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ABSTRACT

Considering that Prostate Cancer (PCa) is the most frequently di-
agnosed tumor in Western men, considerable attention has been
devoted in computer-assisted PCa detection approaches. However,
this task still represents an open research question. In the clinical
practice, multiparametric Magnetic Resonance Imaging (MRI) is
becoming the most used modality, aiming at defining biomarkers
for PCa. In the latest years, deep learning techniques have boosted
the performance in prostate MR image analysis and classification.
This work explores the use of the Semantic Learning Machine (SLM)
neuroevolution algorithm to replace the backpropagation algorithm
commonly used in the last fully-connected layers of Convolutional
Neural Networks (CNNs). We analyzed the non-contrast-enhanced
multispectral MRI sequences included in the PROSTATEx dataset,
namely: T2-weighted, Proton Density weighted, Diffusion Weighted
Imaging. The experimental results show that the SLM significantly
outperforms XmasNet, a state-of-the-art CNN. In particular, with re-
spect to XmasNet, the SLM achieved higher classification accuracy
(without neither pre-training the underlying CNN nor relying on
the backprogation) as well as a speed-up of one order of magnitude.
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1 INTRODUCTION

According to the American Cancer Society, in 2019 it is expected
that the Prostate Cancer (PCa) is the most common malignant tu-
mor in Western men [43]. Nevertheless, prostate image analysis
is still a compelling challenge in every diagnostic and therapeutic
phase of the PCa pathology. Nowadays, high-resolution multipara-
metric Magnetic Resonance Imaging (MRI) is acquiring clinical and
scientific interest, also enabling quantitative studies [46].

As a matter of fact, in addition to conventional anatomical in-
formation conveyed by T1-weighted (T1w), T2-weighted (T2w) or
Proton Density-weighted (PDw) MRI protocols, complementary
and valuable functional information regarding the tumor can be ac-
quired by means of specific MRI sequences [25], such as: Dynamic
Contrast Enhanced (DCE) [9] for evaluating the perfusion and
vascularity in the tumor micro-environment; Diffusion Weighted
Imaging (DWI) to estimate the motion of water molecules within
tissue voxels [17] as well as to quantitatively measure the resis-
tance of water molecule diffusion by using the Apparent Diffusion
Coeflicient (ADC) maps; Magnetic Resonance Spectroscopic Imag-
ing (MRSI) to quantify the metabolic activity [31]. Unfortunately,
this potential is strongly reduced by the difficulties related to the
development of accurate detection and segmentation methods that
can effectively support experienced radiologists in their decision-
making tasks [18], overcoming the limitations imposed by the fully
manual procedures. In practice, a standardized interpretation of mul-
tiparametric MRI might be affected by a significant inter-observer
variability [36], often overwhelming the analytic capabilities of radi-
ologists in their diagnostic workflows. Therefore, computer-assisted
MR image analysis approaches are mandatory for improving results
repeatability in large-scale clinical studies [37].

Despite the vast amount of studies aimed at improving the per-
formance of CNNs for classification tasks, the majority of these
contributions has been focused on the earlier layers of the neural
network, meaning everything up to the fully-connected layers [44].
Thus, fully-connected layers represent the common choice for build-
ing the classifier that, after receiving in input the features obtained
from the previous layers, produces the prediction about the class la-
bel. While this choice produced excellent performance over several
problems [45], it is fundamental to perform additional investigation
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in this area. In fact, according to the no-free-lunch theorem [51],
no classifier can be said to be superior to all other classifiers across
all the problem instances. Thus, the idea explored in this work is
to improve the performance of the final model by using a network
created by a neuroevolution algorithm on high-level image features.
More in detail, the focus of this paper is not directly on replacing
the fully-connected layers in the learning process, but rather im-
proving it by means of a two-step procedure: (1) Regular CNN
Training Process in which the usual training phase of a given
CNN architecture is performed to make convolutional layers learn
image features from image inputs, and (2) Improvement of the
Training Process in which the fully-connected layers are replaced
by a network obtained by a newly proposed neuroevolution algo-
rithm and the training process exploits the high-level image features
(in terms of meaningful representation learning [48]), yielded by
the convolutional layers in the first step.

To achieve the challenging objective previously described, this
work relies on a recently defined neuroevolution algorithm called
Semantic Learning Machine (SLM) [12]. As stated in the original
contribution, SLM is able to induce a unimodal error landscape
in any supervised learning problem where the error is measured
as a distance to the known targets. Thus, the algorithm is able
to construct the artificial neural network architecture during the
training phase, without being trapped in local optima. This is a
fundamental advantage with respect to the use of the traditional
multi-layer perceptron architecture trained with the backpropa-
gation algorithm, and it is the main reason for selecting the SLM
algorithm in this work. We expect that the SLM is able to outper-
form the fully-connected neural network as already shown on a
vast set of benchmark problems [19]. The workflow, from the input
MRI series to the training and validation of the neural models, is
shown in Figure 1. The various processing steps are explained in
the subsequent sections. In addition, a schematic representation of
the intermediate data creation (performed by the CNN model) and
the subsequent SLM-based classification are reported in Figure 2.
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Figure 1: Workflow of the proposed neuroevolution ap-
proach based on the SLM
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Figure 2: Intermediate Data Creation (CNN) and subsequent
Classification (SLM)

The paper is organized as follows: Section 2 outlines the state-of-
the-art of the CNNs in classification tasks, with particular interest to
prostate MR image analysis; Section 3 introduces the SLM algorithm,
highlighting its properties; Section 4 describes the experimental
settings and presents the dataset taken into account, as well as the
selected parameters; Section 5 presents and discusses the obtained
results. Finally, Section 6 concludes the paper and suggests future
research directions.

2 BACKGROUND

This section presents existing studies where CNN-based models
were developed for addressing the PCa classification problem posed
by the PROSTATEx Challenge [2]. This is the challenge that was
considered in the experimental campaign described in Section 4.
In particular, after presenting the most important works in this
area, the CNN-based model taken into account in this paper, called
XmasNet [29], will be described. Its salient properties will be re-
called, and the motivations for considering it in this study will be
outlined.

In the latest years, deep learning techniques are achieving out-
standing results in prostate segmentation tasks by using deep fea-
ture learning combined with shape models [16] or location-prior
maps [48]. CNNs were employed with patch-based ensemble learn-
ing [20] or dense prediction schemes [32] for whole prostate gland
segmentation. With respect to prostate zonal segmentation, Clark
et al. [8] detected the DWI MR slices with prostate relying on Visual
Geometry Group (VGG) net [44], and then sequentially segmented
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the whole gland and the transition zone by using U-Net [35]. In
the case of PCa detection and diagnosis on multiparametric MRI,
end-to-end deep learning models were proposed and tested on the
PROSTATEx dataset [2]. In [29], a VGG-based architecture [44],
called XmasNet, outperformed a machine learning model based
on an ensemble of decision trees relying on hand-crafted features.
Wang et al. [50] combined a sub-network for automated prostate de-
tection and multispectral image registration, with a dual-path CNN
for clinically significant (CS) PCa detection. This joint approach was
compared against 2D U-Net [35] and 3D DeepMedic [22], obtaining
the highest classification accuracy. However, the automated anal-
ysis of radiomics features, based on traditional machine learning
models [24], is gaining interest in the assessment of the heterogene-
ity in PCa [46].

Even though several CNN architectures were used in medical
imaging, they have to be specifically adapted for the medical imag-
ing application at hand. In this work, we considered the XmasNet
architecture [29] as a deep feature extractor and for the prediction
between benign and malignant PCa.

Indeed, XmasNet [29] was developed ad hoc for the PROSTATEx
2017 challenge. Despite the simple architecture (four convolutional
and two fully-connected layers), it achieved state-of-the-art perfor-
mance in the challenge. Thanks to the detailed description provided
by the authors in the paper [29], we carefully reproduced this ar-
chitecture in our implementation. As a matter of fact, along with
classic Evolutionary Computation techniques for medical image en-
hancement [41], segmentation [4] and quantification [39], the aim
of our exploratory study is to show the potential of neuroevolution
algorithms in clinical applications exploiting deep learning.

The XmasNet architecture is based on VGG net [44], which was
the first truly deep network, achieving the first and second place
in the ImageNet 2014 competition for the localization and classi-
fication challenges, respectively. For instance, VGG-16 employed
16 layers: 13 convolutional and three fully-connected. The main
achievement of this network was the considerable performance
improvement that was obtained by using 16-19 weight layers, while
revealing good generalization capabilities on other datasets [44].
For these motivations, we selected XmasNet as an end-to-end train-
able deep model for the PROSTATEx dataset. XmasNet allows for
efficient training and we aim at significantly improving its perfor-
mance by means of the SLM-based neural network classifier.

3 SEMANTIC LEARNING MACHINE

The SLM neuroevolution algorithm [12] was created by deriving a
mutation operator proposed in Geometric Semantic Genetic Pro-
gramming (GSGP) [33] to be applicable to the construction of Neural
Networks (NNs). In GSGP, Moraglio et al. [33] showed that any
supervised learning problem where the error is measured as a dis-
tance to the known targets has a unimodal error landscape that can
be effectively explored by constructing specific variation operators.
These operators are known as geometric semantic operators. In
this context, the term semantics is used to refer to the outputs of
any supervised learning model (e.g., an NN) over a set of data in-
stances. The reasoning behind these geometric semantic operators
can be used to create equivalent operators for other representa-
tions or computational models. The SLM was created by defining
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a geometric semantic mutation for NNs. This allows SLM to ex-
plore unimodal error landscapes and to effectively deal with the
space of NNs. Given that these error landscapes are unimodal, no
local optima exist, i.e., with the exception of the global optimum,
every point in the search space has at least one neighbor with bet-
ter fitness, and that neighbor is reachable through the application
of the variation operators. This translates into the fact that the
SLM, as well as GSGP, can simply follow a hill climbing strategy to
effectively advance the search.

In essence, the SLM neuroevolution algorithm is a geometric
semantic hill climber for NNs. Without local optima, the search can
be focused around the current best NN without incurring in any
particular disadvantage. The SLM procedure can be summarized in
the following steps:

(1) Generate N initial random NNs

(2) Choose the best NN (B) from the initial random NN, accord-
ing to the selected performance criterion

(3) Repeat the following steps until a given stopping criterion
is met:

(a) Apply the geometric semantic mutation to the current best
(B) N times to generate N new NNs (known as children
or neighbors)

(b) Update B as being the NN with the best performance ac-
cording to the selected criterion, considering the current
B and the N newly generated NNs

(4) Return B as the best performing NN according to the selected
performance criterion

The initial random NNs can be generated without any particu-
lar restriction. They can have any number of layers and neurons,
with any activation function, while the weights in the connections
between the neurons can be freely selected. As it is common in neu-
roevolution algorithms, the SLM does not rely on backpropagation
to adjust the weights of the NNs. The crucial aspect is the defini-
tion of the geometric semantic mutation for NNs. This mutation
essentially works by adding new neurons to the existing hidden
layers. Each new neuron can select from which neurons it receives
incoming connections. This means that the NN does not need to
be fully-connected and its sparseness can be controlled by defining
how many incoming connections each new neuron will receive,
given the set of all possible incoming connections. The weights
of each connection can be freely selected as in the initialization
step. A fundamental aspect of this geometric semantic mutation is
that the new neurons do not feed their computations to existing
neurons, with the exception of the output neuron. The weights
of connections from the new neurons in the last hidden layer to
the output neuron are defined by the learning step. The learning
step can be computed optimally by means of the Moore-Penrose
pseudoinverse (similarly to the case of GSGP [11, 13, 34]), or it can
be defined as a parameter to be tuned. For full details regarding
the SLM as its possibilities the reader is referred to Gongalves et
al. [12].

An additional interesting characteristic of geometric semantic
methods, such as SLM and GSGP, is the feasibility of using the
information gathered from the semantic neighborhood (the set of
new models generated by the mutation) to decide when to stop
the search. This can be achieved by using the Semantic Stopping
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Criteria (SSC) proposed by Gongalves et al. [14]: the Error Devi-
ation Variation (EDV) criterion and the Training Improvement
Effectiveness (TIE) criterion. EDV stops the search when a con-
siderable majority of the neighbors are improving the training
performance at the expense of larger error deviations. TIE stops
the search when training error improvements become harder to
find within the semantic neighborhood. This can signal that the
training error improvements are being forced at the expense of the
resulting generalization. These SSC can be used to avoid setting a
maximum number of iterations as well as leaving data aside to use
as a validation set to decide when to stop. For a detailed description
of the SSC, the reader is referred to Gongalves et al. [14].

4 DATASET AND EXPERIMENTAL SETTINGS

This section describes the data used in the experimental phase
(Section 4.1), as well as the parameter setting (Section 4.2). This
allows for the reproducibility of the results discussed in Section 5.

4.1 The PROSTATEx Dataset

In this work, we consider the prostate MRI dataset provided by the
PROSTATEx Challenge [2], organized by the International Society
for Optics and Photonics (SPIE) and supported by the American
Association of Physicists in Medicine (AAPM) and the National
Cancer Institute (NCI). This challenge aimed at encouraging the
development of novel quantitative image analysis methods for the
diagnostic classification of CS PCa [7, 28]. The prostate MRI dataset
was retrospectively collected and curated by the Radboud Univer-
sity Medical Centre (Nijmegen, The Netherlands) in the Prostate
MR Reference Center [27]. All the studies included T2w, PDw,
DCE, and DWI MRI sequences, acquired on two different types
of Siemens (Siemens Healthineers, Erlangen, Germany) 3T MRI
scanners, namely MAGNETOM Trio and Skyra, without using an
endorectal coil. For more details, please refer to [2].

The whole MRI dataset used for the PROSTATEx competition
consisted of a training dataset of 204 patients (with 330 suspected
lesions) and a test set of 140 patients (with 208 suspected lesions).
The labels of the CS PCa are encoded by means of the approximate
location of the centroid of each lesion, and represent the presence
of a clinically significant finding (Gleason score > 7), or not. The
performance of our neuroevolution method were evaluated only on
the PROSTATEX training set that includes 70 MRI-targeted biopsy-
proven CS PCa and 134 non-CS PCa patients. The test data from the
PROSTATEx competition were not usable for our purposes since
the ground-truth labels (i.e., CS or non-CS) are not provided [2]. It
is worth noting that the PROSTATEx challenge uses biopsy points
as a ground-truth instead of the corresponding tumor segmenta-
tions [20, 47]. By taking into account the available MRI sequences in
the PROSTATEx dataset as well as by following the current clinical
trend that aims at reducing the use of contrast medium administra-
tion [49], in this study we analyzed only the non-contrast-enhanced
MRI sequences, namely: T2w, PDw, and ADC series. As reported
in [5], good quality results in PCa detection can be achieved just
with anatomical and DWI MRI data, without analyzing DCE MRI
sequences. In the latest years, along with economic factors regard-
ing DCE MR], the safety of Gadolinium-based contrast agents has
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been debated due to the evidence of possible depositions [21], such
as in the brain [15].

Since the MR images were collected under different conditions
(e.g., different scanners and acquisition protocols), a pre-processing
phase was performed. These steps are graphically outlined in Fig-
ure 1. The analyzed MRI series are characterized by different im-
age resolution, depending on the pixel spacing and slice thickness.
Therefore, the images were interpolated to an isotropic resolution of
1.0 mm. To ensure that the prostate MRI features are aligned in the
same reference space in every sequence, an affine co-registration
was performed. In particular, intensity-based co-registration ap-
plies a set of transformations on one image (the moving image)
against a reference (i.e., fixed) image, to maximize the matching of
the pair [40]. The voxel normalization and the image registration
were performed by using the Diffusion Imaging Python (DIPy) [10]
package, and the Mutual Information metric was considered as the
cost function [30]. In all the cases, we considered the T2w sequence
as the reference series, while ADC and PDw sequences as the mov-
ing series. By doing so, all the MRI sequences are brought onto
the same reference system. Thus, an early fusion scheme can be
employed for constructing feature vectors by concatenating the
corresponding pixels in the three different series [42].

For the classification task at hand, each lesion was extracted by
considering a region of 32 X 32 pixels where the lesion coordinates
were used to identify the center of the Region of Interest. After this
step, 335 lesions were extracted, including 20.5% of CS PCa. Finally,
before feeding the feature vectors to the CNN-based model, the
pixel intensities of each series were standardized to zero mean and
unitary standard deviation (i.e., z-score normalization), to accelerate
the convergence and reducing the chance of getting stuck in local
optima during the training phase.

4.2 Parameter Tuning of XmasNet

To estimate the best performing configuration of the considered
CNN, a random search was performed. The original data set was
divided into three parts: training, validation and test. In particular,
60% was used for training purpose, 20% for validation, and 20% for
testing the performance of the model over unseen instances. 30
random configurations were tested and for each configuration the
model was trained on the training and validation sets 30 times, by
averaging the achieved results. The configuration that returned the
lowest average loss (i.e., binary cross entropy) on the validation
set was selected as the best model. The best configuration was
evaluated 30 times on the unseen test data by taking into account
the Area Under Receiver Operating Characteristic (AUROC).

More in detail, the random search took into account the learning
rate a as well as the following parameters:

o Stochastic Gradient Descent (SGD) [3]: weight decay f, mo-
mentum and use of Nesterov momentum;

e Root Mean Square Propagation (RMSProp): weight decay
and use of the AMSGrad variant;

e Adam [23]: weight decay f.

The best configuration obtained an average test loss of 0.0405 (o =
0.0077) and a AUROC of 0.517 (o = 0.018). It used RMSPROP with
@ =1x10""and § = 0.999.
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Figure 3: From left to right, up to down: T2w, PDw, and ADC axial MR images extracted from Patient #29 of the dataset,
after being interpolated and co-registered. Concatenation of three previous MR images, composing the feature vectors fed to

XmasNet. The PCa coordinates are highlighted in red

The different configurations of XmasNet were trained on a single
GPU, using Keras [6] with TensorFlow as back-end [1]. The compu-
tational platform used was an ASUS X550L laptop, with an NVIDIA
840M GPU having 2GB of RAM and 2.0 GHz of clock frequency.
The laptop has a 4th generation Intel Core i7-4510U processor with
4 cores, 2.0 GHz of base frequency, and 8 GB of RAM. SLM was also
trained on the same computational platform.

4.3 Parameter Tuning of SLM
The SLM base configuration considered is the following:

o In the initial population each NN is generated with a random
number of hidden layers selected between 1 and 5

o In the initial population each NN randomly selects the num-
ber of neurons for each hidden layer between 1 and 5

e Each hidden neuron randomly selects its activation function
from the following options: logistic, Rectified Linear Unit
(ReLU), and tanh

e Each hidden neuron randomly selects the weight of each in-
coming connection from values in the interval [-mncw, mncw],
where mncw represents the maximum neuron connection
weight parameter (subject to parameter tuning)

e Each hidden neuron randomly selects the weight of its bias
from values in the interval [-mbw, mbw], where mbw rep-
resents the maximum bias weight parameter (subject to pa-
rameter tuning)

e Every time a new NN is created by the mutation operator,
the number of new neurons to be added to each layer is
randomly selected between 1 and 3

o The weights of connections from the new neurons in the last
hidden layer to the output neuron are selected from values in
the interval [—mls, mls], where mls represents the maximum
learning step parameter (subject to parameter tuning)

To ensure fairness, the SLM also explores 30 random parameter
configurations as XmasNet. The possible parameter configurations
and their ranges are the following:

e Maximum learning step (mls): [0.1, 1]

e Stopping criterion: EDV or TIE (with equal probability)
e Maximum neuron connection weight (mncw): [0.1,0.5]
e Maximum bias weight (mbw): [0.1,0.5]

The best configuration found according to the average validation
performance is the following: maximum learning step (mls) of 0.25,
use of the EDV stopping criterion, maximum neuron connection
weight (mncw) of 0.17, and maximum bias weight (mbw) of 0.37.
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5 RESULTS

This section analyzes the results achieved in the experimental phase.
In particular, the objective is to compare the classification perfor-
mance achieved by XmasNet against the one obtained with the
SLM. Additionally, it is fundamental to understand whether the
used neuroevolution algorithm is comparable with XmasNet also
in terms of execution time. In fact, the combination of the two
factors (classification performance and execution time) is funda-
mental for applying the SLM over challenging tasks characterized
by thousands (or more) images.

To analyze the classification performance, the Area Under the
Receiver Operating Characteristic (AUROC) curve was taken into
account, considering that the dataset is not balanced. The results
of this comparison are reported in Figure 4.
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Figure 4: AUROC achieved by XmasNet and SLM

On each box, the central mark is the median, the edges of the box
are the 25% and 75t percentiles, and the whiskers extend to the
most extreme data points that are not considered outliers. These
results show that SLM outperforms XmasNet in classifying unseen
PCa images. This suggests that SLM is able to adapt its architecture
to the particular problem at hand, thus being able to outperform a
state-of-the-art method for the challenging dataset at hand.

To statistically validate these results, a set of statistical tests was
executed. In particular, as a first step, the Kolmogorov-Smirnov test
was applied to test if the experimental results come from a normal
distribution. The result of the test, performed with a significance
level () of 0.05, suggested that the alternative hypothesis (i.e., data
do not come from a normal distribution) cannot be rejected. Thus, a
rank-based statistic was subsequently used. The Mann-Whitney U-
test was performed with the null hypothesis that the samples have
equal medians. As for the previous test, a significance level of 0.05
was considered. The p-value returned by the Mann-Whitney U-test
was 0.016 thus suggesting that the difference (in terms of AUROC)
among the considered techniques is statistically significant.

As previously discussed, it is fundamental to compare the time
needed to perform the training process of the two networks. The
results of this analysis are reported in Figure 5. From this compar-
ison, it is appreciable the significant reduction (p-value returned
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by the Mann-Whitney test smaller than 107'%) in terms of the time
introduced by the SLM.
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Figure 5: Training time required by XmasNet and SLM

In terms of speed-up (calculated as %

:), the average value
obtained over the performed runs is 14.008. Thus, SLM outperforms
XmasNet in terms of classification performance, and it is able to
execute the training process faster than XmasNet by one order of
magnitude. Additionally, it is important to emphasize that SLM is
only run on CPU (whereas the XmasNet was trained using a GPU)
and without any explicit parallelization. This further reinforces
the results obtained, because each network evaluation would be
suitably parallelized, thus achieving a higher speed-up. With regard
to the SLM algorithm, Figure 6 conveys interesting information
about the training process and the resulting network topology.

The SLM algorithm requires 12 iterations (median value) for
producing the resulting network. This network has 2 hidden layers,
approximately 50 hidden neurons and it is characterized by the
presence of 40000 connections between the neurons. To conclude
this section, it is important to strengthen the importance of the
results achieved by the SLM without pre-training the CNN. This
is a considerable advantage with respect to other existing models
and techniques since the SLM is not bounded or dependent on
backpropagation.

6 CONCLUSIONS

In this paper, multiparametric MRI images were the input of an
image classification task proposed in the context of the PROSTA-
TEx competition [28]. This challenge aimed at building a machine
learning model for discriminating between benign and malignant
PCa lesions. To tackle this compelling problem, the paper explored
the use of the Semantic Learning Machine (SLM) neuroevolution al-
gorithm to replace the backpropagation algorithm commonly used
in the last fully-connected layers of CNNs.

To evaluate the suitability of the SLM algorithm, its performance
was compared against the one achieved by XmasNet [29], a state-
of-the-art CNN for addressing the PROSTATEx challenge [2]. Ex-
perimental results showed that SLM outperforms XmasNet both in
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Figure 6: Information about the SLM training process: number

neurons, and number of connections between neurons

terms of classification performance and running time (obtaining a
speed-up of one order of magnitude).

While the results presented in this paper are promising and
highlight the suitability of the SLM as a neuroevolution algorithm,
this work can be extended in several directions. In particular, we
are currently investigating the use of the SLM for optimizing the
architecture of the convolutional layers of a CNN. This is the first
step towards the most important objective of this research track,
which is the definition of a novel SLM variant for optimizing the
whole topology of a deep network.

Finally, the integration of Positron Emission Tomography (PET)
imaging with multiparametric MRI [38] could further improve the
PCa detection performance [26].
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