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Abstract  22 

This study performed the first environmental and dietary exposure assessment to explore plant uptake 23 

of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) from agricultural soil and 24 

irrigation water in the Nakdong River delta, South Korea. Annual average concentrations of total 25 

PFOA and PFOS ranged from 0.026 to 0.112 µg L-1 (irrigation water), and from 0.818 to 1.364 µg kg-26 

1 (soil), respectively. PFOA and PFOS hotspots were identified downstream of the Nakdong River, and 27 

were influenced by seasonal climatic variations. The observed average biennial concentration of the 28 

sum of PFOA and PFOS decreased in irrigation water, from 0.112 µg L-1 in 2013 to 0.026 µg L-1 in 29 

2015, suggests that the 2013 Persistent Organic Pollutants Control Act may have helped to reduce 30 

levels of PFAS at this location. This study calculated some of the highest plant uptake factors reported 31 

to date, with values ranging from 0.962 in green onions to < 0.004 in plums. Leafy vegetables and rice 32 

are important components of the Korean diet; these groups had the largest contribution to the estimated 33 

dietary intake of PFOA and PFOS, which was calculated at 0.449 and 0.140 ng kgbw
-1 day-1, 34 

respectively. This corresponded to 66.4% for PFOA and 7.9% for PFOS of the EFSA reference dose 35 

(RfD). The dietary intake of PFOA and PFOS from crops alone did not exceed the RfD. However, 36 

when the estimated daily intake (EDI) from other sources such as tap water, meat, fish, dairy and 37 

beverages were included in the exposure risk assessment, both of the EDIs to PFOA and PFOS 38 

exceeded the RfDs, indicating there may be a risk to human health. This study concludes that 39 

consumption of crops might, therefore, be a significant and underappreciated pathway for human 40 

exposure to PFAS. 41 

 42 

Key words: PFAS, PFOA, PFOS, estimated daily intakes, agricultural environment, crop uptake 43 
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Introduction 45 

Per- and polyfluoroalkyl substances (PFAS) have been widely used in the fabric, paper, metal, 46 

surfactant, and electronic industries since the 1950s (Wang et al. 2014; Filipovic et al. 2015, Seong et 47 

al. 2019). Two of the most widely used PFAS include the long-chain perfluorooctanesulfonic acid 48 

(PFOS) and perfluorooctanoic acid (PFOA). These have high detection frequencies, bioaccumulate in 49 

crops, the environment, and humans, and are highly toxic. Both of these substances have been 50 

classified as persistent organic pollutants (POPs) by the Stockholm Convention (Kim et al. 2015a; 51 

Xiang et al. 2020).  52 

A wide number of reports have detected PFOA and PFOS in soil, water, biota, and food all over the 53 

globe. These studies identified contamination from historic and recent PFAS usage, as well as 54 

identifying direct and/or indirect human exposure in Europe (Kowalczyk et al. 2012; Toft et al. 2012; 55 

Flores et al. 2013; Filipovic et al. 2015; Lindim et al. 2016), the Americas (Olsen et al. 2012; Geiger 56 

et al. 2014; Rankin et al. 2016; Harris et al. 2017; Olsen et al. 2017), Australia (Baduel et al. 2014; 57 

Toms et al. 2014; Gomis et al. 2017; Gallen et al. 2018; O’Connor et al. 2018), Antarctica (Bengtson 58 

et al. 2010; Cai et al. 2012; Llorca et al. 2012), Africa (Hanssen et al. 2010; Essumang et al. 2017; 59 

Verhaert et al. 2017; Groffen et al. 2018), and Asia (Fujii et al. 2012; Lee et al. 2013b; Choi et al. 2017; 60 

Kim and Kim 2018; Kim et al. 2019; Li et al. 2020).  61 

The major exposure pathway for humans is through the ingestion of PFOA and PFOS accumulated in 62 

food and water (Vestergren and Cousins 2009; Heo et al. 2014; Ghisi et al. 2019; Luo et al. 2019). The 63 

respective guideline values of PFOA and PFOS for reference doses (RfD) were updated by the 64 

European Food Safety Authority (EFSA) and were changed from 1500 and 150 ng kg-1 day-1 in 2008 65 

to 0.8 and 1.8 ng kg-1 day-1 in 2018, respectively (Xiang et al. 2020). The International Agency for 66 

Research on Cancer classified PFOA and PFOS as “possibly carcinogenic to human” (IARC 2020). 67 

The major sources of PFAS in human diets are from dairy, fish, and meat products. Little is known 68 

about exposure from plant based products, although exposure from these sources is believed to 69 
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represent a minor source due to their relatively low bioaccumulation factors (< 0.01 – 4.7) (Lechner 70 

and Knapp 2011; Blaine et al. 2013; Garcia-Valcarcel et al. 2014; Choi et al. 2018; Ghisi et al. 2019). 71 

Despite the relatively low bioaccumulation factors reported to date, it is still crucial to monitor the 72 

residue of PFOA and PFOS in agricultural environments and products, to improve exposure 73 

assessment and establish environmental guidelines. 74 

South Korea, a developed and industrialized country, previously used PFAS in the textile and 75 

electronic industries. In 2012, South Korea listed PFOA and PFOS as POPs, in recognition of the 76 

hazard that these pollutants pose to human and the environment. The POPs Control Act was enforced 77 

for PFAS in 2013. The Act initially focused on the production and use of the C8-PFAS, as stipulated in 78 

Article 13 (1) – (4) (Jeong and Ma 2016). Nationwide, baseline environmental surveys (2011–2013) 79 

on PFOA and PFOS concentrations were conducted in agricultural and coastal environments. Several 80 

studies have identified elevated concentrations of PFAS above EFSA’s annual average environmental 81 

quality standard for surface water (0.65 ng L-1 PFOS) and the United States Environmental Protection 82 

Agency’s (USEPA) health advisory value for drinking water (70 ng L-1 for the sum of PFOA and PFOS; 83 

Gobelius et al. 2018). The source of these exceedances was stipulated to be from factors such as the 84 

potential use of biosolids from wastewater treatment plants, irrigation water, and illegal or accidental 85 

discharges. Maximum concentrations of ∑(PFOS & PFOA) downstream of the Nakdong River were 86 

recorded as 0.183 µg L-1 and 1.12 µg kg-1 for water and soil respectively (Lam et al. 2016; Choi et al. 87 

2017; Kim and Kim 2018). 88 

Six years after the first baseline survey, most studies have focused on correlations between 89 

potential dietary sources of PFAS and impacts on human health as well as dietary exposure and impacts 90 

on sex and age (Ji et al. 2012a, 2012b; Lee et al. 2017). However, the scarcity of PFOA and PFOS data 91 

within the South Korean agricultural sector coupled with the limited number of studies that have 92 

reported dietary exposure assessments in some agricultural products have necessitated a need for 93 

further studies. To address this knowledge gap, this manuscript provides an evaluation of the following: 94 
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(1) seasonal variation in PFOS and PFOA concentrations (2013–2017) in agricultural soil and 95 

irrigation water that might impact plant uptake, and (2) an assessment of dietary exposure to 96 

PFOS/PFOA from agricultural crops based on the revised 2018 EFSA RfDs. 97 

This assessment uses the Nakdong River as a test site as it is one of the largest rivers in South 98 

Korea and passes through a wide range of land uses. Previous studies on sediments and surface water 99 

from the Nakdong River basin (influents, effluents, tributaries, and estuaries) identified mean sediment 100 

concentrations of PFOA (< 0.05 - 0.929 ng g-1) and PFOS (< 0.01 – 2.682 ng g-1), and mean surface 101 

water concentrations of PFOA (0.002–1.450 μg L-1) and PFOS (0.001–0.626 μg L-1) (Cho et al. 2010; 102 

Kim et al. 2012; Hong et al. 2013; Lam et al. 2014). The relatively high PFOA and PFOS 103 

concentrations in surface water of the Nakdong River, which may have resulted from illegal and/or 104 

accidental discharges from industrial activities, have raised concerns about the possibility of uptake by 105 

crops cultivated in the environment of the Nakdong delta. These studies were used data collected prior 106 

to the enforcement of the POPs Control Act, 2013; thus, an updated assessment is needed to establish 107 

risks. This study is the first to determine human dietary exposure to PFOA and PFOS from locally 108 

cultivated crops as well as identify seasonal changes in PFOA and PFOS concentrations in soil and 109 

surface water of the Nakdong delta. 110 

 111 

Materials and method 112 

Study site and sampling 113 

The Nakdong-river, one of South Korea’s largest and longest (length = 506.17 km, total watershed = 114 

23,384.21 km2), passes through Daegu and Busan (two major industrialized cities) with eight main 115 

tributaries. The total annual precipitation of the basin is approximately 1,200 mm, 60 % of which falls 116 

from June to September, the monsoon climate and typhoons in the Korean Peninsula substantially 117 

affect the precipitation pattern (Kim et al. 2015b). As a major drinking source to over ten million 118 

people, past emissions and chemical spillages in the Nakdong River present potential risks upon 119 
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consumption (Lee et al. 2013a). The choice of sampling months was influenced by climatic conditions 120 

that characterize periods before the agricultural season (March - May: spring, cool milder temperatures 121 

interspersed with mild rainfall), start of crop growth (June - August: summer, abundant rain), period 122 

prior to harvesting (September - November: autumn, hot climate with mild rain), and periods of no 123 

agricultural activity (December - February: cold air Asian monsoon in winter, snowy, little to no rain). 124 

The choice of sampling sites was chosen based on a previous study performed by Choi et al. (2017); 125 

six sampling sites (A-F) were selected (Fig. 1). Detailed information on the site locations is shown in 126 

Table S1. Selection of sites A - D were along the longest waterway in the area, and sites E and F were 127 

located near site A, but isolated from sites A - D.  128 

The water and soil were sampled with the reported method by Choi et al. (2017). 2 L of irrigation water 129 

was sampled in 2 L polypropylene containers on a three-month interval in 2013 and 2015. Grab surface 130 

water samples were collected approximately 0.1 m under the surface with pre-cleaned polypropylene 131 

container which had been rinsed with methanol. Soil was sampled 50 m from the irrigation water 132 

sampling site once a year in March from 2013 to 2017. 3 kg of surface soil were collected to a depth 133 

of 0.15 m, and placed in polypropylene bags. Soil samples was collected in triplicates in each farmland, 134 

and a composite representative for each site was obtained by mixing equal weights. Sampled soil was 135 

dried in a fume hood for five days at the room temperature and stored at -20°C. The soil for calculation 136 

of plant uptake factor (PUF) was collected near the root of crops, after crop sampling. As the Korean 137 

diet is predominantly vegetarian and includes rice on a daily basis, the choice of vegetables selected 138 

in this study was aligned with those grown in the Nakdong region. These included: Chinese chive, 139 

green onion, lettuce, onion, parsley, spinach, tomato, and white cabbage. Other food crops sampled 140 

included apricot, plum, raspberry, and rice (grain). The each crop samples were collected 3 kg with 141 

three replications on the farm. Each bulk crop sample was finely chopped and ground with dry ice and 142 

stored at -20°C. 143 

 144 
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Chemicals and reagents 145 

Two natives, PFOA and PFOS and isotope labeled standard solutions: 13C4- and 13C8-PFOA and PFOS 146 

were purchased from Wellington Laboratories Inc. (ON, Canada). ENVI-CarbTM (Supelco, PA, USA), 147 

hydrophilic lipophilic balance (HLB) solid phase extraction (SPE) cartridge (0.5 g, 6 mL) were 148 

purchased from Waters Co. Inc. (Ireland) and nylon membrane filter (0.23 µm) were from Silicycle 149 

Inc. (Quebec, Canada) Distilled water (DW) was freshly prepared, and all solvents (acetic acid, acetone, 150 

acetonitrile and methanol) used were HPLC grade from Merck KGaA (Darmstadt, Germany).  151 

 152 

Analytical sample preparation of PFOA and PFOS in soil, water and crops 153 

PFOA and PFOS were analyzed in soil, water and vegetables using the analytical method reported by 154 

Choi et al. (2018). In brief, soil was dried at room temperature and passed through a 2 mm sieve. One 155 

gram of soil was extracted with 10 mL of aqueous acetic acid (1.0%) with mechanical shaking for an 156 

hour before and after sonication for 20 min. The extracts were centrifuged, and supernatants were 157 

collected in a new PP tube. 10 mL of a mixture solvent with methanol and 1.0% aqueous acetic acid 158 

(9/1, v/v) was added to the original soil, and the extraction was repeated three times. The combined 159 

extract was concentrated to 15 mL under N2 gas on Hurricane-Eagle (Chungmin-Tech Co. Ltd., Seoul, 160 

Korea) and diluted with DW to a 50 mL. The diluted extract was vortexed and loaded to an HLB SPE 161 

cartridge preconditioned with 10 mL methanol, followed by 10 mL DW. Extract was loaded at a rate 162 

of 1.3-1.6 mL min-1, and washed with 5 mL of 30 % methanol in DW. The cartridge was eluted with 163 

10 mL methanol, and eluent concentrated and re-dissolved with methanol to a final volume of 1.0 mL. 164 

The extract was cleaned up with 20 mg of powdered ENVI-CarbTM, then filtered with a nylon syringe 165 

filter. Ten microliters of 0.01 mg L-1 13C8-PFOS and 13C8-PFOA were added to the clean-up extracts 166 

prior to analyses as internal standards. Water samples, collected from Nakdong River, were allowed 167 

to settle for two hours prior to extraction. 500 mL of water sample was passed through an HLB 168 

cartridge, and the extraction was processed using the same method described above. The method 169 
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developed by Choi et al. (2018), was used to extract PFOS and PFOA from vegetables. Briefly, the 170 

crops were washed gently under running water to remove soil and the samples were ground with dry 171 

ice. 10.0 g of sample was extracted with 90 % (v/v) methanol in DW (10 mL x 3) by mechanical 172 

shaking for an hour and sonication for 20 min. The extracts were centrifuged and supernatants were 173 

collected in a new PP tube. Additionally the crop sample was re-extracted with 75 % (v/v) 174 

tetrahydrofuran in DW. The combined extracts were then concentrated to 10 mL under nitrogen and 175 

re-diluted with DW to a volume of 50 mL. These samples were then extracted with HLB SPE cartridges 176 

and the subsequent process was followed the method described above.  177 

 178 

Instrumental analyses  179 

Samples were analyzed using high performance liquid chromatography with tandem mass 180 

spectrometry (HPLC-MS/MS). This was performed on an Agilent 1200LC liquid chromatograph 181 

coupled to a 4000 QTrap triple-quadrupole mass spectrometer (AB Sciex Ltd., MA, USA) operated in 182 

negative electrospray ionization mode with multiple reaction monitoring (MRM). A FluoroSep-RP 183 

Octyl column (5 µm, 150 mm x 2.1 mm; ES Industries, NJ, USA) for analyte separation and a Restek 184 

C18 column (5 µm, 50 mm x 2.1 mm, Restek, Bellefonte, PA, USA) for the prevention of PFAS 185 

contamination from solvent impurity were used for the analysis. The optimized instrumental 186 

parameters and HPLC mobile phase gradient are described in detail by Choi et al. (2017). 187 

 188 

Quality control 189 

Spike recovery tests were performed using a 13C4-PFOS and 13C4-PFOA solution resulting in a final 190 

sample concentration of 0.05 μg L-1 for water, 0.50 μg kg-1 for soil and crop. Samples were tested in 191 

triplicate, and returned acceptable recoveries (69.4-76.3%) for soil, water and vegetables. The method 192 

limit of quantification (MLOQ) was determined to be 0.00002 µg L-1 for water, 0.010 µg kg-1 for soil 193 

and 0.001 µg kg-1 for crops. Linearity was recorded throughout the analyses by running the calibration 194 
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series (0.010 to 1.00 µg L-1), and the inter-day precisions were below 10 %. All quality control results 195 

are presented in Table S2 in the supporting information. 196 

 197 

Calculation on PUF and estimated daily intake (EDI) 198 

Crop and soil samples, used in the calculation of PUF and EDI of PFOA and PFOS, were collected in 199 

2017. PUF, expressed as the ratio between concentrations of a chemical analyte determined in plant 200 

tissue and soil (Liu et al. 2019), was calculated by dividing the concentration in the crop by the 201 

concentration recorded in the soil (Equation 1): 202 

 203 

PUF=
Concentration in crop �μg kg-1�
Concentration in soil �μg kg-1�

 204 

Equation 1: Calculation for plant uptake factor (PUF) 205 

 206 

EDI was calculated using the concentration recorded in each crop, and an estimate of the daily intake 207 

of crops for Korean adults, assuming an average body weight of 60 kg (Equation 2). Food intake data 208 

were obtained from the 2017 National Food & Nutrition Statistics provided by the Korean Health 209 

Industry Development Institute (KHIDI, 2017).  210 

 211 

EDI (ng kgbw-1day-1 )= 
[�Daily intake of crop per person (g day-1� x (Residual concentration (ng g-1)]

Average body weight (60 kg)  212 

Equation 2: Calculation for estimated daily intake (EDI)  213 

 214 

Results and discussion 215 

PFOA and PFOS residues in irrigation water in Nakdong River  216 

PFOA and PFOS were detected in water samples from all study sites. The average PFOA and PFOS 217 

concentrations in 48 irrigation waters sampled throughout the study period were 0.042 ± 0.042 µg L-1 218 
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and 0.027 ± 0.068 µg L-1, respectively (Table 1). The average of the sum of PFOA and PFOS in 2013 219 

and 2015 were highest in winter at 0.101 µg L-1, followed by 0.070 µg L-1 in summer and 0.060 µg L-220 

1 in autumn, with the lowest concentrations of 0.047 µg L-1 recorded in spring (Table S4 in the 221 

supporting information). The biennial (2013–2015) average concentrations of the sum of PFOA and 222 

PFOS in the southern sites (downstream sites A, B, E, and F, 0.080 µg L-1) were twice as high as for 223 

the northern sites (upstream sites C and D, 0.048 µg L-1). Concentrations peaked during winter for the 224 

southern sites, and at the beginning of summer for the northern sites in 2013 (Fig. 2). PFOA and PFOS 225 

residues varied seasonally in the southern site in 2013, with the greatest PFOA and PFOS 226 

concentrations in winter (0.129 and 0.107 µg L-1, respectively), followed by PFOS concentrations in 227 

autumn (0.094 µg L-1), PFOA and PFOS concentrations in summer (0.089 and 0.033 µg L-1, 228 

respectively), and PFOA (0.029 µg L-1) and PFOS (0.023 µg L-1) in spring. The average PFOA and 229 

PFOS concentrations in the southern sites were 0.067 and 0.064 µg L-1 in 2013, respectively; this 230 

decreased to 0.019 and 0.009 µg L-1, respectively, in 2015. The average PFOA and PFOS 231 

concentrations in the northern sites in 2013 were 0.059 and 0.016 µg L-1, respectively; this decreased 232 

to 0.020 and 0.003 µg L-1, respectively, in 2015.  233 

Industrial activities involving paint, metal, and recycling factories were located near sites A–C 234 

during sampling, whereas other sites were at least a 100 m away from industrial activities. Thus, 235 

contamination in site A could be attributed to localized disposal of pollutants into irrigation waterways 236 

of the Nakdong River. The average PFOA concentrations at all sites (A–F) decreased by a factor of 3 237 

from 2013 (0.064 µg L-1) to 2015 (0.019 µg L-1). Similarly, the PFOS concentrations decreased by a 238 

factor of 7 from 2013 (0.048 µg L-1) to 2015 (0.007 µg L-1). Based on the differences in the observed 239 

residue patterns in Fig. 2 for 2013 and 2015, the decrease in concentrations could be attributed to a 240 

positive impact of the enforcement of the POPs Control Act in 2013. Additional six samples from the 241 

sites were analyzed from June 2017; the results indicated that PFOA concentrations continued to 242 

decline (0.017 µg L-1), and PFOS concentrations remained relatively stable (0.005 µg L-1) 243 
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High concentrations of PFOA and PFOS corresponded with elevated levels of rainfall documented 244 

in Busan from 2013 to 2015. Sites (C–F) showed a decrease in PFOS and PFOA residues in September, 245 

but this trend was not observed in sites A and B which were near heavily industrialized zones. This 246 

could be attributed to the heavy rainfall observed during summer (206.7–316.9 mm/month). With 247 

heavy rains, PFOS and PFOA may be washed away, removing some of the local contamination sources. 248 

In 2013, PFOA residues increased in all sites studied in June, which could be attributed to 249 

contamination from the main river, although local contamination sources may have partially 250 

contributed to this increase.  251 

From previous studies, PFOA and PFOS concentrations detected in the Nakdong River (0.0065–252 

0.101 μg L-1) are relatively similar to those reported in this study, considering differences in study sites, 253 

extent of contamination, and sampling season (Cho et al. 2010; Hong et al. 2013; Lam et al. 2014). 254 

The annual mean concentrations of PFOA (0.064 and 0.019 μg L-1 for 2013 and 2015, respectively) 255 

and PFOS (0.048 and 0.007 μg L-1 for 2013 and 2015, respectively) in surface irrigation water of the 256 

Nakdong River exceeded the advisory guideline by Office of Environmental Health Hazard 257 

Assessment (OEHHA) in California (0.0051 μg L-1 for PFOA and 0.0065 μg L-1 for PFOS) (OEHHA, 258 

2019), indicating that PFOA and PFOS in the Nakdong region may have an adverse effect on human 259 

health. 260 

 261 

PFOA and PFOS residues in agricultural soil around Nakdong River 262 

Table 2 shows the average PFOS and PFOA residue concentrations in soil samples collected from 263 

agricultural sites A–F around the Nakdong delta. A 100% detection frequency was observed in all soil 264 

samples over the five-year study period (2013–2017), with the average total PFAS concentrations 265 

ranging between 0.443 and 2.717 µg kg-1. The detected PFOA and PFOS residues were 0.141–0.841 266 

and 0.059–2.785 µg kg-1 in the soil, respectively, with respective averages of 0.377 and 0.763 µg kg-1 267 

for the entire period. The average PFOA and PFOS concentrations in the soil samples were consistent 268 
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with the relative concentrations in water samples obtained from the same locations. The average 269 

residues of PFOA and PFOS were ranged on 0.336-0.485 µg kg-1 and 0.496-1.024 µg kg-1 in the 270 

southern site (A, B, E, and F) and 0.273-0.411 µg kg-1 and 0.219-1.016 µg kg-1 in the northern site (C 271 

and D), respectively (Table S5 in the supporting information). Higher average concentrations of PFOA 272 

(0.406 µg kg-1) and PFOS (0.790 µg kg-1) in the entire period were determined in the southern soil, in 273 

comparison to the northern locations where average concentrations were 0.322 and 0.710 µg kg-1 for 274 

PFOA and PFOS, respectively. Interestingly the PFOA residue in the site A and B appeared to increase 275 

with time, while the residues in other sites remained relatively constant. This differed from the trends 276 

for PFOS where residues in the soil of all sites tended to decrease over time (Figure 3). These opposing 277 

trends might be a result of the difference in the restriction guidelines for the use of PFOA and PFOS 278 

by the POPs Act. The restriction for PFOS was listed in 2013 but PFOA was only listed in 2019. 279 

Average soil concentrations in all sites were below the proposed Canadian Federal quality guideline 280 

for agricultural soil (10 µg kg-1; Xiang et al. 2020). 281 

 282 

Plant uptake of PFOA and PFOS  283 

In addition to soil, irrigation water from the Nakdong River is an important source of PFOA and PFOS 284 

that may influence plant uptake of PFAS. Six crop types (white cabbage, rice, green onions, parsley, 285 

lettuce, and plums) and the cultivated soils were collected in 2017 throughout the delta area. 286 

Concentrations of PFOA and PFOS recorded in soil, and the crops are presented in Table 3, along with 287 

the calculated plant uptake factor (PUF). The highest levels of PFOA were identified in green onions 288 

and white cabbage at 0.809 and 0.476 µg kg-1, respectively. PFOS residues were the highest in white 289 

cabbage (0.115 µg kg-1) and lettuce (0.087 µg kg-1). Both PFOA and PFOS concentrations were lowest 290 

in plums and parsley.  291 

Leafy vegetables had higher PUFs for PFOA than other crops (green onions, 0.962; white cabbage, 292 

0.592; rice (whole), 0.435; plums, 0.355; lettuce, 0.252; parsley, 0.154). Lettuce had the highest PFOS 293 



13 

 

PUF (0.286), followed by white cabbage (0.086), parsley (0.067), rice (whole, 0.057), green onions 294 

(0.017), and plums (<0.004). The uptake of PFOA from soil to crop was greater than that of PFOS, 295 

however the extent of this difference varied for each crop. 296 

 297 

Dietary exposure assessment of PFOS and PFOA from Nakdong region 298 

A human health risk assessment was performed to calculate the EDIs of PFOA and PFOS from the 299 

edible crops analyzed in this study. The results showed that the intake of rice, leafy vegetables, and 300 

fruits grown in the Nakdong delta contributed the most to PFAS exposure (Table 4). Rice was identified 301 

as the main source of both PFOA (0.247 ng kgbw
-1 day-1) and PFOS (0.086 ng kgbw

-1 day-1). Notable 302 

contributions of PFOS were also recorded in white cabbage (0.018 ng kgbw
-1 day-1), green onions 303 

(0.011 ng kgbw
-1 day-1), and Chinese chives (0.010 ng kgbw

-1 day-1). Notable contributions for PFOA 304 

were also recorded in white cabbage (0.076 ng kgbw
-1 day-1), green onions (0.059 ng kgbw

-1 day-1), 305 

onions (0.057 ng kgbw
-1 day-1), lettuce (0.039 ng kgbw

-1 day-1), tomatoes (0.023 ng kgbw
-1 day-1), and 306 

spinach (0.019 ng kgbw
-1 day-1).  307 

In comparison to the revised EFSA RfD guideline values (0.8 ng kgbw
-1 day-1 for PFOA and 1.8 ng 308 

kgbw
-1 day-1 for PFOS), the EDI contributions of the revised RfDs from crops in this study were 66.4% 309 

for PFOA and 7.9% for PFOS, of which rice contributed up to 30.9% and 4.8% of the RfDs, 310 

respectively. This indicates that crops might be a more important exposure pathway than has previously 311 

been considered, although both of the EDIs of PFOA and PFOS from crops alone did not exceed the 312 

RfD. However, when combined with other sources from recent reports (1.052 ng kgbw
-1 day-1 for PFOA, 313 

1.190 ng kgbw
-1 day-1 for PFOS), such as tap water, beverages, dairy, fish and shellfish, and meat and 314 

its products (Heo et al. 2014; Park et al. 2018), the Korean EDIs for PFOA and PFOS exceeded the 315 

RfDs. The detailed EDIs values are presented in Table S6 in the supporting information. 316 

The major source of PFAS in most human diets is assumed to be from meat and fish based products, 317 

as low bioaccumulation factors have been reported for PFAS in plants (Lechner and Knapp 2011; 318 
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Blaine et al. 2013; Garcia-Valcarcel et al. 2014; Choi et al. 2018; Ghisi et al. 2019). This present study 319 

shows this may not always be the case, as approximately 70% of the RfD of PFOA arose from 320 

consumption of crops. From reviewing available literature, it would appear that this issue is not limited 321 

to this study site. South Korean EDI values for PFOA from crops and foods were comparable to 322 

reported values from China, Japan, Germany, and the United States (0.72 – 10.5 ng kgbw
-1 day-1), but 323 

higher than those from Norway and Sweden (0.35 – 0.69 ng kgbw
-1 day-1) (Liu et al. 2017).  324 

 325 

Conclusions and recommendations 326 

This study explored the influence of PFOA- and PFOS-contaminated water and soil on plant uptake 327 

and its impact on dietary exposure in and around one of the largest rivers in South Korea, the Nakdong 328 

River, over a five-year period (2013–2017). The annual average concentration of the sum of PFOA 329 

and PFOS concentrations in the irrigation water exceeded the Californian OEHHA’s advisory 330 

guidelines for inland surface water. Although the accumulation rates for crops would likely be lower 331 

than those of animal products, this study identified that plant uptake of PFOA and PFOS can be a 332 

significant pathway for human exposure. Plant uptake factors greatly vaired with different crop types 333 

ranging from < 0.4 % (plum) to 96 % (green onion) and with leafy vegetables appearing to accumulate 334 

the highest concentrations of PFOA and PFOS. 335 

The calculated EDI contributions of the proposed EFSA RfDs from crops in this study were 66.4% 336 

for PFOA and 7.9% for PFOS, of which rice contributed up to 30.9 and 4.8% of the total PFOA and 337 

PFOS exposure, respectively. Although the PFOA and PFOS residues in soil did not exceed the 338 

advisory Canadian guidelines for agriculture, the PFOA EDI values of the local crops almost reached 339 

the proposed RfD. When combined with estimated inputs from other sources, the EDIs of PFOA and 340 

PFOS for people consuming vegetables grown in the study site would likely exceed both of the RfDs. 341 

It is not currently clear whether the PFOS and PFOA recorded in these samples were predominantly 342 

due to plant uptake from soil and pore water, or from PFAS introduced to the surface of the plants by 343 
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irrigation water. Further studies are needed to establish this so that effective mitigation measures can 344 

be introduced. The results of our research point towards the positive impact legislation can have in 345 

reducing environmental concentrations of PFOA and PFOS, however, not all PFAS are regulated to 346 

the same extent. Therefore, the decrease in concentrations in PFOA and PFOS identified here may be 347 

offset by increased use of emerging PFAS, such as the C8 replacements hexafluoropropylene oxide 348 

dimer (HFPO-DA), hexafluoropropylene trimer acids (HFPO-TA), and 6:2 chlorinated polyfluorinated 349 

ether sulfonic acid (6:2 Cl-PFESA). Future PFAS monitoring campaigns should include an assessment 350 

of emerging perfluorochemical contaminants in local foods and in agricultural environments to help 351 

establish more robust PFAS management guidelines. 352 
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 541 

Fig. 1 A map showing the study area, Nakdong River, and sampling points within and around the river. 542 

Sampling points are referenced from A-F 543 

  544 
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 545 

Fig. 2 Temporal changes in PFOA and PFOS concentrations (µg L-1) in surface water from Nakdong 546 
River from March to December 2013 and 2015 547 
  548 
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 549 
Fig. 3 Temporal residue changes (µg kg-1) in PFOA (a) and PFOS (b) in the soil of the each sampling 550 

site (A-F) from Nakdong River from 2013 to 2017  551 
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Table 1. Temporal changes of PFCs residual concentration (µg L-1) in irrigation water on the delta 552 

area of the Nakdong-river. 553 

Site Average ± SD 
(2013) 

Average ± SD 
(2015) 

Average ± SD 
(All) 

A 
PFOA 0.082 ± 0.063 0.022 ± 0.006 0.052 ± 0.053 
PFOS 0.196 ± 0.148 0.026 ± 0.036 0.111 ± 0.137 
Sum 0.278 ± 0.210 0.048 ± 0.039 0.163 ± 0.186 

B 
PFOA 0.058 ± 0.040 0.017 ± 0.004 0.037 ± 0.035 
PFOS 0.033 ± 0.018 0.004 ± 0.003 0.019 ± 0.019 
Sum 0.091 ± 0.043 0.021 ± 0.007 0.056 ± 0.047 

C 
PFOA 0.061 ± 0.033 0.025 ± 0.019 0.043 ± 0.032 
PFOS 0.027 ± 0.021 0.003 ± 0.001 0.014 ± 0.019 
Sum 0.087 ± 0.050 0.028 ± 0.021 0.057 ± 0.048 

D 
PFOA 0.056 ± 0.033 0.015 ± 0.002 0.035 ± 0.031 
PFOS 0.005 ± 0.001 0.002 ± 0.001 0.004 ± 0.002 
Sum 0.062 ± 0.036 0.017 ± 0.003 0.039 ± 0.034 

E 
PFOA 0.086 ± 0.076 0.017 ± 0.002 0.051 ± 0.063 
PFOS 0.010 ± 0.003 0.002 ± 0.001 0.006 ± 0.005 
Sum 0.096 ± 0.084 0.019 ± 0.002 0.057 ± 0.069 

F 
PFOA 0.044 ± 0.034 0.021 ± 0.015 0.032 ± 0.028 
PFOS 0.017 ± 0.013 0.004 ± 0.003 0.011 ± 0.011 
Sum 0.061 ± 0.052 0.025 ± 0.019 0.043 ± 0.041 

Southern 
(A,B,E,F) 

PFOA 0.067 ± 0.057 0.019 ± 0.008 0.043 ± 0.047 
PFOS 0.064 ± 0.106 0.009 ± 0.020 0.037 ± 0.081 
Sum 0.132 ± 0.085 0.028 ± 0.016 0.080 ± 0.086 

Northern 
(C,D) 

PFOA 0.059 ± 0.032 0.020 ± 0.014 0.039 ± 0.032 
PFOS 0.016 ± 0.018 0.003 ± 0.001 0.009 ± 0.014 
Sum 0.075 ± 0.043 0.023 ± 0.015 0.048 ± 0.041 

Average 
(All) 

PFOA 0.064 ± 0.050 0.019 ± 0.011 0.042 ± 0.042 
PFOS 0.048 ± 0.090 0.007 ± 0.017 0.027 ± 0.068 
Sum 0.112 ± 0.117 0.026 ± 0.020 0.069 ± 0.094 

 554 

  555 
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Table 2. Temporal changes of PFOA and PFOS residue (µg kg-1) at different sampling sites (A-F) in 556 

the farmland soil around Nakdong River. 557 

Site Contaminant Average±SD 
(2013-2017) 

A 
PFOA 0.556 ± 0.171 
PFOS 2.161 ± 0.587 
Sum 2.717 ± 0.441 

B 
PFOA 0.516 ± 0.223 
PFOS 0.472 ± 0.338 
Sum 0.988 ± 0.432 

C 
PFOA 0.414 ± 0.150 
PFOS 1.156 ± 0.631 
Sum 1.570 ± 0.770 

D 
PFOA 0.230 ± 0.062 
PFOS 0.263 ± 0.136 
Sum 0.493 ± 0.153 

E 
PFOA 0.264 ± 0.085 
PFOS 0.370 ± 0.225 
Sum 0.634 ± 0.313 

F 
PFOA 0.286 ± 0.138 
PFOS 0.158 ± 0.084 
Sum 0.443 ± 0.169 

Southern 
(A,B,E,F) 

PFOA 0.406 ± 0.208 
PFOS 0.790 ± 0.888 
Sum 1.196 ± 1.039 

Northern 
(C,D) 

PFOA 0.322 ± 0.150 
PFOS 0.710 ± 0.638 
Sum 1.031 ± 0.761 

Average 
(All) 

PFOA 0.377 ± 0.190 
PFOS 0.763 ± 0.803 
Sum 1.141 ± 0.878 

  558 
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Table 3. PFOA and PFOS residues in soil and crops, and the PUF in crops. 560 

 Soil (µg kg-1) Crop (µg kg -1) PUF 

Name PFOA PFOS PFOA PFOS PFOA PFOS 

White cabbage 0.804 1.322 0.476 0.115 0.592 0.086 

Green onion 0.841 0.236 0.809 0.004 0.962 0.017 

Parsley 0.324 0.134 0.050 0.009 0.154 0.067 

Lettuce 0.222 0.304 0.056 0.087 0.252 0.286 

Rice (whole plant) 0.154 0.159 0.067 0.009 0.435 0.057 

Plum 0.141 0.268 0.050 <0.001 0.355 <0.004 
  561 
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Table 4. EDI of PFOA and PFOS from the collected crops  562 

Crop 
EDI (ng kg-1 day-1) 

Reference 
PFOA PFOS 

Apricot <0.001 <0.001 This study 

White cabbage 0.076 0.018 This study 

Chinese chive 0.005 0.010 This study 

Green onion 0.059 0.011 This study 

Parsley <0.001 <0.001 This study 

Lettuce 0.039 0.008 This study 

Onion 0.057 <0.001 This study 

Plum 0.002 <0.001 This study 

Raspberry <0.001 <0.001 This study 

Rice (grain) 0.247 0.086 This study 

Spinach 0.019 0.008 This study 

Tomato 0.023 0.003 This study 

Sub-total 0.530 0.144 This study 

Beverage 0.069 0.011 Heo et al. (2014) 

Dairy 0.396 <0.001 Heo et al.(2014) 

Meat and its product <0.001 0.797 Heo et al. (2014) 

Fish and shellfish 0.033 0.314 Heo et al. (2014) 

Tapwater 0.555 0.068 Park et al. (2018) 

Total 1.582 1.334  
 563 
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