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Abstract
Parkinson’s disease (PD) is a common neurodegenerative disease typified
by a movement disorder consisting of bradykinesia, rest tremor, rigidity,
and postural instability. Treatment options for PD are limited, with most of
the current approaches based on restoration of dopaminergic tone in the
striatum. However, these do not alter disease course and do not treat the
non-dopamine-dependent features of PD such as freezing of gait, cognitive
impairment, and other non-motor features of the disorder, which often have
the greatest impact on quality of life. As understanding of PD pathogenesis
grows, novel therapeutic avenues are emerging. These include treatments
that aim to control the symptoms of PD without the problematic side effects
seen with currently available treatments and those that are aimed towards
slowing pathology, reducing neuronal loss, and attenuating disease course.
In this latter regard, there has been much interest in drug repurposing (the
use of established drugs for a new indication), with many drugs being
reported to affect PD-relevant intracellular processes. This approach offers
an expedited route to the clinic, given that pharmacokinetic and safety data
are potentially already available. In terms of better symptomatic therapies
that are also regenerative, gene therapies and cell-based treatments are
beginning to enter clinical trials, and developments in other neurosurgical
strategies such as more nuanced deep brain stimulation approaches mean
that the landscape of PD treatment is likely to evolve considerably over the
coming years. In this review, we provide an overview of the novel
therapeutic approaches that are close to, or are already in, clinical trials.
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Introduction
Parkinson’s disease (PD) is a common neurodegenerative  
disease characterised by a movement disorder consisting of  
bradykinesia, rest tremor, and rigidity, along with postural  
instability, a range of other more-subtle motor features, and  
many non-motor features1. Many of the core motor features  
result from the loss of a specific population of neurons: the  
dopaminergic neurons of the substantia nigra pars compacta,  
which project axons to the striatum2,3. As such, most of the  
current pharmacological treatment approaches for PD aim to  
restore dopaminergic tone in the striatum.

Whilst often effective at improving motor function, current  
treatments are associated with significant side effects due to 
delivery of dopamine to extra-striatal regions, variability in  
their absorption and transit across the blood–brain barrier, and 
the non-physiological continuous release of dopamine and its  
effects on the dopamine receptors within the basal ganglia4,5.  
Patients frequently develop cognitive problems, levodopa-induced 
dyskinesias, and on-off fluctuations, which we have estimated  
to occur in 46%, 56%, and 100% of cases, respectively, at  
10 years from diagnosis based on data from our ongoing  
community-based incident study in PD6,7. All of these factors  
coupled with some of the neuropsychiatric features of PD have 
a significant impact on quality of life in advancing PD. Many  
features of PD (such as cognitive impairment and autonomic  

dysfunction) have a mainly non-dopaminergic basis, resulting 
from neurodegeneration at other sites in the central nervous  
system as well as the enteric and autonomic nervous systems3,8. 
It is often these features that have the most detrimental impact  
on the quality of life of patients with PD, yet treatment options 
remain limited for these elements of disease.

Levodopa, the precursor of dopamine, was first developed 
for the treatment of PD in the 1960s and continues to be 
the most-effective therapeutic agent for PD in 20209. Other  
dopaminergic drugs have since been used, including inhibitors 
of dopamine metabolism as well as dopamine receptor agonists, 
but these are generally less well tolerated and less effective. 
Thus, there is an urgent need for better therapies, including  
disease-modifying treatments. However, the requirement for  
relevant pre-clinical disease models for testing such agents 
and the lack of robust biomarkers for diagnosing PD and the  
identification of prodromal disease, which would allow for 
treatment before significant neuronal loss had occurred, pose  
barriers to drug discovery.

It is on this background that a number of new developments 
are emerging that may transform the management of PD  
over the coming years, and we will now discuss those that are in,  
or soon to be in, clinical trials (Figure 1).

Figure 1. Putative disease-modifying therapies for PD. An expanding number of drugs are being considered for their ability to influence 
the pathogenic processes of PD. These include novel agents and technologies, such as active and passive immunisation and RNA 
interference techniques to limit the propagation, and synthesis, of α-synuclein. Additionally, several drugs used for other conditions are of 
interest for potential use in PD given their ability to influence pathways such as the lysosome–autophagy system, mitochondrial function, 
and neuroinflammation, for example. Abbreviations: α-syn, α-synuclein; ASO, anti-sense oligonucleotide; GCase, glucocerebrosidase; PD, 
Parkinson’s disease; RNA, ribonucleic acid; UDCA, ursodeoxycholic acid.
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Immunotherapies
The pathological hallmark of PD is the presence of abnor-
mal aggregates of α-synuclein10. The role of α-synuclein in  
PD is not clear, but it is presumed to play a central  
pathogenic role, as demonstrated by the fact that mutations 
or duplications/triplications of the gene (SNCA) cause rare  
familial forms of PD11, coupled with many independent studies 
showing the detrimental effects of manipulating α-synuclein in 
cell and animal models12,13. Potential pathogenic mechanisms 
of α-synuclein include dysfunction of vesicular transport,  
perturbations in the lysosome–autophagy system, mitochon-
drial dysfunction, and oxidative stress, for example14. It has also  
been proposed that pathological forms of α-synuclein can act 
in a prion-like fashion, allowing pathology to spread from 
cell to cell, and the “strains” underlying this are now being  
identified15. This in turn means the disease follows a pattern of  
pathology that results from the sequential involvement of a  
number of anatomical structures. All of this suggests that  
therapies designed to reduce levels of α-synuclein or the  
propagation of toxic “strains” may limit PD progression8.

One experimental approach to restricting the propagation 
of α-synuclein is to use antibodies to target and degrade  
extracellular α-synuclein and thus prevent it from “infecting” 
neighbouring cells. Passive and active immunisation techniques  
against α-synuclein have been shown to convey neuropro-
tective effects in animal models, with the results of early  
clinical trials in humans starting to emerge14. Other approaches 
to reducing α-synuclein levels include anti-sense oligonucleotide  
and ribonucleic acid (RNA) interference techniques to reduce 
its synthesis, though these remain in pre-clinical stages and are  
thus not discussed in detail here16–18.

A humanised monoclonal antibody targeting the C-terminus of 
aggregated α-synuclein (prasinezumab or PRX002, Prothena) 
has been shown to reduce free serum α-synuclein by approxi-
mately 97% and to be well tolerated in phase I clinical  
trials19,20, with a phase II trial currently underway (NCT03100149). 
Another antibody, BIIB054 (Biogen), targeting the N-terminal 
portion of α-synuclein reduces the propagation of α-synuclein 
pathology and improves the motor phenotype in a PD model 
involving injection of α-synuclein pre-formed fibrils into 
mice21. This antibody has also been found to be well tolerated in  
humans22 and is under investigation in a phase II clinical trial 
(NCT03318523).

The company AFFiRiS are approaching this problem in a  
different way by investigating a range of treatments consisting 
of α-synuclein fragments or α-synuclein-mimicking epitopes 
designed to induce an active immune response against α-synuclein,  
with phase I trials completed (NCT01568099 and NCT02267434). 
These products have been administered subcutaneously in early  
trials and seem to be well tolerated. One of these, AFFITOPE 
PD01A, conveyed a dose-dependent immune response to 
the peptide itself and to α-synuclein and is now being taken  
forward to phase II trials14.

The use of immunotherapies to limit the propagation of PD 
pathology is an interesting avenue for further exploration, but 
important questions remain, not least the extent to which PD  
in the clinic is driven by protein spread. In addition, the ability 
of these antibodies to cross the blood–brain barrier and influence  
α-synuclein homeostasis in the brain is potentially an obstacle  
for their use in the clinic. Furthermore, neuroprotective effects 
of such immunotherapies appear in part to be due to intracel-
lular effects, and their ability to enter cells may influence their 
efficacy. Engineered fragments (intrabodies and nanobodies)  
may allow for greater central nervous system penetration and 
entry to the cell, but these are yet to enter clinical trials23. 
Another concern is the potential consequences of suppressing 
the physiological function of α-synuclein, an abundant protein  
whose function is incompletely understood. Suppression of 
α-synuclein levels in some models has been shown to be det-
rimental24–27, and evaluation of the long-term safety of this  
approach will be important. It is for this reason that some groups 
have sought to reduce α-synuclein through drug therapies,  
including the repurposing of β-agonists (see below).

Drug repurposing
An alternative approach to limit PD pathology and disease  
progression is through the use of drugs that reduce α-synuclein 
pathology or have beneficial effects on other processes  
implicated in PD (Table 1). In particular, there is a great deal of 
interest in drug repurposing (using established drugs for a new 
indication), which would potentially lead to an expedited path 
to the clinic, given that safety and pharmacokinetic data may  
already be available. Here we discuss some of the most 
promising agents being considered for the treatment of PD  
(Figure 1).

One class that is under consideration, but yet to enter clinical 
trials, is the β-adrenergic receptor agonists, given recent epi-
demiological and in vitro work demonstrating an association  
with reduced α-synuclein levels and risk of PD, thought to 
be mediated through modulation of SNCA transcription28.  
Given that such agents are widely used in the treatment of  
reversible airway obstruction, and have been for many years,  
moving this to the clinic should be relatively straightforward.

Of those that have gone to clinical trials, the glucagon-like 
peptide-1 (GLP-1) analogue exenatide, which is used for the 
treatment of type two diabetes mellitus, has advanced the  
most. This agent has been trialled in PD patients after a similar 
compound (exendin-4) was found to convey neuroprotective 
effects in cell and animal models of nigral degeneration29–31. 
Several mechanisms have been proposed to mediate this effect  
through GLP-1 receptor activation, including inhibition of apop-
tosis, reduced microglial activation and neuroinflammation, 
reduced oxidative stress, and promotion of neurogenesis32. In 
an initial open-label trial, exenatide was found to be safe in PD 
patients (though some experienced problems with weight loss),  
and there was an associated improvement in cognitive and motor 
function, which persisted after cessation of treatment33. This 
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Table 1. Clinical trials of putative disease-modifying treatments for Parkinson’s disease.

Drug/class Proposed mechanism Progress in trials

α-synuclein reduction

β-agonists Reduced α-synuclein transcription through acetylation of 
promoters and enhancers of the SNCA gene28

Not started

Nilotinib Inhibition of ABL tyrosine kinase activity and enhanced 
autophagy34

Safe and tolerable but no clinical benefit in phase II 
trial

Terazosin Activation of PGK1 and HSP90, increased ATP levels, and 
reduced α-synuclein levels35

Single-centre randomised placebo-controlled trial 
currently enrolling patients

Mitochondrial function

Ursodeoxycholic 
acid

Restoration of mitochondrial function Randomised placebo-controlled trial currently 
recruiting patients

N-acetylcysteine Antioxidant effect and elevation of glutathione levels36 Small open-label phase II study showed no changes 
in indicators of oxidative damage or brain glutathione 
levels36

Glutathione Reduction in reactive oxygen species and free radical levels Double-blind trial completed, with no clinical benefit 
demonstrated over placebo

Neuroinflammation

Azathioprine Modulation of peripheral immune system profile Single-centre randomised placebo-controlled trial 
about to start enrolling patients

Sargramostim 
(G-CSF)

Induction of Treg immune responses37 Phase I placebo-controlled trial completed  
Generally well tolerated, with reported modest 
improvement in UPDRS part III scores38

AZD3241 Reduced oxidative stress and neuroinflammation through 
inhibition of myeloperoxidase

Phase 2a randomised placebo-controlled trial 
completed  
Safe and well tolerated with reduced nigrostriatal 
distribution of microglia39

Other

Inosine Elevation of urate levels Randomised placebo-controlled phase III trial halted 
early in 2018, with results awaited

Exenatide GLP-1 receptor activation leading to inhibition of apoptosis, 
reduced microglial activation and neuroinflammation, 
reduced oxidative stress, and promotion of neurogenesis

Well tolerated, with improvements seen in UPDRS part III 
scores in randomised controlled trial40  
Phase III trial currently in set-up

Isradipine Neuroprotection through blockade of L-type calcium 
channels in substantia nigra41

Multicentre phase III trial recently completed, with no 
improvement in motor or quality of life outcomes

Deferiprone Iron chelation Phase II randomised double-blind placebo-controlled 
trial completed, demonstrating reduced iron content in 
caudate and dentate nucleus  
No significant clinical benefit42

Abbreviations: ATP, adenosine triphosphate; G-CSF, granulocyte colony-stimulating factor; GLP-1, glucagon-like peptide-1; HSP90, heat shock protein 90; 
PGK1, phosphoglycerate kinase-1; Treg, regulatory T cell; UPDRS, Unified Parkinson’s Disease Rating Scale.

was followed by a double-blind randomised placebo-controlled 
trial, which reported that once-weekly exenatide was associ-
ated with a reduction in Unified Parkinson’s Disease Rating  
Scale (UPDRS) motor scores in comparison to the placebo  
group40. A multicentre phase III trial is currently in set-up, in 
which participants will receive weekly exenatide or placebo 
(NCT04232969). A pegylated form of exenatide (NLY01), 
which harbours enhanced pharmacokinetic properties, has also 
recently been taken to a phase I trial in healthy volunteers, with  
results awaited (NCT03672604).

Another repurposed drug that has been trialled for PD is  
nilotinib. This is an ABL tyrosine kinase inhibitor used in the  
treatment of chronic myelogenous leukaemia. ABL activity inhib-
its the activity of Parkin, which is important in the initiation 
of mitophagy, and nilotinib is proposed to enhance autophagy 
activity, potentially reducing the accumulation of α-synuclein  
aggregates34. An initial phase I trial reported that the drug  
was well tolerated and safe, with preliminary reports of  
benefits on motor and cognitive function43. However, there was 
no placebo group in this study, and some of the clinical effects 

Page 5 of 12

F1000Research 2020, 9(Faculty Rev):862 Last updated: 31 JUL 2020



observed may have been due to baseline differences between 
the groups and withdrawal of monoamine oxidase inhibitors 
in a number of subjects44. Nevertheless, nilotinib has now pro-
gressed to randomised placebo-controlled trials (NCT03205488  
and NCT02954978), and it appears to reduce the ratio of  
pathogenic oligomeric α-synuclein to total α-synuclein in the  
cerebrospinal fluid (CSF)45. However, a recent press release 
for the NILO-PD trial showed that, while safe and tolerable,  
nilotinib did not offer any clinical benefit.

Terazosin, an α
1
-adrenergic antagonist used in benign pros-

tatic hypertrophy, has recently emerged as a putative treatment 
for PD. Terazosin has been found to activate phosphoglycerate 
kinase-1 and the chaperone protein HSP90, which is involved in  
multiple intracellular stress responses46. It has been shown to 
have neuroprotective effects in neurotoxin models of nigros-
triatal degeneration in invertebrates and rodents, including 
after delayed administration35. Additionally, terazosin reduced 
α-synuclein levels in transgenic mice and in neurons derived  
from patients with LRRK2 mutation-associated PD35. Furthermore, 
a retrospective epidemiological study found that people taking 
terazosin have a reduced relative risk of PD35. These promising  
findings have led to terazosin rapidly progressing to a ran-
domised placebo-controlled trial, which will involve 20 patients  
with Hoehn and Yahr stage 3 PD (NCT03905811). However,  
terazosin reduces blood pressure and can cause orthostatic hypo-
tension, which is a problem in many patients with advancing  
PD and may limit its applicability in this disease.

In addition to targeting α-synuclein clearance pathways, drugs 
that target other intracellular pathways may be useful in PD. For 
example, ursodeoxycholic acid (UCDA), a drug used to treat pri-
mary biliary cirrhosis, has been found to restore mitochondrial 
function in cells derived from patients carrying PARKIN and 
LRRK2 mutations as well as in invertebrate and rodent models of  
PD47–49. UCDA has recently progressed to a randomised pla-
cebo-controlled phase II trial, which is currently in the process  
of recruiting 30 patients with early PD (NCT03840005). A number 
of other agents are currently in, or have recently completed,  
clinical trials, which are summarised in Table 1.

Advances in our understanding of pathogenic subtypes of PD 
may allow for the targeting of specific pathogenic mechanisms 
in subgroups of PD patients. One such group is patients  
carrying GBA1 mutations, found in approximately 5% of so-called 
sporadic PD patients50–52. The GBA1 gene encodes the lysosomal 
enzyme glucocerebrosidase, the activity of which has been found 
to be reduced in PD patients without GBA1 mutations, making 
it an interesting therapeutic target for a wider PD population.  
These mutations are associated with dysfunction of the 
lysosome–autophagy system, important in α-synuclein  
clearance53,54. Some GBA1 mutations have been shown to lead 
to misfolding of glucocerebrosidase, which impairs its delivery 
to the lysosomal compartment, leading to perturbations in  
α-synuclein processing54. Ambroxol, historically used as an  
expectorant, has recently been trialled in patients with GBA1  
mutation-associated PD, as it has been shown to facilitate the  
re-folding of glucocerebrosidase and increase its activity in 

human cells and transgenic mice with subsequent reduction in  
α-synuclein levels55,56. The results of the first open-label  
clinical trial of ambroxol in PD patients with and without  
GBA1 mutations (AiM-PD) have recently been published, where 
the drug was found to be well tolerated over 6 months, with an 
associated rise in CSF glucocerebrosidase levels57.

Alternatively, the glucocerebrosidase pathway may be targeted 
through glucosylceramide synthase inhibitors, which reduce 
levels of the glucocerebrosidase substrates glucosylceramide  
and glucosylsphingosine. Such substrate reduction therapies 
have been used in Gaucher disease (caused by biallelic muta-
tions in the GBA1 gene), but the role of these substrates in 
PD pathogenesis is disputed58. A phase II clinical trial of a  
glucosylceramide synthase inhibitor (venglustat) in PD patients 
with GBA1 variants is currently underway (MOVES-PD,  
NCT02906020).

Targeting non-dopaminergic neurotransmitter 
systems
Though many of the motor features of PD are dopamine respon-
sive, for others, such as freezing of gait and tremor, dopamine 
offers little benefit. It is now understood that deficiencies in 
other neurotransmitter systems underlie some of these features59.  
As such, there is interest in modulating their function to treat  
specific dopamine-resistant aspects of PD.

One novel drug that has recently received approval for use in 
PD is safinamide, a drug that is proposed to have multi-modal 
actions. It is a potent reversible monoamine oxidase B inhibi-
tor, conveying a benefit for the treatment of dopaminergic  
aspects of PD. It also modulates glutamate transmission, 
which may be implicated in some of the non-motor features 
of PD60,61. In a multicentre phase III clinical trial involving  
669 patients with moderate to advanced PD, safinamide resulted 
in improved UPDRS motor scores, reduced off-time, and  
improvements in depression and communication scores62.  
Safinamide is now becoming more widely available for clinical 
use, though its exact role is yet to be determined. Currently, 
it is most likely to be used as an adjunct to levodopa-based  
therapies, particularly in those who experience problematic  
dyskinesias and fluctuations.

Additionally, the cholinesterase inhibitors rivastigmine and 
donepezil have been trialled for their ability to reduce falls in 
PD, with promising preliminary results63,64. The noradrenaline 
reuptake inhibitors methylphenidate and atomoxetine are  
also currently being investigated for their effects on balance and 
gait in PD in an ongoing trial (NCT02879136). Serotoninergic 
neurons in the dorsal raphe nucleus have been proposed to  
contribute to levodopa-induced dyskinesias, and the use of  
serotonin agonists has been seen to reduce such dyskinesias in 
animal models65–67. However, their use has been accompanied 
by worsening of other motor features of PD in some clinical  
studies68. However, advances in our understanding of the role  
of the serotoninergic system in the development of levodopa-
induced dyskinesias means that there is ongoing interest in  
modulation of this system as a therapeutic option69.
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Neurotrophic factors
Neurotrophic factors such as glial cell line-derived neuro-
trophic factor (GDNF) have beneficial effects on dopaminergic  
neurons in pre-clinical models, and there has been much interest  
in developing neuroprotective therapies based on these70,71.

Open-label studies of intraputaminal GDNF infusion have seen 
improvements in motor UPDRS scores72,73, with some evidence 
of restoration of the nigrostriatal pathway pathologically 
and on imaging74. However, randomised double-blind trials 
have failed to recapitulate these results, including a recent 
study in the UK75,76. However, there has been much discussion 
about why these open and double-blind studies have produced 
such varying results, which led to a workshop in 2019 where  
these issues were addressed; the conclusions of which 
have recently been published77. Whilst GDNF studies have 
thus far yielded mixed results, this remains an exciting  
experimental approach with ongoing interest. Variable results in  
these trials may in part be due to the involvement of patients  
with moderately advanced PD, inadequate follow-up times,  
and the large placebo effect (which is often seen in clinical  
trials for PD).

Neurturin, a GDNF analogue, has also been trialled in 
patients, with similar results to those seen with GDNF, namely 
promising open-label trials that have failed to translate to  
clinical benefit in larger trials78–81. Nevertheless, determination of 
the most-appropriate patients, improvement in delivery systems, 
and development of novel neurotrophic factor analogues mean 
that this approach remains an avenue of interest and is currently 
being explored in a new EU-funded trial looking at cerebral  
dopamine neurotrophic factor (CDNF, Herantis Pharma). It has 
recently been reported in a press release that the agent can be 
delivered without major side effects, although it is too early  
to say whether it has therapeutic benefits for patients.

Regenerative treatments
As well as the pharmacological approaches described above, 
there is considerable interest in the use of cell-based and gene 
therapies to replace the function of the lost dopaminergic neurons.  
The aim of these treatments is to restore dopaminergic tone 
in a more targeted and physiological manner than can be 
achieved with current dopaminergic therapies. Several of these  
approaches are now entering clinical trials82.

Gene therapies may be used to increase dopamine levels in 
the striatum through the introduction of genes that mediate 
dopamine synthesis. Tyrosine hydroxylase (TH) is needed for the  
production of the dopamine precursor levodopa, which in turn 
is converted to dopamine by DOPA decarboxylase, also termed 
aromatic L-amino acid decarboxylase (AADC). Two gene thera-
pies involving the genes encoding these enzymes are currently  
undergoing clinical trials for PD.

Voyager Therapeutics have developed an adeno-associated  
virus (AAV) therapy containing the gene for AADC (VY-
AADC). This therapy has entered a phase I clinical trial, in which  

15 patients with advanced PD are receiving the treatment at three 
different doses. It is introduced into the putamen, with prelimi-
nary reports suggesting that the treatment is well tolerated. The 
effects seem encouraging, particularly given that the volume 
of agent delivered covers a large part of the target structure (the  
putamen), with corresponding increases in enzyme activity. These 
benefits correlated with a dose-dependent reduction in levo-
dopa dose83. A randomised sham-surgery controlled phase II trial  
is also ongoing (NCT03562494).

A tricistronic lentivirus vector is also currently undergoing clini-
cal trials. This treatment consists of the genes encoding AADC, 
TH, and GTP cyclohydrolase 1 (which catalyses the rate-limiting  
step of tetrahydrobiopterin synthesis, a cofactor required  
for the synthesis of dopamine and serotonin). The first iteration 
of this treatment to enter trials, OXB-101 or ProSavin®, was 
assessed in an open-label phase I trial involving 15 patients with 
advanced PD84. The treatment was well tolerated, with no serious 
adverse effects related to the treatment, with improvements in  
“off” state UPDRS scores at 12 months. However, the extent 
of improvement was not sufficient to make this therapy  
competitive. However, an improved version of this gene therapy  
with greater potency, OXB-102 or AXO-Lenti-PD, is currently 
in a two-part clinical trial in which safety will be assessed at  
multiple doses before progression to a randomised double-blind 
trial (NCT03720418).

Cell-based therapies offer another emerging approach for 
the targeted replacement of dopamine to treat the dopamine-
dependent aspects of PD. Cell-grafting with human foetal  
ventral mesencephalon has been taking place since the 1980s, and  
whilst this has been seen to be effective in some cases with  
patients able to come off dopaminergic medication for sustained 
periods, it has become clear that logistical barriers regarding 
the supply of adequate tissue will prevent this from ever being a  
useful treatment in itself85–88. Nevertheless, a renewable source of 
dopaminergic cells would make cell-based therapies potentially  
feasible, assuming they can be shown to have sustained  
clinical benefits to patients.

Stem cells offer a renewable source of dopaminergic neuron 
progenitor cells that can be grafted into patients, and clinical 
trials of such products are now underway (Table 2). Whilst  
controversial trials involving parthenogenetic stem cell-derived 
neural stem cells have been ongoing for several years89, new 
stem cell products developed on the back of robust pre-clinical  
data are now progressing to trials82. A clinical trial of  
dopaminergic progenitors derived from induced pluripotent 
stem cells (iPSCs) has begun (Center for iPS Cell Research and  
Application, Kyoto University, Japan). In this trial, seven  
patients will receive bilateral grafts of allogenic iPSC-derived 
cells. Trials involving embryonic stem cell (ESC)-derived cells 
are underway in China (NCT03119636)90 and in set-up in the 
USA (NYSTEM-PD) and the UK/Sweden (STEM-PD trial). A  
number of other trials using ESC-derived neurons and allogenic  
and autologous iPSC-derived neurons are expected to commence 
over the next 2 to 3 years.
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Advances in deep brain stimulation
Deep brain stimulation (DBS) is another established treatment 
for PD that is useful in treating dopamine-dependent motor  
symptoms when levodopa-induced side effects become par-
ticularly problematic. DBS involves the surgical implantation 
of electrodes that stimulate subcortical structures including 
the subthalamic nucleus and globus pallidus internus91–94.  
DBS offers significant improvements in motor symptoms and 
fluctuations in comparison to best medical therapy in some 
advanced PD patients, but dopamine-resistant symptoms other 
than tremor (e.g. gait disturbance and postural instability) 
respond poorly95. It has also been suggested in an open-label 
trial that DBS is beneficial in early PD patients, with 
improved tremor scores and reduced development of de novo  
tremor96. In addition to surgical complications, DBS strat-
egies may cause cognitive and neuropsychiatric adverse  
effects as well as speech dysfunction. Novel DBS approaches, 
including adaptive DBS, targeting different regions, and 
refined intra-operative imaging techniques promise to offer 
improved clinical applicability and reduce the impact of adverse  
effects97.

The pedunculopontine nucleus has recently been trialled as 
a new target for DBS, particularly for the gait problems seen in 
PD. While initial trials reported positive impacts on gait and 
postural instability, more rigorous subsequent trials were less  
promising, in part because of variability in the anatomical  
definition of the pedunculopontine nucleus in the human brain, 
suboptimal programming settings, and low patient numbers61,98. 
More recently, stimulation of the substantia nigra reticularis 
has shown promising effects on axial symptoms in preliminary  
studies99 along with stimulation of the basal forebrain (with 

STN) for some of the cognitive deficits in PD100. In another  
pilot study, thoracic spinal cord stimulation significantly reduced 
the frequency of freezing episodes in patients with advanced PD,  
with trials ongoing101.

There is great interest in adaptive DBS, a system in which 
the stimulation delivered to the target is adjusted in response 
to physiological signals61. This approach theoretically limits  
adverse effects, improves clinical response, and reduces the 
requirements for battery changes and the associated cost.  
Further work is required in identifying and validating a  
reliable host signal102, but it is hoped that such technologies will  
enhance the clinical utility of DBS in the future. Non-invasive  
DBS techniques involving the use of external devices delivering 
electric fields to deep structures would circumvent the need 
for neurosurgery and its associated risks103. One such approach  
that has been used more for patients with essential tremor 
than PD involves using magnetic resonance imaging-focussed  
ultrasound lesioning of discrete brain structures. Reports on the 
long-term efficacy of these therapies are awaited104.

Conclusion
A wide variety of experimental treatment approaches for PD 
have progressed towards the clinic over recent years. Many  
previous putative treatments have fallen by the wayside when  
taken to clinical trials, despite being backed up by promising 
pre-clinical results, emphasising the need for robust trial  
design. A greater understanding of the pathogenic mechanisms 
and anatomical basis for PD symptoms has opened up avenues  
for new treatment modalities, and it now seems probable 
that the management of PD will evolve significantly over the  
coming years.

Table 2. Current and planned trials of human stem cell-derived neuronal products.

Trial Country Cell source Number of 
patients

Status

Center for iPS Cell Research 
and Application

Japan Allogenic iPSCs 7 Started

NYSTEM-PD USA ESCs (H9 cell line) 10 Pending decision 
from FDA

Chinese Academy of Sciences China ESCs 50 Ongoing

European STEM-PD trial UK and 
Sweden

ESCs (RC17 cell line) To be confirmed In set-up

Fujifilm cellular dynamics 
international

USA Autologous iPSCs To be confirmed In set-up

Allife Medical Science and 
Technology Co., Ltd.

China Autologous iPS-neural stem 
cells

10 In set-up

Aspen Neuroscience USA Autologous iPSCs To be confirmed In development

International Stem Cell 
Corporation

Australia Parthenogenetic ESC-derived 
neural stem cells

12 Ongoing

Abbreviations: ESC, embryonic stem cell; FDA, US Food and Drug Administration; iPSC, induced pluripotent stem cell.
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