges of results contingent on uncertain parameter values. This is done, for example, by the Interagency 

Working Group in the US Government when reporting the social cost of carbon, which is largely 

dependent on the discount rate (Interagency Working Group on Social Cost of Carbon, 2010)89.  

 

Chapter 5 showed how FTT is seen by Mercure et al. to offer a “a more realistic modelling approach” 

(2016, p. 102), which in turn is seen to lead to better predictions of the impacts of policies on technology 

deployment and emissions compared to what you get with ESOMs. While ESOMs are criticised for 

their reliance on neoclassical assumptions (see Chapter 5), FTT is seen to offer an improved description 

 

88 Noting that the consequences of being wrong with respect to FTT predictions is different from the consequences 

of being wrong with regards to cost estimates reported in IPCC reports discussed in Chapter 4. Environmental 

consequences of climate change, however, remain significant.  

89 Although the interagency working group uses only three discrete values of the discount rate, the point is the 

same: when key assumptions are uncertain, it is more appropriate to present a range of values than single best 

guesses.   
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of technological change based on the theory of technology diffusion. Additionally, Chapter 5 showed 

that the rate of technology deployment in ESOMs is determined to a large extent by exogenous 

constraints. Does FTT fare any better? The analysis in this chapter shows that the use of diffusion theory 

to endogenously derive deployment rates in FTT:Power does not avoid the dependency of results on 

exogenous assumptions. Nor does the value of the scaling factor appear to be any less uncertain or any 

easier to verify than the value of the maximum technology deployment rates that are used in ESOMs. 

In fact, both the scaling factor and the maximum deployment constraints express our beliefs about the 

rate of technological change in the future. Thus, it appears, predictions generated by both ESOMs and 

FTT:Power depend on similar unknowns.  

 

Overall, the analysis conducted in this and the previous chapter thus appears to confirm the widely held 

view that technological change is inherently uncertain and difficult to predict. In many ways, it should 

not be surprising that future technology deployment is mired in uncertainty. The question is what we 

do with this uncertainty. While the uncertainty does not negate the insight that policies are necessary to 

reduce emissions, it does raise questions regarding the use of deterministic best guess predictions of 

policy impacts to inform decision making. If the impacts of policies on technology deployment in 

FTT:Power are uncertain, they will also be uncertain in the full E3ME-FTT model. The latter model is 

frequently used by the European Commission to inform energy and climate policy as well as long-term 

strategies for emissions reductions (e.g. European Commission (2018)). If E3ME-FTT predictions of 

policy impacts are inaccurate, resulting policies might be poorly informed. Given the limited time 

available to reduce emissions sufficiently to avoid “dangerous” climate change, the consequences of 

implementing policies that turn out to be insufficient might be significant environmental harm.  

 

In summary, although transformation pathways generated by ESOMs are determined to some extent by 

exogenous assumptions regarding maximum deployment rates, transformation pathways generated by 

FTT:Power are to some extent determined by the scaling factor. In order to claim that FTT:Power 

provides predictions that are better than those provided by ESOMs, the value of the overall scaling 

parameter in FTT:Power needs to be better grounded in theory and evidence than what it currently is. 

In addition to identifying the scaling factor as a key source of uncertainty – which should be addressed 

in future modelling work – the analysis conducted in this chapter provides the first step towards using 

energy system models in a way that acknowledges and communicates to policymakers the important 

uncertainties that are present in this domain of research.  
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7 Conclusion 

This thesis has identified and taken first steps towards assessing three challenges associated with the 

insights that can be drawn from IAMs: i) the importance of model independence for the robustness of 

insights that can be drawn from IAM ensembles and the lack thereof between many IAMs in AR5 

(chapters 2-3), ii) the importance of the uncertainty of the cost of mitigation and the failure of the AR5 

IAM ensemble to capture the uncertainties associated with this measure in the literature (Chapter 4), 

and iii) the dependence of FTT predictions on a deeply uncertain scaling parameter and the resulting 

uncertainty of best guess predictions (chapters 5-6).  

 

Sections 7.1 and 7.2 provide detailed summaries of each chapter, list the contributions to the literature, 

and suggestions for future research. Section 7.3 summarises the main findings and offers concluding 

remarks on the role of diversity and its implications for IAM research.  

7.1 Robustness and uncertainty in IAM ensembles 

Chapter 2 argued that IAM independence is an important but neglected topic in AR5. IAM 

independence, i.e. independence of model choices and assumptions, is important because it is a 

prerequisite for drawing robust insights from IAM ensembles. If the IAMs in an IAM ensemble are not 

independent, we cannot know whether agreement in outputs is a sign of robustness or a consequence of 

shared model choices and assumptions. To assess IAM dependencies, Chapter 2 developed a method 

for constructing a model family tree based on model links found in model documentation. This method 

was used to identify likely model dependencies among IAMs in AR5. The analysis showed that the 14 

most influential IAMs in AR5, which together are responsible for 90% of the scenarios in the AR5 

scenario ensemble, form three branches, the largest of which is the MESSAGE/MERGE branch 

(consisting of MERGE, MESSAGE-MACRO, MERGE-ETL, REMIND, WITCH, and BET). The 

IAMs in this branch are responsible for about half of the scenarios in the AR5 scenario ensemble. The 

analysis of the model documentation furthermore indicated that the evolution of IAMs has been driven 

by a growing set of policy questions that has incentivised a continuous increase in the level of detail 

and scope of IAMs. By considering not only what was stated, but also what was not stated in the model 

documentation, Chapter 2 found that new IAMs rarely challenge the model choices and assumptions 

that are made in existing IAMs. All of this suggests an expansion of existing IAM approaches rather 

than an increasing diversity of approaches. 

 

The findings in Chapter 2 indicate that the lack of independence between IAMs in AR5 might weaken 

the robustness of AR5 IAM results. While several authors have criticized IAMs for a lack of 

transparency regarding input assumptions and their impacts on results (e.g. Schneider (1997), Rosen 
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(2015), “IAM helpful or not?” [editorial] (2015)), the analysis conducted in Chapter 2 highlights the 

need also for transparency around shared model choices and assumptions and their impacts on ensemble 

results. Although more research is needed to determine the impacts of the lack of independence between 

IAMs in AR5 on AR5 ensemble results, Chapter 2 argued, model dependencies should be 

acknowledged and communicated in the outer layers of IPCC reports (i.e. in SPMs and the synthesis 

report).  

 

Chapter 3 showed that there is a large overlap between the “key differences in model structure” 

discussed in AR5, the main model frameworks that underpin AR5 IAMs (optimal growth theory, CGE 

modelling, and ESOMs), and the branches in the model family tree constructed in Chapter 2. The 

overlap between the model family tree and the key structural differences indicates that most of the 

model links in Chapter 2 either directly capture or are closely related to similarities in model structure. 

This is not surprising given how the model links in Chapter 2 reflect model combinations, model 

versions, structural similarities, and shared model components, all of which are likely to either require 

or give rise to structural similarities. Given their status as key differences, it is reassuring to see that the 

method developed in Chapter 2 capture many of these.  

 

At the same time, Chapter 3 also showed, the method developed in Chapter 2 captures both model 

dependencies that go across key structural differences (e.g. between GCAM and Phoenix) and model 

independencies that are not visible based on key structural differences (e.g. between IMACLIM and 

Phoenix). Thus, the information contained in AR5 (and in similar IAM classifications) is not sufficient 

to capture all IAM dependencies. This is not surprising given the many sources of model dependencies 

(some of which were discussed in Chapter 2 for climate models), and it demonstrates the value of the 

method developed in Chapter 2, which is able to capture some of the social scientific network links 

(e.g. those related to institutions) that are also at play. 

 

Chapter 4 started from the observation that all the estimates of the cost of mitigation generated by the 

IAMs in AR5 are net positive. According to the literature, however, the cost of mitigation could be both 

net positive and net negative. Experts disagree. This implies that the scenarios in the AR5 ensemble do 

not reflect the full range of uncertainties regarding the cost of mitigation. Based on a debate on values 

in science in philosophy, Chapter 4 developed an argument for why this uncertainty is important. In 

short, due to the global scale and irreversible nature of the climate change issue and the fact that net 

negative cost results could have led to earlier and stronger action on climate change, being wrong about 

the sign of the cost of mitigation (i.e. failing to capture the possibility of net negative costs when the 

cost in reality is net negative) could have large negative consequences. This means that the uncertainty 

regarding the cost of mitigation is important. The failure of the AR5 IAM ensemble to reflect the 

possibility of net negative costs is therefore problematic. 
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When it comes to the reasons why the AR5 IAM ensemble contains only net positive cost results, 

Chapter 4 found, based on a review of the AR5 scenario publications, that, although general equilibrium 

IAMs (which are responsible for all the cost estimates in AR5) can be modified to reflect the possibility 

of net negative costs, only two IAMs in AR5 (IMACLIM and, to a lesser extent, WITCH) incorporate 

mechanism that, according to the literature reviewed in Chapter 4, typically contribute to such results. 

Additionally, Chapter 4 showed, the model intercomparison studies that are responsible for the majority 

(around 95%) of the scenarios in the AR5 ensemble focused on aspects that can only increase the cost 

of mitigation. Based on this, Chapter 4 concluded, there is reason to believe that the AR5 IAM ensemble 

might be biased towards net positive mitigation costs.  

 

As with any analyses, there is a trade-off between breadth and depth. One of the key challenges 

associated with studying IAM ensembles as ensembles is that the number and complexity of IAMs in 

such ensembles preclude detailed comparisons of individual IAMs. This means that the analysis of IAM 

ensembles can appear shallow. Generalisations are susceptible to counterexamples, and results tend to 

be indicative rather than conclusive. This is true to some degree also for the results of chapters 2-4 in 

this thesis. The difficulty of studying IAM ensembles in fact highlights one of the very issues associated 

with drawing insights using IAM ensembles: the difficulty with which results can be evaluated. Several 

authors have long pointed out that results generated by individual IAMs are difficult to interpret because 

they are products of “black boxes” (Funtowicz & Ravetz, 1990; Keepin & Wynne, 1984; Stanton et al., 

2008). This is even more true for results generated by IAM ensembles.  

 

At the same time, by not studying IAM ensembles as ensembles, we might fail to discover some of the 

key challenges and to understand the conditions that are necessary for obtaining robust and reliable 

insights.  Given the central role of IAMs as tools for assessing how to reach the Paris climate target, the 

ability to perform independent reviews is important. It would therefore be advantageous if these could 

be performed, at least in part, without the involvement of modellers. This will be easier if IAM 

researchers clearly communicated the model choices and assumptions that determine results and their 

level of confidence and reasons for making said model choices and assumptions.  

 

The arguments presented and the analysis conducted in chapters 2-4, which focused on the AR5 IAM 

ensemble, are relevant both for the upcoming IPCC AR6 and for the wider IAM community, which is 
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increasingly turning towards model intercomparison projects (e.g. NAVIGATE90, ENGAGE91, 

COMMIT92, and PARIS REINFORCE93) that generate large ensembles of IAM results. 

 

The findings also speak to current debates about whether (Anderson & Jewell, 2019) and how (Grant 

et al., 2020; Hausfather & Peters, 2020; Mccollum et al., 2020) IAMs should be used. A diversity of 

model choices and assumptions, this thesis concludes, is key to ensure robust insights (Chapter 2) and 

to make sure important uncertainties are captured (chapters 4 and 6). This call for diversity is closely 

aligned with the call from McCollum et al. (2020) for a more systematic exploration of extremes. While 

McCollum et al. focus on the exploration of extremes by varying structural and parametric assumptions 

in individual models (which is more in line with what is done in chapters 5 and 6), this thesis argues 

that we also need a diversity of modelling approaches to properly explore and understand the 

uncertainties associated with IAM ensemble results.  

 

In addition to this, Chapter 4 also speaks to the debate on “neoclassical” (or “mainstream”) versus 

“heterodox” (or “non-mainstream”) approaches to economics that much of the literature on IAMs is 

situated within. For instance, Scrieciu (2007) warns against the ‘inherent dangers’ of using CGE models 

as a single integrated framework for sustainability impact assessment, Barker et al. (2012) argue for a 

Post Keynesian ‘new economics’ approach to climate policy, and Farmer et al. (2015) argue that a ‘new 

wave of models’ need to be developed to tackle current inadequacies in climate economics. While much 

of this literature argues against “mainstream” approaches (and advocates for various “non-mainstream” 

approaches), this thesis argues that all reasonable model choices and assumptions should be included 

in IPCC reports, which are meant to assess the strength of and uncertainties in scientific understanding 

related to climate change impacts, mitigation, and adaptation. Because the tails of the IAM output 

distributions can be important, Chapter 4 argued, non-conventional IAMs, as well as “optimistic” and 

“pessimistic” assumptions, serve an important purpose and should not be excluded from IPCC reports. 

An explicit goal of maximizing the diversity of IAMs included in IPCC reports could increase the 

robustness of findings or, alternatively, help illuminate important uncertainties.  

 

Because little research has so far been done on IAM ensembles as ensembles, much of this thesis charts 

new territory and some questions raised are left for future research. In particular, understanding the 

processes by which scenarios are included or excluded in IPCC reports represents an important area of 

 

90 https://navigate-h2020.eu/ 

91 http://www.engage-climate.org/ 

92 https://themasites.pbl.nl/commit/ 

93 https://www.paris-reinforce.eu/ 

https://navigate-h2020.eu/
http://www.engage-climate.org/
https://themasites.pbl.nl/commit/
https://www.paris-reinforce.eu/
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future research. Further research on IAM ensembles could take at least two different directions. One 

possibility is to move into the sociology of science to obtain a better understanding of why and how 

assumptions and model choices are made and how IAMs end up being included in IPCC reports. What 

might lead to the exclusion of certain approaches or assumptions, and, as a result, a lack of diversity in 

the IAMs that dominate not only IPCC reports but the IAM literature in general? The analysis conducted 

in Chapter 4 revealed that model intercomparison studies, which are responsible for about 95% of the 

scenarios in the AR5 scenario ensemble, exert a large influence on AR5 results. What might limit the 

inclusion of diverse perspectives in such studies and in the IPCC? What happened to IAMs that were 

previously included in IPCC reports (such as E3MG) that no longer are? Related, should the IPCC 

continue to rely purely on scenarios published in the peer reviewed literature? This requirement imposes 

limitations on the scenarios that can be included and introduces time delays (between research and 

publication), academic incentives, and hierarchies (Wright, 2018). There is a large and growing 

literature on perverse academic incentives (e.g. Edwards and Roy (2017)). But what would the 

alternative to peer-review be? Research in the direction of sociology of science could also examine the 

influence of IAM results on climate policy and action. To what extent do IAM results influence 

policymakers, private actors, and the public debate? How are IAM results interpreted, and are they 

trusted? Does it matter if IAM results are inaccurate or misleading? What IAM results are most 

important and why? 

 

Another possibility is to go down a quantitative route focused on analysing existing IAM results. Can 

we infer anything about the diversity (or lack thereof) of model choices and assumptions from the spread 

or clustering of results in existing scenario databases? How have IPCC ensemble results changed over 

time? How have individual IAM results, such as estimates of the cost of mitigation, changed over time 

and how do they vary between model intercomparison studies and individual scenario publications? 

How would a different weighing of scenarios in ensembles affect reported averages and median values? 

7.2 Reliability of IAM results 

Chapter 5 presented several claims put forth by FTT modelers regarding the superiority of FTT relative 

to ESOMs. The chapter focused in particular on the claim by Mercure et al. (2014; 2016) that the 

endogenous derivation of technology deployment rates based on the theory of technology diffusion 

enables a more realistic depiction of the impacts of policies on future technology deployment. While 

the chapter agreed that ESOMs are unlikely to provide good predictions if the assumptions of perfect 

markets, rationality, and maximum technology deployment fail, it argues that we cannot claim that FTT 

predictions are any better without (at least) assessing the sensitivity of these predictions to key uncertain 

assumptions. 
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In order to do so, Chapter 6 conducted a global sensitivity analysis of the power sector sub-model of 

FTT (FTT:Power) based on Monte Carlo analysis and Latin Hypercube sampling with the goal of 

providing a first conservative estimate of the uncertainty of FTT:Power predictions and identifying the 

parameters in the FTT core equation (the shared equation) with the largest influence on results. This is 

the first time such an analysis has been conducted for any of the FTT models. Using uniform and 

independent distributions that span ±50% of default parameter values, the sensitivity of technology 

deployment and emissions in FTT:Power to investor discount rates, technology build times, technology 

lifetimes, learning rates, and the overall scaling factor – a parameter representing the time it takes to 

achieve a full turnover of technologies – was computed. Given that the analysis included only a sub-set 

of FTT:Power parameters and ignored structural uncertainty (and given that the ±50% ranges were 

shown to be close to ranges found in the literature) the results of the analysis conducted in Chapter 6 

can be interpreted as a conservative estimate of the uncertainty of FTT:Power predictions.  

 

According to the results, the impacts of policies predicted by FTT:Power are highly sensitive to the 

scaling factor, whose value is deeply uncertain. While this does not negate the result (if we accept the 

structural assumptions made in FTT) that policies are likely to be necessary to reduce emissions (a 

results that holds across a wide variety of parameter values), it does raise questions regarding the use 

of best guess FTT:Power predictions to inform policymakers about the impacts of policies. Given the 

importance of the uncertainty (as argued in Chapter 4), Chapter 6 argued, it is more appropriate to 

provide policymakers with ranges of results contingent on key parameter values than it is to provide 

them with best guess predictions when the latter are highly uncertain.  

 

Overall, chapters 5 and 6 showed that, while the rates of technology deployment in ESOMs are 

determined partly by exogenous constraints, the rates of technology deployment in FTT:Power are 

determined to a large extent by the scaling factor. Thus, the use of diffusion theory to derive deployment 

rates in FTT:Power does not in itself circumvent the dependency of results on uncertain and debatable 

assumptions. The value of the scaling factor appears to be no more certain or any easier to verify than 

the values for the maximum technology deployment rates that are assumed in ESOMs. Moreover, the 

scaling parameter is not discussed (or mentioned) in FTT publications. The results of the GSA 

conducted in Chapter 6 thus contributes to a long list of studies going back to at least the 1980s (e.g. 

Keepin and Wynne (1984)) that have shown that energy system model outputs can be highly sensitive 

to uncertain assumptions. The results also lend support to the claims that large models often generate 

spurious detail (Funtowicz & Ravetz, 1990; Morgenstern, 1963).  

 

Lastly, it is worth noting that multiple authors, in addition to Mercure et al. (2014; 2016), have criticized 

IAMs for an inadequate representation of policies and real-world processes, including innovation and 

diffusion (e.g. Farmer et al. (2015), Stern (2016), and Rosen and Guenther (2015)). Chapter 5 and 6 
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contribute to this literature by discussing the use of ESOMs as predictive tools and highlighting the dual 

role that ESOMs have played as tools for policy optimization (in “optimisation mode”) and policy 

evaluation (in “simulation mode”). This discussion is useful because the goal of the modelling matters 

for the importance of the noted inadequacies. If the goal is to identify optimal solutions (and those who 

use the models and their results are aware of this), the fact that models don’t capture real-world policies 

is less of a problem; knowing the least-cost solution can be useful for policymakers even if the models 

don’t say anything about how to reach that solution. If the goal, on the other hand, is to predict the 

impacts of policies, the inability of models to capture real-world policies can seriously diminish the 

value of the resulting predictions.  

7.3 Diversity matters 

Diversity in modelling approaches, or more specifically in model choices and assumptions, this thesis 

has argued, is important. There are two main reasons for this. First, diversity is crucial for our ability to 

obtain robust insights, and second, diversity is crucial for reflecting important uncertainties associated 

with IAM research.  

 

When IAMs are not independent, diversity is limited. When this is the case, we cannot know whether 

agreement in results is a consequence of shared assumptions and model choices or a sign of robustness. 

In an ideal situation, the all plausible model choices and assumptions are captured by the IAMs in an 

ensemble. When IAMs agree, in this case, we would know that this agreement indicates a robust insight. 

When IAMs disagree, in this case, we would know that the result depends on model choices and 

assumptions that are either uncertain or open to disagreement. Both situations provide valuable insights: 

they tell us what we know and what we don’t know, what findings are certain and what findings are 

uncertain. Recall that “[a]n integral feature of IPCC reports is the communication of the strength of and 

uncertainties in scientific understanding underlying assessment findings” (IPCC, 2014b, p. 37). If IAM 

ensembles are based on only a narrow range of plausible model choices and assumptions (which is more 

likely to be the case when IAMs are not independent) we cannot conclude that agreement in results 

represent robust insights. On the contrary, if IAM ensembles fail to incorporate a diversity of 

approaches, results that in reality are uncertain (or open to disagreement among experts) might be 

mistaken for robust insights. The result that the cost of mitigation must be net positive might, according 

to the findings in this thesis, represents one such example. 

 

When IAM ensembles are based on a more diverse set of approaches and assumptions, the results begin 

to approximate the “true” uncertainty of IAM research. This uncertainty can, as Chapter 4 argued, be 

important, especially for key results that matter to policymakers and negotiators such as the cost of 

mitigation. Chapter 6 also showed how single model predictions can become highly uncertain when 
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ranges of plausible parameter values are considered. Uncertainty is more important when the 

consequences of being wrong are large. When it comes to climate policy, however, both economic and 

environmental consequences tend to be large simply due to the nature and the scale of the problem. The 

stakes are high.  

 

While it is relatively easy to capture the uncertainty of parameter values in IAMs, IAM ensembles are 

unlikely to ever capture all plausible assumptions and model choices. It is not even clear what “all 

plausible assumptions and model choices” means or who would decide when they have been captured. 

There will always be debate and disagreement within the IAM community regarding what assumptions 

are plausible and what assumptions are justified (see e.g. the debate about the appropriate discount rate 

in CBA IAMs (Dietz et al., 2007; Nordhaus, 2007)). In addition to this, there are practical and 

computational limitations regarding what model choices and assumptions can be incorporated in IAMs. 

Nonetheless, diversity in IAM ensembles can still serve as a useful goal. As indicated in Chapter 2, 

there are no obvious signs that the drivers behind IAM development over time has incentivized a 

diversity of approaches.  

 

Although using a diversity of approaches would better reflect uncertainties associated with IAM 

research, there are also downsides to an increased focus on uncertainty and the multitude of assumptions 

and model choices that, in theory, may be deemed plausible. Results might be more difficult to interpret 

and communicate. The uncertainty might, in some cases, overwhelm users of IAM research and leave 

them confused as to what to take from it. Uncertainty might also deter action, especially when there are 

large costs involved.  

 

Ignoring uncertainties, however, also poses serious issues. The course of action to limit global warming 

is a political question. When outcomes are uncertain, and stakes are high, choices become even more 

value laden (Funtowicz & Ravetz, 1993). Do we go all in to avoid worst case outcomes, or do we try to 

minimise the cost of action? What is worse? Failing to reduce emissions sufficiently to limit global 

warming to “well below 2°C” or implementing policies that turn out to have large costs that are perhaps 

unnecessary for avoiding so-called “dangerous” (Schneider, 2001) climate change? While some might 

argue we should base decisions on expected utility, others might argue for strategies that primarily seek 

to avoid worst thinkable outcomes. These kinds of questions have become even more relevant with the 

debates around COVID-19 scenarios and strategies. What we do when faced with a potentially great 

threat is, in most people’s opinion, not a question that can be answered by science alone (see e.g. 

Weinberg (1972) for an early account of this debate). While IAM researchers might agree with this, the 

general practice of leaving out uncertainties associated with IAM results might unintentionally lead to 

a premature narrowing of political deliberation (Beck & Krueger, 2016; Stirling, 2010). Some of the 

uncertainties, for instance with respect to the cost of mitigation and the effects of policies on technology 
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deployment and emissions, are themselves relevant and important for decision makers. Not 

communicating uncertainties takes away the opportunity for decision makers and stakeholders to 

discuss the options they deem preferable given uncertainties, including hedging or precautionary 

strategies. An increased emphasis on uncertainty in IAM research can thus provide valuable inputs to 

the democratic debate regarding what to do about climate change and how to reach the Paris target 

(Stirling, 2010). 

 

Does this mean that we should include all plausible options? Yes, this thesis argues, as long as these 

options are plausible and can be justified. In addition to the reasons for taking uncertainties seriously 

outlined above, three additional considerations are worth noting.  

 

First, most IAM researchers are unlikely to have the area-specific knowledge required for making 

judgments about the uncertainty in every domain that is relevant to IAM research. While IAMs are 

good tools for assessing the consequences of making certain assumptions in a consistent manner, 

considering an enormous amount of data and interactions at a global scale, IAMs are not good tools for 

assessing the uncertainty of input assumptions such as learning rates for different technologies, the 

extent to which market failures beyond the climate externality are present, or the availability of CCS in 

the future. It would therefore be more transparent if IAMs were used to show what assumptions matter, 

while leaving for others the assessments of whether those assumptions are likely to hold. In short, IAMs 

can be very useful for identifying key assumptions. They are less useful for narrowing down the 

uncertainty of said assumptions.  

 

Second, policymakers and the public can only learn to understand and cope with uncertain findings if 

researchers make an effort to communicate and explain the uncertainty. Not including the uncertainty 

of IAM results might also reduce the credibility of IAM research and diminish their value as inputs to 

climate policymaking in the long run. IAM researchers should therefore be more transparent when it 

comes to the uncertainties associated with their results. The role of research is not just narrowing down 

uncertainty, but to determine when uncertainty is high and when it is low.  

 

Third, the importance of the uncertainty varies considerably. This thesis has argued that it depends on 

the risk of being wrong. When the risk is high, we should pay more attention to the uncertainty, hence 

it should be more carefully communicated. When the risk is low, we need not worry about uncertainty 

as much. Thus, IAM researchers do not necessarily have to worry about uncertainty all the time. 

Furthermore, far from all assumptions have a significant impact on IAM results (those that do can be 

determined via a sensitivity analysis). Thus, it will generally not be necessary to examine the uncertainty 

of all assumptions all the time. It is, however, important to recognise that the importance of the 

uncertainty is itself a value-laden question (Rudner, 1953). 
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Given the practical impossibility of including all plausible model choices and assumptions, the 

following approach, which starts from the risk of being wrong, might therefore represent a more 

sensible way forward for dealing with uncertainty and disagreement in IAM research: 

(i) What outputs are likely to have a large impact/matter/are important? 

(ii) What range of values of this/these outputs would have a significant impact (on action/the 

future)? 

(iii) Are there any plausible sets of model choices and assumptions that could produce outputs in 

this range? 

(iv) What is the (subjective or objective) likelihood of these model choices and assumptions vs. 

other (more commonly used) model choices and assumptions? 

(v) What are the reasons why these model choices and assumptions are not currently used 

(epistemic, pragmatic, computational, social, cultural, etc.)? 

While climate policy should be based on the best available knowledge, it is important to also ask 

whether the best available knowledge is good enough; that is, whether the knowledge provides a reliable 

source of information on which to base policies. A consideration of model dependencies in relation to 

plausible model choices and assumptions, and an assessment of sensitivities and uncertainties, this 

thesis has argued, represents a good starting point for beginning to answer this question.  
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A Links between IAMs 

A.1  MERGE group (BET, REMIND, WITCH, MERGE, MERGE-ETL) 

The BET (Basic Energy systems, Economy, Environment, and End-use Technology) model is the most 

recent addition to the 14 IAMs. In introducing the model for the first time, Yamamoto et al. (2014, p. 

584), tell us that BET “is strongly influenced by MERGE (Manne et al. 1995; Richels and Blanford 

2008) and MARKAL-MACRO (Loulou et al. 2004), which is closely related with TIAM”. In fact, they 

continue, “roughly speaking, the BET model can be summed up as “a MERGE with advanced, electric 

end-use technologies” or “a global MARKAL-MACRO with limited technologies”” (2014, p. 585). 

There are indications that MERGE did not only just serve as a theoretical foundation, but also that the 

computer code itself was utilised in the design of BET. As the acknowledgments state, “we greatly 

appreciate the kindness of the MERGE group to make a version of the code available online, which 

helped us develop the BET model” (2014, p. 595).  

 

REMIND (Regionalized Model of Investments and Development) is the most influential as well as one 

of the newest IAMs. The first version (called REMIND-R) was only introduced in 2010 (Leimbach et 

al., 2010). Leimbach et al.  (2010) tell us that “with MERGE and WITCH, REMIND-R shares the same 

intertemporal structure, but is distinguished from both by a higher degree of technological resolution in 

the energy sector” (Leimbach et al., 2010, p. 157). Luderer et al. (2013, p. 2) similarly tells us that “in 

terms of its macro-economic formulation, REMIND resembles well-known energy-economy-climate 

models such as RICE (Nordhaus and Yang 1996) and MERGE (Manne et al. 1995). However, REMIND 

features a higher level of detail in the representation of energy-system technologies, trade, and global 

capital markets”.   

 

The WITCH (World Induced Technical Hybrid) model is also a recent and highly influential IAM, 

presented in a highly cited paper by Bosetti et al. in 2006. Bosetti et al. (2006) compares WITCH to 

three other IAMs: MERGE, RICE, and MIND (a forerunner to REMIND). More specifically, WITCH 

is compared to MERGE in the following way “MERGE (Manne, Mendelsohn and Richels, 1995) links 

a simple top-down model to a bottom-up part that returns the cost of energy; in contrast, WITCH is a 

single model that represents the energy sector within the economy, and therefore chooses the energy 

technology investment paths coherently with the optimal growth structure” (Bosetti, Carraro, Galeotti, 

et al., 2006, p. 16). With respect to MIND, “WITCH possesses richer technological detail, differentiates 

the electric and non-electric energy uses and is a regional mode” (Bosetti, Carraro, Galeotti, et al., 2006, 

p. 16). (When it comes to RICE “WITCH shares a game set-up similar to that in RICE (Nordhaus and 

Boyer, 2000), but departs from the stylized representation of the energy sector by featuring richer 
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technological detail, technical change, natural resource depletion etc” (Bosetti, Carraro, Galeotti, et al., 

2006, p. 16)).  

 

The relationship between MERGE and WITCH is the least clear one. Implicitly, however, by stating 

only that what distinguishes WITCH from MERGE is the way in which the top-down and bottom-up 

components are combined, similarities in other aspects of the two models can be inferred.  

 

The starting point for this group is MERGE (Model for Evaluating Regional and Global Effects of 

GHG reduction policies), which was introduced by Manne, Mendelsohn and Richels in 1995 (Manne 

et al., 1995). MERGE was constructed by combining an existing model used to estimate the cost of 

emissions constraints, Global 2200, with a climate and a damage assessment module94. Global 2200, 

again, was presented (as Global 2100) in the highly influential book, Buying Greenhouse Insurance, by 

Manne and Richels in 1992 (Manne & Richels, 1992). Global 2100, again, was designed by linking to 

existing models, MACRO and ETA. It presented a “two-way linkage between a top-down model of 

economic growth and energy demands (MACRO) and a bottom-up model for energy technology 

assessment (ETA)” (Stanford University, 2019). Global 2100/2200 is therefore sometimes referred to 

as ETA-MACRO. 

 

MERGE-ETL is simply a modified version of MERGE, introduced in 2003, which includes 

endogenous technical learning (hence the addition of the term, ETL) (Kypreos & Bahn, 2003)95. 

 

In summary, the structure of BET, REMIND, and MERGE-ETL resemble the structure of MERGE, but 

with increasing technological detail and/or an endogenous representation of technical change. 

A.2  MESSAGE-MACRO 

The label MESSAGE is used both to denote the MESSAGE energy system models and the entire IAM 

framework developed at the International Institute for Applied Systems Analysis (IIASA), in which 

MESSAGE form a crucial component. MESSAGE itself has part of this framework from the very 

beginning, with the first version dating back to 1979 (Agnew et al., 1979b). This makes MESSAGE the 

oldest models in the AR5 ensemble. The version of MESSAGE used in AR5, however, should really 

be called MESSAGE-MACRO. This IAM was constructed by linking the energy system model, 

 

94 Allowing for cost-benefit analysis of climate change. 

95 Essentially, the difference between MERGE and MERGE-ETL is the introduction of R&D as a decision 

variable in the optimisation.  
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MESSAGE, with the macroeconomic model, MACRO, in a highly cited journal paper from 2000 

(Messner & Schrattenholzer, 2000). 

 

The MACRO model (of MESSAGE-MACRO) is the same model as the MACRO model in ETA-

MACRO (Manne et al., 1995). The link between MERGE and MESSAGE, however, started before 

MESSAGE-MACRO. We find that “prior to the development of MESSAGE–MACRO and its inclusion 

in IIASA’s Integrated Assessment Scheme, two separate models, MESSAGE and 11R, played the role 

that is now fulfilled by the linked modules” (Messner & Schrattenholzer, 2000, p. 269).  11R, again, is 

“a model building on the Global 2100 model by Manne and Richels” (Messner & Schrattenholzer, 2000, 

p. 269). Overall, “the form of MACRO used in the IIASA IAM framework is derived from a long series 

of models by Manne and Richels” (Fricko et al., 2017, p. 258).  

 

According to Messner & Schrattenholzer (2000) MESSAGE–MACRO (which will be discussed below) 

also has much in common with MARKAL-MACRO. More specifically, “the main difference between 

the two approaches is that MARKAL–MACRO is a fully integrated single model, whereas MESSAGE–

MACRO is solved by running each part separately and iterating their inputs until consistency between 

the macroeconomic part and the energy part is reached” (p. 270). 

A.3  TIAM-World 

TIAM stands for the ‘TIMES Integrated Assessment Model’ and TIAM-World is the global 

multiregional incarnation of this (Labriet et al., 2012; Richard Loulou & Labriet, 2008). TIMES, again, 

which is short for ‘The Integrated MARKAL-EFOM System’, “was developed as a successor of the 

MARKAL (Fishbone and Abilock 1981; Fishbone et al. 1983; Berger et al. 1992), and EFOM (Finon 

1974; van der Voort et al. 1984) bottom-up energy models” (Loulou and Labriet, 2008)96. EFOM dates 

back to 1974 (Finon, 1974), but no longer appears to be around. MARKAL, on the other hand, was 

developed over a period of almost two decades by the Energy Technology Systems Analysis 

Programme (ETSAP) of the International Energy Agency, starting in the late 1970s (Taylor et al., 2014). 

Loulou et al. (2004, p. 389) tell us that “a precursor of [MARKAL-MACRO] is ETA-MACRO (Manne 

and Richels 1992), where the ETA module was however a less detailed energy supply module than 

MARKAL is.” MARKAL is today seen as one of the most successful energy models of recent decades, 

with the number of users currently at 77 institutions in 37 countries (ETSAP, 2019). 

 

96 Thus, if one were to spell out the full name of TIAM it would be ‘The Integrated MARKAL-EFOM System 

Integrated Assessment Model’. 
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A.4  AIM-Enduse – GCAM link 

The AIM-Enduse model is an extension of the Asian-Pacific Integrated Model (AIM), which was 

developed at the National Institute for Environmental Studies (NIES) in Japan between 1991 and 

1994. Nakicenovic et al. (2000, p. 336) tell us that parts of AIM is based on ERB. The first source 

describing AIM-Enduse is a working paper from 1995 (Kainuma et al., 1995). Although no explicit 

links to MESSAGE are stated (and therefore no links are drawn in the model family tree), it is worth 

noting that this working paper was published at IIASA, which is where the MESSAGE model was and 

still is developed.  

 

GCAM (Global Change Assessment Model) is one of the most influential and oldest IAMs, developed 

at The Joint Global Change Research Institute (JGCRI). GCAM was first known as the Edmonds-Reilly 

(and subsequently the Edmonds-Reilly-Barnes (ERB)) model, which was presented in 1983 (Edmonds 

& Reilly, 1983b, 1983c, 1983a). The model was renamed MiniCAM in the mid-1990s and GCAM in 

the mid-2000s (GCAM v5.1 Documentation, 2019).  

 

Wing et al. (2011) inform us that “Phoenix is a re-design of the Second Generation Model (SGM) 

produced by The Joint Global Change Research Institute, which was developed as a complement to the 

“first generation model” known as MiniCAM” (which later became GCAM). SGM “is a process-level 

version of the ERB” (Brenkert et al., 2003, p. 13). In other words, GCAM and Phoenix share the same 

roots in the ERB model (which is not surprising, seeing that the two models were developed at the same 

institution). 

A.5  POLES – IMAGE link 

The POLES (Prospective Outlook on Long-term Energy Systems) model was initially developed in the 

1990s in France before being transferred to the EU Joint Research Centre (JRC) (Despres, 2018). The 

model was first presented in 1990 (Lesourd et al., 1996). The limited documentation does not state any 

links to other AR5 models (or forerunners of). According to Lesourd (1996), “the structure of the model 

and its operating logic are based on two key concepts established by H. A. Simon”. The fact that 

Lesourd mentions the intellectual roots, but no other IAMs, however, indicates that POLES was 

developed relatively independently of other IAMs.  

 

Much like MESSAGE, IMAGE (Integrated Model to Assess the Global Environment) also represents 

a modelling framework consisting of several sub-models. The history of IMAGE goes back to 1985, 

when Rotmans started the work on the initial prototype, leading to the first publication in 1990 

(Rotmans, 1990). According to the IMAGE 2.4 model manual, “IMAGE 1.0 was among the first 
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pioneering examples of Integrated Assessment Models addressing climate change”(Bouwman et al., 

2006, p. 17). Rotmans (1990) mentions two similar models, but none of these are included in AR5 (or 

referred to by other models in AR5)97. This also signals independence from other early IAMs.  

 

The version of IMAGE used in AR5 in reality consists of three models: IMAGE, TIMER, and FAIR 

(Bouwman et al., 2006). Of these, TIMER (The IMage Energy Regional model) covers the energy 

system and is based on the TIME model, which was first presented by Vries et al. (1995). According to 

Vries et al. (2001, p. 11) “a model which is in various aspects similar to the TIMER-model is the 

POLES-model”. The FAIR (Framework to Assess International Regimes) model is a global climate 

policy model that was first introduced by Den Elzen and Lucas in 2003.  

 

In summary, IMAGE and POLES appears to have been developed independently around the same time. 

The only connection between the two is the energy system model, TIMER, which appears to have been 

inspired by POLES and incorporated into the IMAGE framework later on.  

A.6  IMACLIM 

IMACLIM, developed at the Center for International Research on Environment and Development 

(CIRED) in France, was first introduced in 1991 (Baron & Salles, 1991). IMACLIM was “an adaptation 

of the Chandler (1990) model to France” (Beaumais & Zagame, 1993, p. 118). While Beaumais and 

Zagame argue that IMACLIM differed from all other models developed in France at the time, which 

were “econometric neo-Keynesian models” (Beaumais & Zagame, 1993, p. 113), they do not mention 

any of the other models included in AR5. Hourcade (1993) also argues that IMACLIM tackles issues 

that existing models are not able to. Overall, however, fairly little is written (in English) on the history 

of IMACLIM and on how it relates to other models. Based on what we have, however, IMACLIM 

appears to have been developed relatively independently of others IAMs. 

A.7  DNE+21 

The DNE21+ model, from The Research Institute of Innovative Technology for the Earth (RITE) in 

Japan, was introduced by Sano et al. (2005). DNE is short for “Dynamic New Earth”. The forerunners 

to DNE21+ are LDNE21 and DNE21 (described by Yamaji et al. (2000) and Fujii & Yamaji (1998) 

respectively). According to Fuji & Yamaji (1998), they “built a new global energy system model, 

Dynamic New Earth 21, based on the New Earth 21 model developed previously” (Fujii & Yamaji, 

 

97 The Model of Warming Commitment (MWC) of the World Resource Institute (Mintzer, 1987), and the 

Atmospheric Stabilization Framework (ASF) of the EPA (EPA, 1989). 
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1998, p. 114). The New Earth 21 model dates back to 1993. No links are found to other models, but we 

note that the available documentation for this model (and its forerunners) is fairly limited.  
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B IAM Frameworks 

This appendix describes how the model documentation for the 14 IAMs present the underlying model 

frameworks. 

B.1  Ramsey-type optimal growth models 

In Global 2100, which formed the basis of MERGE, “a Ramsey model is employed for the 

determination of savings and investment through a discounted utility maximand” Stanford (2019). 

WITCH is described as “a Ramsey-type neoclassical optimal growth hybrid model” (Bosetti, Carraro, 

Galeotti, et al., 2006, p. 15) and BET is described as “a multi-regional, global model based on Ramsey’s 

optimal growth theory” (Yamomoto et al., 2014). Similarly, we find that the “macro‐economic core of 

REMIND is a Ramsey‐type optimal growth model in which intertemporal global welfare is optimized 

subject to equilibrium constraints” (web site). (MERGE-ETL is based on MERGE and shares the same 

basic framework.) 

 

The reason why MESSAGE is described as a general equilibrium model in AR5 is because it is coupled 

to MACRO (to form MESSAGE-MACRO). Given that MACRO stems directly from MERGE, 

MACRO is also based on the same framework as MERGE (and Global 2100). We can thus consider 

MESSAGE-MACRO part of the MERGE family. In presenting MESSAGE-MACRO, Messner & 

Schrattenholzer (2000, p. 270) described MACRO as “a macroeconomic model maximizing the 

intertemporal utility function of a single representative producer-consumer in each world region. The 

optimization result is a sequence of optimal savings, investment, and consumption decisions.”  

 

MESSAGE itself (without MACRO) is the energy system model in the IIASA IAM framework.  

MESSAGE alone is described as “a dynamic linear programme for comparing alternative existing and 

new energy supply technologies” (Agnew et al., 1979b, p. 4). Messner & Schrattenholzer (2000) use 

the slightly different term, “dynamic systems engineering optimization model”, to describe the same 

framework in 2000 (p. 270).  

 

B.2  Energy system optimisation models (ESOMs) 

TIAM-World is based on TIMES, which again is based on MARKAL. All of these are described as 

“technology explicit, dynamic partial equilibrium models of energy markets” (R Loulou et al., 2016, p. 

135). In TIMES (and MARKAL) “the equilibrium is obtained by maximizing the total surplus of 

consumers and suppliers via Linear Programming, while minimizing total discounted energy system 
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cost” (R Loulou et al., 2016, p. 135). By maximising total surplus, TIAM-World “computes a dynamic 

inter-temporal partial equilibrium on worldwide energy and emission markets” (Website, my italics). 

DNE21+ is also described as a linear programming model, in which net energy system costs are 

minimised (RITE web site).  

B.3  CGE models 

IMACLIM98 is described as a “recursive dynamic, multi-region and multi-sector hybrid CGE model” 

(Bibas and Méjean, 2014, p. 734). Phoenix is described as “a recursive dynamic computable general 

equilibrium (CGE) model” (Wing et al., 2011). 

B.4  Energy simulation models 

GCAM is described as a “dynamic-recursive market equilibrium model” (Kriegler et al., 2015a, p. 7). 

Moreover, “the core operating principle for GCAM is that of market equilibrium” (Model Overview 

Wiki). The reason why it’s considered a partial rather than general equilibrium model is because “only 

markets for certain goods such as energy and agricultural goods are represented and cleared” (Lurz et 

al., 2006, pp. 72–73). AIM-Enduse represents one of several emissions sub-modules in the AIM model. 

It is a recursive dynamic (Hanaoka et al., 2015) bottom-up energy model that “focuses on the end-use 

technology selection in energy consumption as well as energy production” (Kainuma et al., 2003, p. 8). 

According to the web site, “POLES is a world energy-economy partial equilibrium simulation model 

of the energy sector” (Website 2), which follows a recursive dynamic.  

 

IMAGE self-declares as closer to earth systems models than any other IAMs. The focus of IMAGE is 

on the representation of physical processes and geographical detail, rather than economic processes and 

feedback (Stehfest et al., 2014). For the purpose of investigating climate change mitigation strategies 

in AR5 (and AR4) IMAGE is linked to FAIR and TIMER to create IMAGE-TIMER-FAIR. In order to 

understand why IMAGE is categorised as a recursive-dynamic partial equilibrium model, we need to 

look to the energy system module, TIMER. According to Lucas et al. (2013), “TIMER is a recursive 

dynamic global energy-system model that describes the long-term dynamics of the production and 

consumption of energy” (p. 1033). According to the web site “the focus is on dynamic relationships in 

the energy system, such as inertia and learning-by-doing in capital stocks, depletion of the resource 

base and trade between regions”.  FAIR is included “for inter-temporal optimisation of mitigation 

 

98 IMACLIM is available in a static version (IMACLIM-S) and a recursive version (IMACLIM-R). It is the latter 

version that is used in AR5. 
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strategies”. In this set-up, long-term reduction strategies are determined by minimising the cumulative 

discounted mitigation costs (the latter being calculated by TIMER) (Stehfest et al., 2014). 
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C AR5 general equilibrium IAM publications 

This appendix lists the AR5 scenario publications that were used in section 4.4 to identify potential 

reasons why the 20 general equilibrium IAMs in AR5 do not generate a single net negative cost result. 

16 of the publications are model inter-comparison overview sources presenting results from multiple 

IAMs. As such, this appendix also shows what general equilibrium IAMs were part of what model inter-

comparison exercise. Two general equilibrium IAMs in AR5 were not part of any of the model inter-

comparison exercises. For these two IAMs, the specific publications that presented the AR5 scenarios 

were used instead.  

 

Table C.1 AR5 scenario publications covering scenarios generated by general equilibrium IAMs. 

  General equilibrium IAMs used in publications 

Model inter-comparison overview publications 

AMPERE (Kriegler et al., 2015b; 

Riahi et al., 2015b) 

 GEM-E3-ICCS, MERGE-ETL_2011, MESSAGE V.4, REMIND 

1.5, WITCH_AMPERE, WorldScan2 

EMF 27 (G. J. Blanford et al., 

2014; Krey et al., 2014; Kriegler et 

al., 2014) 

 BET 1.5, EC-IAM 2012, FARM_3.0, GRAPE_ver1998, 

IMACLIM v1.1, MERGE_EMF27, MESSAGE V.4, Phoenix 

2012.4, REMIND 1.5 

RoSE (Bauer et al., 2016; Calvin et 

al., 2016; Chen et al., 2016; De 

Cian et al., 2016; Luderer et al., 

2016) 

 REMIND 1.4, WITCH_ROSE 

LIMITS (Kriegler et al., 2013; 

Tavoni et al., 2014) 

 MESSAGE V.4, REMIND 1.5, WITCH_LIMITS 

AME (Calvin et al., 2012)  MESSAGE V.3, REMIND 1.3, GRAPE_ver1998, 

MARIA23_org, MERGE_AME, Phoenix 2012.4, 

WITCH_AME, GTEMREF32, iPETS_1.2.0 

EMF 22 (Clarke et al., 2009)  MERGE_EMF22, MESSAGE V.1, SGM_EMF22, 

WITCH_EMF22 

RECIPE (Luderer et al., 2012)  IMACLIM, REMIND, WITCH 
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ADAM (Edenhofer, Knopf, 

Leimbach, & Bauer, 2010) 

 MERGE-ETL 

Individual AR5 scenario publications 

MESSAGE RCP 8.5 scenarios 

(Riahi et al., 2011) 

 MESSAGE V.2 

IGSM scenarios (Prinn et al., 2011)  IGSM 
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D Comparison of parameter ranges used in Chapter 6 

with values in the literature 

D.1 Learning rates 

Table D.1 Learning rate ranges in FTT:Power and in the literature 

Technology FTT:Power 

ranges 

Samadi (2018) Rubin et al. 

(2015) 

Nuclear 5.8 (2.9, 8.7) (-25, 10) (-38*, 6) 

Oil 1.0 (0.5, 1.5)   

Coal 3.0 (1.5, 4.5) (-5, 5) (5.6, 12) 

Coal + CCS 5.0 (2.5, 7.5)  (1.1, 9.9) 

IGCC 3.0 (1.5, 4.5)  (2.5, 16) 

IGCC + CCS 5.0 (2.5, 7.5)  (2.5, 20) 

CCGT 4.0 (2.0, 6.0) (2, 15) (-11, 34) 

CCGT + CCS 5.0 (2.5, 7.5)  (2, 7) 

Solid Biomass 5.0 (2.5, 7.5)  (0, 24) 

S Biomass CCS 7.0 (3.5, 10.5)   

BIGCC 5.0 (2.5, 7.5)   

BIGCC + CCS 7.0 (3.5, 10.5)   

Biogas 5.0 (2.5, 7.5)   

Biogas + CCS 7.0 (3.5, 10.5)   

Tidal 1.4 (0.7, 2.1)   

Large Hydro 1.4 (0.7, 2.1)  (1.4, 1.4) 

Onshore 7.0 (3.5, 10.5) (-3, 12) (-11, 32) 

Offshore 9.0 (4.5, 13.5) (-5, 10) (5, 19) 

Solar PV 17.0 (8.5, 25.5) (8, 23) (10, 47) 

CSP 10.0 (5.0, 15.0) (3, 12)  

Geothermal 5.0 (2.5, 7.5)   

Wave 14.0 (7.0, 21.0)   

Fuel Cells 15.0 (7.5, 22.5)   

CHP 3.0 (1.5, 4.5)   

* Rubin (2015) notes these values should not be translated into learning rates due to the many factors that may 

lead nuclear power to become more expensive rather than less.  

 

The high ends of the learning rates, which result from multiplying the FTT:Power default learning rates 

by 150%, are close to those reported by Samadi (2018) for nuclear, coal, onshore wind, offshore wind, 

solar PV, and CSP. Only for offshore wind and for solar PV are the high ends of the learning rates 
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slightly higher than what is reported by Samadi (2018). Rubin et al. (2015) however, report higher 

learning rates for both of these technologies.  

 

The low ends of the learning rates, which result from multiplying the FTT:Power default learning rates 

by 50%, are close to those reported by Samadi (2018) for gas (CCGT), solar PV, and CSP, and 

conservative for nuclear, coal, and onshore and offshore wind. In particular, the negative learning rates 

reported by Samadi (2018) are not captured by varying the FTT:Power default learning rates by ±50%.  

 

Overall, the learning rates that arise from varying the FTT:Power default values by ±50% are either 

similar to or conservative compared to those reported by Samadi (2018) and Rubin et al. (2015).   

D.2 Lifetimes 

Krey et al. (2019b) provide a review of techno-economic assumptions in the electricity sector in fifteen 

IAMs. Among other things, they review lifetime ranges.  

 

Table D.2 Lifetime ranges in FTT:Power and in the literature 

Technology FTT:Power 

ranges 

Krey et al.  

Nuclear 60 (30, 90) (40,60) 

Oil 40 (20, 60)  

Coal 40 (20, 60) (30,60) 

Coal + CCS 40 (20, 60) (30,60) 

IGCC 40 (20, 60)  

IGCC + CCS 40 (20, 60)  

CCGT 30 (15, 45) (25,45) 

CCGT + CCS 30 (15, 45) (25,45) 

Solid Biomass 40 (20, 60) (20,60) 

S Biomass CCS 40 (20, 60) (20,60) 

BIGCC 40 (20, 60)  

BIGCC + CCS 40 (20, 60)  

Biogas 30 (15, 45)  

Biogas + CCS 30 (15, 45)  

Tidal 80 (40, 120)  

Large Hydro 80 (40, 120) (40, inf) 

Onshore 25 (12.5, 37.5) (20,31) 

Offshore 25 (12.5, 37.5) (20,31) 

Solar PV 25 (12.5, 37.5) (20,30) 
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CSP 25 (12.5, 37.5) (20,30) 

Geothermal 40 (20, 60) (30,40) 

Wave 20 (10, 30)  

Fuel Cells 20 (10, 30)  

CHP 40 (20, 60)  

Inf means that the lifetime of a technology for modelling purposes is unlimited 

 

Several of the lifetime ranges found by Krey et al. (2019b) are remarkably close to the ranges obtained 

by varying FTT:Power default values by ±50%. The lower ends are, however, slightly lower in 

FTT:Power compared to what is reported in Krey et al. (2019b), and for nuclear, wind, solar PV, 

geothermal, and CSP the high ends in FTT:Power are also somewhat higher (the role of geothermal and 

CSP in the scenarios, however, are not significant). Note, however, that with lifetimes – just as with 

build times – it is the relative difference between technologies that matter (varying the absolute values 

is equivalent to varying the overall scaling factor). Overall, the ranges reported in Krey et al. (2019b) 

are somewhat narrower, but still close to the ranges obtained by varying FTT:Power default values by 

±50%. Given that Krey et al. (2019b) does not provide an exhaustive review of lifetime ranges in the 

literature, the FTT:Power ranges do not appear unreasonable.  

 

D.3 Investor discount rates 

The default investor discount rate (hurdle rate) in FTT:Power is 10% for all technologies. In a sensitivity 

analysis of the widely used MARKAL model, Johnson et al. (2006) varied the hurdle rate for new 

electricity generation technologies between 5% and 20%. This range was based on modeler judgment. 

Labriet et al. (2012) also use hurdle rates between 5% and 20% in their exploration of the impacts of 

technology and climate uncertainties on optimal pathways generated by TIAM-World. The IEA’s 

“Projected cost of generating electricity” (IEA & NEA, 2015) uses hurdle rates of 5% and 10% to 

calculate the costs of power technologies. Based on this, the range (0.05, 0.20) obtained by varying 

FTT:Power default values by ±50% appears reasonable.  
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E Remaining FTT:Power parameters 

This appendix lists FTT:Power parameters that are not included in the sensitivity analysis. 
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Table E.1 Parameters used to compute LCOEs, shares, capacities, and emissions in FTT:Power 

  
Investment std Fuel std O&M std Load 

Factor 

Type Efficiency Resource  Emissions 

  $/kW $/MWh $/MWh $/MWh $/MWh $/MWh  0;1;2;3 % Efficiency tCO2/GWh 

1 Nuclear 4896 1525.05 9.6 2.331842 11 6.150083 0.95 1 1 1 0 

2 Oil 1227.845 1033.628 223.6639 239.5182 22.126 5.694103 0.85 1 0.45 0.272617 751.8497 

3 Coal 2292.949 775.0097 25.61937 11.22748 7.413898 6.022754 0.85 1 0.42 0.41682 998.3275 

4 Coal + CCS 4224.692 1172.546 22.43323 10.22969 15.01657 4.554923 0.85 1 0.37 0.367199 99.83275 

5 IGCC 3829.065 1705.944 20.05085 1.570261 10.0901 1.50928 0.85 1 0.42 0.41682 998.3275 

6 IGCC + CCS 4521.142 1523.045 19.9646 7.502858 12.87135 0.521059 0.85 1 0.37 0.367199 99.83275 

7 CCGT 1067 336.7544 66.45885 16.52231 5.821213 2.797362 0.85 1 0.57 0.513211 504.2741 

8 CCGT + CCS 2446.527 520.6255 71.19667 1.471167 6.419504 0.403999 0.85 1 0.47 0.423174 50.42741 

9 Solid Biomass 4007 2587.467 93.24 72.93987 18.55 26.53242 0.85 2 0.42 0.310116 0 

10 S Biomass CCS 5938.743 2985.004 93.24 72.93987 18.55 26.53242 0.85 2 0.37 0.273197 -980.757 

11 BIGCC 3829.065 1705.944 93.24 72.93987 10.0901 1.50928 0.85 2 0.42 0.310116 0 

12 BIGCC + CCS 4521.142 1523.045 93.24 72.93987 12.87135 0.521059 0.85 2 0.37 0.273197 -980.757 

13 Biogas 3733 3519.629 0 36.61555 60.52 5.839101 0.85 3 0.57 0.513211 0 

14 Biogas + CCS 5112.527 3703.5 0 36.61555 60.52 5.839101 0.85 3 0.47 0.423174 -376.391 

15 Tidal 2782.5 3538.984 0 0 38.4 6.451792 0.3 3 1 1 0 

16 Large Hydro 2492.5 2499.96 0 0 9.855 10.42698 0.4 3 1 1 0 

17 Onshore 1841 443.4874 0 0 21.38 8.673325 0.265 0 1 1 0 

18 Offshore 5000 579.5776 0 0 40.71 19.82348 0.39 0 1 1 0 

19 Solar PV 1833.5 552.8973 0 0 22.795 15.56944 0.16 0 1 1 0 

20 CSP 4901 1859.097 0 0 17.38 22.09532 0.32 0 0.2 0.2 0 

21 Geothermal 5822.5 2036.632 0 0 17.275 34.09743 0.85 3 1 1 0 

22 Wave 5142.072 2414.849 0 0 55.9106 36.58099 0.455 0 1 1 0 

23 Fuel Cells 5884.815 5459 58.70801 54.56 53.6953 49.81 0.85 1 0.8 0.720296 359.2953 

24 CHP 2000 4358.279 65.74 15.20814 15.93 31.84846 0.85 1 0.8 0.720296 359.2953 
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Table E.2 Spillover learning matrix (see Mercure (2011, 2012) for the full set of equations describing the computation of learning effects in FTT:Power). 

 1 means technologies are the same; 0 they are unrelated            
Nuc Oil Coal Coal 

+ 
CCS 

IGCC IGCC 

+ 
CCS 

CCGT CCGT 

+ CCS 

S 

Bio 

S 

Bio 
CCS 

BIGCC BIGCC 

+ CCS 

Biogas Biogas 

+ CCS 

S 

Hydro 

L 

Hydro 

Onshore Offshore Solar 

PV 

CSP Geotherm Wave Fuel 

Cells 

CHP 

1 Nuclear 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 Oil 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 Coal 0 0 1 0.75 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 Coal + CCS 0 0 0.75 1 0 1 0 1 0 0.75 0 1 0 1 0 0 0 0 0 0 0 0 0 0 

5 IGCC 0 0 0 0 1 0.75 0.5 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 IGCC + CCS 0 0 0 1 0.75 1 0 0.75 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 

7 CCGT 0 0 0 0 0.5 0 1 0.75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 CCGT + CCS 0 0 0 1 0 0.75 0.75 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 

9 Solid Biomass 0 0 0.5 0 0 0 0 0 1 0.75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

10 S Biomass CCS 0 0 0 0.75 0 1 0 1 0.75 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 

11 BIGCC 0 0 0 0 1 0 0 0 0 0 1 0.75 0 0 0 0 0 0 0 0 0 0 0 0 

12 BIGCC + CCS 0 0 0 1 0 1 0 1 0 1 0.75 1 0 1 0 0 0 0 0 0 0 0 0 0 

13 Biogas 0 0 0 0 0 0 0 0 0 0 0 0 1 0.75 0 0 0 0 0 0 0 0 0 0 

14 Biogas + CCS 0 0 0 1 0 1 0 1 0 1 0 1 0.75 1 0 0 0 0 0 0 0 0 0 0 

15 Tidal 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

16 Large Hydro 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

17 Onshore 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.5 0 0 0 0 0 0 

18 Offshore 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 1 0 0 0 0 0 0 

19 Solar PV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.1 0 0 0 0 

20 CSP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 1 0 0 0 0 

21 Geothermal 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

22 Wave 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

23 Fuel Cells 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

24 CHP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
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Table E.3 Capacity factors for each technology and region in FTT:Power. 

  Belgium  Denmark Germany Greece Spain France Ireland Italy Luxembourg Netherlands Austria Portugal Finland Sweden UK 

Czech 

Republic Estonia Cyprus Latvia Lithuania 

1 Nuclear 0.89 0.85 0.83 0.85 0.91 0.79 0.85 0.85 0.85 0.93 0.85 0.85 0.98 0.82 0.85 0.81 0.85 0.85 0.85 0.95 

2 Oil 0.30 0.30 0.38 0.30 0.34 0.30 0.30 0.30 0.30 0.30 0.49 0.43 0.30 0.30 0.30 0.26 0.21 0.60 0.30 0.30 

3 Coal 0.60 0.60 0.48 0.63 0.60 0.60 0.60 0.60 0.85 0.60 0.60 0.32 0.60 0.60 0.44 0.55 0.44 0.85 0.60 0.60 

4 Coal + CCS 0.60 0.60 0.48 0.63 0.60 0.60 0.60 0.60 0.85 0.60 0.60 0.32 0.60 0.60 0.44 0.55 0.44 0.85 0.60 0.60 

5 IGCC 0.60 0.60 0.48 0.63 0.60 0.60 0.60 0.60 0.85 0.60 0.60 0.32 0.60 0.60 0.44 0.55 0.44 0.85 0.60 0.60 

6 IGCC + CCS 0.60 0.60 0.48 0.63 0.60 0.60 0.60 0.60 0.85 0.60 0.60 0.32 0.60 0.60 0.44 0.55 0.44 0.85 0.60 0.60 

7 CCGT 0.55 0.48 0.72 0.50 0.55 0.64 0.62 0.48 0.68 0.80 0.37 0.66 0.37 0.55 0.66 0.55 0.55 0.85 0.55 0.55 

8 CCGT + CCS 0.55 0.48 0.72 0.50 0.55 0.64 0.62 0.48 0.68 0.80 0.37 0.66 0.37 0.55 0.66 0.55 0.55 0.85 0.55 0.55 

9 Solid Biomass 0.57 0.45 0.47 0.50 0.55 0.48 0.50 0.47 0.47 0.52 0.50 0.61 0.68 0.39 0.37 0.47 0.50 0.85 0.50 0.29 

10 S Biomass CCS 0.57 0.45 0.47 0.50 0.55 0.48 0.50 0.47 0.47 0.52 0.50 0.61 0.68 0.39 0.37 0.47 0.50 0.85 0.50 0.29 

11 BIGCC 0.57 0.45 0.47 0.50 0.55 0.48 0.50 0.47 0.47 0.52 0.50 0.61 0.68 0.39 0.37 0.47 0.50 0.85 0.50 0.29 

12 BIGCC + CCS 0.57 0.45 0.47 0.50 0.55 0.48 0.50 0.47 0.47 0.52 0.50 0.61 0.68 0.39 0.37 0.47 0.50 0.85 0.50 0.29 

13 Biogas 0.55 0.48 0.72 0.50 0.50 0.64 0.62 0.48 0.68 0.80 0.37 0.66 0.37 0.50 0.66 0.50 0.50 0.85 0.50 0.50 

14 Biogas + CCS 0.55 0.48 0.72 0.50 0.50 0.64 0.62 0.48 0.68 0.80 0.37 0.66 0.37 0.50 0.66 0.50 0.50 0.85 0.50 0.50 

15 Tidal 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 

16 Large Hydro 0.42 0.33 0.68 0.40 0.20 0.40 0.46 0.35 0.44 0.31 0.41 0.19 0.63 0.48 0.36 0.22 0.64 0.85 0.23 0.40 

17 Onshore 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 

18 Offshore 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 

19 Solar PV 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 

20 CSP 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 

21 Geothermal 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 

22 Wave 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 

23 Fuel Cells 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 

24 CHP 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 
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Table E.3 cont. 

 

 

Hungary Malta Poland Slovenia Slovakia Bulgaria Romania Norway Switzerland Iceland Croatia Turkey Macedonia USA Japan Canada Australia 

New 

Zealand 

Russian 

Federation 

1 
Nuclear 

0.87 0.85 0.85 0.85 0.87 0.95 0.91 0.85 0.98 0.85 0.85 0.85 0.85 0.95 0.85 0.85 0.85 0.85 0.82 

2 
Oil 

0.30 0.30 0.30 0.30 0.30 0.69 0.42 0.13 0.30 0.20 0.30 0.66 0.85 0.11 0.32 0.25 0.19 0.20 0.11 

3 
Coal 

0.60 0.85 0.55 0.70 0.60 0.58 0.60 0.60 0.85 0.85 0.60 0.62 0.60 0.72 0.45 0.65 0.79 0.60 0.53 

4 
Coal + CCS 

0.60 0.85 0.55 0.70 0.60 0.58 0.60 0.60 0.85 0.85 0.60 0.62 0.60 0.72 0.45 0.65 0.79 0.60 0.53 

5 
IGCC 

0.60 0.85 0.55 0.70 0.60 0.58 0.60 0.60 0.85 0.85 0.60 0.62 0.60 0.72 0.45 0.65 0.79 0.60 0.53 

6 

IGCC + 

CCS 0.60 0.85 0.55 0.70 0.60 0.58 0.60 0.60 0.85 0.85 0.60 0.62 0.60 0.72 0.45 0.65 0.79 0.60 0.53 

7 
CCGT 

0.98 0.85 0.66 0.55 0.66 0.55 0.55 0.55 0.53 0.85 0.71 0.72 0.85 0.55 0.58 0.55 0.30 0.55 0.54 

8 
CCGT + 
CCS 0.98 0.85 0.66 0.55 0.66 0.55 0.55 0.55 0.53 0.85 0.71 0.72 0.85 0.55 0.58 0.55 0.30 0.55 0.54 

9 

Solid 

Biomass 0.54 0.85 0.50 0.46 0.37 0.50 0.17 0.39 0.69 0.50 0.50 0.50 0.85 0.60 0.50 0.59 0.50 0.50 0.85 

10 

S Biomass 

CCS 0.54 0.85 0.50 0.46 0.37 0.50 0.17 0.39 0.69 0.50 0.50 0.50 0.85 0.60 0.50 0.59 0.50 0.50 0.85 

11 
BIGCC 

0.54 0.85 0.50 0.46 0.37 0.50 0.17 0.39 0.69 0.50 0.50 0.50 0.85 0.60 0.50 0.59 0.50 0.50 0.85 

12 

BIGCC + 

CCS 0.54 0.85 0.50 0.46 0.37 0.50 0.17 0.39 0.69 0.50 0.50 0.50 0.85 0.60 0.50 0.59 0.50 0.50 0.85 

13 
Biogas 

0.98 0.85 0.66 0.50 0.66 0.50 0.50 0.50 0.53 0.85 0.71 0.72 0.85 0.50 0.58 0.42 0.30 0.50 0.54 

14 
Biogas + 
CCS 0.98 0.85 0.66 0.50 0.66 0.50 0.50 0.50 0.53 0.85 0.71 0.72 0.85 0.50 0.58 0.42 0.30 0.50 0.54 

15 
Tidal 

0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 

16 

Large 

Hydro 0.48 0.85 0.26 0.45 0.28 0.40 0.31 0.57 0.35 0.40 0.33 0.27 0.17 0.29 0.40 0.58 0.40 0.40 0.40 

17 
Onshore 

0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 

18 
Offshore 

0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 

19 
Solar PV 

0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 

20 
CSP 

0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 

21 
Geothermal 

0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 

22 
Wave 

0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 

23 
Fuel Cells 

0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 

24 
CHP 

0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 
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Table E.3 cont. 

 

 

Rest of 
Annex I China India Mexico Brazil Argentina Colombia 

Rest of 

Latin 
America Korea Taiwan Indonesia ASEAN 

OPEC 

(excl 
Venezuela) 

Rest 

of 
world Ukraine 

Saudi 
Arabia Nigeria 

South 
Africa 

Rest 

of 
Africa 

Africa 
OPEC 

1 
Nuclear 

0.78 0.91 0.85 0.82 0.79 0.82 0.85 0.85 0.85 0.95 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 

2 
Oil 

0.30 0.30 0.83 0.70 0.29 0.30 0.30 0.54 0.20 0.36 0.30 0.25 0.51 0.55 0.55 0.55 0.55 0.55 0.55 0.55 

3 
Coal 

0.60 0.58 0.69 0.50 0.85 0.46 0.60 0.43 0.60 0.78 0.74 0.70 0.85 0.83 0.83 0.83 0.83 0.83 0.83 0.83 

4 
Coal + CCS 

0.60 0.58 0.69 0.50 0.85 0.46 0.60 0.43 0.60 0.78 0.74 0.70 0.85 0.83 0.83 0.83 0.83 0.83 0.83 0.83 

5 
IGCC 

0.60 0.58 0.69 0.50 0.85 0.46 0.60 0.43 0.60 0.78 0.74 0.70 0.85 0.83 0.83 0.83 0.83 0.83 0.83 0.83 

6 

IGCC + 

CCS 0.60 0.58 0.69 0.50 0.85 0.46 0.60 0.43 0.60 0.78 0.74 0.70 0.85 0.83 0.83 0.83 0.83 0.83 0.83 0.83 

7 
CCGT 

0.55 0.55 0.51 0.52 0.55 0.46 0.55 0.55 0.85 0.36 0.55 0.64 0.49 0.61 0.61 0.61 0.61 0.61 0.61 0.61 

8 

CCGT + 

CCS 0.55 0.55 0.51 0.52 0.55 0.46 0.55 0.55 0.85 0.36 0.55 0.64 0.49 0.61 0.61 0.61 0.61 0.61 0.61 0.61 

9 
Solid 
Biomass 0.85 0.85 0.50 0.85 0.70 0.85 0.85 0.50 0.85 0.85 0.85 0.50 0.85 0.83 0.83 0.83 0.83 0.83 0.83 0.83 

10 
S Biomass 
CCS 0.85 0.85 0.50 0.85 0.70 0.85 0.85 0.50 0.85 0.85 0.85 0.50 0.85 0.83 0.83 0.83 0.83 0.83 0.83 0.83 

11 
BIGCC 

0.85 0.85 0.50 0.85 0.70 0.85 0.85 0.50 0.85 0.85 0.85 0.50 0.85 0.83 0.83 0.83 0.83 0.83 0.83 0.83 

12 

BIGCC + 

CCS 0.85 0.85 0.50 0.85 0.70 0.85 0.85 0.50 0.85 0.85 0.85 0.50 0.85 0.83 0.83 0.83 0.83 0.83 0.83 0.83 

13 
Biogas 

0.30 0.50 0.51 0.52 0.50 0.46 0.50 0.36 0.85 0.36 0.50 0.64 0.49 0.61 0.61 0.61 0.61 0.61 0.61 0.61 

14 

Biogas + 

CCS 0.30 0.50 0.51 0.52 0.50 0.46 0.50 0.36 0.85 0.36 0.50 0.64 0.49 0.61 0.61 0.61 0.61 0.61 0.61 0.61 

15 
Tidal 

0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 

16 
Large 
Hydro 0.40 0.40 0.36 0.39 0.54 0.35 0.58 0.64 0.29 0.40 0.27 0.51 0.40 0.38 0.38 0.38 0.38 0.38 0.38 0.38 

17 
Onshore 

0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 

18 
Offshore 

0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.4 0.4 0.4 0.4 0.4 0.4 

19 
Solar PV 

0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 

20 
CSP 

0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 

21 
Geothermal 

0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 

22 
Wave 

0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 

23 
Fuel Cells 

0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 

24 
CHP 

0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 
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Table E.4 Energy resources assumptions used to compute cost supply curves in the natural energy resources (NER) module, which an input to FTT:Power. 

Resource   Use   

Name Type Dist. EJ/y Technical 

potential 

Units 

Wind Flow Hierarch. 0.72 346 EJ/y 

Solar Flow Identical 0.04 3384 EJ/y 

Hydro Flow Hierarch. 12 66 EJ/y 

Geotherm. Flow Hybrid 0.23 36 EJ/y 

Biomass Flow Hybrid 51 447 EJ/y 

Ocean Flow Hierarch. 0.002 23 EJ/y 

Oil Stock Hierarch. 170 67 103EJ 

Gas Stock Hierarch. 109 46 103EJ 

Hard Coal Stock Hierarch. 139 220 103EJ 

Soft Coal Stock Hierarch.  37 103EJ 

Uranium Stock Hierarch. 30 1.36 103EJ 

Thorium Stock Hierarch. - 4.68 103EJ 

Stock/Flow indicates whether resources are renewable flows or stocks. Hierarch./Identical/Hybrid identifies the type of statistical distribution assigned. Use refers to current yearly consumption of these resources. 

For the full regional data (for the 59 regions) and equations used to compute cost supply curves in the NER module, as well as an uncertainty assessment, see Mercure and Salas (2012). 

 

 

Table E.5 Grid flexibility parameter 

MRIT = 0.7 

The value of the MRIT parameter determines how much flexible technology (Oil, CCGT, Biogas, Hydro) is needed per intermittent technology (Wind, Solar PV, CSP, Wave): 

 


