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Abstract  

Inter-individual variation can be found in muscle mass and strength during the 

ageing process, and in muscular adaptations to exercise. These inter-individual 

differences are related to genetic and DNA methylation factors. Therefore, the 

objective of this thesis is to explore the role of underlying genetic polymorphisms 

and DNA methylation with muscle strength and mass in an ageing population. This 

thesis first evaluated the overall genetic association with changes in muscle mass 

and strength among older adults (n = 200, 60–83 yrs) who received a one year of 

training and were reassessed one year after the cessation of training. The genetic 

profile was represented as a data-driven genetic predisposition score (GPS), which 

was calculated based on muscle-related genetic variants selected from 170 

candidates through stepwise regression. The results showed that a data-driven GPS 

explained 0.7% of the variance in skeletal muscle mass (SMM) and 3.2% of the 

variance in knee strength at baseline level, 14% of the variance in SMM and 27% 

of the variance in knee strength after the training, and 27–37% of the variance in the 

loss of muscle mass and strength after the one-year cessation of training. The thesis 

further compared differences in blood sample methylation patterns between 

sarcopenic and non-sarcopenic women (n = 48, 65–80 yrs). 6,258 differentially 

methylated CpGs (dmCpGs) that had different methylation levels (p < 0.01) between 

the sarcopenic and non-sarcopenic groups were identified. Genes containing these 

dmCpGs were involved in multiple biological pathways that were related to muscle 

function, actin cytoskeleton regulation and energy metabolism. A DNA methylation 

profile score was calculated as a weighted sum of methylation levels of sarcopenia-

driven CpG sites (MSSAR, based on sarcopenia-related lasso logistic regression) 

and the MSSAR was negatively associated with vastus lateralis size, elbow and 

knee strength, and explained 10.1%, 35.5% and 40.1% of the variance, respectively. 

In conclusion, this thesis shows that both genetic sequence architecture and DNA 

methylation play a role in explaining the inter-individual differences in muscle mass 

and strength in older adults. An individual with a more favourable genetic profile 

might have not only greater baseline muscle strength, but also a higher probability 

to respond well to training and a smaller muscular loss after quitting the training. 

This study provided new insights in how the methylation status differ between weak 

older women compared to generally age-matched muscularly fit women. Using 

easily accessible blood samples, individuals at high risk of sarcopenia might be 

identified based on their methylation profile.   
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1. Ageing-related muscle degeneration 

1.1. Demographics and ageing-related muscle degeneration 

Decreased muscle mass and muscle strength are two predominant changes during 

ageing. It has been reported that a noticeable atrophy of skeletal muscle can be 

observed after an age of 40.1 The degree of muscle degeneration aggravates with 

the increase of age. It is estimated that after an age of 50, muscle strength 

decreases at an annual rate of 1.5% while the decline of muscle mass is 1–2%.2 

Frontera et al. conducted a 12-yr follow up study on older men (mean age 65 yrs) 

and found a 1.7–2.5% annual decrease in elbow and knee strength, and a 1–1.3% 

loss in thigh muscle size.3 Goodpaster et al. reported an annual leg strength decline 

of 2.6–4.1% and leg lean mass loss of 1% among older people aged 70–79 yrs.4 

Charlier et al.5 analysed different types of knee strength (isometric, isotonic, 

isokinetic and endurance strength) among individuals aged between 18 and 78 

years, and found that age accounted for 5–24% of the variance in knee strength in 

both men and women. Compared to muscle mass, muscle strength is a stronger 

predictive parameter for functional ability and living quality.6 Meta-analyses on older 

adults aged above 65 yrs have shown that BMI (greater than 30) and low muscle 

strength are closely associated with functional decline while low muscle mass fails 

to show any significance.7 Schaap et al.8 analysed associations of muscle mass, 

grip strength and gait speed with three-year longitudinal data of falling incidents 

among 498 older adults (aged above 65 yrs), and reported that only low grip strength 

was associated with the incidence of recurrent falling. Specifically, the concept of 

“sarcopenia” was introduced in 2010 by the European Working Group on 

Sarcopenia in Older People (EWGSOP).9 The term “sarcopenia” refers to a 

syndrome which is characterised by progressive loss of skeletal muscle mass and 

muscle function (muscle strength or performance).9 Factors such as age, endocrine, 

neuro-degeneration, disuse and malnutrition are closely related to sarcopenia.9 The 

second meeting of EWGSOP suggested a Find-Assess-Confirm-Severity (F-A-C-S) 

algorithm (I-Figure 1) which identifies sarcopenia through a criterion sequence of (1) 

low muscle strength (defined as probable sarcopenia), (2) low muscle mass (defined 

as diagnosed sarcopenia), and (3) low physical performance (defined as severe 

sarcopenia).6 However, the cut-off point of each muscular parameter for sarcopenia 

identification is still under debate. Some studies use a 2-standard deviation (SD) 

below the mean of young adults as a cut-off point,10–12 some define sarcopenia 

based on quartiles of the study group13–15, others also apply statistical analysis such 
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as the likelihood ratio for sarcopenia classification.16 Only recently, cut-off points for 

sarcopenia tests are advised by the EWGSOP with a grip strength cut-off value of 

27 kg for men and 16 kg for women, a total skeletal mass value of 20 kg for men 

and 15 kg for women, and a gait speed of 0.8 m/s.6 Based on the suggested cut-off 

points, the prevalence of sarcopenia among cummunity-dwelling Japanese older 

men and women (65+ yrs) is 10.1% and 7.2%, respectively.17 While in a Gambian 

population (aged 40–75+ yrs), the prevalence of sarcopenia reaches 19% in men 

and 10% in women.18 Meta-analysis based on 35 studies (older people aged 60+ 

yrs) showed that the overall estimated prevalence of sarcopenia was the same (10%) 

in both men and women while non-Asian had higher prevalence than Asian in both 

genders (19% vs 10% in men; 20% vs 11% in women).19  

 

I-Figure 1. The FACS algorithm suggested by EWGSOP2 for the identification and 

severity quantification of sarcopenia. The identification of sarcopenia follows a 

checking sequence of muscle strength, muscle quantity/quality and physical 

performance. Adapted from Cruz-Jentoft et al., 2018. 
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Population ageing has become a universal phenomenon. In Europe, 25% of the 

population was aged 60+ in 2017 and the proportion is estimated to reach 34% in 

2050.20 Meanwhile, it is estimated that 5–13% of older people aged 60–70 years are 

affected by sarcopenia, and the proportion increases to 11–50% for those aged 80 

or above.2 Since muscle degeneration can greatly limit physical function,21 and 

increase risk of falls22 and mortality rate,23 more older adults might be at the threat 

of reduced quality of life11 and raised healthcare expenditures28 in the future. 

Notably, the muscle degeneration rate varies between older men and women. Kyle 

et al. reported a 8.9 kg (14.8%) decrease in fat free mass from middle-aged to older 

(85+ yrs) men and a 6.2 kg (14.3%) decrease from middle-aged to older (85+ yrs) 

women.25 Gallagher et al.26 reported that the annual loss in appendicular muscle 

mass was approximately 0.8 kg (3.3%) in older men and 0.4 kg (2.2%) in older 

women over a 7-year period. The loss of muscle strength with aging is also found 

to be greater and faster in men. Goodpaster et al.4 examined changes in muscle 

strength among older adults over a three-year period and reported that older men 

lost twice as much isometric knee extensor strength as women over a 3-year period. 

Despite the greater losses of muscle mass and strength among older men, older 

women might be more vulnerable during ageing. Firstly, older women have lower 

levels of muscle mass and strength. In general, men have 11 kg more skeletal 

muscle than women and women have 40% and 30% less muscle in the upper and 

lower body, respectively.27 Secondly, the dramatic drop of sex hormones (e.g. 

estrogen and progesterone) after menopause is closely connected with decreased 

bone mineral density, muscle strength and lean body mass.28,29 Baumgartner et al.10 

reported that healthy postmenopausal women (aged less than 74 yrs) had much 

lower appendicular SMI than men with a similar age in both Hispanics and non-

Hispanic white populations. Consequently, older women will have a lower 

physical performance30 and a higher injury risk.31 

1.2. Mechanisms underlying ageing-related muscle degeneration 

Many factors can contribute to ageing-related muscle degeneration. Firstly, at the 

neuromuscular level, myofiber denervation and loss of motor units are found with 

ageing.1 Aare et al. reported that denervated myofibers were 35–50% smaller than 

innervated fibers in rat ageing muscle.32 The same team later found that the 

accumulation of denervated myofibers in ageing muscle was due to failed 

reinnervation and suppression of neurotrophin response.33 Secondly, the quantity 

and type of myofibers also change during ageing. Lexell et al.34 reported a quadratic 
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correlation between age and the amount of myofibers, and an average reduction of 

39% in myofibers from 20 to 80 yrs. A 10–40% reduction in the size of type II 

myofibers, a fast-twitch myofiber that exerts more power and fatigues faster than 

type I fibers during contraction, was also found in older participants when compared 

with young controls.35 Meanwhile, a preferential atrophy of type II fibers with an 

elevated type I/type II fiber ratio was reported in ageing muscle.36,37 Thirdly, at the 

level of muscle metabolism and function, Rooyackers et al. found decreased 

mitochondrial enzyme activity in ageing muscle and 12% lower mitochondrial protein 

synthesis rates in older participants than young controls.38 Porter et al. 

demonstrated declined mitochondrial respiratory capacity and coupling efficiency 

with age.39 Reduced synthesis rates of myosin heavy chain and mitochondrial 

protein with progressive declines in hormones (e.g. growth hormone [GH] and 

plasma insulin-like growth factor-I [IGF-I]) were found in ageing muscle by Proctor 

et al.40 Moreover, muscle properties also change with age. For instance, older 

women have shown less passive dorsiflexion angle and higher passive elastic 

stiffness in the calf muscle-tendon unit than young controls.41  

1.3. Non-invasive interventions for muscle degeneration 

Regular exercise is well known as an effective non-invasive intervention in slowing 

down muscle degeneration. Resistance training and fitness training combining both 

resistance and aerobic exercise have been found to improve muscle performance 

in older adults. A meta-analysis based on 1,079 healthy participants aged 50+ 

showed that muscle strength (leg press, chest press, knee extension and latissimus 

pull down) increased by 9.8–31.6 kg (24–33%) after resistance training with a 

training period from 6 to 52 weeks and a training intensity of 40–85% of 1 repetition 

maximum (RM).42 Healthy older men experienced a 7–10% improvement in muscle 

power and 8–15% increase in muscle quality (represented as a ratio of maximum 

muscle strength to muscle size) after 30-wk of combined (resistance and aerobic) 

fitness training.43 Villareal et al. conducted a 26-wk exercise program on obese older 

subjects and found a 19% improvement in thigh muscle strength after resistance 

training, and an 18% increase in strength after combined resistance and aerobic 

training.44 Besides conventional resistance or combined fitness training, whole-body 

vibration (WBV) training is also an effective intervention method in muscle training. 

By applying mechanical vibrations to skeletal muscles, WBV improves muscle 

characteristics in various aspects. The synchronization of motor units and the 

sensitivity of the stretch reflex are increased after WBV, leading to enhanced muscle 
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performance.45 Delecluse et al. reported a 9–16% enhancement in knee extensor 

strength and a 7.6% improvement in muscle counter-movement jump after a 12-wk 

WBV training.46 Roelants et al. even found a higher improvement in lower limb 

power induced by WBV (with 19% increase) than 8RM resistance training (with 13% 

increase) after a 24-wk training among older women.47 Furthermore, researches 

have revealed that exercise with extra nutritional supplement will enhance the 

training effect. Phillips48 summarised that participants had greater muscle mass and 

strength improvement through resistance training with additional supplementation 

of nutrients such as protein, creatine, β-hydroxy-β-methylbutyrate (β-HMB) and 

omega-3 polyunsaturated fatty acids (PUFAs). The study of Rodacki et al.49 on older 

women (aged above 60 yrs) demonstrated that an addition of omega-3 during 

resistance training contributed to a greater improvement in muscle strength and 

functional performance than resistance training without any nutrient supplement. 

Cermak et al.50 performed a meta-analysis on 22 studies which combined protein 

supplementation (> 1.2 g · kg−1 · d−1) and resistance training (a training frequency 

of minimum twice per week for more than six weeks), and found that resistance 

training with protein supplementation led to a greater training response in leg press 

strength and fat free mass compared with a placebo in both young and older 

participants.  

Muscle adaptations to training have been reported with a high degree of inter-

individual variance.51 Ahtiainen et al. studied 287 participants (aged 19–78 yrs) and 

reported an extensive variance in individual muscle responses to resistance training, 

with the change in leg muscle size ranging from -11 to 30% and in muscle strength 

ranging from -8 to 60% regardless of age and sex.52 Similar inter-individual 

difference was also reported in elbow flexor size (ranging from -2 to 59%) and 

strength (ranging from -32 to 149%) in the study of Hubal et al.53 Such inter-

individual variance in muscle size and strength responses to training is partially 

associated with genetic factors. In a study on a 10-wk strength training among male 

young twins, Thomis et al.54 reported that the interaction between genotype and 

training accounted for 21% and 9% of the variance in elbow flexor 1 RM strength 

and isometric elbow strength (at a 110° elbow flexion). The FAMuSS study 

conducted by Thompson et al., who examined genetic correlations with training-

induced muscle size and strength changes among one thousand adults (aged 18–

40 yrs) over a period of 12 weeks, aimed to identify genetic variants associated with 

muscle size and strength, and muscle responses to resistance training.55 Analyses 
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on the FAMuSS study have reported 17 genes that are associated with muscle size 

and strength at baseline and in response to resistance training.56 Notably, most 

studies on the genetic association with muscle adaptations to exercise are based 

on young and middle-aged participants, the genetic association with muscular 

changes in older adults is rarely studied. Moreover, all studies are focusing on 

training-induced muscle changes, the time-associated loss of muscle size and 

strength after a training intervention (detraining effect) is less well studied and 

studies focusing on genetic factors contributing to the individual differences 

in these detraining changes are lacking. 

1.4. Genetics and ageing muscle 

Inter-individual variability in muscle mass and strength can be found not only in 

exercise intervention, but also during the ageing process (I-Figure 2),57 which is 

believed to be partly gene-related. Studies in older twins demonstrated that hand 

grip strength had a heritability of 30–52%.58–60 A 3-yr follow-up study by Tiainen et 

al. found that genetic factors explained 58% of the variance in knee extensor 

strength at baseline and 56% at follow-up, and 67% of the variance in knee extensor 

power at baseline and 48% at follow-up.61 A recent meta-analysis by Zempo et al.62 

on 58 measurements regarding the heritability of muscle-related phenotypes (e.g. 

grip strength, isometric and isotonic strength) revealed that genetic factors 

accounted for 49–56% of the variance in muscular phenotypes and the 

environmental effect on skeletal muscle strength performance increased with age.  

While twin studies demonstrate a heritable component in skeletal muscle mass and 

strength, genotype or allelic association studies of DNA sequence variants in 

candidate genes between different groups (e.g. athletes vs. controls, people with 

high strength vs. those with low strength) have identified many genetic variants that 

are associated with muscle mass and strength.63–66 For instance, Cho et al. found 

that older adults with the alpha-actinin-3 (ACTN3, rs1815739) T/T genotype had a 

significantly higher risk of sarcopenia and osteoporosis than the C allele-carrier 

counterparts.67 The D allele in the angiotensin converting enzyme (ACE, rs4341) 

gene was found to be correlated with greater lean body mass (LBM), isometric and 

isokinetic quadriceps strength than the I allele.68,69 Arking studied 363 community-

dwelling women (aged 70–79 yrs) and reported that AA homozygote carriers in the 

ciliary neurotrophic factor (CNTF, rs1800169) gene showed lower grip strength than 

the G allele carriers.70 Heffernan et al.71 reported that the T allele in the alpha-
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ketoglutarate dependent dioxygenase (FTO, rs9939609) A/T polymorphism was 

predisposing to increased LBM and was more prevalent in elite rugby players, who 

rely more on appendicular lean mass for success, than other rugby athletes and 

non-athletes. Studies on the hypoxia-inducible factor 1-alpha (HIF1A, rs11549465) 

C/T polymorphism have shown that power-oriented athletes have a higher 

frequency of the T allele in comparison with controls who had no competitive sport 

experience.72–74 The C allele in the myostatin (MSTN, rs1805086) gene has been 

related to a lower leg strength and functional performance (e.g. vertical jump, gait 

and balance) in both young and older adults.75–77 Studies on the vitamin D receptor 

(VDR, rs2228570) G/A polymorphism reveal that the G allele carriers have less 

quadriceps strength and a 2.17-fold higher risk for sarcopenia than the A allele 

carriers.78–80 

 

I-Figure 2. Changes in muscle mass and strength throughout the life course. Inter-

individual variance gradually increases with age. Adapted from Mithal et al., 2013. 

1.5. DNA methylation and ageing muscle  

Besides genetic variants, the muscle can also be influenced by many environmental 

factors such as physical activity and nutrient intake.81 For instance, protein intake is 

essential for protein synthesis and skeletal muscle function, while lower protein 

intake is usually found in older adults due to reduced appetite and chewing 

efficiency.82 One mechanism for environmental factors to affect muscle mass and 

strength is through epigenetic regulation.  

Epigenetic regulation includes a set of regulatory processes that modify gene 

expression without changing its original DNA sequence.83 Several mechanisms 

such as histone modification, DNA methylation, noncoding RNA regulation and 
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chromatin remodelling are involved in epigenetic regulation (I-Figure 3A).84,85 

Histones are the fundamental components of chromatin and are positively charged 

with many lysine and arginine residues. DNA, which is negatively charged due to its 

phosphate groups, is winded tightly around histones, and therefore, is kept from 

being transcribed. Covalent modifications at the N-terminal region of histone (known 

as the histone tail) will affect the connection between DNA strands and histones. 

For instance, with H3K27 acetylation, the positive charge of histones is reduced, 

resulting in decreased binding of DNA strands.85 Phosphorylation can also decrease 

the binding while methylation on histone tails will strengthen the binding (I-Figure 

3B).86 Through these modifications, the accessibility of a DNA sequence can be 

regulated.  

 

I-Figure 3. Main epigenetic mechanisms. (A) Histone modification affects the binding 

with DNA strands. Adapted from Brown, 2015. (B) Covalent modifications at the N-

terminal region of histone H4. Covalent modifications include phosphorylation (P), 

acetylation (Ac), and methylation (Me). Single letter abbreviations for amino acid 

residues: A = alanine; G = glycine; H = histidine; K = lysine; L = leucine; R = arginine; 

S = serine.  Adapted from Stephens, 2013. (C) DNA methylation and long noncoding 

RNAs (lncRNAs) regulation also affect gene transcription. Adapted from Chen, 2017. 

DNA methylation, which has been extensively studied, is an epigenetic mechanism 

that occurs on the DNA itself (I-Figure 3C). In vertebrates, DNA methylation mainly 

refers to an attachment of a methyl group at the 5' position of cytosine (5mC), a 

process that involves DNA methyltransferases (DNMTs) for catalysis. There are 

three DNMTs (DNMT1, DNMT3A and DNMT3B) with different functions. DNMT3A 



10 
 

and DNMT3B are responsible for creating new methylation patterns (known as de 

novo methylation) and DNMT1 is involved in the maintenance of methylation 

patterns during cell duplication (I-Figure 4). Therefore, a DNA methylation pattern 

can be either a newly-formed response to a recent stimulus, or a copy of a pattern 

that is caused by a previous factor long time ago and is passed down from cell to 

cell through mitosis. A methylated cytosine (mC) can be oxidized by dioxygenases 

from the ten-eleven translocation (TET) family into 5-hydroxymethylcytosine (hmC), 

a process known as demethylation (I-Figure 5A). Moreover, DNA methylation can 

be affected by diet. This is because several nutrients (e.g. folate, betaine and 

choline) are methyl donors in the methionine cycle for the synthesis of S-

Adenosylmethionine (SAM), which is an electrophilic methyl source for DNA 

methylation (I-Figure 5B).87 

 

I-Figure 4. DNA methyltransferases. DNMT3A and DNMT3B are involved in the de 

novo methylation, DNMT1 participates in the maintenance of methylation. Adapted 

from: https://www.atdbio.com/content/56/Epigenetics 

 

I-Figure 5. (A) Cytosine methylation and demethylation. S-Adenosylmethionine 

(SAM) donates methyl groups for cytosine methylation which is mediated by DNA 

methyltransferases (DNMTs). Methylated cytosine (mC) is demethylated into 5-

hydroxymethylcytosine (hmC) via the ten-eleven translocation (TET) family. (B) 

Possible pathways for nutrients (folate, B vitamins, betaine and choline) to affect 

DNA methylation process. MAT = methionine adenosyltransferase; SAM = S-

adenosyl methionine; SHMT = serine hydroxymethyltransferase; THF = 

https://www.atdbio.com/content/56/Epigenetics
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tetrahydrofolate; DNMT = DNA methyltransferase; MTR = 5-methyltetragydrofolate-

homo- cysteine methyltransferase; MTHFR = methylentetrahydrofolate reductase; 

Hcy = homocysteine; SAH = S-adenosylhomocysteine; mDNA = methylated DNA. 

Adapted from Zhang, 2015. 

In the human genome, DNA methylation can be found in 57–85% of cytosin-

phosphate-guanine (CpG) sites.88 CpG sites take up less than 1% of the human 

genome and most of those sites are scattered. Regions with a high frequency of 

CpG sites are defined as CpG islands, which can be found in 72% of gene 

promoters.89 Although 63–81% of CpGs are heavily methylated (hypermethylated) 

across different tissues, the majority of CpG islands remain lowly methylated 

(hypomethylated).90 The increased methylation of those CpG islands in gene 

promoters has been associated with the repression of gene expression.91 The 

possible mechanism is that methylated CpG sites in transcriptional regulatory 

regions (e.g. promoters, enhancers) can inhibit the binding of transcription factors, 

which initiate and regulate the transcription of corresponding genes.92 Meanwhile, 

the role of DNA methylation in intragenic regions remains controversial. Lorincz et 

al.93 reported that intragenic DNA methylation in transcriptionally active genes could 

impede gene expression by reducing elongation efficiency of RNA polymerase II. 

Yet, a recent study by Jeziorska et al.94 has suggested a positive association 

between the CpG island methylation in intragenic regions and transcriptional activity. 

Notably, DNA methylation patterns are tissue specific.95 Slieker et al.96 studied age-

related DNA methylation changes in multiple tissues and found that the majority of 

identified differentially methylated genetic sites (85.2% of sites with increased 

methylation and 97.4% of sites with decreased methylation) could be found in only 

one of the seven tissues (brain, buccal, liver, kidney, subcutaneous fat, monocytes 

and T-helper cells). Therefore, methylation data obtained from one tissue can not 

fully represent the methylation status in other tissues. Yet, studies on ageing still 

identified some genetic sites with consistent methylation patterns across tissues. 

Horvath97 selected 353 genetic sites for the prediction of DNA methylation age which 

was found to be highly correlated with chronological age across multiple tissues and 

even in chimpanzees. Among the differentially methylated genes across the seven 

tissues, Slieker et al.96 identified the gene ELOVL2 in all the tissues and 12 other 

genes in six out of the seven tissues. These findings suggest the possibility of 

estimating certain genetic methylation patterns in tissues (e.g. brain and muscle), 
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which are not easily accessible, using the methylation patterns of corresponding 

genes in some easily accessible tissues (e.g. blood, saliva). 

The association between ageing and DNA methylation has been studied in multiple 

tissues. Ageing is previously believed to be characterized by a global decrease of 

DNA methylation (quantified as the 5mC content at CpG sites).98 However, with the 

application of new technologies (e.g. bisulfite conversion and next-generation 

sequencing) which increase the accuracy in the 5mC content measurement, recent 

studies fail to observe any significant ageing-related alterations in global methylation 

and the expression of DNA methylation enzymes is also not associated with age.99 

Despite the inconsistent finding in ageing-related global methylation, many studies 

demonstrate region-specific DNA methylation differences such as increased 

methylation levels in gene promoters and enhancers, and methylation changes at 

specific CpG and CpH (H = A, C, or T) sites.98,99 Based on ageing-related DNA 

methylation patterns, several CpG sites have been suggested as possible predictors 

of chronological age. Bocklandt et al.100 identified 88 CpGs that were correlated with 

age based on saliva samples collected from male twins. They further developed an 

age predictive model based on the ageing-related CpGs located in the EDARADD 

and NPTX2 genes and found that the model explained 73% of the variance in age 

in an independent population.100 By comparing skeletal muscle tissue between older 

and young adults, Zykovich et al.101 found 2,114 ageing-related CpGs, which were 

further found to be closely connected with neural control, cytoskeleton function and 

cell growth. The researchers also suggested 500 most significantly changed CpGs 

that might be used for age prediction in the future.101  

Since strength training is beneficial to skeletal muscle, recent studies also explored 

the association between DNA methylation and training. Seaborne et al.102 studied 

the methylation changes during a 22-wk resistance training-detraining-retraining 

cycle. They identified four genes (AXIN1, GRIK2, CAMK4 and TRAF1) with 

hypomethylation and enhanced expression after resistance training and retained 

hypomethylation during detraining.102 The same research team also found five 

genes (UBR5, RPL35a, HEG1, PLA2G16 and SETD3), which showed increased 

gene expression after training, and the largest increases in hypomethylation and 

gene expression during the retraining.102 The findings of Seaborne et al. suggest 

the existence of an epigenetic memory which might help skeletal muscle quickly 

adapt to a pre-encountered stimulus.103 Turner et al.104 further compared gene 

expression with methylation data after resistance training and found genes, which 



13 
 

were significantly enriched in both transcriptome and methylome analysis results, 

were involved in pathways associated with cancer, protein synthesis and actin 

cytoskeleton regulation. They also suggested five genes (FLNB, MYH9, SRGAP1, 

SRGN and ZMIZ1), which were hypomethylated during training and maintained 

hypomethylated during detraining, as being associated with epigenetic memory in 

skeletal muscle.104 In another study of long term physical activity, Sailani et al.105 

found 714 hypomethylated gene promoters in older adults with regular physical 

activity when compared with inactive controls. Corresponding genes were 

associated with several energy metabolism and myogenesis pathways such as 

glycogen metabolism, TCA cycle, actin polymerization and oxidative stress 

resistance.105 Notably, DNA methylation patterns related to inter-individual 

variance in muscle mass and strength (e.g. methylation patterns between 

sarcopenic and non-sarcopenic subjects) have never been studied. 

1.6. Analyses in genetic and DNA methylation studies of ageing muscle. 

1.6.1. Estimation of heritability  

In twin studies, the degree of heritability is estimated by quantifying the contribution 

of an unmeasured genetic component (as a latent variable) to account for the 

observed variation in phenotypic traits.106 Heritability is calculated as the ratio of 

genetic variance to total phenotypic variance while the genetic variance is estimated 

by path analysis. Path analysis in twin studies usually include four latent variables: 

additive genes (A), common environment (C), unique environment (E) and genetic 

dominance (D). Monozygotic (MZ) twins have identical genes while dizygotic (DZ) 

twins share 50% of their genes. The genetic dominance in DZ twins correlate 0.25. 

Different models with various combinations of latent variables can be built to 

examine the genetic and environmental contributions to phenotypic variance.  

Take the ACE model as an example (I-Figure 6). If a-c-e are used to represent the 

path coefficient between corresponding latent variable (A-C-E) and a phenotype, 

then the explained variance of that phenotype by each latent variable will be: VarA 

= a2, VarC = c2 and VarE = e2. Using Cov to represent covariances from MZ and DZ 

twins, we will have the following equations: 

(1) Varphenotype = a2
 + c2 + e2 

(2) CovMZ = a2
 + c2 

(3) CovDZ = 0.5a2
 + c2 
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Equation (1) represents that the phenotypic variance is decomposed in genetic 

variance, shared and unshared environmental variance. Equation (2) represents 

that the covariance between MZ twins is explained by genetic and shared 

environmental variance. Equation (3) represents the covariance between DZ twins. 

Since DZ twins only share half of their genetic information, the genetic variance 

contributes only half compared to that in MZ twins.  

 

I-Figure 6. Path diagram representing an ACE model, which hypothesises that 

phenotypic variance is only related to additive genetic (A), shared (C) and unshared 

(E) environmental factors. T1 and T2 represent the first-born and second-born twin, 

respectively. a, c and e represent the path coefficients between the corresponding 

latent variable (A, C and E) and the phenotype.  

From those equations, we can calculate genetic variance (a2). The heritability (h2) 

is then calculated as h2 = a2 / Varphenotype. As multiple models (e.g. AE, ADE model) 

can be built from the latent variables to test different hypotheses, the Akaike’s 

information criterion (AIC) is usually used for model comparison regarding the same 

phenotype. The AIC evaluates the relative amount of information lost by a given 

model,107 therefore, the model with the smallest AIC value will be the best model 

(among all candidate models) to explain phenotypic variance and calculate 

heritability. Using path analysis, various studies have been conducted to study the 

role of genetic variance in muscle strength and size phenotypes. For instance, 

Thomis et al.108 reported that genetic factors accounted for 66–78% of the variance 

in arm strength, and Frederiksen et al.60 found that hand grip strength had a 

heritability of 52%. The identification of a significant contribution of genetic factors 
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or heritability in a trait merits the further search for specific gene variants in 

measured genotype approaches. 

1.6.2. Genetic association analysis 

Genetic association analysis is often applied to identify genes/genetic variants that 

might be related to target traits or functions. To explore the association of a single 

genetic variant with a muscle mass/strength phenotype, comparisons of these 

muscular phenotypes between different groups of individuals with different 

genotypes for the genetic variant are usually conducted. For example, Roth et al.78 

used analysis of covariance (ANCOVA) to compare muscle mass and strength 

differences among VDR genotype groups after adjusting for factors such as age, 

physical activity and hormone levels, and found that GG carriers of the rs2228570 

G/A polymorphism had less muscle mass and strength than the A allele carriers. 

Chi-square analysis showed that the distribution of the VDR GG homozygote was 

significantly higher in sarcopenic older men than in non-sarcopenic older men. 

Further logistic regression revealed that GG carriers had a 2.17-fold higher risk for 

sarcopenia than A allele carriers.78  

In exploratory studies which aim to identify underlying genetic variants that are 

related to muscle mass and strength, association analyses are usually made on a 

large gene set. Few genome-wide association studies (GWASs) have been used in 

the identification of genetic variants that are related to muscle mass and strength in 

older adults. A GWAS is an observational study on a genome-wide set of genetic 

variants. Unlike the single genetic variant association analysis that has been 

discussed above, a GWAS is not driven by any candidate variants, and therefore, it 

can identify -hypothesis free- genetic variants that are closely related to a disease 

or a trait across the whole genome. Heckerman et al.109 performed GWASs on 

physical performance of older adults (aged above 80 yrs) and identified two genetic 

variants (ZNF295 rs928874 and C2CD2 rs1788355) as being significantly related to 

the 4-meter gait speed. Tikkanen et al.110 used a GWAS on hand grip strength of 

adults aged 40–69 yrs and found 101 loci associated with grip strength (p < 5 × 10−8). 

These loci were located in genes that code for molecules involved in neuro-

developmental disorders or brain function. Two genetic variants (rs16892496 and 

rs7832552) from the TRHR gene were identified to be closely associated with LBM 

in a GWAS on one thousand US whites (aged above 50 yrs).111 Individuals with 

unfavourable genotypes of rs16892496 and rs7832552 demonstrated 2.7 and 2.55 
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kg less LBM, respectively. Notably, because multiple comparisons are performed in 

a GWAS, a false discovery rate (FDR) (e.g. the Bonferroni correction and the 

Benjamini-Hochberg procedure) is required to control the expected rate of type I 

errors. Also due to the huge number of analysed genetic sites, a large sample size 

is needed to obtain enough statistical power. Based on genetic variants identified 

by a GWAS on muscle mass/strength, corresponding genes where those variants 

locate are determined. The biological functions and pathways that are related to 

those identified genes can be found through gene ontology (GO) enrichment and 

KEGG pathway analysis, which interpret possible biological domains (based on GO 

analysis) and pathways (based on KEGG analysis) that are related to particular 

gene sets.112,113 

Repeated findings of genetic associations with replication of the specific beneficial 

allele are needed to strengthen gene-phenotype associations and minimize false 

positive findings. However, to prove causation between a specific sequence 

variation and a specific phenotype, more functional studies are needed. These can 

be done using different gene knockout methodologies in animal studies, informative 

cell lines, or other experimental setups. For example, gene knockout technology 

was used in MSTN (a gene encoding myostatin) knockout mice and showed greater 

increases in muscle mass (gastrocnemius and quadriceps) three months after 

myostatin depletion than in controls (wildtype mice), indicating a negative regulation 

on skeletal muscle mass associated with the activation of MSTN.114 Contractile 

properties showed differences between individual muscle fibers of ACTN3 RR and 

XX carriers, adding underlying knowledge in the observed association between 

ACTN3 R577X genotypes and power performance in athletes.115  

1.6.3. Genetic and methylation profile scores 

Since multiple genetic variants are associated with ageing muscle,66 the idea of 

building a genetic predisposing score is introduced to study a combined effect of 

multiple genotypes on a phenotype. In biomedical studies, a polygenic risk score 

(PRS) has been widely used due to its better predictive performance than significant 

SNPs identified by GWAS.116 The PRS is calculated by summing weighted risk 

alleles, which are selected from GWAS results by certain p-value thresholds (e.g. p 

< 1×10-5).117 The weight (also known as effect size) of a risk allele is determined by 

statistical methods such as Bayesian methods and penalized regressions.116 In the 

field of sport science, the application of a genetic predisposing score was first used 

https://en.wikipedia.org/wiki/False_discovery_rate#BH_procedure
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by Williams and Folland118 to estimate the distribution of people with endurance-

favourable genotypes. In their study, 23 genetic polymorphisms were selected for 

their associations with endurance performance. A genetic score was given based 

on the genotype of each candidate gene: a homozygote that was positively 

associated with endurance phenotype was given a score of 2, a heterozygote got a 

score of 1 and the other homozygote was scored as 0. Given the 23 genetic scores 

GS1, GS2 … GS23, a total genetic score (TGS) was further calculated by scaling the 

summed 23 genetic scores into a 0-100 range:  

TGS = (100/46) × (GS1 + GS2 + … + GS23) 

Using the frequency of each genotype reported in large sample-based studies, the 

researchers simulated the distribution of TGS based on 1 million hypothetical 

individuals and found that most individuals had similar endurance gene composition 

(I-Figure 7). Approximately 99% of individuals had a TGS of 37–65, indicating that 

most individuals differed by no more than seven genotype scores from the 

average.118 Ruiz et al. applied the same TGS approach (based on seven endurance-

related polymorphisms) to 46 world-class athletes in endurance activities (e.g. 

running, road cycling and rowing) and found that those athletes had a higher TGS 

than participants from a general population.119,120 In paper 4 of this thesis, the same 

approach was applied in the calculation of a TGS (GPSSNP) by adding up genetic 

scores of seven muscle-related single nucleotide polymorphisms (SNPs) (ACTN3 

rs1815739, ACE rs4341, CNTF rs1800169, FTO rs9939609, HIF1A rs11549465, 

MSTN rs1805086 and VDR rs2228570). 

 

 

I-Figure 7. Simulated distribution of endurance-related total genotype score (TGS, 

based on 23 endurance-related genes). The majority (99%) of individuals had a 

median TGS (37–65), very few individuals had a TGS at the two ends. Adapted from 

Williams and Folland, 2008. 
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The construction of a TGS allows researchers to compare combined genetic profiles 

among individuals, however, the TGS is applicable within a limited gene set, in 

which all polymorphisms are carefully selected under a criterion that their 

relationships with a phenotype have been reported in multiple studies. When 

analysing a target gene set with dozens or hundreds of variants, the TGS method 

is not ideal to be used because: (1) in a large gene set, some variants might have a 

weaker correlation with a phenotype than other variants; (2) the TGS will be affected 

by genetic variants that are closely correlated. For instance, if a genetic variant is 

positively associated with six other variants, then with a one-score addition of that 

variant, the TGS will be increased by seven units; (3) the TGS based on large sets 

of SNPs also leads to a leptokurtic distribution, i.e. the majority of subjects will have 

median TGSs while very few subjects will locate at both ends of the TGS distribution. 

Such a centralized distribution with a limited interindividual variation decreases the 

predictive power. Due to the reasons mentioned above, before the calculation of 

TGS, a stepwise regression is conducted to select genetic variants that are closely 

related to a phenotype and have comparatively weak correlations with each other. 

A genetic score calculated via such approach is known as a data-driven genetic 

predisposition score (GPS).121 Bouchard reported that a data-driven GPS, which 

was calculated from 21 out of 39 polymorphisms, accounted for 49% of the variance 

in maximal O2 uptake (VO2max) trainability.122 Thomaes et al. used backward 

regression to select muscle-related variants from 54 polymorphisms and reported 

that this data-driven GPS was positively related to knee muscle size and strength 

changes after a 3-month training in coronary artery disease (CAD) patients.123 

Charlier et al.124 built a data-driven GPS based on 224 candidate genetic variants 

and demonstrated that this data-driven GPS explained up to 7% of the variance in 

muscle strength among 565 adults aged 19–73 yr. Such data-driven GPS approach 

(based on 170 candidate genetic variants) was used in paper 1 and 2 of this thesis 

to study the genetic association with muscular phenotype changes in response to 

exercise and after the cessation of exercise. 

A methylation profile score is a new approach that is recently introduced to explore 

the association of methylation levels at different CpG sites with disease and body 

composition.125–128 Similar to the calculation of a total genetic score, a methylation 

score is calculated by summing methylation levels of particular CpG sites. A 

methylation level is a parameter which is used to represent the methylation status 

of a CpG site. It can be a beta (β) value or an M value. On a methylation detection 
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chip, each CpG site contains multiple probes to detect the methylation status of DNA 

fragments with this corresponding CpG site. The proportion of methylated probes is 

defined as a β value (β value = 
𝑁𝑜.𝑜𝑓 𝑚𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑒𝑑 𝑝𝑟𝑜𝑏𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜.𝑜𝑓 𝑝𝑟𝑜𝑏𝑒𝑠
). A β value has a range of 0–1, 

and therefore, a total β value of 10 CpGs has a range of 0–10. An M value is a logit 

transformation of the ratio of methylated to unmethylated probes (M value = 

log
𝑁𝑜.𝑜𝑓 𝑚𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑒𝑑 𝑝𝑟𝑜𝑏𝑒𝑠

𝑁𝑜.𝑜𝑓 𝑢𝑛𝑚𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑒𝑑 𝑝𝑟𝑜𝑏𝑒𝑠
). Due to the characteristics of a logarithm, an M value has 

an infinite range. A β value is an intuitive biological interpretation while an M value 

is more statistically valid for a differential methylation analysis.129 Candidate CpGs 

that are used to calculate a methylation score can be predetermined or identified by 

various statistical approaches such as stepwise regression,127 comparisons 

between different groups (with FDR correction)126 and regressions with 

regularization (detailed description in section 1.4.4).125 The application of 

methylation scores was reported to be helpful in improving the accuracy and 

sensitivity of diagnostic126 and prognostic127 prediction of prostate cancer. A BMI-

related epigenetic score developed by Hamilton et al.128 was also found to be 

associated with body mass, aerobic capacity, type 2 diabetes and cardiovascular 

disease. In paper 4 of this thesis, one of the methylation scores (MSSNP) was 

calculated based on the average methylation level of CpGs that located within the 

predetermined seven muscle-related genes as previously mentioned. 

Moreover, recent studies have combined genetic and methylation profiles to explore 

hereditary and environmental associations with physical conditions such as BMI and 

heart disease risk. Shah et al.130 found that regression models with only BMI-derived 

genetic or methylation scores explained less than 11% of the inter-individual 

variance in BMI, while a model combining both scores improved the explained 

variance to 13–18%. Dogan et al. also reported that a model with integrated genetic 

and methylation scores outperformed (with 13% more accuracy) conventional risk 

factors in predicting coronary heart disease.131 By far, no findings on combined 

genetic and methylation profile scores in muscle mass and strength of older 

adults have been reported. 

1.6.4. Genetic variant and CpG site selection using Elastic net and Lasso 

regularization 

In the calculation of TGS and data-driven GPS, selected genetic variants are equally 

weighted. Yet, genetic variants might contribute differently to a phenotype. Moreover, 
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both TGS and data-driven GPS approaches have limited statistical power, which 

means that the sample size of genotyped individuals needs to be much larger than 

the number of candidate genetic variants. Therefore, new approaches (e.g. lasso 

regularization and elastic net regularization) are applied for variable selection and 

weight estimation when the candidate genetic/methylation variables outnumber the 

sample size. 

To restrict overfitting and ensure a good predictive power, a regularization on 

coefficients is often used in a regression model. A regression model with a L1 

regularization (the Manhattan norm) is called lasso regression. A regression model 

with a L2 regularization (the Euclidean norm) is called ridge regression. Take the 

lasso linear regression as an example. A conventional linear regression model 

estimates coefficients (β) of independent variables (x) by minimizing the residual 

sum of squares (RSS), which can be presented as follows:  

f(1) = min
β0,β

{
1

𝑁
∑ (𝑦𝑖 − (β0 + 𝑋𝑖β))2𝑁

𝑖=1 }, where i represents the ith sample. 

Similarly, a lasso linear regression estimates coefficients of independent variables 

by minimizing a function combining the RSS and the L1 regularization on coefficients, 

which can be represented as follows:  

f(2) = min
β0,β

{
1

𝑁
∑ (𝑦𝑖 − (β0 + 𝑋𝑖β))

2
𝑁
𝑖=1 + 𝜆 ∑ |β|}, where i represents the ith sample 

and λ is the shrinkage parameter. The larger the value of λ is, the greater extent of 

shrinkage the coefficients will have. 

Therefore, the lasso linear regression aims to minimize RSS by selecting 

coefficients from a constraint region: ∑ |β| ≤
1

𝜆
. To better demonstrate the 

regularization process on coefficients, let’s suppose there are two independent 

variables ( 𝑥1  and 𝑥2 ) with corresponding coefficients ( β1 and β2 ) in a linear 

regression model. The estimation of optimal coefficients can be illustrated as in I-

Figure 8B. The x and y axis represent β1 and β2, respectively. β̂ is the optimal point 

calculated from function f(1) (I-Figure 8A), where the least RSS is reached in a 

conventional linear regression. The red ellipses are the contours of the RSS function. 

β1 and β2 values on the same ellipse yield the same RSS. The larger an ellipse is, 

the higher value of RSS it represents. In a L1 regularization, the coefficients (β1 and 

β2 ) are constrained in a region highlighted as a light blue square. In order to 

minimize the RSS, the first intersection of an ellipse and the constraint region will 
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give the optimal coefficients. Considering the characteristics of a square-shape 

constraint region in lasso regression, the intersection (represented as a red dot) is 

often on one of the axis, meaning one of the coefficients will be zero. Through this 

process, variables that are strongly related to a phenotype (with a large coefficient 

that is resistant to shrinkage) will be selected and the corresponding coefficient will 

be the weight of that variable. 

I-Figure 8. Regularization for variable selection. (A) Conventional linear regression. 

Red ellipses represent the contours of the residual sum of squares (RSS). (B) 

Coefficient selection by lasso regression. (C) Coefficient selection by ridge 

regression. (D) Constraint region in elastic net regularization (α = 0.2). Adapted from 

Elements of statistics learning, Second Edition, 2009.  

The application of lasso regression for variable selection can be found in several 

methylation studies. Reese et al. used a genome-wide lasso logistic regression and 

identified 28 CpGs to build a predictive model for maternal smoking during 

pregnancy with an accuracy of 91% and a specificity of 97%.132 Based on the 

methylation of five CpG sites selected from 450K candidate CpGs by lasso 

regression, Zhao et al.125 built a predictive model for clear cell renal cell carcinoma 

(CCRCC) prognosis and the model showed reliable predictions across several 

cohorts. 

Similar to the lasso regression, the L2 regularization (ridge regression) aims to 

minimize the following function: 

f(3) = min
β0,β

{
1

𝑁
∑ (𝑦𝑖 − (β0 + 𝑋𝑖β))

2
𝑁
𝑖=1 + 𝜆 ∑ β2} 

Since the constraint region is a circle, its intersection with an RSS ellipse is less 

likely to be on an axis (I-Figure 8C). Therefore, most variables still remain in the 
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model. Due to the mild regularization on coefficients, the ridge regression is rarely 

used in variable selection. 

The elastic net regularization combines both lasso and ridge regression by giving 

different weights to the L1 and L2 regularization. It aims to minimize the following 

function: 

f(4) = min
β0,β

{
1

𝑁
∑ (𝑦𝑖 − (β0 + 𝑋𝑖β))

2

+ (1 − α ) ∑ β2 + α ∑ |β|𝑁
𝑖=1 }, where α is in a range 

0–1. 

The elastic net regularization has a constraint strength between the lasso and ridge 

regression, and is also used in genetic variant selection (I-Figure 8D). Cho et al.133 

applied the elastic net approach in a genome-wide association analysis and 

identified 129 genetic variants that were associated with adult height in a Korean 

population. They found that with a one unit increase of the genetic score built by 

these genetic variants, the average height was increased by 0.47cm.133 

In the current thesis, the lasso method was combined with a logistic regression 

procedure in paper 4 to select sarcopenia-driven CpGs. In the lasso logistic 

regression model, the sarcopenia status (sarcopenia was coded as 1 and non-

sarcopenia was coded as 0) was the dependent variable, and the methylation level 

of each measured CpG was the independent variable. The methylation levels and 

weights (obtained from the lasso logistic regression) of selected CpGs were 

subsequently used in the calculation of the sarcopenia-driven methylation score 

(MSSAR). 

2. Outline of studies in this thesis 

As previously discussed, inter-individual variability in muscle mass and strength 

exists among older adults during the ageing process. Although genetic and DNA 

methylation profiles are probably related to muscle characteristics at an older age, 

studies focusing on explaining this inter-individual variability in muscle mass and 

strength by genetic architecture and DNA methylation are lacking. Therefore, this 

thesis performs cross-sectional analyses in older female adults to explore the role 

of DNA sequence variation and DNA methylation in ageing muscle. Moreover, since 

inter-individual differences are also found in muscle changes after exercise 

intervention and after the cessation of exercise, this thesis studies the role of 

muscle-related genetic variants in muscle mass and strength changes during 
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exercise and detraining among older adults who received a one-year exercise 

intervention and experienced a one-year cessation of training.  

The current thesis consists of three chapters. Chapter 1 discusses the association 

between genetic variants and exercise-related muscle changes in older people. This 

chapter includes two studies, in which the genetic and muscular data are collected 

from a one-year intervention and follow-up study within the framework of the first 

Policy Research Center Sport, Beweging en Gezondheid at the KU Leuven (“Thema 

3.6” - “Effect van een oefenprogramma op gezondheid- en fitnessgerelateerde 

parameters in een groep van ouderen.”). Chapter 2 identifies sarcopenia-related 

DNA methylation differences based on methylation profiles of blood cells. Chapter 

3 studies the association between genetic architecture, DNA methylation and ageing 

muscle by analysing linear models with integrated genetic and methylation profile 

scores. Chapter 2 and 3 are based on data collected from the same study on older 

women through the Manchester Metropolitan University (MMU) project “Genetics of 

sarcopenia”.  

2.1. Chapter 1: Genetic variants and exercise-related muscle changes in older 

people  

2.1.1. Paper 1:  Genetic predisposition score predicts the increases of knee strength 

and muscle mass after one-year exercise in healthy elderly  

Inter-individual variability is observed not only in muscle mass and strength among 

individuals, but also in their adaptations to exercise. Such variability might be partly 

related to genetic architecture of an individual since many studies have reported a 

significant hereditary factor in muscle mass, strength, and physical performance. 

Therefore, the aim of this study is to explore the relationship between genetic profile 

scores and baseline muscular phenotypes (muscle mass and strength) as well as 

muscle adaptations after a one-year supervised exercise intervention in 200 Flemish 

Caucasians aged 60–83 yrs. Using data-driven GPSs derived from 170 candidate 

genetic variants (as described in section 1.4.3), this study analyses the percentage 

of variance in baseline muscular parameters and exercise-induced muscle 

adaptations explained by a GPS.  
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Hypotheses of paper 1 

 Data-driven GPS has a significantly predictive value in baseline muscle mass 

and strength in older adults. An individual with a higher GPS will have a larger 

muscle mass and strength. 

 Muscle mass and strength will increase after training, however, substantial 

inter-individual variability in these muscular response phenotypes exists. 

 Data-driven GPS is positively associated with muscle adaptations to 

exercise. An individual with a higher GPS will have a larger muscular 

improvement after structured training. 

2.1.2. Paper 2: The genetic association with muscular changes in an older 

population after one-year of detraining: a follow-up study after one-year cessation 

of structured training 

Muscle mass and strength usually decline after the cessation of structured training. 

Notably, the decrease in muscle mass and strength is not consistent among 

individuals and the genetic basis of such inter-individual variability has never been 

studied. Therefore, this study analyses the possible connection between an 

individual’s genetic architecture and muscular changes after one-year cessation of 

structured training among older adults. 

Hypotheses of paper 2 

 Muscle mass and strength will decrease after a one-year cessation of training 

with inter-individual differences. 

 Data-driven GPS is negatively related to the decline in muscle mass and 

strength after the cessation of training. An individual with a higher GPS will 

have smaller loss in muscle mass and strength. 

2.2. Chapter 2: Sarcopenia-related DNA methylation differences 

Paper 3: Differentially methylated gene patterns between age-matched sarcopenic 

and non-sarcopenic women 

Muscle mass and strength are determined by both genetic and environmental 

factors. As previously introduced, DNA methylation is one of the main mechanisms 

for environmental factors to regulate gene expression. Therefore, this study aims at 

discovering DNA methylation patterns that are related to inter-individual variability 

in muscular fitness (muscle mass and strength). To better identify those methylation 



25 
 

patterns, this study compares blood DNA methylation profiles of 788K CpG sites 

between sarcopenic and non-sarcopenic older women that are characterised by 

significant differences in muscle mass and strength. Although sarcopenia is a 

muscle disorder, it is also influenced by the circulatory and endocrine system as 

multiple cytokines and hormones influence muscle homeostasis.134–136 The 

methylation patterns of our participants are analysed based on whole blood DNA 

samples, an easily accessible tissue, compared to DNA from muscle biopsies. Due 

to a limited sample size, this study has an explorative nature to detect a set of 

sarcopenia-related methylation differences in blood samples and to evaluate the 

feasibility of using blood DNA methylation to identify systemic, circulatory and 

muscle-specific differentially methylated markers of ageing muscle. 

Research questions of paper 3 

 To identify sarcopenia-related genes and CpGs that demonstrate 

differentially methylated patterns between sarcopenic and non-sarcopenic 

older women.  

 To explore possible sarcopenia-related biological functions and pathways 

based on sarcopenia-related genes.  

2.3. Chapter 3: Role of genetic and methylation profiles in ageing muscle 

phenotypes 

Paper 4: Associations of combined genetic and methylation profile scores with 

muscle size and strength: a pilot study in older women 

This is an explanatory study of both genetic and DNA methylation profile scores with 

muscle size and strength in older women. Different linear models are built based on 

genetic and methylation profile scores with muscular phenotypes (muscle 

morphology and strength) as dependent variables. A genetic score (GPSSNP, as 

described in section 1.4.3) is calculated based on seven genetic variants (ACTN3 

rs1815739, ACE rs4341, CNTF rs1800169, FTO rs9939609, HIF1A rs11549465, 

MSTN rs1805086 and VDR rs2228570) that are previously reported in at least three 

papers as being closely related to skeletal muscle with a consistent direction of the 

favourable genotype. A methylation score is calculated based on the methylation 

levels of (1) CpGs selected by a sarcopenia-driven lasso logistic regression (MSSAR, 

as described in section 1.4.4) or (2) CpGs in genes where the seven genetic variants 

locate (MSSNP, as described in section 1.4.3). 
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Hypotheses of paper 4 

 Both genetic and methylation profile scores have a significant predictive 

value to explain muscle size and strength variability in older women.  

 A model with both genetic and methylation profile scores explains more inter-

individual variability in muscle morphology and strength than a model with 

only a genetic or methylation profile score.  

3. Study design and methodology 

3.1. Participants 

3.1.1. Paper 1 and 2: First Policy Research Center ‘Sport, Beweging en Gezondheid’ 

- KULeuven project “Theme 3.6” 

Participant data used in the first and second study were collected from the KU 

Leuven project “Theme 3.6: Effect van een oefenprogramma op gezondheid- en 

fitnessgerelateerde parameters in een groep van ouderen.” (2004-2012). In this 

project, older people aged between 60 to 83 years were recruited from local 

communities around the city of Leuven. All participants went through a series of 

medical examinations. Participants with skeletal, neuromuscular or cardiovascular 

disorders (e.g. rheumatoid arthritis and Alzheimer’s disease) that may impede 

strength training and muscle strength tests, or with training experience in the past 

two years were excluded. The selected participants were randomly assigned into a 

fitness group (with combined resistance and aerobic training, FIT), a whole-body 

vibration (WBV) group and a control (CON) group. Participants in the two exercise 

groups (FIT and WBV) conducted a one-year structured training (training protocols 

in P1-Supplementary Table 1). 200 participants (104 men, 96 women) provided a 

blood sample for DNA analyses and their data were analysed in paper 1 (I-Figure 

9). Among the 200 participants, 54 of them performed the fitness program (FIT 

group), 85 of them were in the WBV group and the rest were control subjects (CON 

group) (I-Table 1). One year after the training program, participants who had 

provided blood samples in the exercise groups were contacted for a follow-up test. 

The data collected in the follow-up test were analysed in paper 2 (I-Table 1, I-Figure 

9). This project was approved by the University’s Human Ethics Committee in 

accordance with the Declaration of Helsinki. Informed consent was given by each 

subject. Data analysis on primary training outcomes have been published within the 

doctoral thesis of Bogaerts A.137,138 
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I-Table 1. Descriptive characteristics of participants in paper 1 and 2. 

Paper 
  

Paper 1 (one-year of training)  Paper 2 (one-year after the cessation of training) 

Group 
  

CON FIT WBV 
 

FIT WBV 

Number F 
 

29 25 42  18 32 

M 
 

32 29 43  26 37 

Age (yr) F 
 

68 ± 5 66 ± 4 67 ± 5  66 ± 4 66 ± 5 

M 
 

69 ± 6 67 ± 4 68 ± 5  68 ± 4 67 ± 4 

Height (cm) F 
 

161.3 ± 7.0 160.0 ± 7.9 161.2 ± 5.7  158.5 ± 7.7 160.7 ± 6.1 

M 
 

173.0 ± 5.4 174.3 ± 6.1 173.1 ± 6.5  175.1 ± 5.9 173.4 ± 6.5 

Body mass 

(kg) 

F Pre-training 69.2 ± 9.9 67.9 ± 9.2 69.3 ± 8.9  67.1 ± 9.9 67.9 ± 7.2 

Post-training 68.7 ± 10.0 66.6 ± 9.4 68.7 ± 9.3  66.1 ± 10.2 67.3 ± 7.7 

Detraining - - -  66.2 ± 9.9 68.2 ± 7.7 

M Pre-training 80.9 ± 8.5 83.2 ± 9.3 81.0 ± 13.1  82.7 ± 9.1 81.4 ± 13.1 

Post-training 79.7 ± 8.7 82.0 ± 9.6 78.9 ± 11.6  81.2 ± 8.9 79.2 ± 11.2 

Detraining - - -  82.4 ± 9.0 80.9 ± 12.7 

CON: control group; FIT: fitness group; WBV: whole-body vibration group 
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I-Figure 9. Flowchart of participants in paper 1 and 2. Paper 1 includes 200 

participants (104 men, 96 women) and paper 2 includes 113 participants (63 men, 

50 women). 

3.1.2. Paper 3 and 4: MMU project “Genetics of sarcopenia” 

Participants in paper 3 and 4 were selected from an initial set of 247 older, 

independently living, Caucasian women (aged 65–80 yr) recruited from the local 

area of Crewe (Move-age mobility period: 2016–2017, Manchester Metropolitan 

University, Crewe, UK). 168 participants provided 5 mL venous blood samples and 

those participants were subsequently categorised into sarcopenic (n = 25) and non-

sarcopenic (n = 138) groups using cut-off points of skeletal muscle index (SMI, 

calculated using skeletal muscle mass divided by height squared) at 6.75 kg/m2 16 

and hand grip strength (HGS) at 26 kg (the lower quintile of HGS in the total 

participant group). Through a process of further selection including age matching,98 

completeness of data, rankings of SMI and hand grip strength z score, and summed 

z score (I-Figure 10), 24 participants (age of sarcopenic group 72.5 ± 4.2 yr, non-
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sarcopenic group 70.5 ± 3.3 yr) from each group were selected for DNA methylation 

analysis. In the sarcopenic group, 21 participants with negative z scores in SMI and 

HGS were selected first, with an additional three selected via an ascending 

sequence of summed z scores. Selection in the non-sarcopenic group was done in 

an opposite direction: 23 participants with positive z scores in SMI and HGS were 

selected first, with an additional participant with the highest summed z score 

selected from the remainder (I-Figure 11). Therefore, the sample size in paper 3 

and 4 is 48 (24 sarcopenic, 24 non-sarcopenic, I-Table 2). 

I-Table 2. Descriptive characteristics of participants in paper 3 and 4. 

Group Non-sarcopenic Sarcopenic Total group 

Number 24 24 247 

Age (yr) 70 ± 3 73 ± 4 71 ± 4 

Height (m) 1.60 ± 0.05 1.56 ± 0.11 1.59 ± 0.06 

Body mass (kg) 71.7 ± 12.8* 61.5 ± 9.4 66.6 ± 12.3 

Grip strength (kg) 36.0 ± 3.7* 23.2 ± 2.5 29.6 ± 7.1* 

SMI (kg/m2) 7.45 ± 0.67* 6.00 ± 0.47 6.72 ± 0.93* 

*: significant difference compared with the sarcopenic group (p < 0.01) 

 

I-Figure 10. Flowchart of participant selection for paper 3 and 4. 48 participants are 

selected from an initial sample group of 247 with SMI and grip strength as criteria. 
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I-Figure 11. Distribution of z scores on SMI, handgrip strength and summed z score 

for participant selection in the MMU project. Participants (n=21) with negative z 

scores in both SMI and hand grip strength are firstly selected from the sarcopenic 

group. An additional three are selected via an ascending sequence of summed z 

scores. Participants (n=23) with positive z scores in both SMI and hand grip strength 

are firstly selected from the non-sarcopenic group. An additional participant with the 

highest summed z score is selected from the remainder. 

3.2. Methodology  

3.2.1. Methodology in the KULeuven project “Theme 3.6” – paper 1 and 2. 

3.2.1.1. Genotyping  

A 4.5 ml fasting blood sample of each participant was drawn from an antecubital 

vein in an EDTA-coated tube. Genomic DNA was extracted using the chemagic 

Magnetic Separation Module I (chamagic MSM I, PerkinElmer Inc., Waltham, MA, 

USA). Genotyping was done with the Illumina GoldenGate platform (Illumina Inc., 

San Diego, CA, USA) at the Genomics Core Facility (UZ/KU Leuven). 224 muscle-

related genetic variants were genotyped (P1-Supplementary Table 2, detailed 

description in section 3.2.1.2). Through blood testing, 12 SNPs were not 

successfully detected and 3 SNPs presented the same genotypes among all 

subjects (probably due to the high frequency of dominant alleles, P1-Supplementary 

Table 2). Those 15 SNPs were ruled out from the 224-SNP pool. Results of linkage 
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disequilibrium tests showed that 58 SNPs were highly linked as 19 subgroups and 

one representative SNP was selected from each of these subgroups. A total number 

of 170 SNPs were kept for further analyses. 

3.2.1.2. Candidate genetic variants selection 

The selection of genetic variants was based on published articles (up to August 

2014) and expression quantitative trait loci (eQTL) analysis. Muscle-related SNPs 

and genes were first searched in the PubMed and the Medline databases using 

multiple keywords (e.g. polymorphism, genotype, muscle mass and strength). SNPs 

and genes that were significantly associated with at least one muscular phenotype 

were included. Genes that were previously selected by literature search were further 

put into the GeneVar platform (Trust Sanger Institute, 

https://www.sanger.ac.uk/science/tools/genevar-gene-expression-variation-archive) 

to search for eQTLs of corresponding genes. An eQTL is a locus that explains a 

fraction of variance in expression levels of mRNAs,139 therefore, it might have a 

more functional role in muscle mass and strength than other genetic variants. Since 

eQTLs in muscle tissue were not reported in the GeneVar platform, candidate 

eQTLs were selected if they showed significance in the GeneVar cis-eQTL analysis 

in at least two different tissues with a p-value < 0.0001.  

In the genetic analysis on muscular phenotypes, a data-driven GPS approach was 

used. This part of methodology has been explained in section 1.4.3. Briefly, 

stepwise regression was used (entry significance: 0.1, stay significance: 0.05) with 

170 SNPs as independent variables and a specific muscular phenotype as the 

dependent variable. SNPs that were selected were regarded as data-driven SNPs 

of the corresponding muscular phenotype and a data-driven GPS was calculated by 

summing the genetic score of each data-driven SNP. 

3.2.1.3. Muscular phenotype measurement 

Whole-body skeletal muscle mass (SMM) was calculated through bioelectrical 

impedance analysis (BIA). Resistance of BIA was measured by Bodystat 1500MDD 

(Bodystat Ltd, Douglas, UK) before and after the one-year intervention. Before the 

test, participants were asked to lie down in a supine position for one minute. During 

the measurement, two electrodes were placed on the right hand and right foot as 

instructed in the manual. SMM was calculated for further analyses, using the 

following regression equation that has been assessed for validity in elderly 

participants140: SMM (kg) = (Ht2/R × 0.401) + (sex × 3.825) + [age × (-0.071)] + 

https://www.sanger.ac.uk/science/tools/genevar-gene-expression-variation-archive
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5.102 where Ht stands for height in centimeters; R stands for BIA resistance in ohms; 

in sex, men = 1 and women = 0; age is in years.  

Biodex Medical System 3 dynamometer (Biodex Company, New York, USA) was 

used for the measurement of isometric knee extensor strength. This measurement 

was done by the same operator before and after the intervention. Before testing, 

participants were asked to complete a 5-minute warm up on a free-loaded 

ergometer. Two practice trials were performed to allow for a better understanding of 

the measuring process. Maximal isometric knee extension strength was evaluated 

at knee flexion angles of 60° with 0° representing full extension. Peak velocity of 

knee extension movement was measured by isotonic test with a load of 20% of the 

peak isometric strength obtained at the knee flexion angle of 90°. Participants were 

asked to extend their legs with full effort until they achieved the knee flexion angle 

of 20°. In isokinetic tests, participants performed isokinetic knee extension and 

flexion movements at two different speeds. The first measurement required 

participants to complete four repetitions at a low velocity of 60°/s. The second 

measurement consisted of six repetitions at a higher velocity of 240°/s. Peak torque 

of knee extensors at 60°/s and at 240°/s were recorded as isokinetic knee strength. 

3.2.2. Methodology in the MMU project “Genetics of sarcopenia” 

3.2.2.1. Genotyping 

A 5 mL venous blood sample was collected from each participant and stored in an 

EDTA-coated tube at -20 Celsius for DNA extraction. DNA samples were extracted 

using QIAcube® and QIAamp® DNA Blood Mini Kit (Qiagen, Crawley, UK) 

according to the manufacturer’s instructions. Briefly, the spin column and 1.5 ml 

centrifuge tube were first put into the rotor adaptor. The sample tube with 200 µl 

blood sample (defrost under room temperature) was put into the shaker rack. AW1 

(ethanol diluted) was put into the reagent bottle rack and the protease was put into 

the tip rack. Finally, the DNA extraction was performed under the “100 µl blood 

sample test” model. The extracted DNA samples were stored at -20 Celsius for 

genotyping and DNA methylation analysis. 

Seven SNPs (described in section 2.3) were selected for genotyping. These SNPs 

have been reported in at least three papers as being closely related to muscle 

strength or mass with a consistent direction of favourable alleles (P4-Supplementary 

Table 1). Duplicate genotyping was firstly made using a 192.24 Dynamic Array® 

IFC (Fluidigm Corp., South San Francisco, CA, US) and TaqMan SNP genotyping 
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assays (Applied Biosystems, Paisley, UK) following the manufacturer’s instructions. 

Briefly, a genotyping mix (4 μL) consisted of 2 µL assay loading reagent [2x] 

(Fluidigm), 1 µL SNP genotyping Assay Mix [40X] (Applied Biosystems), 0.2 µL ROX 

[50X] (Invitrogen, Carlsbad, CA, US) and 0.8 µL DNA-free water (Qiagen). A sample 

mix (4 µL) contained 1.6 µL DNA samples, 2.0 µL GTXpress master mix [2X] 

(Applied Biosystems, PN 4401892), 0.2 µL Fast GT Sample Loading Reagent [20X] 

(Fluidigm, PN 100–3065), and 0.2 µL DNA-free water. All reaction mixes (7.75 µL, 

consisting of 3.75 µL genotyping mix and 4 µL sample mix) were loaded onto the 

Dynamic Array IFC following the manufacturer’s instructions. The array was 

subsequently placed into a thermal cycler (FC1 Fluidigm, PN 100-1279 D1) and the 

GT 192.24 Fast v1.pcl protocol was performed. The thermal cycling protocol 

included an amplification at 95 °C for 120 s followed by 45 cycles of denaturation 

for 2 s at 95 °C and extension for 20 s at 60 °C. Reporter dyes VIC and FAM were 

used for genotyping based on fluorescence detection.  

About 1% of SNP-sample data points showed unsuccessful detection or 

inconsistent genotype results using the Fluidigm system. These SNP samples were 

reassessed in duplicates using a StepOnePlus Real-Time PCR system with 

TaqMan SNP genotyping assays and analysed using StepOnePlus analysis 

software (Applied Biosystems, version 2.3). The StepOnePlus reaction mix (10 µL) 

included 0.2 µL DNA sample, 5 µL GTXpress master mix, 4.3 µL nuclease-free 

water and 0.5 µL TaqMan SNP genotyping assay [20X]. Each reaction mix was 

amplified for 20 s at 95 °C, followed by 50 cycles of denaturation for 3 s at 95 °C 

and extension for 20 s at 60 °C. Genotypes were identified based on fluorescence 

detection of reporter dyes (VIC and FAM). 

3.2.2.2. DNA methylation analysis 

DNA methylation (blood-based) was measured using Illumina® Infinium 

MethylationEPIC BeadChip arrays (Illumina Inc., San Diego, CA, US) at the 

Genomics Core facility (UZ/KU Leuven). DNA samples were quantified by Qubit 2.0 

Fluorometer (Life Technologies, Carlsbad, CA, US) and diluted into 10-25 ng/µl by 

distilled water. Bisulfite conversion of DNA was undertaken by EZ-96 DNA 

Methylation-Direct Kit (Zymo Research, Irvine, CA, US). 130 µl CT conversion 

reagent solution was mixed with 20 µl sample in the conversion plate. The plate was 

later put into a thermal cycler and was treated at 98 °C for 8 minutes, 64°C for 3.5 

hours and stayed at 4 °C overnight. After the conversion and amplification, the 
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mixed solution was transported to Infinium MethylationEPIC Beadchip (Illumina, 

San Diego, CA, United States) and was stained by STM, ATM and XC3 for three 

times. The stained Beadchip was scanned Genome Studio Methylation Module v1.8 

(Illumina, San Diego, CA, United States) which presented the green/red 

fluorescence intensity as methylation files. 

Those methylation files were later analysed by R ‘Minfi’ package,141 background 

signals were corrected by normal-exponential out-of-band (Noob) method, and 

methylation values (β values) were normalized for blood cell composition by R 

‘FlowSorted.Blood.EPIC’ package.142 Probes were dropped under one of the three 

conditions: 1) probes with non-significant background signal levels (p > 0.01) at 

methylated and unmethylated channels; 2) probes that contain either single 

nucleotide polymorphisms at the CpG interrogation or at the single nucleotide 

extension as suggested in the “Minfi” package (reference array: 

“IlluminaHumanMethylationEPIC”, annotated by ilm10b4.hg19); 3) cross-active 

probes that were reported in the first supplementary table of Pidsley’s study.143 A 

final total of 788,074 probes were kept for further methylation analyses using Partek 

Genomics Suite V.7.0 (Partek Inc., St. Louis, MO, US), in which CpG probes were 

annotated based on “HumanMethylation850” reference, “MethylationEPIC_v-1-

0_B4” annotation file, “Homo sapiens” species and hg19 genome build. Notably, the 

differential methylation analysis between the sarcopenic and non-sarcopenic groups 

(paper 3) was based on the M value (as described in section 1.4.3), and CpGs with 

significantly different methylation levels between the sarcopenic and non-

sarcopenic groups were defined as differentially methylated CpGs (dmCpGs). 

Genes where dmCpGs located were further analysed by GO enrichment and KEGG 

pathway analysis using Partek to determine sarcopenia-related biological functions 

and pathways. 

A sarcopenia-driven methylation profile score (MSSAR, as described in section 1.4.4) 

in paper 4 was calculated from CpGs selected by a sarcopenia-driven lasso logistic 

regression. The mechanism of the lasso regression has been described in section 

1.4.4. In paper 4, a six-fold cross validation (with the log loss score, the accuracy 

score and the F1 score as metrics) was used for the shrinkage parameter (λ) tuning 

(P4-Supplementary Table 2A). Sarcopenia-driven CpGs were selected as those 

with non-zero coefficients in the lasso regression with an optimal shrinkage 

parameter (λ = 65.1318, P4-Supplementary Table 2A). The sarcopenia-driven 

methylation score was calculated as a weighted sum of the selected CpG 
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methylation levels (the weight for each CpG site was the coefficient from the lasso 

regression, codes in P4-Supplementary File 1). In paper 4, another methylation 

profile score (MSSNP, as described in section 1.4.3) was calculated based on the 

average methylation level of CpGs that located within the predetermined seven 

muscle-related genes (described in section 2.3). Additionally, to explore the genetic 

association of each muscle-related gene with muscle size and strength, a gene-wise 

combined genetic and methylation profile score was created as the ratio of a SNP 

score to the average methylation level in promoters of the corresponding gene. 

3.2.2.3. Muscular phenotype measurement 

Whole-body skeletal muscle mass was estimated using the same equipment and 

equation described in section 3.2.1.3. In the MMU project, hand grip strength was 

also measured. Participants were asked to stand straight and to keep their testing 

arms straight out during the measurement. Verbal encouragement was given and 

three attempts were made on both hands. The highest value was kept for further 

analysis.  

Biceps brachii thickness (THKBB) and vastus lateralis (VL) anatomical cross-

sectional area (ACSAVL) were measured by B-mode ultrasonography 

(MyLab®Twice Esaote, Genoa, Italy). During the measurement of THKBB, 

participants were sitting with their elbows extended and relaxed. Sagittal plane 

scans were taken and the muscle thickness was measured at three sites: 60% of 

the length from the acromion process of the scapula to the lateral epicondyle of the 

humerus144, and the upper and lower site 1 cm away from the 60%-length site. The 

muscle thickness was measured using an image processing program (ImageJ, NIH) 

by the same investigator (I-Figure 12A, intraclass correlation coefficient [ICC] = 0.98, 

the ICC was an interrater reliability based on a single scan that was assessed twice 

among six participants). Measurement of ACSAVL was performed in a seating 

position. Axial plane scans were taken at 50% muscle length of the VL and recorded 

in real time, with the ultrasound probe passing over echo-absorptive markers placed 

over the skin of the VL (as described by Reeves145). The acquired images were 

combined for ACSAVL measurement (I-Figure 12B). The ACSAVL was measured 

three times using ImageJ and the mean value was recorded for further analysis. The 

ultrasound scan was made by the same investigator with good test consistency (ICC 

= 0.99). 
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Isometric elbow flexion torque (at a 60° elbow flexion) and knee extension torque 

(at a 60° knee flexion) were measured by a customized dynamometer (MMU, UK) 

which was calibrated prior to each strength measurement session. 

I-Figure 12. Ultrasound images of the upper arm and the thigh. a. Ultrasound image 

of the upper arm (Sagittal); b. Ultrasound image of the thigh (cross-sectional).  

3.2.3. Statistical terminologies in this thesis 

Z-score and t-value: a z-score measures the distance between a value and the 

population mean in the scale of standard deviation. It is calculated as the difference 

(between a value and the population mean) divided by the standard deviation. A 

zero z-score means the tested value equals to the population mean. A t-value in a 

t-test is similar to a z-score, it is used to evaluate if the mean values between two 

groups are significantly different (i.e. whether the two groups statistically belong to 

one group). The larger a t-value is, the more different the two group means will be.  

Coefficient of determination (R2), adjusted coefficient of determination (adjusted R2) 

and partial coefficient of determination (partial R2): R2 is the squared correlation 

coefficient from a regression model. It represents the proportion of variance in the 

dependent variable e.g. individual variation in knee extension strength a regression 

model can explain. It ranges between 0 and 1. Usually, a model with a larger set of 

independent variables will have a higher R2 because the dependent variable will be 

more precisely explained by the model. However, adding more variables might also 

lead to overfitting, which means the model will fit well with the existing data, but will 

have a poor performance in predicting future data. To better evaluate the predictive 

ability of a model, adjusted R2 is introduced by adjusting the R2 with the number of 

predictor variables: adjusted R2 = 1-(1- R2)×
𝑛−1

𝑛−(𝑘+1)
, where n is the sample size and 
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k is the number of independent variables. Therefore, the adjusted R2 will increase 

only when the newly added independent variable can increase the explained 

variance of the dependent variable to a considerable extent. The partial R2 

represents the proportion of variance of the dependent variable explained by a 

specific dependent variable in a model. 

M and β value: As previously described in the section 1.4.3, a β value is the 

percentage of methylation in a given CpG site. It has a range of 0-1. An M value is 

a logit transformation of the ratio of methylated to unmethylated probes. It has an 

infinite range. The M value is more statistically valid for a differential methylation 

analysis,129 and therefore, was used for differential methylation analysis in this 

thesis (paper 3). The beta value is an intuitive biological interpretation. Therefore, it 

is used for plotting methylation levels in this thesis (paper 3 and 4). 

4. Supplementary files 

This thesis includes many genetic and DNA methylation profiles, and analysis 

results which are too large to present as appendices. Therefore, some of the data 

and results are uploaded as supplementary files to a Google drive which is 

accessible through the following link: 

https://drive.google.com/open?id=1T9TVoOGgxYUbl7MzNSeH7kFWJugQqAap

https://drive.google.com/open?id=1T9TVoOGgxYUbl7MzNSeH7kFWJugQqAap
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CHAPTER 1 

Genetic variants and exercise-related muscle changes in older people 

 

Paper 1: Genetic predisposition score predicts the increases of knee strength and 

muscle mass after one-year exercise in healthy elderly 

Paper 2: The genetic effect on muscular changes in an older population: a follow-

up study after one-year cessation of structured training 
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Genetic predisposition score predicts the increases of knee strength and 

muscle mass after one-year exercise in healthy elderly 
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Abstract 

This study aims to identify a genetic predisposition score from a set of candidate 

gene variants that predicts the response to a one-year exercise intervention. 200 

participants (aged 60–83 years) were randomly assigned to a fitness (FIT), whole-

body vibration (WBV) and control group. Participants in the exercise (FIT and WBV) 

groups performed a one-year intervention program. Whole-body skeletal muscle 

mass (SMM) and isometric knee extension strength (PTIM60) were measured before 

and after the intervention. A set of 170 muscle-related single nucleotide 

polymorphisms (SNPs) were genotyped. Stepwise regression analysis was applied 

to select significantly contributing SNPs for baseline and relative change parameters. 

A data-driven genetic predisposition score (GPS) was calculated by adding up 

predisposing alleles for each of the phenotypes. GPS was calculated based on 4 to 

8 SNPs which were significantly related to the corresponding phenotypes. These 

SNPs belong to genes that are involved in myoblast differentiation, muscle and bone 

growth, myofiber contraction, cytokines and DNA methylation. GPS was related to 

baseline PTIM60 and relative changes of SMM and PTIM60 in the exercise groups, 

explaining the variance of the corresponding parameter by 3.2%, 14% and 27%, 

respectively. Adding one increasing allele in the GPS increased baseline PTIM60 by 

4.73 Nm, and exercise-induced relative changes of SMM and PTIM60 by 1.78% and 

3.86% respectively. The identified genetic predisposition scores were positively 

related to baseline knee extension strength and muscle adaptations to exercise in 

healthy elderly. These findings provide supportive genetic explanations for high and 

low responders in exercise-induced muscle adaptations.  

Keywords: Exercise; Aging; Genetic predisposition score; Muscle adaptations 

1. Introduction 

Increasing longevity throughout the world in recent decades has brought healthy 

aging to the attention of both gerontology and kinesiology researchers. Past studies 

have found a loss of muscle mass and decrease in muscle performance as two of 

the most prominent features during the aging process. Such age-associated 

muscular decline is known as sarcopenia.37 Using magnetic resonance imaging, 

Janssen et al. discovered an onset of muscle mass degeneration among subjects 

in their thirties, with the decay reaching a significant level in the fifth decade 27. This 

decrease was mainly caused by the loss of muscle mass in the lower body.27,146 

Similar to muscle mass loss, muscle strength also decreases with aging, but at a 
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faster rate.4 This functional weakness is thought to be associated with many factors 

such as denervation in aged muscle,33 declined function in mitochondria,39,147 

elevated type I/type II fiber ratio36,37 and alteration in contractile properties.41 

Consequently, these alterations in muscle morphology and function are closely 

related to decreased mobility,21 higher risk of falls,22 and even increased mortality 

rate23 in elderly population. 

It is now well established that regular participation in exercise programs can help 

reduce age-associated functional declines. Multiple exercise protocols have been 

reported as effective in slowing the muscular aging process. Resistance training and 

combined aerobic and resistance training have been proven to maintain muscle 

performance.43,148,149 For instance, a 26-week exercise intervention in obese elderly 

found an 18% improvement in strength after combined aerobic and resistance 

training and a 19% strength increment after resistance training.44 Muscle power 

output and muscle maximal strength were also enhanced in response to different 

training strategies in healthy elderly.150 Meanwhile, whole-body vibration (WBV) 

training has been introduced as an alternative for resistance training. Through 

external vibrations exerted by vibration platform, sensory receptors-mostly muscle 

spindles-are stimulated. Such process results in the activation of alpha-motor 

neurons and muscle involuntary contractions.47 WBV-induced adaptations in aging 

muscle mass and strength have been reported by several studies.151,152 Despite the 

benefits of exercise, muscle strength and mass adaptations after resistance training 

showed individual response variability (muscle size change ranging from -11 to 30% 

and leg strength change ranging from -8 to 60%) among subjects, regardless of age 

and sex.52 Similar inter-individual ranges in responses are reported for elbow 

strength in the FAMUSS study.53 From the findings of previous studies on the 

relations between inherited characteristics and physical adaptations to exercise, 

Thomaes et al. found coronary artery disease (CAD) patients with profitable genes 

had a significantly higher probability to belong to the high responder group (10% 

highest increases in peakVO2)121 and show higher strength gains123 after a three-

month ambulatory supervised exercise training. These findings indicate that genetic 

factors might be partly responsible for the variance of physical adaptations after 

training. 

Since early reports on exercise capacity-related genes at the end of twentieth 

century,153,154 many studies have shown the relation between hereditary 

characteristics and physical performance.63 A recent study done by Papadimitriou 
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et al. on male Caucasian sprinters found that ACTN3 577RR carriers had faster 

sprint time than their homozygous X allele counterparts and 577R allele counted for 

nearly 1% of sprint time variance.155 Petr et al. discovered that relative peak power 

measured by Wingate test (an ergometer-based power test) among elite male ice 

hockey players was positively related to PPARA gene C allele carriers.156 However, 

a considerable number of these studies focused merely on one or a limited number 

of genes. Considering that muscular performance is affected by the combined 

influences of multiple genes, a new method needs to be applied in order to study 

the overall effect of multiple gene sequence variants. Candidate-gene based genetic 

predisposition score (GPS) have gradually been introduced into predicting 

performance-related phenotypes. Only a limited number of GPSs come from 

identified sequence variants from Genome Wide Association Studies (GWASs) 

when exercise-response phenotypes are concerned. The Heritage Family Study 

provided evidence for GWAS-based predictive GPSs for the responses in 

submaximal and maximal oxygen uptake after aerobic training.157  A more general 

approach is to build a GPS by summing up the number of predisposing alleles that 

are significantly related to corresponding phenotypes based on candidate-gene 

association studies. By means of GPS, heritability studies have been able to show 

the role genetic factors play in the changes of muscular phenotypes following 

exercise interventions. Through calculating endurance-specific genetic scores, 

Santiago et al. found higher mean genetic scores in elite endurance athletes 

compared to controls.120  Ruiz et al. showed that professional rowers had more 

preferable genotypes than subjects from the general population.119 In the studies of 

exercise interventions on patients with coronary artery disease, Thomaes et al. 

found data-driven GPS significantly related to increments of peak VO2
121 and 

muscular phenotypes123 after training. To the best of our knowledge, no studies 

have been performed combining muscle-related genes with GPS to explain baseline 

muscular phenotypes and exercise-induced muscular changes in a healthy elderly 

population. Yet, such studies might be helpful in better understanding individual 

adaptive variance after exercise and can be useful for the design of more 

individualized exercise regimens in the future. 

Therefore, the aim of present study was to assess the predictive power of data-

driven GPSs on baseline muscular phenotypes and muscle adaptations to exercise 

in a healthy elderly population. We hypothesized that elderly people with a higher 
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GPS have a higher baseline value and greater muscular improvement than those 

with a lower GPS. 

2. Materials and Methods 

2.1 Subjects  

Elderly people between 60 to 83 years old were recruited from the local communities 

of the city of Leuven and its surrounding areas. This sample was previously 

described in the study of Bogaerts et al.,138 which studied effects of whole-body 

vibration (WBV) and fitness (FIT) training on muscle strength in elderly. All the 

subjects went through a series of medical examinations. Exclusion criteria were 

skeletal, neuromuscular and cardiovascular disorders that may prohibit training and 

strength-related tests. People with training experience in the past two years were 

also excluded. This study was approved by the University’s Human Ethics 

Committee in accordance with the Declaration of Helsinki. Informed consent was 

given by each subject. 200 participants (104 men, 96 women) agreed to provide a 

blood sample for DNA analyses and their data were analyzed in this study (see 

flowchart Figure 1).  

 

Figure 1. Flowchart of participants in present study. 
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2.2 Training protocols 

Of the 200 participants providing a blood sample, 54 of them performed the fitness 

program (FIT group), 85 of them were in the WBV group and the rest were control 

subjects (CON group). Subjects in the FIT and the WBV groups were trained three 

times a week on nonconsecutive days over a period of one year. All training 

programs were performed at Leuven University’s Training Center under the 

guidance and supervision of qualified health and fitness instructors.138  

The training program in the FIT group consisted of aerobic, resistance, balance and 

flexibility training. It was designed based on the exercise prescriptions for elderly 

recommended by American College of Sports Medicine (ACSM) guidelines.158 

Subjects firstly performed the aerobic session through one of the four exercises: 

walking, running, cycling or stepping. The training intensity varied from 70% to 85% 

of the individual heart rate reserve. The duration of this session was 20 minutes in 

the starting week and was gradually increased to 45 minutes by the end of the 1-

year program. In the resistance training session, subjects performed leg press, leg 

extension, leg curl (lower body), chest press, upper back, shoulder press, vertical 

traction, arm curl (upper body), abdominal crunch and back extension (abdominal 

region) on strength equipment (Technogym Systems, Gambotella, Italy). One 

repetition maximum (1-RM, the load a participant can only lift once with the best 

effort) of each exercise for each participant was assessed by qualified health and 

fitness instructors once a month. The training load started at 50% of 1-RM with 15 

repetitions and was gradually increased to 80% of 1-RM with 8 repetitions. 15 

minutes of balance exercise and 10 minutes of stretching were performed after each 

training session. The training programs were described in detail in the study of 

Bogaerts et al. 138 (P1-Supplementary Table 1).  

Participants in the WBV group performed exercises on a vibration platform (Power 

Plate, Amsterdam, Netherlands) with a maximum duration of 40 minutes. The 

exercises included body weight squat, deep squat, wide stance squat, toes-stand, 

toes-stand deep, one-legged squat and lunge. The duration of each exercise started 

at 30 seconds and was gradually increased to 60 seconds after 9 weeks. A detailed 

training protocol can also be found in the study of Bogaerts et al.137 (P1-

Supplementary Table 1).  
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Subjects in the CON group did not undertake any training program. They were 

advised to maintain their original lifestyle during the study and to not engage in any 

new physical activity. 

2.3 Genotyping 

A 4.5 ml blood sample of each participant was collected from an antecubital vein in 

an EDTA-coated tube. Genomic DNA was extracted using the chemagic Magnetic 

Separation Module I (chamagic MSM I, PerkinElmer Inc., Waltham, MA, USA) 

according to the instructions of the manufacturer. Genotyping was done with the 

Illumina GoldenGate platform (Illumina, Inc., San Diego, CA, USA) at the Genomics 

Core Facility (UZ/KU Leuven). The selection of genes was based on published 

articles (up to August 2014) and expression quantitative trait loci (eQTL) analysis. 

A detailed description of the selection process can be found in the study of Charlier 

et al.124 These potential candidate genes were identified for muscular strength or 

muscular endurance development or regulation. 224 single nucleotide 

polymorphisms (SNPs) (P1-Supplementary Table 2) came out as muscle-related 

SNPs. Through blood testing, 12 SNPs were not successfully detected and 3 SNPs 

presented the same genotypes among all subjects (due to a very low rare allele 

frequency, P1-Supplementary Table 2). Those 15 SNPs were ruled out from the 

224-SNP pool. Results of linkage disequilibrium test showed that 58 SNPs were 

highly linked as 19 subgroups and one representative SNP was selected from each 

of these subgroups. A total number of 170 SNPs were withheld for further analyses. 

2.4 Muscular phenotype measurements 

Whole-body skeletal muscle mass (SMM) was calculated through bioelectrical 

impedance analysis (BIA). Resistance of BIA was measured by Bodystat 1500MDD 

(Bodystat Ltd, Douglas, UK) before and after the one-year intervention. Before the 

test, participants were asked to lie down in a supine position for one minute. During 

the measurement, two electrodes were placed on the right hand and right foot as 

instructed in the manual. SMM was calculated for further analyses, using the 

following regression equation that has been assessed for validity in elderly 

participants140: SMM (kg) = (Ht2/R × 0.401) + (sex × 3.825) + [age × (-0.071)] + 

5.102 where Ht stands for height in centimetres; R stands for BIA resistance in ohms; 

in sex, men = 1 and women = 0; age is in years.  

Biodex Medical System 3 dynamometer (Biodex Company, New York, USA) was 

used for the measurement of isometric knee extensor strength. This measurement 
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was done by the same operator before and after the intervention. Before testing, 

participants were asked to complete a 5-minute warm up on a free-loaded 

ergometer. Two practice trials were performed to allow for a better understanding of 

the measuring process. Maximal isometric knee extension strength was evaluated 

at knee flexion angles of 60° (PTIM60 in Nm) with 0° representing full extension.  

2.5 Statistical analyses 

All the data were reported as mean ± standard deviation (SD) and were analysed 

using SAS statistical software version 9.4 for Windows (SAS Institute Inc, Cary, NC). 

Stepwise regression analysis was first used in the detection of SNPs that were 

significantly related to muscular phenotypes. The significance level to entry was 0.1 

and that to stay in the model was 0.05. Alleles that were found positively related to 

muscular phenotypes from the analysis were regarded as phenotype-related 

predisposing alleles. Based on the selected significant SNPs from stepwise 

regression analysis, muscular phenotype-related GPS was calculated with the 

method used in the calculation of data-driven GPS in the study of Charlier et al.124 

Since the weights of alleles in muscle-related SNPs were not well defined, an 

accumulative effect was hypothesized and equal weight was given to each 

predisposing allele. Thus, data-driven GPS of each individual was calculated by 

adding up all the corresponding predisposing alleles. For example, if the T allele in 

the rs1130214 of the AKT1 gene (with T/G alleles) is found to be significantly 

favourable for ∆PTIM60 in the exercise groups, the genotype score of the AKT1 gene 

variant is based on the number of T alleles: TT=2, TG=1 and GG=0. The ∆PTIM60-

related GPS is then calculated by summing up all genotype scores for SNPs that 

are found significantly related to PTIM60 change. If e.g. 8 SNPs contribute to the GPS, 

a maximal value of 16 represents the most optimal genetic profile and a value of 0 

the worst possible genetic profile (no favourable alleles).   

Two-way analysis of variance (ANOVA) was applied to compare between-group 

values of baseline and one-year relative changes with sex and group as factors.  

Bonferroni method was used as post-hoc test. Repeated measures ANOVA was 

used for within-group comparisons of muscular phenotypes between baseline and 

post-intervention level with sex as a factor. To analyse the effect of GPS on baseline 

muscular parameters, analysis of covariance (ANCOVA) was performed with age, 

height, sex and baseline SMM as covariates. To explore the genetic influence on 

muscle adaptation to exercise, relative changes of muscular phenotypes in exercise 
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groups were used. The relations between GPS and phenotypic changes after 

exercise were analysed through ANCOVA with age, height, sex and corresponding 

baseline muscular value as covariates. P value of 0.05 was set as the level of 

significance. 

3. Results 

3.1 Descriptive data 

Descriptive data of subjects in each group are presented in table 1. Participants in 

the three groups had similar age, height and body mass before the intervention. No 

significant difference in body mass was found among the three groups after one 

year. 

3.2 Baseline muscular phenotypes and training effects 

The baseline values and training effects of muscular phenotypes are presented in 

table 2. At baseline level, SMM and PTIM60 showed no significant difference among 

groups (p = 0.486 and p = 0.805, respectively). Significant increases of SMM (CON: 

p < 0.001, FIT: p = 0.006, WBV: p = 0.029) were found in all groups after one year, 

but these changes among the three groups did not show any differences (p = 0.299). 

After one-year training, PTIM60 increased significantly in the two exercise groups (FIT: 

p < 0.001, WBV: p < 0.001) while the CON group did not change significantly (p = 

0.744). Moreover, two-way ANOVA results showed significant differences in relative 

changes of PTIM60 among the three groups (p < 0.001). Post-hoc test further showed 

that the exercise groups increased significantly more than the CON group (p < 0.05).  
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Table 1 Descriptive data of subjects (mean ± SD) 

Group Number Age (year) Height (cm) 
Body Mass (kg) 

Pre-intervention Post-intervention ∆post-pre (%) 

CON 61 68.23 ± 5.38 167.45 ± 8.54 75.43 ± 10.86 74.49 ± 10.78 -0.98 ± 3.38 

FIT 54 67.00 ± 3.88 167.70 ± 9.98 76.13 ± 11.98 74.63 ± 12.19 -1.78 ± 2.99 

WBV 85 67.44 ± 4.83 167.22 ± 8.51 75.21 ± 12.62 73.80 ± 11.67 -1.20 ± 3.15 

p value  

(group level) 
 0.369 1.000 0.958 0.946 0.374 
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Table 2 Muscular phenotypes before and after one-year intervention (mean ± SD) 

Parameter Baseline Post-intervention ∆post-baseline (%) 

SMM (kg)    

CON 23.68 ± 6.82 24.01 ± 6.09+++ 3.96 ± 5.92 

FIT 23.65 ± 6.27 24.59 ± 6.65++ 3.38 ± 8.06 

WBV 23.94 ± 6.50 24.32 ± 6.57+ 2.21 ± 6.79 

PTIM60 (Nm)    

CON 136.29 ± 44.25 138.17 ± 43.51 0.19 ± 16.06 

FIT 141.70 ± 39.65 162.43 ± 37.89*+++ 14.97 ± 15.57* 

WBV 136.92 ± 41.77 151.32 ± 43.47+++ 12.09 ± 15.51* 

* Significant difference when compared with CON group (p < 0.05) 

+ Significant difference when compared with baseline value (p < 0.05) 

++ Significant difference when compared with baseline value (p < 0.01) 

+++ Significant difference when compared with baseline value (p < 0.001) 
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3.3 Relations between GPS and muscular phenotypes 

SNPs closely related to muscular phenotypes were selected through stepwise 

regression analysis (P1-Supplementary Table 3). Considering that SMM and PTIM60 

at baseline level were not different among CON, FTI and WBV groups (Table 2), 

baseline data of the three groups were analyzed together in stepwise regression 

analysis. Linear relations between GPS and corresponding muscular phenotypes at 

baseline level are shown in table 3. Since stepwise regression was made separately 

on each muscular parameter, the number of data-driven SNPs varied with each 

parameter. As presented in table 3, four SNPs (ACVR1B: rs2854464; FST: 

rs3797297; IGFBP3: rs3110697; TTN: rs10497520) were found significantly related 

to baseline PTIM60. Data-driven GPS could explain 3.2% of the variance in isometric 

knee extensor strength. Adding one increasing allele within the GPS increases 

baseline PTIM60 by 4.73 Nm. Results from ANCOVA analysis showed that sex, age 

and baseline SMM were also significantly related to baseline PTIM60. Although five 

SNPs (ACVR1B: rs2854464; IGFBP3: rs3110697, rs6670; MTRR: rs327588; VDR: 

rs731236) were found to be closely related to baseline SMM, ANCOVA result did 

not show a significant relation between baseline SMM and the GPS score (p = 

0.250). 

Relations between GPS and training responses of SMM and PTIM60 in FIT and WBV 

groups are presented in table 4. Since no significant differences of relative changes 

were found between FIT and WBV groups (table 2), data in these two exercise 

groups was analysed together. SNPs closely related to muscle adaptations were 

selected through stepwise regression analysis (P1-Supplementary Table 3). Six 

SNPs (CCL2: rs4586; CCR2: rs768539; GR/NR3C1: rs6190; METTL21C: 

rs2390760; MSTN: rs2390760; SPP1: rs10516796) were found significantly related 

to SMM changes in the exercise groups. As table 4 shows, GPS, sex, height and 

baseline SMM were closely related to SMM changes in the exercise groups. Age 

and training methods (FIT or WBV) did not significantly affect the changes over the 

one year period. The genotypic predisposition score alone could explain 14% of the 

adaptive change in SMM and adding one increasing allele to the GPS is associated 

with a 1.78 % increase in SMM change. Eight SNPs (AKT1: rs1130214; DNMT3L: 

rs7354779; IGFBP3: rs3110697; IL15RA: rs2228059; MSTN: rs1805086; MTRR: 

rs162040, rs7703033; SPP1: rs10516796) were found to be significantly associated 

with the change in knee extensor strength by training. The analysis showed that 

GPS, sex and baseline PTIM60 were closely related to PTIM60 change in the exercise 
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groups. GPS alone could explain 27% of the adaptive change. Moreover, increasing 

the GPS with one predisposing allele is associated with a 3.86% increase in knee 

extensor strength after training. 
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Table 3 Relations between genetic predisposition scores and baseline muscular phenotypes 

 
SMM (kg)  PTIM60 (Nm) 

 

Estimate 
β 

value 
R2 p  Estimate 

β 

value 
R2 p 

GPS 0.17 0.04 0.007 0.250  4.73* 0.12 0.032 0.016 

SEX 

(M=1,F=0) 
8.54*** 0.66 0.560 <0.0001  18.95* 0.23 0.025 0.034 

AGE -0.06 -0.04 0.011 0.141  -2.01*** -0.23 0.106 <0.0001 

HEIGHT 0.23*** 0.31 0.235 <0.0001  0.64 0.13 0.017 0.085 

SMMbaseline - - - -  2.38** 0.37 0.052 0.002 

Intercept  -16.01 - - -  76.22 - - - 

Adj. R2 0.839  0.577 

No. of SNPs 5  4 

* p < 0.05, ** p < 0.01, *** p < 0.0001 
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Table 4 Relations between genetic predisposition scores and relative changes in muscular phenotypes 

 
∆SMM (%)  ∆PTIM60 (%) 

 

Estimate 
β 

value 
R2 p 

 
Estimate 

β 

value 
R2 p 

GPS 1.78*** 0.34 0.140 <0.0001  3.86*** 0.45 0.270 <0.0001 

SEX 

(M=1,F=0) 
10.83*** 0.74 0.146 <0.0001  11.53** 0.37 0.110 0.001 

EXE 

(FIT=1,WBV=0) 
-0.32 -0.02 0.001 0.770  3.25 0.10 0.022 0.139 

AGE -0.10 -0.06 0.005 0.423  -0.41 -0.12 0.024 0.128 

HEIGHT 0.25** 0.32 0.054 0.009  0.22 0.12 0.015 0.232 

SMMbaseline -1.20*** -1.07 0.217 <0.0001  - - - - 

PTIM60_baseline - - - -  -0.24*** -0.65 0.273 <0.0001 

Intercept  -19.54 - - -  -3.00 - - - 

Adj. R2 0.350  0.511 

No. of SNPs 6  8 

** p < 0.01, *** p < 0.0001 
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The distribution of GPS and its linear relation with muscular parameters are 

presented in figure 2 and figure 3. Values for GPS with less than three subjects were 

pooled together at the lower and upper end of the distribution. As shown in the 

graphs, at baseline level, subjects with a higher GPS had higher baseline muscle 

mass and knee extension strength. Higher data-driven GPS is also associated with 

a larger increment in SMM and PTIM60 after one year of exercise training. 

Figure 2. Distribution of GPS and its linear regression model with baseline muscular 

phenotypes. (A) Linear regression between genetic predisposition score (GPS) and 

whole-body skeletal muscle mass (SMM) at baseline. GPS is calculated based on 

5 SNPs (rs2854464 in ACVR1B, rs3110697 and rs6670 in IGFBP3, rs327588 in 

MTRR and rs731236 in VDR, n=199). Individual baseline SMM values of the three 

groups (CON, FIT and WBV) are analysed together and are presented per GPS 

group on the left y-axis. The trend line shows the relation between GPS and baseline 

SMM.  Least square means of SMM for each GPS is presented as dot with standard 

errors presented as error bar. Distribution of participants in each GPS is presented 

in the histogram with number of participants on the right y-axis. (B) Linear regression 

between GPS and peak isometric knee extension strength at a knee flexion angle 

of 60° (PTIM60) at baseline. GPS is calculated based on 4 SNPs (rs2854464 in 

ACVR1B, rs3797297 in FST, rs3110697 in IGFBP3 and rs10497520 in TTN, n=184). 
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Figure 3. Distribution of GPS and its linear regression model with muscular 

phenotype changes in exercise groups after one-year training. (A) Linear regression 

between genetic predisposition score (GPS) and relative changes of skeletal muscle 

mass (∆SMM) in the exercise groups (FIT and WBV) after one year. GPS is 

calculated based on 6 SNPs (rs4586 in CCL2, rs768539 in CCR2, rs6190 in NR3C1, 

rs2390760 in METTL21C, rs3762546 in MSTN and rs10516796 in SPP1, n=130). 

Individual ∆SMM values is presented on the left y-axis. The trend line shows the 

relation between GPS and ∆SMM.  Least square means of ∆SMM in each GPS is 

presented as dot with standard errors presented as error bar. Distribution of 

participants in each GPS is presented in the histogram with number of participants 

on the right y-axis. Scatterplot is used to present the distribution of SMM change in 

each GPS group. (B) Linear regression between GPS and relative changes of peak 

isometric knee extension torque at a knee flexion angle of 60° (∆PTIM60) after one 

year. GPS is calculated based on 8 SNPs (rs1130214 in AKT1, rs7354779 in 

DNMT3L, rs3110697 in IGFBP3, rs2228059 in IL15RA, rs1805086 in MSTN, 

rs162040 and rs7703033 in MTRR, and rs10516796 in SPP1, n=104). 

4. Discussion 

This study developed GPS to explain the effects of genetic factors on baseline 

muscular phenotypes and exercise-induced muscular changes in a healthy elderly 

population. Unlike previous research that studied muscular phenotypes with single 

or small number of genes, this study was based on 170 SNPs which were selected 

from a potential set of 224 muscle-related SNPs. Considering the fact that muscular 

phenotypes are the result of multifactorial and polygenic effects, a larger SNP pool 

might better explain genetic influences. Although the GPSs were calculated based 
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on a limited subset of these SNPs, they were positively related to baseline PTIM60 

and changes of SMM and PTIM60 in the exercise groups after one year of training. A 

genetic predisposition score based on 4 to 8 SNPs explained 0.7 to 3.2 % of 

variance in baseline and 14 to 27 % in the inter-individual changes in response to 

training.  

Genetic predisposition scores 

The specific set-up of this one-year exercise intervention program in elderly subjects 

and the multi-gene variant approach makes comparisons with other studies difficult. 

When considering knee extension strength in the untrained state, Thomaes et al.123 

showed no relation between a GPS and isometric knee extension strength in CAD 

patients, while our study showed that a higher GPS was positively related to a higher 

baseline PTIM60. Although no common SNPs were found between our study and the 

study of Thomaes et al. in the aspect of knee isometric strength, overlapping SNPs 

were found in other muscular phenotypes with GR rs6190 and MSTN rs3762546 

closely related to relative change of SMM in our study and relative change of rectus 

femoris diameter in response to a three-months exercise training in the study of 

Thomaes et al.123 A significant relationship between a GPS and isometric knee 

extension strength was also reported in the study of Charlier et al.124 With a larger 

life span sample (200 women, 365 men, 19-73 yr) of adults, a partial r-squared of 

5.4% of a GPS based on 8 SNPs was within the same range as 3.2% in our study 

regarding baseline PTIM60.   

Based on the results of ANCOVA in the exercise groups after training, GPSs 

explained 14% of the variance of SMM change and 27% of that in PTIM60. For each 

increasing allele within the GPS, SMM is predicted to increase by 1.78% and knee 

extension strength is estimated to gain by 3.86%. Follow-up analysis of the separate 

training groups (results not shown) indicated that the explained variance for GPSs 

in the strength response were similar.  However, for the response in muscle mass, 

the GPS in the FIT group had higher predictive value (R2=30.8%) compared to the 

WBV group (R2=6.2%). In the CAREGENE study,123 the relation between muscular 

phenotypes and a data-driven GPS based on a 54-SNP pool was studied among 

CAD patients after a 3-month cardiac rehabilitation training. A GPS based on two 

SNPs explained 6.25% of the variance in individual responses in isometric knee 

extension strength. Differences in training programs, duration, SNP pool and subject 



58 
 

characteristics might contribute to the difference in the predictive power of GPSs in 

both studies.  

Which gene variants contribute to the genetic predisposition profiles? 

Through stepwise regression analysis (P1-Supplementary Table 3), six genes were 

found closely related to baseline SMM and PTIM60. Among these genes, two of them 

(ACVR1B: rs2854464, IGFBP3: rs3110697) were associated with both parameters. 

Windelinckx et al. had found SNP rs2854464 in ACVR1B gene to be strongly 

associated with isometric knee extensor strength with the A-allele as the strength 

increasing allele.159 However, no associations between the A-allele and 

sprint/power performance were also reported in either athletes or control groups 

from Brazilian160 and Japanese populations.161 Based on our data-driven analysis, 

the G-allele was found predisposed to a higher isometric knee strength and a larger 

muscle mass. The IGFBP3 gene was selected into this study because it facilitates 

myoblast differentiation; specifically the production and secretion of insulin-like 

growth factor-binding protein 3 (IGFBP3) was in accordance with the differentiation 

level of myoblast.162 Rs3110697 in the IGFBP3 gene was reported as one of the 

polymorphisms closely related to IGFBP3 blood levels. G-allele carriers were found 

with higher plasma IGFBP3 level than homozygous A genotypes.163 This is in line 

with our finding that the G-allele was positively related to baseline muscular 

phenotypes. The initial 170 muscle-related SNP pool included several genetic 

variants in the FST gene, which codes for follistatin. Acting as an inhibitor of the 

myostatin receptor,164 the overexpression of follistatin could cause dramatic 

increases in muscle growth.165 Previously, sex-specific fat free mass was found to 

be associated with sequence variation in the FST gene.166 We found a relation 

between rs3797297 and baseline PTIM60 with the T-allele as the predisposing allele. 

TTN gene polymorphisms were associated with skeletal muscle fascicle length and 

marathon performance in habitually trained men.167 Unlike the study of Thomaes et 

al.,123 which failed to find any relation between rs10497520 from TTN gene and 

isometric knee extension strength in CAD patients, our results identified the C-allele 

of rs10497520 as a predisposing allele of isometric knee extension strength. Finally, 

the VDR gene codes for vitamin D receptor, which plays an important role in calcium 

homeostasis and muscle function.168 The Rs731236 variant in the VDR gene was 

associated with hand grip strength.169 Inconsistent with the finding of Windelinckx et 

al.,79 which showed a sex-specific relation between VDR polymorphisms and knee 

extension strength, our result found no significance between VDR gene and 
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isometric knee extension strength, however the gene variant contributed to the GPS 

for skeletal muscle mass. The sixth variant was rs327588 within the MTRR gene 

that encodes for methionine synthase reductase. This enzyme with DNA 

methylation-related function is discussed in more detail below. 

Training responses on SMM and knee extension strength were found related to 

11 genes. Specifically, the MSTN and MTRR gene contributed two SNPs while other 

genes only contributed one. The MSTN gene encodes myostatin, a protein which 

negatively regulates the growth of muscle cells. Myostatin deficient mice were found 

to have larger muscle mass, more type IIB fibres and lower relative force generation 

ability than wild types.170 In humans, the R allele of the rs1805086 variant has been 

associated with lower explosive strength,77 but increased odds of being a 

centenarian.66 AKT, also known as protein kinase B (PKB), is a critical regulator of 

muscle growth through the IGF1-AKT/PKB pathway.171 Insulin-like growth factor 1 

(IGF-1) was found able to induce myotube hypertrophy through the activation of the 

AKT pathway.172 Activation of the AKT1 transgene in mice also revealed a 

hypertrophy of type IIB fibres and a counteraction of lean muscle mass loss in aged 

mice.173 These results support our finding that AKT1 gene was related to knee 

strength gains. The presence of CCL2 and CCR2 gene in the GPS for adaptive 

changes rather than baseline values supported the idea that these two genes were 

more related to muscle adaptations. CCL2 is expressed by macrophages and 

muscle satellite cells, its expression is dramatically increased following muscle 

damage. CCR2 is the receptor of CCL2. Previous studies have found that the 

expressions of both genes were associated with muscle exercise-induced damage 

and the speed of recovery, which varied with individuals.174,175 NR3C1 

polymorphisms have been reported related to many sex-specific body composition 

and muscular phenotypes.176 Recently, it has been shown that NR3C1 

polymorphisms (rs10482614, rs10482616 and rs4634384) were associated with 

muscle strength and size response after a 3-month resistance training.177 Our 

results showed another SNP (rs6190) in the NR3C1 gene to be associated with 

knee extension strength changes after training. Methyltransferase like 21C 

(METTL21C) not only participated in protein-lysine methyltransferase activity but 

was found to affect bone and muscle metabolism as well.178 Hangelbroek et al. 

found that higher expression of the METTL21C gene was associated with frailty 

status in both young and elderly subjects179 while we found this gene was related to 

exercise-induced SMM change. The A-allele frequency in IL15RA rs2228059 was 
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higher than C-allele in cyclists while the opposite direction of A/C allele frequencies 

was found in elite rowers and triathletes.180 The A-allele in rs2228059 was also 

reported associated with larger muscle volume but lower muscle quality in men.181 

In our study, rs2228059 was only related to knee strength adaptation after training. 

A study on Duchenne muscular dystrophy patients showed the SPP1 gene as a 

determinant of this disease with G-allele carriers in SNP rs28357094 suffering from 

a more rapid degenerating progress.182 Although that SNP was also included in our 

initial SNP pool, rs10516796 came out as the only SNP in the SPP1 gene that 

showed close relation with muscular changes after exercise.  

Noticeably, through stepwise regression, three variants (rs162040, rs327588 and 

rs7703033) in the MTRR gene were identified related to baseline SMM or one-year 

PTIM60 response. The MTRR gene expresses methionine synthase reductase which 

participates in the metabolic cycle that provides methyl groups to DNA.183 A/G 

heterozygotes and G homozygotes of the rs1801394 variant in MTRR gene were 

found more frequently in athletes when compared with non-athletes, indicating a 

reduced DNA methylation capacity might be induced by systematic training.184 

Considering the reports of the MTRR gene affecting muscular metabolism through 

DNA methylation,184,185 we hypothesize that DNA methylation may contribute to the 

variability of muscle adaptations induced by exercise. Subjects with more 

predisposing alleles of the MTRR gene (C allele in rs162040 and G allele in 

rs7703033) may trigger a larger extent of DNA hypomethylation in the  MTRR gene 

region which leads to an upregulation in myogenic proteins184 after one year training, 

resulting in a higher improvement of knee extension strength. We also observed an 

association between the DNMT3L gene variant rs7354779 and knee strength 

change after exercise. Suetake et al. observed in mice that DNA (cytosine-5)-

methyltransferase 3-like (DNMT3L) plays a crucial role in the activation of DNA 

(cytosine-5)-methyltransferase 3A (DNMT3a) and 3B (DNMT3b), two major DNA 

methyltransferases responsible for the creation of DNA methylation patterns.186  

Limitations and future directions 

It should be acknowledged that compared to more stringent measures of SMM (e.g. 

using DEXA, MRI), the standard error of estimate value was 2.7kg (9%) in the 

application of BIA-estimated muscle mass.140 Greater associations may have been 

observed had a more accurate measure of SMM been adopted. The mild increases 

in SMM (2-3% increment in exercise groups) might also be related to the combined 
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training design. Although a high resistance load of 70-80% 1RM was used in this 

study, the 2.2-3.4% one-year gain of SMM was similar to the 2.6-3.2% increase of 

muscle volume in the study of Van Roie et al. who only designed a 12-week pure 

resistance intervention for the elderly with the same load.187 Moreover, in the 

calculation of GPS, each predisposing allele was given equal weight. This ignored 

the fact that every genetic variant might contribute differently to muscular 

phenotypes. Other GPS calculation methods, such as total weighting genotype 

score,188 LASSO and Elastic Nets189 can provide new ways to study the relation 

between sets of gene variants and aging muscle. Noticeably, through stepwise 

regression in the selection of data-driven SNPs, this study failed to identify some 

genes which were previously reported to be associated with muscle and power 

performance, such as rs1815739 in ACTN3 gene155 and rs4253778 in PPARA 

gene.156 This might be due to the interaction with other SNPs or be related to the 

fact that the ACTN3 R allele is more strongly related to dynamic contractions at high 

velocities155 compared to maximal isometric strength as was measured in this study. 

GWAS-identified gene variants would certainly strengthen the set of candidate-gene 

based variants to build genetic predisposition profiles for trainability phenotypes.190 

SNPs identified in a recent GWAS study for grip strength would have provided 

additional loci beyond the SNP pool in this study.191 Given that our sample was 

limited in size, the GPS-construction phase and test for predictive value was done 

in the same set of subjects. The predictive value of the GPS should therefore be 

tested in an independent study with similar subject and exercise intervention 

characteristics in a first phase, and in other exercise interventions or subject 

characteristics in future studies. The one-year intervention design of the study 

limited the sample size to 104 (200 for baseline values). A power of 80% (at 

alpha=0.05) can be reached with effect sizes of 0.26-0.30 (ANOVA test for a single 

SNP) or explained variances of 4-8% (GPS for regression). A larger sample would 

therefore be able to include more SNPs with smaller effect sizes in the GPS, which 

could explain the inter-individual differences in muscular fitness and responses to 

training to a larger extend. 

The focus of this study was on the role of a genetic profile based on candidate gene 

variants for muscle mass and strength phenotypes and responses to training. 

However, gene variants related to aerobic phenotypes (e.g. peakVO2) might be 

different depending on selected gene sets and on the specific mode of training.192 

This indicates that genes associated with muscle adaptations in our study might not 
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be a robust predictor of adaptations in aerobic capacity from the same population. 

Subjects with limited strength responses might be high-responders in aerobic 

parameters in response to this mixed-type intervention. We explored this by 

adapting the GPSs (based on muscle strength/mass related phenotypes) to the 

change in peakVO2 that was also available in these subjects and hypothesized a 

negative relationship. However, the results showed that the GPSs for ∆SMM and 

∆PTIM60 were not significantly related to the aerobic adaptation in this sample (p = 

0.23, p = 0.49, respectively) with estimated coefficients of 1.13 and -0.48. It would 

be more optimal to genotype GWAs-identified SNPs and candidate-gene variants 

related to aerobic performance and adaptations and to explore specific GPSs for 

these aerobic fitness response phenotypes. 

Figures 2 and 3 of the GPS distribution and its linear regression with muscular 

parameters also showed individual variability among subjects within the same GPS 

group. The smallest standard error of muscular changes was 1.02% in ∆SMM under 

the GPS group of 6 while the largest standard error was found as 6.61% in ∆PTIM60 

with the GPS group of 5. Such findings imply that other unknown exercise-related 

genes are involved in the process and it suggests that genetic composition is not 

the only factor to affect muscular training responses. In fact, the expression of a 

gene can also be affected without the alteration of genetic sequence, this process 

is known as epigenetics.193 Many external factors, such as nutrient intake, activity 

level and living environment can contribute to the modification of DNA 

(de-)methylation.194 The involvement of sequence variants in MTRR, DNMT3L and 

METTL21C genes discussed above also suggested the existence of epigenetics in 

training adaptation processes. Furthermore, Barrès et al. have reported a global 

hypomethylation and reduced methylation levels in promoter regions of energy 

metabolism related genes (PGC-1α, PDK4 and PPAR-δ) in human muscle biopsy 

after an acute peak pulmonary oxygen uptake rate test.195 Thus, further research on 

the relation between epigenetic factors and aging muscle and its responses to 

exercise is needed. 

This study only focused on genetic effects, which is a relatively popular field in the 

study of muscular training responses. To strengthen the understanding of genomics 

in effects of exercise in elderly, further research on the epigenome, and integration 

of transcriptomics, proteomics and metabolomics are needed.196,197 Muscular 

phenotypes adjusted for daily physical activity and nutrient intake could make the 

conclusions more convincing as well. 
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Conclusion 

In conclusion, based on a 170 muscle-related SNP pool, we found that a data-driven 

GPS was positively related to baseline isometric knee strength and adaptive 

changes of muscle mass and knee extensor strength after one-year exercise in a 

healthy elderly population. Specifically, the GPS explained part of the inter-individual 

variance of training response with some DNA methylation-related genes involved in 

the adaptive process. These findings provide additional genetic explanations for 

individual differences in exercise-induced changes. Further research into the role of 

DNA methylation effects on training adaptations are also suggested. 
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Abstract 

Purpose: To explore the genetic effect on changes of muscle mass and muscle 

strength one year after the cessation of a structured training intervention in an older 

population using data-driven genetic predisposition scores (GPSs). 

Methods: Participants (n = 113, aged between 61-81 yr) who performed one-year of 

combined fitness (n = 44) or whole-body vibration (n = 69) training were reassessed 

one year after the cessation of the training. Whole-body skeletal muscle mass, 

isometric knee extension strength, isotonic knee extension velocity, and isokinetic 

knee extension strength at 60°/s and at 240°/s were assessed. From a set of 170 

muscle-related single nucleotide polymorphisms (SNPs), stepwise regression 

analysis was applied to select favourable SNPs that were significantly related to 

changes in muscular phenotypes. To analyse the overall genetic effect, data-driven 

GPSs were calculated by summing up predisposing alleles, and were evaluated in 

a general linear model with sex, age, body mass index and post-training values of 

skeletal muscle mass or muscle strength as covariates. 

Results: 46 SNPs from 34 genes were identified as being significantly linked to one-

year cessation-related muscular alterations. These genes cover the domains of 

DNA methylation, metabolism, muscle growth, muscle structure and neural control. 

Data-driven GPSs and one-year cessation-related muscular alterations were 

significantly related (p < 0.01). Participants with higher GPSs had less muscular 

declines during the cessation period while data-driven GPSs accounted for 26–37% 

of the phenotypic variances. 

Conclusions: Our findings provide supportive evidence for a genetic association with 

muscular changes after the cessation of a structured training among older people, 

indicating that the maintenance of training benefits is partially gene-related.  

Keywords: genetic predisposition score, muscle, older adults, cessation of 

structured training 

1. Introduction 

The process of ageing is commonly accompanied by progressive loss in skeletal 

muscle mass and muscle strength.198 A 3-year follow-up study of Goodpaster et al.23 

on older adults aged 70–79 years has revealed a 1% annual loss in leg lean mass 

with muscle strength decreasing three times faster than muscle mass. These 

declines in knee extensor strength and thigh muscle mass are associated with 
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increased risk of mobility loss in the older population.21 Consequently, physical 

performance and quality of life in older adults are largely affected by functional and 

structural alterations in ageing muscles.81   

Exercise has been well established as an effective non-pharmacological method to 

counteract muscle degeneration in older adults. Resistance training has long been 

suggested as an effective intervention for frail older adults.199 It helps to increase 

maximal muscle strength and muscle mass, and to reduce risk of falls to a 

considerable extent.199,200 Other exercise interventions, such as whole-body 

vibration (WBV) training and combined training (consisting of both aerobic and 

resistance exercises), are also reported as effective in ameliorating ageing muscle 

conditions. A previous review of WBV training effect in elderly has shown that WBV 

may improve isometric knee strength, muscle power and balance control to a similar 

extent as traditional resistance training.201 Meanwhile, combined training (four times 

per week) carried out among men aged 40–67 years was also reported to exert a 

similar improvement in maximum leg extension strength (with an average increase 

of 22%) as that induced by a resistance training (twice per week, with an average 

increase of 21%).202 

Besides the large number of studies on exercise benefits for the ageing muscle, 

many researchers have also focused on the lasting benefits of exercise by 

describing the loss of muscle strength and size following exercise cessation, termed 

as “detraining”. For example, the lasting of training benefits is training intensity-

dependent. In the study of Fatouros et al.,203 strength and mobility gains of older 

men who received a high intensity resistance training lasted longer than those who 

trained at a low intensity. Moreover, muscle size and muscle strength do not 

decrease at the same speed during detraining. Older women who completed 12 

weeks of resistance training retained a 12% gain in knee extensor strength after 3-

months detraining, while the muscle volume of knee extensors had already dropped 

back to baseline levels.204 These muscular decreases during detraining are 

multifactorial. Composition changes such as fat infiltration205 and reduced cross-

sectional area of type I and type II fibers206, morphological alterations like decreased 

pennation angle and fascicle length207, neural control208 and hormone209 changes 

have all been reported to be associated with decreased muscle strength in the 

detraining period. However, the role of genetics in determining the rate of muscular 

changes after the cessation of structured training is poorly understood. It is known 

that some of the variances within the training response can be attributed to genetic 



67 
 

factors in young adults210 and older women211. As reported in the study of Delmonico 

et al.,211 older women with ACTN3 R577 XX genotype had higher baseline knee 

extensor power than R-homozygous carriers, while the latter had greater 

improvement after 10 weeks of strength training. A greater understanding of genetic 

impact on the variances of muscle mass and muscle strength during the cessation 

period could be through considering multiple favourable genotypes in constructing 

genetic predisposing scores (GPS). The GPS has been adopted to explain 

variances in thigh muscle mass and knee strength after cardiac rehabilitation 

training,123 to explore muscular changes with ageing,124 and to evaluate athletic 

status.119 Given the recent findings that GPS explained 14% and 27% of exercised 

induced increases in muscle mass and muscle strength,212 we hypothesise a 

genetic effect on muscular changes after the cessation of a structured training 

intervention. Therefore, the purpose of this research is to study the genetic effect on 

muscular changes after one-year of exercise cessation in an older population.  

2. Methods 

2.1 Participants 

Participants, aged between 61 and 81 years, were originally recruited in an exercise 

intervention study of Bogaerts et al.138 Older adults with physical disorders that 

might affect exercise performance or with any training experience in the past two 

years were excluded. In the study, participants were randomly assigned into a 

control (CON) group, a combined fitness (FIT) group or a WBV group (Figure 1). 

The training intervention lasted for one year and the participants were not aware of 

a follow-up test. One year after the training program, participants who had provided 

blood samples for genotyping in the exercise (FIT or WBV) groups, were contacted 

for a follow-up test. Since our previous study has reported the adaptive changes of 

muscle mass and muscle strength induced by exercise,212 this study mainly focused 

on the muscular changes in these exercise groups after the cessation. Noticeably, 

the study of Bogaerts et al.138 only included the participants who fully completed the 

training program. In our study, we included participants who had more than 60% of 

attendance during the training and completed at least one of the follow-up 

measurements (Figure 1). This ensured a comparatively large sample size for 

further genetic study. This study was approved by the University Ethics Committee 

and all the participants were asked to sign an informed consent form.  
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Figure 1. Flowchart of participants in present study. 

2.2 Training protocols 

The training programs (P2-Supplementary Table 1) have been described in detail in 

the study of Bogaerts et al.138 Briefly, participants in the exercise groups trained 

three times per week on non-consecutive days for one year. The training program 

for the FIT group was designed following the ACSM guidelines for older adults 

exercise prescription,158 which consisted of aerobic, resistance, balance and 

flexibility exercises. Participants in the WBV group were instructed to perform static 

and dynamic leg exercises on vibration platforms (Power Plate, Amsterdam, 

Netherlands). The training programs were performed at Leuven University’s 

Training Center under the guidance and supervision of qualified health and fitness 

instructors. Participants in the CON group were advised to maintain their lifestyle 

and to not engage in any new physical activity. 
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2.3 Genotyping 

A 4.5 ml venous blood sample was collected from each participant using an EDTA-

coated tube. DNA was extracted using the chemagic Magnetic Separation Module I 

(chemagic MSM I, PerkinElmer Inc., Waltham, MA, USA). Genotyping was 

completed with GoldenGate assay (Illumina, Inc., San Diego, CA, USA) following 

the protocols of the manufacturer.213 Single nucleotide polymorphisms (SNPs) that 

were reported to be associated with the development or regulation of muscle 

function or muscle growth were selected based on published articles (up to August 

2014) and expression quantitative trait loci (eQTL) analysis. In total, 224 muscle-

related SNPs (P2-Supplementary Table 2) were genotyped from each blood sample. 

From the genotyping results, 12 SNPs had a detection success rate of less than 

80%; 3 SNPs showed the same genotypes among all the participants; 58 SNPs had 

high linkage disequilibrium (absolute correlation coefficient greater than 0.8) within 

19 subgroups. Within these subgroups, the SNP with the largest number of 

correlated SNPs or published references was selected as a representative for each 

subgroup. In the end, 54 SNPs were excluded from the initial SNP pool and 170 

SNPs were kept for further analyses. 

2.4 Parameter measurements 

Electrical resistance of the body was measured by bioelectrical impedance analysis 

(BIA) using Bodystat 1500MDD (Bodystat Ltd, Douglas, UK). Skeletal muscle mass 

(SMM) was estimated using the following equation which was developed by 

Janssen et al.140: SM mass (kg) = (Ht2/R × 0.401) + (sex × 3.825) + [age × (-0.071)] 

+ 5.102 where Ht stands for height in centimetres; R stands for BIA resistance in 

ohms; in sex, men = 1 and women = 0; age is in years. SMM calculated by this 

equation showed validity among older adults with a standard error of estimate of 

2.7kg (9%).140 

Isometric, isotonic and isokinetic knee extensor strength was tested using Biodex 

Medical System 3 dynamometer (Biodex Company, New York, USA). Participants 

were asked to complete a 5-minute warm up on a free-loaded cycle ergometer 

followed by two practice trials on the dynamometer to ensure some familiarization. 

In the actual tests, each of the following protocols were performed twice and the 

maximum value of each protocol was recorded for further analyses. 

Isometric test: Peak torque of isometric knee extension was measured at a knee 

flexion angle of 60° (PTIM60 in Nm, 0° representing full extension) with a duration of 
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5 seconds. Maximal isometric strength at the flexion angle of 90° was also recorded 

for load setting in the isotonic test. 

Isotonic test: The isotonic test included 3 sets of ballistic knee extension movements 

with a load of 20% of the peak isometric strength obtained at the knee flexion angle 

of 90°. Starting at the knee flexion angle of 90°, participants were asked to extend 

their legs as fast as possible until they achieved the knee flexion angle of 20°. Peak 

velocity (PVIT20 in °/s) was recorded for further analyses. 

Isokinetic test: Participants performed isokinetic knee extension and flexion 

movements at two different speeds.  The first measurement required participants to 

complete four repetitions at a low velocity of 60°/s. The second measurement 

consisted of six repetitions at a higher velocity of 240°/s. Peak torque of knee 

extensors at 60°/s (PTIK60 in Nm) and at 240°/s (PTIK240 in Nm) were recorded and 

further analysed. 

2.5 Statistical analyses 

All data are reported as mean ± standard deviation (SD) and were analysed using 

SAS statistical software version 9.4 for Windows (SAS Institute Inc, Cary, NC). 

Since muscle mass and muscle strength can be affected by multiple factors, the 

effect of a single gene on muscle is rather limited. Therefore, an accumulative effect 

of multiple gene variants was hypothesized in this study. Similar to the data-driven 

method used in the study of Charlier et al.,124 alleles that were positively related to 

muscular changes were regarded as predisposing alleles and were equally 

weighted as 1. Stepwise regression analysis, with an entry/exit significance of 

0.1/0.05, was used in the selection of SNPs (from a SNP pool of 170) that were 

significantly related to relative change of each muscular phenotype after the 

cessation. Genetic predisposition score (GPS) of each participant was calculated by 

adding up the weight of each phenotype-driven genotype. For example, using 

stepwise regression, allele G of SNP rs3762546 in gene MSTN was found to be 

favourable for ∆PTIM60 after one-year of cessation. Thus, the genotype score of 

rs3762546 was calculated based on the number of G allele: GG=2, CG=1 and CC=0. 

∆PTIM60-driven GPS in a participant was calculated by summing up scores of all the 

SNPs that were found significantly related to corresponding phenotypes. 

Comparisons between the FIT and the WBV groups at post-training and one-year 

follow-up tests were made by two-way analysis of variance (ANOVA) with sex and 

group as factors. Bonferroni method was applied as post-hoc test. The same 
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ANOVA was also completed in the comparisons of relative changes of muscular 

phenotypes after one-year of exercise cessation. To compare the value of each 

muscular phenotype between post-training and follow-up tests, repeated measures 

ANOVA was made with sex and group as factors. A p value of 0.05 was set as the 

level of significance. The association between GPS and relative changes of 

muscular parameters was evaluated by general linear model (GLM) with age, sex, 

body mass index (BMI) and corresponding post-training muscle values as 

covariates. 

3. Results 

3.1 Descriptive data and relative changes at post-training and follow-up tests 

Descriptive data of muscular phenotypes in the FIT and the WBV groups are 

presented in Table 1. Between-group comparisons showed that participants in the 

FIT and the WBV groups were not different for muscle mass and muscle strength at 

both post-training and follow-up tests (p > 0.05). By comparisons between post-

training and one-year follow-up test, significant increases in BMI were found for both 

exercise groups (p < 0.01) one year after the cessation of structured training. 

Moreover, PVIT20 (p < 0.01), PTIK60 (p = 0.02) and PTIK240 (p < 0.01) decreased 

significantly in both exercise groups. Time*sex, time*group or time*sex*group 

interactions were non-significant for all phenotypes. Table 2 presents the number of 

participants with increased/decreased muscle mass and strength after the one-year 

cessation. The majority of participants had decreased dynamic strength (i.e. PVIT20 

PTIK60 and PTIK240) while approximately half of the participants experienced 

decreases in SMM and PTIM60.
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Table 1 Descriptive data and p values from ANOVA of between group comparisons at post-training and follow-up tests  

Parameters Post-training Follow-up ∆Follow-Post (%) 
p values from repeated measures ANOVA 

Time Time*Sex Time*Group Time*Sex*Group 

AGE (year)    - - - - 

FIT        

F 66.44 ± 3.79 - - 

    

M 67.48 ± 3.96 - - 

WBV    

F 67.07 ± 5.17 - - 

M 67.79 ± 4.51 - - 

p value at Group 

level 
0.55 

      

p value at 

Group*Sex level 
0.84 

      

        

Height (m)    - - - - 

FIT        

F 160.02 ± 7.90 - - 
    

M 174.32 ± 6.09 - - 
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WBV    

F 161.22 ± 5.67 - - 

M 173.08 ± 6.50 - - 

p value at Group 

level 
0.99 

      

p value at 

Group*Sex level 
0.28 

      

        

Body mass (kg)    <0.01** 0.19 0.84 0.49 

FIT        

F 66.62 ± 9.39 66.32 ± 8.92 -1.36 ± 2.80 

    

M 82.04 ± 9.57 83.15 ± 9.51 -0.09 ± 2.90 

WBV    

F 68.65 ± 9.27 68.58 ± 8.86 -0.17 ± 3.53 

M 78.95 ± 11.64 80.21 ± 12.77 -0.44 ± 3.21 

p value at Group 

level 
0.77 

0.85 0.97     

p value at 

Group*Sex level 
0.15 

0.16 0.61     
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power at Group 

level 
0.06 

0.05 0.05     

power at 

Group*Sex level 
0.30 

0.29 0.08     

        

BMI (kg/m2)    <0.01** 0.28 0.90 0.47 

FIT        

F 26.08 ± 3.86 26.20 ± 3.83 -1.36 ± 2.80 

    

M 27.13 ± 3.32 27.42 ± 3.35 -0.09 ± 2.90 

WBV    

F 26.44 ± 3.50 26.47 ± 3.44 -0.17 ± 3.53 

M 26.43 ± 3.62 26.62 ± 3.63 -0.44 ± 3.21 

p value at Group 

level 
0.79 

0.68 0.97     

p value at 

Group*Sex level 
0.41 

0.39 0.61     

power at Group 

level 
0.06 

0.07 0.05     

power at 

Group*Sex level 
0.13 

0.14 0.08     
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SMM (kg)    0.45 0.96 0.55 0.83 

FIT        

F 18.04 ± 2.00 17.71 ± 2.34 1.40 ± 8.29 

    

M 30.21 ± 3.04 29.99 ± 3.05 4.21 ± 6.28 

WBV    

F 18.46 ± 2.18 18.49 ± 2.61 2.76 ± 9.52 

M 30.33 ± 3.23 30.84 ± 5.58 4.32 ± 17.25 

p value at Group 

level 
0.58 

0.29 0.53     

p value at 

Group*Sex level 
0.76 

0.97 0.95     

power at Group 

level 
0.09 

0.19 0.10     

power at 

Group*Sex level 
0.06 

0.05 0.05     

        

PTIM60 (Nm)    0.43 0.93 0.64 0.64 

FIT        

F 127.92 ± 18.18 127.79 ± 26.66 13.43 ± 17.70     
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M 186.32 ± 28.17 186.63 ± 32.58 16.50 ± 17.73 

WBV    

F 123.05 ± 27.56 125.63 ± 24.80 15.32 ± 18.18 

M 181.48 ± 36.61 174.20 ± 37.29 6.79 ± 22.37 

p value at Group 

level 
0.41 

0.31 0.76     

p value at 

Group*Sex level 
1.00 

0.48 0.64     

power at Group 

level 
0.13 

0.17 0.06     

power at 

Group*Sex level 
0.05 

0.11 0.08     

        

        

        

PVIT20 (°/s)    <0.01** 0.39 0.68 0.67 

FIT        

F 330.17 ± 37.73 307.58 ± 58.96 -1.63 ± 11.56 

    M 377.62 ± 34.91 353.95 ± 35.29 -1.68 ± 9.37 

WBV    
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F 328.08 ± 31.45 321.75 ± 33.10 0.87 ± 12.18 

M 364.79 ± 36.99 345.05 ± 40.26 -0.34 ± 15.02 

p value at Group 

level 
0. 29 

0.78 0.65     

p value at 

Group*Sex level 
0.45 

0.22 0.85     

power at Group 

level 
0.18 

0.06 0.07     

power at 

Group*Sex level 
0.12 

0.24 0.05     

        

PTIK60 (Nm)    0.02* 0.25 0.27 0.56 

FIT        

F 111.78 ± 17.98 102.65 ± 25.28 2.09 ± 6.79 

    

M 168.54 ± 29.57 164.18 ± 30.00 5.70 ± 13.44 

WBV    

F 106.50 ± 18.50 107.98 ± 18.23 0.72 ± 8.9 

M 158.26 ± 28.67 156.29 ± 33.40 0.29 ± 17.16 

p value at Group 

level 
0.12 

0.84 0.14     
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p value at 

Group*Sex level 
0.61 

0.30 0.71     

power at Group 

level 
0.35 

0.06 0.31     

power at 

Group*Sex level 
0.08 

0.18 0.07     

        

PTIK240 (Nm)    <0.01** 0.97 0.50 0.85 

FIT        

F 60.46 ± 10.26 53.11 ± 15.94 -0.83 ± 8.22 

    

M 93.58 ± 16.04 89.14 ± 14.63 3.76 ± 14.76 

WBV    

F 57.54 ± 10.45 57.24 ± 10.06 3.17 ± 10.19 

M 85.64 ± 14.62 82.28 ± 14.52 0.54 ± 16.63 

p value at Group 

level 
0.04 

0.66 0.32     

p value at 

Group*Sex level 
0.34 

0.08 0.51     

power at Group 

level 
0.53 

0.07 0.17     
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power at 

Group*Sex level 
0.16 

0.41 0.10     

* p < 0.05, ** p < 0.01 

 

Table 2 Count of participants with increased/decreased muscle mass and strength after one-year cessation of structured training 

Muscular 

phenotype 

No. of 

participants with 

percentage 

change <= 0 

No. of 

participants with 

percentage 

change > 0 

Percentage of 

participants with negative 

percentage change (%) 

SMM (kg)    

FIT 19 24 44 

WBV 34 33 51 

PTIM60 (Nm)    

FIT 15 18 45 

WBV 23 22 51 

PVIT20 (°/s)    

FIT 27 5 84 

WBV 33 11 75 
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PTIK60 (Nm)    

FIT 25 8 76 

WBV 24 21 53 

PTIK240 (Nm)    

FIT 22 11 67 

WBV 23 11 68 

 

Table 3. Regressions of data-driven GPSs and relative muscular changes after one-year cessation of structured training  

 

GPS 

SEX 

(M=1,F

=0) 

AGE BMI 

Correspon

ding post-

training 

value 

Interce

pt 

Adj. 

R2 

No. of 

SNPs 

∆SMM (%)         

Estimate 2.09 -0.91 0.07 0.18 - 

-29.36 0.27 9 
β value 0.52 -0.07 0.05 0.09 - 

Partial R2 0.27 0.01 <0.01 0.01 - 

p  <0.01 0.39 0.58 0.27 - 

∆ PTIM60 (%)         

Estimate 4.53 3.02 -0.02 0.50 -0.06 -38.69 0.32 7 
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β value 0.53 0.11 -0.01 0.12 -0.20 

Partial R2 0.27 0.01 <0.01 0.02 0.03 

p  <0.01 0.45 0.96 0.22 0.18 

∆ PVIT20 (%)         

Estimate 2.24 1.90 -0.31 -0.09 -0.04 

-3.40 0.40 13 
β value 0.59 0.14 -0.18 -0.04 -0.22 

Partial R2 0.36 0.02 0.04 <0.01 0.06 

p  <0.01 0.22 0.08 0.66 0.05 

∆ PTIK60 (%)         

Estimate 2.74 2.39 -0.16 0.23 -0.01 

-19.44 0.37 9 
β value 0.62 0.15 -0.08 0.09 -0.04 

Partial R2 0.37 0.01 0.01 0.01 <0.01 

p  <0.01 0.31 0.42 0.33 0.76 

∆ PTIK240 

(%) 
        

Estimate 2.56 0.84 -0.03 0.34 0.02 

-68.75 0.27 18 
β value 0.52 0.05 -0.01 0.12 0.04 

Partial R2 0.26 <0.01 <0.01 0.02 <0.01 

p  <0.01 0.78 0.90 0.23 0.78 
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3.2 Associations of GPS with relative muscular changes after one-year cessation of 

structured training 

Since no significant differences were found in relative changes between the FIT and 

the WBV groups, values of the two groups were analysed together for the selection 

of data-driven SNPs and the evaluation of genetic influence on muscular changes 

after the one-year cessation of structured training. Muscular phenotype-driven 

SNPs are presented in detail in P2-Supplementary Table 3, in which we showed 

that unlike many genes that contributed only one SNP to muscular changes, more 

than one SNP was identified in gene ACVR1B, ATP1A2, MTHFR and MTRR, 

respectively. Furthermore, rs2251375 in H19, rs3741211 in IGF2, rs2390760 in 

METTL21C, rs3762546 in MSTN, rs1805087 in MTR, rs327575 and rs97713 in 

MTRR, and rs4790881 in SMG6 were found to be linked with more than one change 

in muscular parameters (P2-Supplementary Table 3). Yet, no SNP was found to be 

associated will all the muscular parameters. 

GPS was calculated by summing up the weight of predisposing SNPs. The results 

of GLM are presented in Table 3. These results showed that data-driven GPS was 

closely associated with changes in muscular phenotypes one year after the 

cessation of a structured training (p < 0.01). Noticeably, GPS accounted for similar 

variances (from 26% to 37%) in muscle mass and muscle strength changes during 

the cessation period. Increasing the data-driven GPS with one predisposing allele 

is associated with an increase from 2.09% to 4.53% in the change of SMM, PTIM60, 

PVIT20, PTIK60 and PTIK240. Since muscle strength decreased after the exercise 

cessation, results from table 3 indicate that participants with higher GPS had less 

loss in muscle strength than lower GPS carriers. 

GPS distribution of participants and linear models between GPS and over time 

changes of muscular phenotypes are presented in Figure 2. GPS was categorized 

with no less than 3 participants in each group. As shown in Figures 2a-e, participants 

with higher GPS had less decreases in muscle mass and muscle strength after one-

year cessation of a structured training. 
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Figure 2. Distribution of GPS and its linear regression model with muscular 

phenotype changes after one-year cessation of a structured training. (A) Linear 

regression between genetic predisposition score (GPS) and relative change of 

skeletal muscle mass (∆SMM) in the exercise groups (FIT and WBV) after one year 

cessation of a structured training (adjusted for age, sex, BMI and corresponding 

post-training value). GPS is calculated based on 9 SNPs from 9 genes (rs4870044 

in ESR1, rs11549465 in HIF1A, rs3741211 in IGF2, rs7924316 in IGF2AS, 

rs2390760 in METTL21C, rs3762546 in MSTN and rs97713 in MTRR, rs2229139 

in RYR1, and rs4790881 in SMG6). Individual ∆SMM values is presented on the left 

y-axis. The trend line shows the relation between GPS and ∆SMM.  Least square 

means of ∆SMM in each GPS is presented as dot with standard errors presented 

as error bar. Distribution of participants in each GPS is presented in the histogram 

with number of participants on the right y-axis. Scatterplot is used to present the 

distribution of ∆SMM in each GPS group. (B) Linear regression between GPS and 

relative change of peak isometric knee extension torque at a knee flexion angle of 

60° (∆PTIM60) after one year cessation of a structured training (adjusted for age, 

sex, BMI and corresponding post-training value).  GPS is calculated based on 7 

SNPs from 7 genes (rs2296383 in CACNA1S, rs8111989 in CKM, rs689 in INS, 

rs2390760 in METTL21C, rs3762546 in MSTN, rs327575 in MTRR, and 

rs28357094 in SPP1). (C) Linear regression between GPS and relative change of 

peak velocity of isotonic knee extension (PVIT20) after one year cessation of a 
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structured training (adjusted for age, sex, BMI and corresponding post-training 

value). GPS is calculated based on 13 SNPs from 11 genes (rs3733890 in BHMT, 

rs6107853 in BMP2, rs1800169 in CNTF, rs4511463 in GSC, rs2251375 in H19, 

rs3741211 in IGF2, rs11121828 in MTHFR, rs1805087 in MTR, rs97713, rs1801394 

and rs162031 in MTRR, rs1800470 in TGFB1, and rs1483246 in ZNF804A). (D) 

Linear regression between GPS and relative change of peak torque of isokinetic 

knee extension at 60°/s (PTIK60) after one year cessation of a structured training 

(adjusted for age, sex, BMI and corresponding post-training value). GPS is 

calculated based on 9 SNPs from 8 genes (rs2854248 in ATP1A2, rs10883631 in 

FN1, rs17727841 in IGF1, rs2390760 in METTL21C, rs1801133 in MTHFR, 

rs327575 and rs7703033 in MTRR, rs4790881 in SMG6, and rs10497520 in TTN). 

(E) Linear regression between GPS and relative change of peak torque of isokinetic 

knee extension at 240°/s (PTIK240) after one year cessation of a structured training 

(adjusted for age, sex, BMI and corresponding post-training value). GPS is 

calculated based on 18 SNPs from 14 genes (rs746434 and rs10783485 in ACVR1B, 

rs12721026 in APOA1, rs1016732 in ATP1A2, rs3797297 in FST, rs2251375 in H19, 

rs2919358 in KBTBD13, rs1137101 in LEPR , rs3762546 in MSTN, rs1476413 and 

rs1009592 in MTHFR, rs1805087 in MTR, rs10475399, rs326123 and rs9313211 in 

MTRR, rs4950877 in MYOG, rs4253778 in PPARa, and rs142196418 in RIMS1).  

4. Discussion 

4.1 Are gene variants related to muscular changes after the cessation of a structured 

training?  

Using the methods of stepwise regression and data-driven GPS, this study analysed 

the overall genetic effect on muscular changes after one-year cessation of a 

structured training in an older group. From a 170-SNP pool, 46 SNPs of 32 genes 

(P2-Supplementary Table 3) were found to be closely associated with muscular 

changes. GLM results showed that participants with higher GPSs (more favourable 

alleles) are less likely to lose muscle mass and muscle strength after the cessation 

of training. Based on these models, data-driven GPSs explained 26–37% of the 

variances of these muscular changes during the cessation. 

The set-up of multi-gene variants and an exercise cessation background makes it 

difficult to compare our results with other studies. To our knowledge, there is 

presently no research among older adults regarding the genetic influence on 

muscular changes following a cessation of training, with limited research 
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investigating the genetic influence on muscular adaptations resulting from exercise 

intervention. A cross-sectional study carried out by Charlier et al.124 among 565 

Flemish Caucasians (aged 19–73 yr) showed that 4.6–6.6% of variances in muscle 

mass and muscle strength could be explained by data-driven GPS. Such limited 

degrees of explainable variance by GPS might be due to the wide age range in 

which many non-genetic factors can affect muscular phenotypes in the long term. 

Therefore, when restricting the set-up to a shorter age range, an increased role for 

GPS (as what we have found in this study) can be observed. The degree of genetic 

variation contributing to muscular changes after the cessation of exercise (26–37%) 

are similar to those reported for responses to exercise interventions. With a set of 

54 SNPs, data-driven GPS-explained 6–26% of variances in knee extension 

strength and muscle size adaptations after a 3-month training among coronary 

artery patients.123 Our previous study in the same study population also found that 

data-driven GPS accounted for 14% and 27% of the variances in ∆SMM and ∆PTIM60, 

respectively, after a one-year exercise intervention.212 

In addition, the present study found a few SNPs that were previously reported to be 

associated with exercise-induced muscular gains. Some of those SNPs even 

contributed to the change in the same phenotype. Based on our results, rs1016732 

from gene ATP1A2 showed an association with the decreased PTIK240 after training 

cessation while it also contributed to the increased peak torque of knee extension 

at a high speed of 180°/s in response to a cardiac rehabilitation program.123 Similarly, 

another SNP (rs2854248) from gene ATP1A2 showed association with ∆PTIK60 both 

in our study and that of Thomaes et al.123 Since the favourable alleles from SNPs in 

the study of Thomaes et al.123 were not presented, we could not make comparisons 

regarding to the direction of each SNP. Furthermore, He et al.212 reported that 

METTL21C rs2390760 (with C as the favourable allele) and MSTN rs3762546 (with 

G as the favourable allele) were significantly related to increased muscle mass 

(∆SMM) after WBV and FIT training  while these SNPs were also closely associated 

with the one-year cessation-related  SMM change in our study. However, in the 

present study, allele G was found as a favourable allele in SNP rs2390760 and allele 

G remained as the favourable allele in SNP rs3762546. This suggests that carriers 

of the C allele in METTL21C rs2390760 are more susceptible to exercise than G 

allele carriers while allele G in MSTN rs3762546 is predisposing for the adaption of 

muscle mass in exercise as well as its maintenance after the cessation 
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4.2 What kind of genes are related to muscular alterations after the cessation of 

exercise? 

Although the validation on datasets with other older adults still remains to be tested, 

our findings suggest some representative variants out of a large SNP set that are 

significantly related to muscular changes after exercise cessation. Based on the 

categories in P2-Supplementary Table 2, among the genes that had significant 

associations with muscular changes in this study, 3 genes are involved in DNA 

methylation, 3 genes are related to hormone expression or its receptor, 9 genes 

encode for growth/differentiation factors, 9 genes are metabolism-related, 7 genes 

contribute to muscle/bone structure and 3 genes are involved in neural control.  

The discovery of a contribution of gene MTHFR, MTR and MTRR to muscular 

changes indicates the involvement of DNA methylation after the cessation of 

exercise. DNA methylation is one of the mechanisms in epigenetic processes, which 

regulates gene expression without entailing a change in the DNA sequence.83 

Generally, hypermethylation in promoter regions will repress transcriptions of 

corresponding genes while hypomethylation will reactivate them. Recent studies 

have shown that methylation changes can be induced by exercise. In the study of 

Barrès et al.,195 muscle biopsies were collected 20 mins after an acute aerobic 

capacity test and hypomethylation were found in promoter regions of several 

metabolism-related genes (PGC-1α, PDK4 and PPAR-δ). Meanwhile, 

hypomethylation also took place in some genes (BICC1, STAG1, GRIK2 and TRAF1) 

after both a single bout and a 7-wk resistance training program, and returned to 

baseline levels after a cessation of 7-wk.102 In our present study, we found that 

genetic variation in MTHFR, MTR and MTRR genes, which encode for 

corresponding enzymes that regulate the methylation circle,214 might play a role in 

altered methylation during the cessation period. Therefore, it is likely that a DNA 

hypomethylation favourable gene might be associated with a better response 

towards training as well as a longer maintenance of the gains when a structured 

training stops. 

Genes related to hormone expression, muscle growth/differentiation, metabolism or 

muscle/bone structure have been linked to physical performances by many 

studies.65,66,210 PPARa intron 7 (rs4253778) G/C polymorphism has been reported 

as exercise-oriented with a high frequency (80%) of GG genotype existing among 

endurance athletes. Further biopsy analysis showed a higher percentage of slow-
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twitch fibers in GG carriers when compared with the CC counterpart.215 Similarly, in 

the aspect of one-year cessation-related muscular changes among the participants 

in our study, allele G was found favourable (with less decrease) for the change of 

dynamic muscle strength at a high contraction speed (∆PVIK240).  

In the domain of neural factors, this study identified three SNPs from three genes, 

among which is the gene CNTF. Encoding for ciliary neurotrophic factor, the 

rs1800169 polymorphism in gene CNTF has been found to be associated with 

muscle strength in several studies. Walsh et al. reported a sex-specific effect in gene 

CNTF G/A polymorphism with only women of homozygous G alleles improving more 

in isometric elbow strength than A-allele carries after a 12-wk upper arm training.216 

This is consistent with our results of the association between rs1800169 and 

dynamic knee contraction performance under a low load (∆PVIT20) with allele G 

exerting a favourable effect after the cessation of exercise. Yet, our findings 

contradict the cross-sectional study of De Mars et al.,217 who studied 493 adults 

(aged 38-80 yr) and found that polymorphisms in gene CNTFR rather than CNTF 

were related to knee extension strength differences. 

4.3 Are the genes associated with one-year cessation-related muscular changes the 

same as those related to a long term muscular ageing process? 

Generally, the one-year cessation of exercise in our study can be regarded as a 

one-year ageing process. Therefore, we compared our results with other genetic 

studies on a long term muscular changes related to ageing. A 5-year longitudinal 

study carried out by Delmonico et al.218 among older adults aged 70-79 years found 

no significant association between ACTN3 R577X (rs1815739) polymorphism and 

declined muscle strength in ageing. Another longitudinal study (mean follow-up 

period: 14.2 yr) made by Schrager et al.219 also showed that the IGF2 ApaI (rs680) 

polymorphism was not related to losses of arm endurance capacity and grip strength. 

Similarly, these genes did not show significant linkage to muscular changes in our 

study. Yet, we did find 7 common gene variants (P2-Supplementary Table 4), which 

were favourable for one-year exercise cessation-related  muscular changes in the 

present study, that were previously reported in a cross-sectional study on muscle 

mass and muscle strength among adults with an age range of 19-73 years124 despite 

that the favourable alleles in some of these genes are not consistent with that in the 

present study. 
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4.4 Limitations 

The data-driven GPS is only one approach to investigate the association between 

one-year exercise cessation-related muscular decreases and gene variants. Many 

other processing methods such as total GPS, weighted GPS or elastic net GPS 

were also used in different studies with varying predictive powers. As found in the 

study of Charlier et al.,124 elastic net GPS had the best prediction on SMM while 

data-driven GPS and total GPS had the best prediction on strength-related 

phenotypes. Based on 6 genetic polymorphisms, Massidda et al.220 found the 

weighted GPS explained more in variance of explosive performances (18% squat 

jump and 24% counter-movement jump) than the total GPS. Noticeably, as 

presented in the first part of this discussion, data-driven GPS exerted similar 

predictive power regarding the muscular changes among the older participants after 

exercise training.123,212 Therefore, for the consistency of approach in our previous 

study, we used a data-driven GPS approach in the present study.  

Our conclusions are also limited considering the fact that the selection of data-driven 

SNPs and the predictive power of GPS were tested on the same sample. An 

application to an independent sample or cross-validation should better testify our 

findings. Furthermore, although we find that participants with higher muscle-related 

GPS scores tend to have smaller losses in muscle mass and strength after the 

cessation of exercise, the result is weakened by the limited number of participants 

in the highest and lowest GPS groups. As illustrated in Figure 2, a large variance in 

muscular phenotypes can be found in GPS groups at both ends of the GPS 

distribution. Therefore, with a larger sample size, there might be more participants 

at both ends, resulting in smaller standard error of estimates and confidence 

intervals in these two GPS groups. 

Despite that the majority of participants demonstrated decreased dynamic strength 

(Table 2), this study failed to control for external factors such as food consumption 

and exercise habits during the one-year of cessation. Perhaps these factors can 

partially explain the increase of SMM and PTIM60 in half of our participants besides 

the possible explanation of individual variability. 

5. Conclusion 

In this study, we applied stepwise regression and data-driven GPS methods from a 

170-SNP set to explore the genetic effect on decreases of muscular phenotypes 

after one-year cessation of a structured training. We found that GPSs accounted for 
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26–37% of the variances of corresponding muscular changes while participants with 

more favourable gene variants tended to have less declines in those changes. 

Moreover, 46 SNPs from 34 genes were identified to be significantly associated with 

these muscular alterations. These genes contribute to the domains of DNA 

methylation, metabolism, muscle growth, muscle structure and neural control. In 

addition, our results provide supportive explanations for the involvement of genetic 

variants in inter-individual variations of the loss of muscular benefits after the 

cessation of a structured training among the older population.  
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Abstract 

Background: 

Sarcopenia is characterized by progressive decreases in muscle mass, muscle 

strength and muscle function with ageing. Although many studies have investigated 

the mechanisms of sarcopenia, its connection with epigenetic factors, such as DNA 

methylation, still remains poorly understood. The aim of this study was to explore 

sarcopenia-related DNA methylation differences in blood samples between age-

matched sarcopenic and non-sarcopenic older women. 

Methods: 

A sarcopenic group (n = 24) was identified and selected from a set of 247 older 

Caucasian women (aged 65–80 yr) based on cut-off points of skeletal muscle index 

at 6.75 kg/m2 and grip strength at 26 kg (the lower quintile of grip strength in the 

set). A non-sarcopenic group (n = 24) was created with a similar age distribution as 

that of the sarcopenic group. DNA methylation patterns of whole blood samples from 

both groups were analysed using Infinium MethylationEPIC BeadChip arrays. 

Differentially methylated CpG sites (dmCpGs) were identified at a p value threshold 

of 0.01 by comparing methylation levels between the sarcopenic and non-

sarcopenic groups at each CpG site. dmCpG-related genes were annotated based 

on homo sapiens hg19 genome build. The functions of these genes were further 

examined by gene ontology and KEGG pathway enrichment analysis. 

Results: 

The global methylation level of all analysed CpG sites (n = 788,074) showed no 

significant difference between the sarcopenic and non-sarcopenic groups (p = 

0.812), while the average methylation level of dmCpGs (n = 6,258) was significantly 

lower in the sarcopenic group (p = 0.004). The sarcopenic group had significantly 

higher methylation levels in TSS200 (the region from transcription start site to 200 

nucleotides upstream of the site) and lower methylation levels in gene body and 

3'UTR regions. In respect of CpG regions, CpG islands in promoters and some 

intragenic regions showed greater levels of methylation in the sarcopenic group. 

dmCpG-related KEGG pathways were mainly associated with muscle function, actin 

cytoskeleton regulation and energy metabolism. Seven genes (HSPB1, PBX4, 

CNKSR3, ORMDL3, MIR10A, ZNF619 and CRADD) were found with the same 

methylation direction as previous studies of blood sample methylation during ageing. 
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54 out of 4,335 genes were shared with previous studies of resistance training.  

Conclusion: 

Our results improve understanding of epigenetic mechanisms of sarcopenia by 

identifying sarcopenia-related DNA methylation differences in blood samples of 

older women. These methylation differences suggest underlying alterations of gene 

expression and pathway function, which can partially explain sarcopenia-related 

muscular changes. 

Keywords: Sarcopenia, Older women, DNA methylation, Differentially methylated 

CpG sites, Pathway analysis 

1. Introduction 

DNA methylation is a mechanism of regulation of gene expression without alterating 

the original gene sequences.83 In mammals, cytosine is the most common base 

where methylation takes place.221 Methylation of cytosine involves the attachment 

of a methyl group to the 5' position of cytosine and can be found in 57–85% of 

cytosin-phosphate-guanine (CpG) sites.88 Most CpG sites scatter in mammal 

genomes; yet, there are regions with clustered CpG sites, known as CpG islands,222 

which can be found in 72% of gene promoters.89 The dynamic change of DNA 

methylation is connected to the regulation of gene expression during development 

and differentiation.91 Methylated CpG islands in gene promoters have been 

associated with long-term gene silencing.223 Moreover, methylated CpG islands of 

intragenic regions have been found to influence various functions; for example, 

intragenic DNA methylation in transcriptionally active genes can impede gene 

expression by reducing elongation efficiency of RNA polymerase II.93 Methylation in 

intragenic regions might also prevent gene bodies from spurious transcriptions,224 

and the activities of some methylated intragenic CpG islands are possibly regulated 

by other CpG islands acting as initiators of transcription.94 Besides CpG islands, the 

methylation of CpG shores (sequences within 2 kb distance from CpG islands225) is 

also found in the regulation of gene expression.226 DNA methylation patterns can be 

modified by many factors such as age, air polution, lifestyle, nutrition and 

training.102,104,105,195,227,228 The association between ageing and DNA methylation 

has been studied in various tissues such as saliva,100 blood,229,230 muscle,101 skin231 

and brain.232 In vitro myoblast cultivation demonstrated that an acute early 

proliferative lifespan TNF-α exposure induced a long-term maintenance of elevated 

myoD methylation, indicating an underlying epigenetic regulation that might be 
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related to muscle loss in later life.233 Zykovich et al. identified 500 ageing-related 

CpGs as possible predictors of chronological/biological age by comparing DNA 

methylation patterns in skeletal muscle biopsies between old and young adults.101 

Besides ageing studies, DNA methylation changes have also been related to many 

disease conditions such as breast cancer,226 rhabdomyosarcoma234 and juvenile 

dermatomyositis.235  

Sarcopenia has been recognised as a muscle disease, which is characterized by 

progressive decreases in muscle mass and muscle function.6 Although ageing is 

the primary factor, other factors, such as disuse and malnutrition, have also been 

identified as covariates of sarcopenia.9 Considering that these factors are also 

reported to be associated with methylation changes, a possible relationship between 

sarcopenia and DNA methylation is suggested. Notably, sarcopenia-related 

changes are not restricted to the muscle itself, as endocrine disorders are also 

linked to sarcopenia.135 Inflammatory cytokines such as tumour necrosis factor 

(TNF)-α and interleukin-6 (IL-6) increase muscle loss and impair muscle 

regenerating capacity during the ageing process.134 Serum levels of IL-6, secreted 

protein acidic and rich in cysteine (SPARC) and macrophage migration inhibitory 

factor (MIF) were found to be higher in those with sarcopenia compared to controls 

while insulin-like growth factor 1 (IGF-1) level was significantly lower in 

sarcopenics.136 A combined score on these serum levels could be used as a 

biomarker for sarcopenia,136 therefore a specific focus on DNA methylation in blood 

could add to the knowledge of more systemic factors contributing to sarcopenia. If 

DNA methylation in blood (partially) overlap with those from muscle biopsy based 

DNA, the more easily accessible venous blood samples can be studied in further 

research and (biomarker) applications.  

The present study aimed to analyse whole blood-based methylation differences 

between sarcopenic and non-sarcopenic populations. The results of this study will 

enrich our understanding of sarcopenia by identifying differentially methylated CpG 

(dmCpG) sites and possible alterations in related gene expression and 

corresponding signalling pathways.  

2. Methods 

2.1. Participants 

A set of 247 older, independently living, Caucasian women (aged 65–80 yr) were 

recruited from the local area, and provided written informed consent following local 
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ethics approval (Manchester Metropolitan University, Crewe, UK). Of the initial 247, 

168 provided 5 mL venous blood samples. These were subsequently categorised 

into sarcopenic (n = 25) and non-sarcopenic (n = 138) groups using cut-off points of 

skeletal muscle index (SMI, calculated using skeletal muscle mass divided by height 

squared) at 6.75 kg/m2 16 and hand grip strength (HGS) at 26 kg (the lower quintile 

of HGS in the recruited set). Through a process of further selection including age 

matching,98 completeness of data, rankings of SMI and hand grip strength z score, 

and summed z score (Figure 1), 24 participants (age of sarcopenic group 72.5 ± 4.2 

yr, non-sarcopenic group 70.5 ± 3.3 yr) from each group were selected for DNA 

methylation analysis. In the sarcopenic group, 21 participants with negative z scores 

in SMI and HGS were selected first, with an additional three selected via an 

ascending sequence of summed z scores. Selection in the non-sarcopenic group 

was done in an opposite direction: 23 participants with positive z scores in SMI and 

HGS were selected first, with an additional participant with the highest summed z 

score selected from the remainder (Figure 2).  

 

 

Figure 1. Flowchart of participants in the present study. 
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Figure 2. Distribution of Z scores in participant screening for DNA methylation 

analysis. 

2.2. Hand grip and skeletal muscle mass measurement 

HGS was measured by digital handgrip dynamometer (Jamar Plus+, JLW 

Instruments, Chicago, IL, US). Participants were asked to stand straight and to keep 

their testing arms straight out during the measurement. Verbal encouragement was 

given and three attempts were made on both hands. The highest value was kept for 

further analysis. 

Electrical resistance of the body was measured by bioelectrical impedance analysis 

(BIA) (Bodystat 1500MDD, Bodystat Ltd, Douglas, UK). Before the test, participants 

were asked to remove any metal attachments and to lay in a supine position on a 

physiotherapy bed for 4 min. Electrodes were placed on the dorsum of the right hand 

and right foot according to manufacturer instructions. During the test, the participant 

was asked to stay quiet and relaxed. Skeletal muscle mass was estimated using the 

following equation which was developed by Janssen et al.140: Skeletal muscle mass 

(kg) = (Ht2/R × 0.401) – age × 0.071 + 5.102 where Ht is height in cm; R is BIA 

resistance in ohms; age is in years. This equation has a high coefficient of 

determination (r2 = 0.86) and low bias (SEE = 2.7 kg) compared to MRI for skeletal 

muscle mass estimation across an age range of 18–86 yr.140 Whole body SMI was 

later calculated by dividing skeletal muscle mass by height squared. 
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2.3. DNA extraction and methylation measurement 

DNA was extracted from venous blood samples by QIAamp® DNA Blood Mini Kit 

(Qiagen, Crawley, UK) following the instructions of the manual. DNA methylation 

was measured using Illumina® Infinium MethylationEPIC BeadChip arrays (Illumina 

Inc., San Diego, CA, US) at the Genomics Core facility (Center for Human Genetics 

– UZ/KU Leuven – Herestraat 49 bus 602, B-3000 Leuven). Methylation files were 

read by R “Minfi” package,141 background signals were corrected by normal-

exponential out-of-band (Noob) method, and methylation values (β values, 

methylation percentages at measured probes) were normalized for blood cell 

composition by R ‘FlowSorted.Blood.EPIC’ package.142 Probes were dropped under 

one of the three conditions: 1) probes with non-significant background signal levels 

(p > 0.01) at methylated and unmethylated channels; 2) probes that contain either 

single nucleotide polymorphisms at the CpG interrogation or at the single nucleotide 

extension as suggested in the “Minfi” package (reference array: 

“IlluminaHumanMethylationEPIC”, annotated by ilm10b4.hg19); 3) cross-active 

probes that were reported in the first supplementary table of Pidsley’s study.143 A 

final total of 788,074 probes were kept for further methylation analyses using Partek 

Genomics Suite V.7.0 (Partek Inc., St. Louis, MO, US), in which CpG probes were 

annotated based on “HumanMethylation850” reference, “MethylationEPIC_v-1-

0_B4” annotation file, “Homo sapiens” species and hg19 genome build. Notably, the 

DNA methylation analysis in Partek was based on the M value (log transformed 

methylation-to-unmethylation ratio at each CpG site, the default setting of the 

software) instead of the β value. 

2.4. Statistics 

T-tests were used to compare descriptive data (age, height, body mass, BMI, SMI 

and HGS) and methylation levels between the sarcopenic and non-sarcopenic 

groups with a significance of 0.05. Benjamini Hochberg method236 was used for p 

value adjustment in the identification of dmCpG sites and pathway analysis. Since 

the p value of the methylation value comparison at each CpG site was greater than 

0.05 after Benjamini Hochberg correction, an unadjusted p value threshold of 0.01 

was used to define dmCpG sites. The average methylation level of analysed CpG 

sites, proportions of hypermethylated (defined as higher M values in the sarcopenic 

group than the non-sarcopenic group) and hypomethylated (defined as lower M 

values in the sarcopenic group) dmCpG sites, and significant genes or dmCpGs that 
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have been identified in previous ageing-related or muscle-related methylation 

studies were compared with the results of our study. Gene ontology (GO) 

enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 

analyses (databases till May 2019) were also conducted and compared between 

studies based on annotated “gene symbols” of dmCpG sites using Partek. 

3. Results 

3.1. Descriptive data of the sarcopenic and non-sarcopenic groups 

Consistent with the classification criteria, participants in the non-sarcopenic group 

had significantly higher SMI (p < 0.001) and HGS (p < 0.001) than that in the 

sarcopenic group while there was no significant age difference between the two 

groups (p = 0.070). Moreover, body mass (p = 0.003) and BMI (p = 0.006) were also 

significantly larger in the non-sarcopenic group in comparison with the sarcopenic 

group (Table 1). 

Table 1. Descriptive data of participants by groups 

Group 
Age 

(year) 

Body mass 

(kg) 

Height 

 (m) 

BMI 

(kg/m2) 

SMI 

 (kg/m2) 

HGS  

(kg) 

Non-sarcopenic 70.5 ± 3.3 71.7 ± 12.8 1.60 ± 0.05 27.9 ± 4.9 7.45 ± 0.67 36.0 ± 3.7 

Sarcopenic 72.5 ± 4.2 61.5 ± 9.4 1.56 ± 0.11 24.4 ± 3.4 6.00 ± 0.47 23.2 ± 2.5 

p value 0.070 0.003* 0.154 0.006* <0.001* <0.001* 

*: significant difference between the sarcopenic and the non-sarcopenic groups 

3.2. DNA methylation levels  

We compared methylation values at each of the analysed 788,074 CpG sites 

between the sarcopenic and non-sarcopenic groups but no significant CpG sites 

were found after Benjamini Hochberg false discovery rate (FDR) control at a level 

of 0.05. Therefore, CpG sites with unadjusted p values < 0.01 were identified as 

dmCpG sites (n = 6,258) (P3-Supplementary Table 1A, Figure 3A).  

In our study, the total methylation level, represented by the mean methylation value 

of all analysed CpG sites, showed no significant difference between the sarcopenic 

and non-sarcopenic groups (p = 0.812, P3-Supplementary Table 1B, Figure 3B), 

while the average methylation value of dmCpGs was significantly lower in the 

sarcopenic group (p = 0.004, P3-Supplementary Table 1B, Figure 3C). When 

comparing average methylation values of dmCpGs by gene regions, the sarcopenic 
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group had significantly higher methylation levels in gene promoters (TSS200) and 

lower methylation levels in gene body and 3'UTR regions (P3-Supplementary Table 

1B, Figure 4). Moreover, in the sarcopenic group, a greater level of methylation at 

CpG islands was not only found in promoter regions, but also in some intragenic 

regions, such as Exon 1, 3'UTR and 5'UTR (P3-Supplementary Table 1C). 

 

Figure 3. Distribution of T values and β values in analysed CpGs and dmCpGs. (A) 

Distribution of t values of analysed CpGs and dmCpGs, Areas with forward slash (/) 

highlight CpGs with positive T values. Yellow areas marked out dmCpGs. (B) 

Boxplot of average β values of the CpGs between sarcopenic and non-sarcopenic 

women (p = 0.812), (C) Boxplot of average β values of dmCpGs between sarcopenic 

and non-sarcopenic women. The β values in the sarcopenic group are significantly 

lower than the non-sarcopenic group (p = 0.004). 
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Figure 4. Comparison of average β values in different gene regions between 

sarcopenic and non-sarcopenic women. The sarcopenic group has significantly 

higher methylation levels in TSS200 (p = 0.009) and lower methylation levels in 

gene body and 3'UTR regions (p < 0.001 and p = 0.021, respectively). 

Among those identified dmCpG sites, 51.2% (n = 3,205) were hypermethylated and 

the remaining 48.8% (n = 3,053) were hypomethylated (P3-Supplementary Table 

1D, Figure 5). dmCpG methylation value-based unsupervised clustering showed 

that the majority of participants were clustered by corresponding groups (Figure 6).  
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Figure 5. Scatter plot of average β values of CpGs in sarcopenic versus non-

sarcopenic women with hypermethylated dmCpGs in red and hypomethylated 

dmCpGs in green. 

 

Figure 6. Hierarchical clustering of dmCpGs. The left bar represents each participant 

(n=48). The hierarchical cluster on the top represents the two clusters based on 

methylation status of dmCpGs (green colour stands for a negative M value, red 

colour stands for a positive M value). The majority of participants were clustered into 

two groups based on the methylation levels of dmCpGs 

3.3. Distribution of differentially methylated CpG sites 

Although a large amount of dmCpGs were located in CpG-poor areas (known as the 

Open Sea), CpG islands had the highest methylation rate among all the analysed 

CpG regions (1.19%, Figure 7, P3-Supplementary Table 1D). dmCpGs distribution 

included 28.6% located in CpG islands, 9.8-10.6% (totalling 20.4%) in CpG shores 

(within 2kb of CpG islands225) and 2.5-3.1% (totalling 5.6%) in CpG shelves (within 

2kb of CpG shores225) (Figure 8). This indicated that the proportion of dmCpGs was 

negatively related to the distance away from the CpG island. Meanwhile, 83.8% of 

dmCpG sites located in CpG islands were hypermethylated while CpG south shelf 
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(S_Shelf) had the largest hypomethylated proportion of 80% (Figure 9). 

 

Figure 7. Distribution of analysed CpGs and dmCpGs by CpG regions. Most of the 

identified dmCpGs located in the Open Sea region (probably due to the high 

proportion of analysed CpGs in this region). The CpG island region contributed the 

second most dmCpGs. 

 

Figure 8. dmCpGs distribution includes 28.6% located in CpG islands, 9.8 in CpG 
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south shores, 10.6% in CpG north shores, 2.5% in CpG south shelves and 3.1% in 

CpG north shelves. This indicates that the proportion of dmCpGs is negatively 

related to the distance away from the CpG island. 

 

Figure 9. Methylation status of dmCpGs in CpG regions. dmCpGs with higher M 

values in the sarcopenic group than the non-sarcopenic group are defined as 

hypermethylated. dmCpGs with lower M values in the sarcopenic group are 

defined as hypomethylated. 

Besides analyses on CpG regions, we also analysed the distribution of dmCpGs by 

chromosomes. The largest amount of dmCpG sites were found in chromosome 1 

(Figure 10A) while chromosome 19 and chromosome 18 had the largest (1.0%) and 

the smallest proportion (0.6%) of dmCpGs in analysed CpG sites, respectively (P3-

Supplementary Table 1D, Figure 10B). Furthermore, chromosome 19 had the 

highest percentage (1.1%) of hypermethylated dmCpG sites in analysed 

hypermethylated sites while chromosome X had the highest hypomethylated 

proportion (1.2%), followed by chromosome 16 (1.0%). 
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Figure 10. Distribution of dmCpGs and dmCpG proportions across chromosomes. 

(A) Distribution of dmCpGs over chromosomes, (B) Chromosomal distribution of 

relative dmCpGs proportions. Chromosome 19 has the largest relative dmCpG 

methylation proportion (1.0%) while chromosome 18 has the smallest relative 

dmCpG methylation proportion (0.6%). 

3.4. Genes and gene regions with altered methylation status 

Among the identified 6,258 dmCpG sites, 4,840 dmCpGs were annotated by gene 

names and regions (based on the “UCSC_RefGene_Name” and 

“UCSC_RefGene_Group” columns in P3-Supplementary Table 1A). In total, 

hypermethylation and hypomethylation were found in 2,422 and 1,913 genes, 

respectively (some CpG sites are annotated with multiple gene names and regions, 

P3-Supplementary Table 2A). With the largest number of analysed CpG sites (n = 

7,572, P3-Supplementary Table 2B) among all annotated genes, PC gene 

contributed the largest amount of dmCpGs (n = 71, P3-Supplementary Table 2B), 

which were located in hypermethylated CpG islands of the gene body region (P3-

Supplementary Table 2M). Meanwhile, 279 genes were identified with both hyper- 

and hypomethylation (P3-Supplementary Table 2B, Figure 11). Hypermethylation 

was more common than hypomethylation in promoter regions (TSS1500 and 

TSS200), 5'UTR and Exon 1 (P3-Supplementary Table 2, Figure 12). Notably, we 

found that the methylation status of some genes was not identical across the same 

gene region. From our results, gene promoters of 16 genes and gene bodies of 97 

genes were found with both hyper- and hypomethylation (P3-Supplementary Table 

2D).  
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Figure 11. Venn diagram of genes annotated by dmCpGs. 2,143 genes are found 

only with hypermethylated dmCpGs and 1,634 genes are found only with 

hypomethylated dmGpGs. There are 279 genes with both hyper- and 

hypomethylated dmCpGs. 

 

Figure 12. Distribution of methylated genes by gene regions. The majority of 

dmCpGs located in the gene body, the promoter region contributed the second most 

dmCpGs. 

3.5. Enrichment and pathway analysis 

633 terms in GO enrichment analysis were identified with significance after FDR 

control (q value < 0.05) based on the “gene symbols” of dmCpG sites (P3-

Supplementary Table 3A). The most significant GO term was “protein binding” which 

included 1,680 hypermethylated CpG sites (1,488 genes) and 1,356 
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hypomethylated CpG sites (1,152 genes) (P3-Supplementary Table 3C, E). Most 

hypermethylated CpGs located in the CpG island (P3-Supplementary Table 3D) 

while most hypomethylated CpGs were found in the Open Sea (P3-Supplementary 

Table 3F). There were 197 genes with both hyper- and hypomethylated CpGs in the 

“protein binding” term (P3-Supplementary Table 3G). GO analysis based on hyper- 

and hypomethylated promoter regions (P3-Supplementary Table 1E, F) showed that 

291 GO terms were significantly related to hypermethylated promoter regions (q 

value < 0.05) with the term “intracellular part” as the most significant term while 10 

GO terms were significantly connected to hypomethylated promoter regions (q value 

< 0.05) with the term “androgen receptor binding” as the most significant term (P3-

Supplementary Table 3H, I). 

No significant KEGG pathways (q value < 0.05) were found after FDR control while 

37 pathways showed unadjusted significance (p value < 0.05) (P3-Supplementary 

Table 4A). These unadjusted significant terms covered many muscle-related 

aspects such as muscle function (e.g. apelin signaling, cGMP-PKG signaling, insulin 

resistance), actin cytoskeleton regulation (e.g. phosphatidylinositol signaling, focal 

adhesion, adherens junction), energy metabolism (e.g. thermogenesis, AMPK 

signaling, glucagon signaling), neural control (e.g. axon guidance, GABAergic 

synapse), signal transduction (e.g. Wnt signaling, MAPK signaling, cAMP signaling), 

blood pressure regulation (e.g. aldosterone) and cell regeneration (e.g. cell cycle, 

oxytocin signaling). As the most significant KEGG pathway, the “apelin signaling 

pathway” included 56 dmCpGs, half of which were hypermethylated (P3-

Supplementary Table 4C, E, J). Most hypermethylated CpGs located in the CpG 

island (P3-Supplementary Table 4D) and the majority of hypomethylated CpGs were 

found in the Open Sea (P3-Supplementary Table 4F). There were five genes with 

both hyper- and hypomethylated CpGs in the “apelin signaling pathway” (P3-

Supplementary Table 4G). KEGG analysis based on hyper- and hypomethylated 

promoter regions showed that the “cell cycle” and “thermogenesis” pathways were 

the most significant terms associated with hyper- and hypomethylated promoter 

regions, respectively (P3-Supplementary Table 4H, I). 

3.6. Comparative analysis with previous studies 

We first compared muscular phenotype-related genes, which have been reported in 

previous studies,66,212,237 with the genes identified in our study (based on the 

“UCSC_RefGene_Name” column, P3-Supplementary Table 1A) and found 34 
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genes in common (P3-Supplementary Table 5A). We further compared our dmCpGs, 

annotated genes and significant KEGG pathways (unadjusted, p value < 0.05) with 

those previously reported in DNA methylation studies on ageing,101,229,230 muscle 

development,238 muscle diseases234,235 and exercise.102,104,105,195,228  

When compared with studies of blood sample methylation during ageing,229,230 we 

found seven common CpGs in total and the CpGs showed consistent methylation 

direction in all studies (P3-Supplementary Table 5B). Zykovich et al.101 studied the 

skeletal muscle methylation difference between older and young participants and 

identified 5,963 ageing-related dmCpGs, among which 35 dmCpGs were found in 

our dmCpGs and 11 CpGs had the same methylation direction in both studies (P3-

Supplementary Table 5B). Two dmCpGs (cg10093679 and cg19291355) in our 

study were found in the top 500 ageing-related dmCpGs suggested by Zykovich et 

al. and the methylation status was identical in both studies (P3-Supplementary 

Table 5B). Moreover, Zykovich et al. located 17 ageing-related intragenic dmCpGs 

(with 16 CpGs being hypermethylated) in NFATC1, a gene closely associated with 

muscle function as it codes for a transcription factor promoting the expression of 

slow fiber types and is involved in neuromuscular signal conduction. In our results, 

three dmCpGs were located in intragenic regions of NFATC1 and all were 

hypomethylated (P3-Supplementary Table 5B). However, none of these CpGs were 

included as dmCpGs in Zykovich’s study.  

Four CpGs from three genes (HOXD4, SEPT9 and MBP) (P3-Supplementary Table 

5C) were differentially methylated in both our study and  muscle inflammatory 

disease in children.235 By comparing with the methylation study on 

rhabdomyosarcoma,234 we found 360 genes in common. GO and KEGG analysis 

on those genes showed that many of the significant terms were associated with 

muscle function, DNA transcription regulation, nervous system development and 

signal transduction (P3-Supplementary Table 5D, E).  

Seaborne et al.102 identified several DNA methylation sites that were closely related 

to resistance training. When comparing our dmCpGs with the top 500 resistance 

training-related CpG sites in Seaborne’s study, only two sites (cg00077516 and 

cg09739536) were found in common (P3-Supplementary Table 5F). We found 17 

common CpGs when comparing with loading-related CpGs and 8 CpGs showed 

different fold change directions in our study and Seaborne’s study (P3-

Supplementary Table 5F). We also identified 9 common CpGs by comparing with 
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unloading-related CpGs and only one CpG had the same direction in both studies 

(P3-Supplementary Table 5F). Turner et al.104 made a thorough analysis of gene 

expression and DNA methylation induced by acute and chronic resistance training. 

We shared two CpGs (cg08284143 and cg11692073) that showed 

hypermethylation after acute resistance training (based on Turner’s study) and 

hypomethylation in sarcopenia (based on our study) (P3-Supplementary Table 5G). 

Six common CpGs were found when comparing with hypomethylated CpGs after 

acute resistance training and all of them had the same fold change direction in both 

studies (P3-Supplementary Table 5G). When comparing with dmCpGs related to 

chronic resistance training, we identified seven common CpGs, five of which had 

the same fold change direction in both studies (P3-Supplementary Table 5G). We 

also found 19 genes (24 CpGs) out of 51 genes that had significant epigenetic and 

transcriptome changes under all acute/chronic training/detraining conditions 

reported in Turner’s study (P3-Supplementary Table 5G). Furthermore, the 

SRGAP1, PLXNA2 and JOSD1 were found with increased gene expression after 

resistance training (based on Turner’s study) while hypermethylated gene 

promoters were found in sarcopenia (based on our study) (P3-Supplementary Table 

5H). We compared unadjusted significant KEGG pathways (p value < 0.05) between 

our study and Turner’s study and found three pathways (cGMP-PKG signaling 

pathway, human papillomavirus infection and proteoglycans in cancer) in common 

(P3-Supplementary Table 6A-K). Notably, the counts of hyper- and hypomethylated 

CpGs in the pathway “cGMP-PKG signalling” and “human papillomavirus infection” 

were very similar while the amount of hypomethylated CpGs was twice as many as 

the hypermethylated CpGs in the pathway “proteoglycans in cancer”. Sailani et al.105 

identified 748 gene promoters with significant methylation difference between 

physically active and inactive older participants. By comparing with our hyper- and 

hypomethylated gene promoters (P3-Supplementary Table 1E, F), we found 23 

common genes with hypermethylated promoters and 369 genes with 

hypomethylated promoters (P3-Supplementary Table 6L). The significant pathways 

based on these common genes were associated with energy metabolism, signal 

transduction, myogenesis and actin cytoskeleton regulation (P3-Supplementary 

Table 6M, N). 
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4. Discussion 

4.1. DNA methylation patterns 

The ageing-related DNA methylation pattern is characterized by globally decreased 

and regionally (CpG islands and shores) increased methylation levels.91 By 

comparing the methylation status of blood CD4+ cells between newborns and 

centenarians, Heyn et al.229 reported a decreased global methylation level in older 

participants. However, the study of Zykovich et al.101 revealed a global trend of 

hypermethylation in ageing skeletal muscle. In our study, we found no significant 

difference in total methylation level of all analysed CpGs between the sarcopenic 

and the non-sarcopenic groups. The even distribution of hyper- and hypomethylated 

dmCpGs in our study also contradicted the findings of Bell et al.230 (whole blood-

based) and Zykovich et al.101 (skeletal muscle-based) where more than 90% of 

ageing-related dmCpGs were hypermethylated. Such inconsistency in DNA 

methylation might be partly related to the relatively narrow range of age of our 

participants. Since our participants in both groups came from a similar age range 

(65–80 years) with no difference between them, the age effect on DNA methylation 

might be partially controlled. Nevertheless, the methylation condition of CpG islands 

in gene promoters was quite similar between sarcopenia-related and ageing-related 

methylation patterns. In our study, promoter CpG islands of the sarcopenic group 

were hypermethylated when compared with those of the non-sarcopenic 

counterpart. Similarly, a higher methylation level was also found in promoter CpG 

islands of centenarians in comparison with newborns.229 

Hypermethylated CpG islands in gene promoters have been associated with the 

down-regulation of genes.223 In our study, the sarcopenic group had a higher 

methylation of promoter CpG islands than the non-sarcopenic group, perhaps 

indicating that reduced function of corresponding genes accompanies sarcopenia. 

However, gene expression was not studied in the present manuscript and therefore 

would require further analysis to confirm this assumption. Unlike promoters, 

significant hypomethylation was found in gene bodies and 3'UTRs of the sarcopenic 

group. Gene bodies in the human genome are prevalently methylated.239 Yet, the 

connection between methylated gene bodies and gene expressions remains 

debatable. Mendizabal et al.240 studied nearly 2,000 genes, the gene bodies of 

which were commonly hypomethylated in normal tissues, and found that those 

genes were prone to have significantly hypomethylated gene bodies in cancer 
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samples. Such results suggested that hypomethylated gene bodies were more 

related to cancer-associated dysregulation, which is supported by Yang et al.,241 

who showed that demethylated gene bodies could cause down-regulation in gene 

expression. Contradictorily, by analysing cell-lines, Jjingo et al.242 reported a bell-

shaped relationship between gene transcriptions and methylated gene bodies. 

Therefore, further measurements on gene expression are needed to evaluate the 

effect of methylated gene bodies on the activity of corresponding genes. 

Furthermore, although most of the genes identified in our study showed a single 

methylation pattern, we found some genes with both hyper- and hypomethylation in 

the same gene region, indicating that the sarcopenic condition might be related to 

the interaction between methylation and demethylation in these genes. 

4.2. dmCpG-related GO terms and KEGG pathways 

The “protein binding” was the most significant GO term identified in our study (P3-

Supplementary Table 3A), indicating that signal transduction and cellular 

metabolism were closely related to our dmCpGs. The “apelin signaling pathway” 

was the mostly enriched pathway in KEGG analysis (P3-Supplementary Table 4A). 

Apelin is a peptide that can reduce arterial stiffness,243 and enhance muscle 

mitochondriogenesis244 and protein synthesis.245 The endogenous apelin level 

decreases with age while apelin treatment can induce muscle mass and reverse 

age-associated sarcopenia in mice.245 Moreover, apelin can be up-regulated by 

insulin and the increased concentration of plasma apelin has been found in obese 

humans and mice.246 Therefore, our finding of the “apelin signaling pathway” not 

only suggests a close association between apelin and muscle degeneration but also 

indicates a possibility of sarcopenia-related alterations in energy metabolism and 

body composition that might result in sarcopenic obesity.6 

Since hypermethylated gene promoters are related to repression of gene 

expression,223 we conducted GO analysis based on genes with hyper-

/hypomethylation in promoter regions to explore possible biological processes that 

might be different between the sarcopenic and non-sarcopenic groups. From GO 

results, many metabolism-related processes and cellular components were 

significantly related to genes with hypermethylated promoter regions (P3-

Supplementary Table 3H), indicating that cellular metabolism might be 

downregulated in the sarcopenic group when compared with the non-sarcopenic 

group. Meanwhile, based on genes with hypomethylation in promoter regions, 
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several terms related to negative regulations of the insulin signaling pathway have 

been identified (P3-Supplementary Table 3I). Such findings suggest that negative 

regulation of insulin signaling might be strengthened in the sarcopenic group, 

possibly resulting in restricted glucose uptake in skeletal muscles247 and reduced 

protein synthesis via downregulated activations of insulin receptor and PI3K.248 

Moreover, the associations between hormone receptor bindings terms (e.g. 

androgen and steroid hormone) and hypomethylated promoters (P3-Supplementary 

Table 3I) also indicate an overexperssion of hormone receptors in sarcopenia to 

compensate decreased plasma hormone levels that are important in maintaining 

muscle and bone mass.249 However, hormone measurements are required for 

further confirmation.  

The “cell cycle” and “thermogenesis” pathways identified by genes with hyper- and 

hypomethylated promoter regions (P3-Supplementary Table 4H, I) suggest possibly 

decreased cell regeneration ability and increased heat production associated with 

sarcopenia. Since the sarcopenic group has lower body mass and BMI than the non-

sarcopenic group, the sarcopenic group might have less fat for heat preservation, 

resulting in elevated heat production for body temperature maintenance. There is 

also a possibility that the sarcopenic group has less body fat because of increased 

heat production. 

4.3. Gene, dmCpG and pathway comparisons with previous studies 

The current study highlights several muscle-related genes which have been 

identified in previous muscle mass- or muscle strength-related studies,66,212,237 

among which is the gene VDR (P3-Supplementary Table 5A). VDR encodes vitamin 

D receptor, a protein widely known for regulation of calcium and phosphate 

homeostasis.250 VDR gene knockout mice have impaired bone and mineral 

metabolism and rickets after weaning.251 Many studies of ageing have also 

connected decreased VDR expression to osteoporosis,252 frailty,253 low muscle 

strength169 and low muscle mass.212 In our study, one hypermethylated CpG island 

was indeed in the VDR promoter region. This indicates a possible reduced 

expression of VDR in the sarcopenic group and could partially explain the decline in 

muscle function and increased risk of frailty associated with sarcopenia.6 

We also identified 42 genes (P3-Supplementary Table 5B) that were reported in 

previous ageing-related methylation studies.101,229,230 Many of these genes are also 

closely muscle-related. For example, we found five genes (HSPB1, PBX4, FZD5, 
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HMGA1 and AARS2) with sarcopenia-related hypermethylation in CpG islands (P3-

Supplementary Table 5B). HSPB1 encodes heat shock protein beta-1, which is a 

member of the small heat shock protein family that plays an important role in muscle 

development, differentiation and protection against heat and mechanical stress.254 

Mutations of HSPB1 have been related to distal hereditary motor neuropathy, 

muscle weakness and fat infiltration.255 The protein Pre-B-cell leukemia transcription 

factor 4 (encoded by PBX4) is a member of the Pbx family, which facilitates binding 

of MyoD to gene regulatory regions to initiate skeletal muscle differentiation.256 In 

zebrafish, Pbx helps regulate the development of fast-twitch skeletal muscle257 that 

undergoes preferential atrophy during ageing in humans.258 AARS2 encodes 

mitochondrial alanyl-tRNA ligase, a member of the aminoacyl-tRNA synthetase 

family that plays an important role in mRNA translation. Mutations of AARS2 have 

been related to neurodegenerations259 and cardiomyopathy.260 The 

hypermethylated CpG island of the AARS2 promoter region in our study suggests a 

down-regulation of this gene’s activity in sarcopenia. FZD5 encodes receptors for 

the Wnt5A ligand, which is connected with muscle mass regulation via the mTOR 

pathway.261 HMGA1 is involved in multiple cellular processes such as DNA repair, 

transcriptional regulation and cell cycle regulation. Overexpression of HMGA1 has 

been found in cancer, indicating the association of HMGA1 with cell regeneration.262 

The SRGAP1 promoter region was hypomethylated after resistance training104 and 

a hypermethylated promoter region was found in our study (P3-Supplementary 

Table 5H). SRGAP1 encodes a GTPase activator that regulates cell regeneration 

and axon guidance and knockdown of SRGAP1 suppresses cell proliferation by 

inhibiting the Wnt/β-catenin pathway.263 These comparisons indicate a possible 

connection between SRGAP1 and exercise-induced muscle growth as well as 

muscle degeneration during ageing. 

Although the pattern of DNA methylation is mostly tissue-specific,264 there are still 

some overlaps between our dmCpGs and those that have been previously reported 

in muscle samples. In a recent study on muscle DNA methylation changes induced 

by resistance training and detraining, Seaborne et al.102 reported a significantly 

decreased methylation in dmCpG site cg09739536 from gene ZFP2 after a 7 weeks 

of resistance training. This finding is consistent with our observation that the same 

CpG site was significantly hypermethylated in the sarcopenic group and that less 

methylation of ZFP2 is associated with greater skeletal muscle mass and strength. 

Similarly, six genes (SNHG5, FUCA2, MUC5B, SLC30A1, CCR3, and SMEK2) were 
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found in the loading phase of Seaborne’s study as having different fold change 

directions from our study, and the genes SNHG5, FUCA2 and CCR3 had 

methylation changes in promoter regions (P3-Supplementary Table 5F), suggesting 

the changes in expression of these three genes might be associated with both 

muscle degeneration and regeneration. Despite some similarity in methylated genes 

and CpG sites which we shared with previous muscle biopsy-based 

studies,101,102,104,105,234,235 the methylation patterns were not always consistent. For 

instance, the dmCpG site cg00077516 from gene MRPS27 was hypomethylated 

during detraining-induced muscle changes in one study102 but hypermethylated in 

the sarcopenic group in our study. A possible explanation for this discrepancy might 

be the difference in physical condition of participants. Our study was based on older 

women susceptible to age-related muscle degeneration while the detraining phase 

in participants of Seaborne’s study can be considered as a return to pre-training 

levels after a prolonged training load stimulus. It is possible that different 

mechanisms are involved in age-related atrophy and detraining-related muscular 

changes. Among the 35 common CpGs shared with the study of ageing by Zykovich 

et al.,101 24 CpGs showed a different methylation direction (P3-Supplementary 

Table 5B). Wang et al.235 identified hypomethylated HOXD4 gene in juvenile 

dermatomyositis patients, while we only found one hypermethylated dmCpG located 

in the gene body of HOXD4. Similar inconsistent methylation patterns were also 

found in comparison with the study of Mahoney et al.234 on rhabdomyosarcoma (P3-

Supplementary Table 5C). Moreover, we only identified two common CpGs from the 

top 500 ageing/exercise-related dmCpGs (skeletal muscle-based)101,102 (P3-

Supplementary Table 5B, F). On the other hand, all CpGs that were shared with 

previous blood sample-based methylation studies had the same methylation 

direction (P3-Supplementary Table 5B). These methylation findings confirm tissue-

specific methylation differences and therefore, it is difficult to determine sarcopenia-

related methylation differences in skeletal muscles of our participants based on 

differentially methylated genes identified from blood samples. 

In respect of pathway comparative analysis, we identified three common pathways 

(cGMP-PKG signaling pathway, human papillomavirus infection and proteoglycans 

in cancer), which are associated with cell proliferation and development from 

previous exercise-related methylation studies104 (P3-Supplementary Table 6E). 

Activation of the cGMP-PKG signaling pathway is related to the inhibition of cell 

proliferation.265 Increased activation of phosphodiesterase 5, an inhibitor of the 
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cGMP-PKG signaling pathway, has been reported in tumor cell lines.266 

Proteoglycans play an important role in regulating muscle development. Heparan 

sulphate proteoglycans are essential for signal transduction in several muscle 

growth or differentiation pathways, such as FGF-2 and HGF.267 The increases of 

biglycan and decorin found in muscle dystrophy also suggest an involvement of 

proteoglycans in response to myofibre damage.268 

4.4. Limitations 

Several parameters have been suggested to diagnose sarcopenia, while cut-off 

points vary with measurement techniques and populations.9 Recently, cut-off points 

for sarcopenia tests have been advised by the European Working Group on 

Sarcopenia in Older People (EWGSOP).6 In our study, however, although the 

assessment methods were the same (SMI and HGS), none of these recommended 

values were used. We did not use the advised HGS because the value given by 

EWGSOP was derived from the study of Dodds et al.,269 who summarized the grip 

strength across twelve British studies that used different brands of dynamometers 

and test protocols from our study. Since we also did not have a healthy young group 

as a reference,9 we used the lower quintile of HGS from our participants as one of 

the cut-off points to define sarcopenia, an approach having been previously used in 

several studies to classify sarcopenia.270,271 Moreover, EWGSOP only provided 

values for appendicular SMI and not whole body SMI.6 Considering that our SMI 

was calculated using whole body skeletal muscle mass estimated by BIA, to identify 

a second cut-off point to define sarcopenia we followed Janssen et al.,16 who 

previously defined sarcopenia cut-off points using estimated whole body skeletal 

muscle mass in a larger sample of comparably aged participants. Besides the 

definition of sarcopenia, we also acknowledge that our study involves a limited 

sample size and the methylation value at each CpG site was compared without 

correction for covariates such as age and physical activity. Moreover, our 

assumptions on gene function changes are based on methylation status; gene 

expression was not studied. Therefore, further studies with a larger sample size, 

adjusted methylation values and gene transcriptome analysis might be more 

informative. 

5. Conclusions 

In the present study, we compared blood DNA methylation patterns between age-

matched sarcopenic and non-sarcopenic older women. We identified 6,258 
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differentially methylated CpG sites and found that the sarcopenic group had 

significantly less total methylation at these sites. Pathway analyses showed that 

these sarcopenia-related CpG sites are involved in many muscle-related aspects, 

such as muscle differentiation, muscle function and energy metabolism. Moreover, 

sarcopenia-related hypermethylation was typically found in gene promoters and 

hypomethylation found more often in gene body and 3'UTR regions. Our study has 

therefore enriched the understanding of DNA methylation differences associated 

with sarcopenia. 
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Abstract 

Background: 

Inter-individual variance in skeletal muscle is closely related to genetic architecture 

and epigenetic regulation. Studies have examined genetic and epigenetic 

relationships with characteristics of ageing muscle separately, while no study has 

combined both genetic and epigenetic profiles in ageing muscle research. The aim 

of this study was to evaluate the association between combined genetic and 

methylation scores and skeletal muscle in older women. 

Methods: 

48 older Caucasian women (aged 65–79 yr) were included in this study. Biceps 

brachii thickness and vastus lateralis anatomical cross-sectional area (ACSAVL) 

were measured by ultrasonography. Maximum isometric elbow flexion (MVCEF) and 

knee extension (MVCKE) torques were measured by a customized dynamometer. 

The muscle-driven genetic predisposition score (GPSSNP) was calculated based on 

seven muscle-related single nucleotide polymorphisms (SNPs). DNA methylation 

levels of whole blood samples were analysed using Infinium MethylationEPIC 

BeadChip arrays. The DNA methylation score was calculated as a weighted sum of 

methylation levels of sarcopenia-driven CpG sites (MSSAR) or an overall gene-wise 

methylation score (MSSNP, the mean methylation level of CpG sites located in 

muscle-related genes). Linear regression models were built to study genetic and 

epigenetic associations with muscle size and strength. Three models were built with 

both genetic and methylation scores: (1) MSSAR + GPSSNP, (2) MSSNP + GPSSNP, (3) 

gene-wise combined scores which were calculated as the ratio of the SNP score to 

the mean methylation level of promoters in the corresponding gene. Additional 

models with only a genetic or methylation score were also built. All models were 

adjusted for age and BMI. 

Results: 

MSSAR was negatively associated with ACSAVL, MVCEF and MVCKE, and explained 

10.1%, 35.5% and 40.1% of the variance, respectively. MSSAR explained more 

variance in these muscular phenotypes than GPSSNP, MSSNP and models including 

both genetic and methylation scores. MSSNP and GPSSNP accounted for less than 8% 

and 5% of the variance in all muscular phenotypes, respectively. The genotype and 

methylation level of MSTN was positively related to MVCKE (p < 0.03) and explained 

12.2% of the variance. The adjusted R2 and Akaike information criterion showed 

that models with only a MSSAR performed the best in explaining inter-individual 
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variance in muscular phenotypes.  

Conclusion: 

Our results improve the understanding of inter-individual variance in muscular 

characteristics of older women and suggest a possible application of a sarcopenia-

driven methylation score to muscle strength estimation in older women while the 

combination with a genetic score still needs to be further studied. 

Keywords: DNA methylation score, Genetic score, Older women, Model evaluation, 

Muscle size, Muscle strength 

1. Introduction 

Muscle mass and strength are two crucial factors in healthy ageing.81 Older people 

with lower muscle mass and muscle strength are more likely to have a greater loss 

of mobility21 and an increased risk of falls.22 A ten-year follow-up study by Balogun 

et al.273 found that lower-limb muscle mass and muscle strength in older people 

were positively associated with health-related quality of life.  

Many heritability studies have shown a genetic contribution to body composition and 

muscle strength in older adults. An early twin study on postmenopausal women 

demonstrated that genetic characteristics account for 52%, 46% and 30% of the 

variance in lean body mass, leg extensor strength, and grip strength, respectively.58 

An older male twin study conducted by Carmelli et al.59 showed a decreased genetic 

association with handgrip strength from 35% to 22% over a 10-year ageing process 

while the environmental influence increased from 39% to 45%. Furthermore, 

multiple association studies on athletes, young and old populations have suggested 

some genetic variants that are closely related to body composition and muscle 

performance. For example, the D allele of the ACE I/D polymorphism is related to 

higher muscle strength.274 Older people with the ACE DD genotype tend to have 

greater lean body mass and knee extensor strength than II carriers.69 The R allele 

of the ACTN3 R/X polymorphism is also associated with greater muscle power.275 

Young people with the R allele had significantly higher knee strength and more type 

IIx fibers than those of XX genotype.276 The T allele in FTO A/T polymorphism is 

predisposed to increase lean body mass and is more prevalent in elite rugby players, 

who rely more on appendicular lean mass for success, than other rugby athletes 

and non-athletes.71  
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To study the combined genetic association with physical phenotypes, a phenotype-

driven genetic predisposition score (GPS), which is calculated by adding up the 

number of predisposing alleles that are positively related to the corresponding 

phenotype, has been introduced by Williams and Folland.118 With the application of 

the phenotype-driven GPS, studies have been able to analyse associations between 

genetic architectures and physical performance based on multiple polymorphisms. 

Spanish athletes in endurance activities (e.g. running, road cycling and rowing) were 

found with a higher endurance-driven GPS than the general population.119,120 

Coronary artery disease patients123 and older people212 with higher muscle 

mass/strength-driven GPS also demonstrated greater muscular improvement after 

resistance training. 

Besides the genetic aspect, muscular phenotypes are also related to multiple 

external factors such as physical activity and nutrients,81 which might affect muscle-

related gene expression through epigenetic regulation.277,278 As a link between 

environment and genes, an epigenetic regulation modifies gene expression through 

several mechanisms, among which DNA methylation is the one that has been 

extensively studied. In the human genome, DNA methylation occurs almost 

exclusively at the 5' position of cytosine in cytosine-phosphate-guanine (CpG) 

dinucleotides.88 Many factors such as age, lifestyle and nutrition can trigger DNA 

methylation changes.227 DNA methylation in gene promoters is usually associated 

with a repression of corresponding gene expression,223 while a recent study by 

Jeziorska et al.94 has suggested a positive association between the CpG island 

methylation in intragenic regions and transcriptional activity. Since DNA methylation 

is a reflection of environmental exposures and gene expression status, methylation 

levels of several CpG sites have been suggested as biomarkers for cancer 

screening279 and chronological age prediction.101 A BMI-related epigenetic score 

developed by Hamilton et al.128 was found to be associated with body mass, aerobic 

capacity, type 2 diabetes and cardiovascular disease. The accuracy and sensitivity 

of diagnostic126 and prognostic127 prediction of prostate cancer were also improved 

with the assistance of DNA methylation scores. Wei et al.125 built a predictive model 

for clear cell renal cell carcinoma prognosis based on the methylation of five CpG 

sites and the model presented reliable predictions across several cohorts. Moreover, 

DNA methylation scores of specific CpG sites were introduced to the prediction of 

maternal smoking habit during pregnancy with high accuracy.132  



122 
 

In skeletal muscle, epigenetic regulation can be found in development and 

differentiation processes. The expression of genes from the myogenic regulatory 

factor and the myocyte enhancer factor families partly rely on DNA methylation to 

modify skeletal muscle proliferation and differentiation.280 Meanwhile, some 

epigenetic traits induced by enviromental stimuli can be maintained for a 

considerable period (e.g. 30 population doublings of cell culture,233 seven weeks of 

detraining102), a phenomenon known as “epigenetic memory”.103 A recent study by 

Seaborne et al.102 suggested four genes (RPL35a, UBR5, SETD3 and PLA2G16) 

that held epigenetic memory seven weeks after resistance training. All these four 

genes were characterized by a similar pattern of decreased gene expression with 

DNA hypermethylation during detraining, and dramatically enhanced gene 

expression with DNA hypomethylation after retraining.102 Turner et al.104 

demonstrated five genes (FLNB, MYH9, SRGAP1, SRGN and ZMIZ1) with 

increased gene expression in the acute/chronic resistant training and retained 

hyopmethylation status during seven weeks of detraining, indicating an involvment 

of these five genes in epigenetic regulation of skeletal muscle characteristics. 

Lifelong regular physical activity is also associated with hypomethylated promoter 

regions in genes related to energy metabolism, myogenesis and oxidative stree 

resistance in ageing muscle.105 Notably, most methylation studies of skeletal muscle 

focus on identifying genes with various methylation changes under different 

intervention phases or between different populations, but the relationship between 

methylation levels and muscular phenotypes has not been reported. 

Several studies have combined genetic and epigenetic profile scores to explore 

hereditary and environmental associations with physical conditions such as BMI and 

heart disease risk. Shah et al. found that regression models with only BMI-derived 

genetic or methylation scores explained less than 10% of the inter-individual 

variance in BMI, while a model combining both scores improved the explained 

variance to 13–18%.130 Another model with integrated genetic and methylation 

scores also outperformed (13% more accuracy) conventional risk factors in 

predicting coronary heart disease.131 Such an approach of combined genetic and 

epigenetic scores suggests a new approach of studying inter-individual variance and 

long-term changes in muscle mass and muscle strength. A better understanding of 

genetic and epigenetic associations with muscular phenotypes can be beneficial to 

healthy ageing via improved estimation of the probability of muscle degeneration 

and thus prediction of frailty and sarcopenia. Therefore, our study was conducted to 
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explore possible genetic and epigenetic connections with muscular phenotypes in a 

group of older women. 

2. Methods 

2.1. Participants 

Genetic and epigenetic data of 48 older women (aged 65–79 yr) were analysed in 

this study. These participants were conditionally selected from 247 independently 

living Caucasian women (aged 65–80 yr) around Manchester Metropolitan 

University (Crewe, UK), which has been described in details in our previous 

paper.281 Briefly, these 48 participants were generally age-matched with no 

muscular or nervous system problems that would affect their physical performance. 

With cut-off points of both skeletal muscle index (SMI) less than 6.75 kg/m2 16 and 

hand grip strength (HGS) less than 26 kg (the lower quintile of HGS in all recruited 

247 participants), 24 participants were classified as sarcopenic (SMI: 6.00 ± 0.47 

kg/m2, HGS: 23.2 ± 2.5 kg) and the remaining 24 participants were classified as 

non-sarcopenic (SMI: 7.45 ± 0.67 kg/m2, HGS: 36.0 ± 3.7 kg). This study followed 

local ethics approval (Manchester Metropolitan University, Crewe, UK) and consent 

forms were signed by all participants. 

2.2. DNA extraction 

A 5 mL venous blood sample was collected from each participant and stored in an 

EDTA-coated tube at -20 Celsius for DNA extraction. DNA samples were extracted 

using a QIAcube® and QIAamp® DNA Blood Mini Kit (Qiagen, Crawley, UK) 

according to the manufacturer’s instructions. The extracted DNA samples were 

stored at -20 Celsius for genotyping and DNA methylation analysis. 

2.3. Genotyping 

Single nucleotide polymorphisms (SNPs) of seven genes were selected for 

genotyping. These SNPs have been reported in at least three papers as being 

related to muscle strength or muscle mass with a consistent direction of favourable 

alleles (Supplementary Table 1). Duplicate genotyping was firstly made using a 

192.24 Dynamic Array® IFC (Fluidigm Corp., South San Francisco, CA, US) and 

TaqMan SNP genotyping assays (Applied Biosystems, Paisley, UK) following the 

manufacturer’s instructions. Briefly, a genotyping mix (4 μL) consisted of 2 µL assay 

loading reagent [2x] (Fluidigm), 1 µL SNP genotyping Assay Mix [40X] (Applied 

Biosystems), 0.2 µL ROX [50X] (Invitrogen, Carlsbad, CA, US) and 0.8 µL DNA-free 

water (Qiagen). A sample mix (4 µL) contained 1.6 µL DNA samples, 2.0 µL 
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GTXpress master mix [2X] (Applied Biosystems, PN 4401892), 0.2 µL Fast GT 

Sample Loading Reagent [20X] (Fluidigm, PN 100–3065), and 0.2 µL DNA-free 

water. All reaction mixes (7.75 µL, consisting of 3.75 µL genotyping mix and 4 µL 

sample mix) were loaded onto the Dynamic Array IFC following the manufacturer’s 

instructions. The array was subsequently placed into a thermal cycler (FC1 Fluidigm, 

PN 100-1279 D1) and the GT 192.24 Fast v1.pcl protocol was performed. The 

thermal cycling protocol included an amplification at 95 °C for 120 s followed by 45 

cycles of denaturation for 2 s at 95 °C and extension for 20 s at 60 °C. Reporter 

dyes VIC and FAM were used for genotyping based on fluorescence detection.  

About 1% of SNP-sample data points showed unsuccessful detection or 

inconsistent genotype results using the Fluidigm system. These SNP samples were 

reassessed in duplicates using a StepOnePlus Real-Time PCR system with 

TaqMan SNP genotyping assays and analysed using StepOnePlus analysis 

software (Applied Biosystems, version 2.3). The StepOnePlus reaction mix (10 µL) 

included 0.2 µL DNA sample, 5 µL GTXpress master mix, 4.3 µL nuclease-free 

water and 0.5 µL TaqMan SNP genotyping assay [20X]. Each reaction mix was 

amplified for 20 s at 95 °C, followed by 50 cycles of denaturation for 3 s at 95 °C 

and extension for 20 s at 60 °C. Genotypes were identified based on fluorescence 

detection of reporter dyes (VIC and FAM). 

2.4. DNA methylation analysis 

DNA methylation was measured using Illumina® Infinium MethylationEPIC 

BeadChip arrays (Illumina Inc., San Diego, CA, US) at the Genomics Core facility 

(Center for Human Genetics, UZ/KU Leuven, Leuven, Belgium). Methylation signal 

data was read by R ‘Minfi’ package,141 background signals were corrected by 

normal-exponential out-of-band (‘Noob’) method, and methylation levels (defined as 

β values, methylation percentages at measured probes) were normalized for blood 

cell composition by R ‘FlowSorted.Blood.EPIC’ package. CpG sites were removed 

from the initial measurement under the following conditions: 1) with a low detection 

rate (p > 0.01 compared with background signal); 2) containing SNPs at the CpG 

interrogation or at the single nucleotide extension as suggested in the ‘Minfi’ 

package (reference array: “Illumina Human Methylation EPIC”, annotated by 

“ilm10b4.hg19”); 3) with cross-reactivity reported in the first supplementary table of 

Pidsley’s study.143 A final 788,074 CpGs were kept for further analysis. 

2.5. Muscular parameters 



125 
 

2.5.1. Biceps brachii thickness 

B-mode ultrasonography (7.5 MHz, linear array probe, 38 mm probe length, 

MyLab®Twice Esaote, Genoa, Italy) was used to measure biceps brachii (BB) 

thickness (THKBB) on the dominant side (Figure 1a). Participants sat with elbows 

extended and relaxed. Sagittal plane scans were taken and muscle thickness 

measured at three sites: 60% of the length from the acromion process of the scapula 

to the lateral epicondyle of the humerus,144 and the upper and lower site 1 cm away 

from the 60%-length site. Muscle thickness was measured using an image 

processing program (ImageJ, NIH) by the same investigator (intraclass correlation 

coefficient [ICC] = 0.98, based on duplicate measurements of six participants. The 

interrater reliability was based on a single scan assessed on two occasions. The 

following ICC tests were all based on the same participants). The mean muscle 

thickness of the three sites was recorded as THKBB. 

2.5.2. Vastus lateralis anatomical cross-sectional area 

With participants in a standing position, the vastus lateralis (VL) origin and insertion 

were identified at the proximal and distal myotendinous junction under the previously 

mentioned ultrasound. The VL anatomical cross-sectional area (ACSAVL) was 

measured using an ultrasonography method developed by Reeves et al.145 with a 

high reliability and validity compared with magnetic resonance imaging. In brief, 

participants sat while axial plane scans were taken at 50% muscle length of the VL 

and recorded in real time, with the ultrasound probe passing over echo-absorptive 

markers placed over the skin of the VL (as described by Reeves145). The acquired 

images were combined for ACSAVL measurement (Figure 1b). The ACSAVL was 

measured three times using ImageJ and the mean value was recorded for further 

analysis. The ultrasound scan was made by the same investigator with good test 

consistency (ICC = 0.99). 
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Figure 1. Ultrasound images of the upper arm and the thigh. a. Ultrasound image 

of the upper arm (Sagittal); b. Ultrasound image of the thigh (cross-sectional).  

2.5.3. Maximum isometric elbow flexion torque 

Maximum isometric elbow flexion torque (MVCEF) on the dominant side was 

recorded using a customized dynamometer (MMU, UK), which was calibrated using 

loads of 0.5-5 kg (with 0.5 kg increments) prior to each strength measurement 

session. Participants were tested in a seated position with the upper arm parallel to 

the trunk and the elbow flexed at 60° (0° representing full extension). Participants 

were asked to hold a force transducer (connected to the dynamometer) and contract 

their elbow flexors with full effort. Verbal encouragement was given during the test. 

Three trials were performed with 1 min rest between each trial (ICC = 0.95), with the 

highest MVCEF used for analysis. Elbow force was recorded at 1,000 Hz and 

analysed offline at a later date (Labview, National Instruments, Newbury, UK). 

MVCEF was calculated by the formula: MVCEF = Elbow force × Radius length × 

cos(30°) with force in N and length in m. 

2.5.4. Maximum isometric knee extension torque 

Maximum isometric knee extension torque (MVCKE) on the dominant side was 

recorded using the same system as that used in MVCEF measurement. Participants 

were tested in a seated position with 60° knee flexion (0° representing full extension). 

The tested leg was fastened to a force transducer placed 5 cm above the lateral 

malleolus. Participants were instructed to extend the fastened leg and verbal 

encouragement was given during the measurement. Three trials were performed 

with 1 min break between each trial (ICC = 0.96), with the highest MVCKE used for 

analysis. Knee force was recorded at 1,000 Hz and analysed offline at a later date 

(Labview, National Instruments, Newbury, UK). MVCKE was calculated by the 
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formula: MVCEF = Knee force × (Tibia length – 0.05) × cos(30°) with force in N and 

length in m. 

2.6. Statistics, model building and model evaluation 

2.6.1. Statistics 

SAS 9.4 (SAS Institute, Cary, NC, US) and Python (version 3.7.3) were used for 

data management and data analysis. Comparisons of muscular phenotypes and 

methylation scores between the sarcopenic and non-sarcopenic groups were made 

using independent t-tests. Fisher’s exact test was used to compare the distribution 

of GPS between the two groups. To study combined genetic and epigenetic 

associations with skeletal muscle, three linear regression models (Models 1–3, 

Figure 2) were built with muscular phenotypes (THKBB, ACSAVL MVCEF and MVCKE) 

as dependent variables, and genetic and epigenetic scores as independent 

variables. Linear models (Models 4–6) with only a genetic or methylation score were 

also built to study the single genetic or methylation association with muscular 

phenotypes. All models were adjusted for age and BMI. Data are presented as mean 

and standard deviation. 

 

Figure 2. Workflow for model building with combined genetic and methylation scores 

(Model 1–3). Using muscular phenotypes as dependent variables, Model 1 was built 

based on methylation levels of CpGs selected from a sarcopenia-driven LASSO 

regression (MSSAR) and a genetic score calculated by SNP scores of seven muscle-

related SNPs (GPSSNP). Model 2 was built from a GPSSNP and a mean methylation 

score (MSSNP), which was calculated from CpGs located in the genes which 

contained the seven muscle-related SNPs. Model 3 used a combined score, which 
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was calculated as the ratio of a SNP score to the promoter methylation level of the 

corresponding gene, from each of the seven muscle-related SNPs. 

2.6.2. Model building 

Model 1: muscular phenotypes ~ sarcopenia-driven methylation score (MSSAR) + 

muscle-driven genetic predisposition score (GPSSNP) 

This model aimed to analyse the association between muscular phenotypes, 

muscle-related genetic architecture and sarcopenia-driven methylation levels using 

a muscle-driven genetic score and a sarcopenia-driven methylation score as 

independent variables. The least absolute shrinkage and selection operator 

(LASSO) logistic regression was used for sarcopenia-driven CpG sites selection. 

The LASSO method combines a linear regression with a L1 penalty on independent 

variable coefficients to improve prediction accuracy and reduce overfitting.282 

Through a shrinkage parameter tuning, the LASSO method aims to minimize 

residual sum of squares by setting some coefficients of independent variables to 

zeros.282 Therefore, the LASSO method is a powerful tool of selecting strong 

independent variables from a large set of candidate variables when the amount of 

independent variables greatly outnumbers the amount of observations.282 Cross 

validation is usually used to find an optimal shrinkage parameter. 

In the current study, the sarcopenia status was used as the dependent variable 

(sarcopenia coded as 1 and non-sarcopenia coded as 0) and the methylation levels 

(β values) at measured CpG sites were used as independent variables. A six-fold 

cross validation (with the log loss score, the accuracy score and the F1 score as 

metrics) was used for shrinkage parameter tuning (Figure 3, Supplementary Table 

2A). The sarcopenia-driven LASSO regression with an optimal shrinkage parameter 

selected CpGs (with non-zero coefficients) that were strongly associated with 

sarcopenia status. The MSSAR was calculated as a weighted sum of the selected 

CpG methylation levels (the weight for each CpG site was the coefficient from the 

LASSO regression, Supplementary Table 2B, codes in Supplementary File 1). The 

“gene symbols” of selected CpG sites were further analysed by gene ontology (GO) 

and KEGG analysis (databases until June 2019) using Partek Genomics Suite 

V.7.18 (Partek Inc., St. Louis, MO, US) (“HumanMethylation850” reference, 

“MethylationEPIC_v-1-0_B4” annotation file, “Homo sapiens” species and hg19 

genome build) with a false discovery rate (FDR) control at 0.05.  
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A summed score of the seven muscle-related SNPs (Supplementary Table 1) was 

calculated as GPSSNP. Each SNP score was represented by the number of muscle-

favourable alleles. For example, the C allele is a muscle-favourable allele in the 

ACTN3 rs1815739. Therefore, the SNP score of the ACTN3 rs1815739 is 2 for a 

CC genotype, 1 for a CT genotype and 0 point for a TT homozygote.  

 

Figure 3. Shrinkage parameter tuning for sarcopenia-driven LASSO logistic 

regression. The red line represents the mean value of corresponding metric in a six-

fold cross validation. The light blue area between the two blue dash lines marks out 

the range one standard deviation away from the mean value. The orange line 

demonstrates the optimal shrinkage parameter (C) with the best metric value. a. 

Changes of the log loss score with the shrinkage parameter. The log loss score 

reaches an optimal value of 0.69 when C is 65.13; b. Changes of the accuracy score 

with the shrinkage parameter. The accuracy score reaches an optimal value of 0.6 

when C is 65.13; c. Changes of the F1 score with the shrinkage parameter. The F1 

score reaches an optimal value of 0.63 when C is 65.13. 

Model 2: muscular phenotypes ~ SNP-driven methylation score (MSSNP) + GPSSNP 

To evaluate the association between muscle-related genes and muscular 

phenotypes, this model only included genetic and methylation scores within genes 

where the seven muscle-related SNPs locate (Supplementary Table 2C). Since 
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each muscle-related gene contained different amounts of measured CpGs, the 

mean methylation level of each gene was firstly calculated and the MSSNP was later 

calculated as the mean of the mean methylation levels of the seven muscle-related 

genes. Using ni to represent the number of measured CpGs in the ith gene, Mj
i to 

represent the methylation level of the jth measured CpG in the ith gene, then the 

calculation of the MSSNP can be represented as: MSSNP = (∑ ((∑ Mj
i )/ni))/7ni

j=1
7
i=1  

Model 3: muscular phenotypes ~ seven gene-wise combined genetic and 

methylation scores 

This model examined each of the seven selected muscle-related gene and studied 

its association with muscular phenotypes by building a gene-wise combined genetic 

and methylation profile score. In this model, a methylation score was calculated as 

the mean methylation level of promoters in each gene because, compared to other 

gene regions, increased methylation in gene promoters has been more strongly 

associated with a repression of gene expression.223 The gene-wise combined score 

was later calculated as the ratio of a SNP score to the mean methylation level in 

promoters of the corresponding gene (Supplementary Table 2D) so that a 

participant with a higher SNP score and a lower methylation score would have a 

higher gene-wise combined score. For instance, there were five measured CpG 

sites located in the promoters of MSTN. Given that one participant has a MSTN SNP 

(rs1805086) score of 2 and a mean methylation level of 0.32 at the five CpG sites 

located in MSTN promoters, the MSTN-wise combined score will be 6.26; if another 

participant has a MSTN SNP score of 1 and a mean promoter methylation level of 

0.4, then the MSTN-wise combined score will be 2.5. Similar calculations were done 

in the other six genes and therefore, there were seven gene-wise combined scores 

(representing each of the seven muscle-related genes) as independent variables in 

Model 3.  

Model 4: muscular phenotypes ~ MSSAR 

This model only studied the association between the sarcopenia-driven methylation 

and muscular phenotypes.  

Model 5: muscular phenotypes ~ MSSNP 

This model only studied the association between the methylation of muscle-related 

genes and muscular phenotypes.  

Model 6: muscular phenotypes ~ GPSSNP 
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This model only studied the association between the muscle-related genetic 

architecture and muscular phenotypes.  

2.6.3. Model interpretation and evaluation 

Adjusted coefficient of determination (R2) was used to interpret the explained 

variance in muscular phenotypes by each linear model. Since a model with more 

independent variables usually has a higher R2, the adjusted R2 is introduced as a 

modification of the R2 controlled for the number of independent variables in the 

corresponding model. In this study, a partial R2 was also used to illustrate the 

phenotype variance that an independent variable accounted for in a linear model. 

The Akaike information criterion (AIC) was used to evaluate the quality of each 

model with the same muscular phenotype as the dependent variable. The AIC 

assesses the relative amount of information lost by a given model,107 therefore, the 

model with the smallest AIC will be the best model (among all candidate models). 

Empirically, if another model has an AIC value that is less than two units from the 

smallest AIC, then that model also has considerable ability to explain variability in 

the corresponding dependent variable. In that case, more data is needed for model 

evaluation or a combined model should be created for a better prediction.283 

3. Results 

3.1. Characteristics of participants 

Descriptive characteristics of participants are presented in Table 1. Participants in 

the sarcopenic group had lower body mass (p = 0.003) and BMI (p = 0.005) than 

the non-sarcopenic group. Values of muscular phenotypes in the sarcopenic group 

were lower (p < 0.001) than in the non-sarcopenic group, except for THKBB (p = 

0.283).  

Comparisons of methylation scores are presented in Table 2. The sarcopenic group 

had a higher MSSAR than the non-sarcopenic group (p < 0.001, Figure 4A) and the 

combined genetic and methylation score in VDR was lower in the sarcopenic group 

(p = 0.02). The mode and median values of GPSSNP were both 9 in the non-

sarcopenic group and the mode and median values of GPSSNP in the sarcopenic 

group were 7 and 8, respectively. Fisher's exact test for the distribution of GPSSNP 

between the sarcopenic and non-sarcopenic group showed no difference (p = 0.67, 

Figure 4C).
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Table 1. Characteristics of participants (n = 48) 

Participants 
Age  

(year) 

Body mass 

(kg) 

Height 

(m) 

BMI  

(kg/m2) 

HGS 

(kg) 

SMI  

(kg/m2) 

THKBB  

(cm) 

ACSAVL 

 (cm2) 

MVCEF 

 (N·m) 

MVCKE 

(N·m) 

Total  

(n = 48) 
71 ± 4 66.6 ± 12.3 1.59 ± 0.06 26.2 ± 4.5 29.6 ± 7.1** 6.72 ±0.93** 1.82 ± 0.35 16.4 ± 3.9 25.0 ± 5.8** 58.8 ± 19.9* 

Sarcopenic 

(n = 24) 
73 ± 4 61.5 ± 9.4** 1.56 ± 0.11 24.4 ± 3.4** 23.2 ± 2.5** 6.00 ± 0.47** 1.76 ± 0.38 14.3 ± 3.0** 21.2 ± 4.8** 44.9 ± 10.2** 

Non-sarcopenic 

(n = 24) 
70 ± 3 71.7 ± 12.8 1.60 ± 0.05 28.0 ± 4.9 36.0 ± 3.7 7.45 ± 0.67 1.88 ± 0.33 18.2 ± 3.7 28.7 ± 4.1 71.0 ± 18.3 

*: lower than non-sarcopenic group (p < 0.05); **: lower than non-sarcopenic group (p < 0.01) 

Table 2. Description of genetic and methylation profile scores in different groups. 

Participants MSSAR MSSNP 
Gene-wise combined genetic and methylation scores 

ACTN3_combined ACE_combined CNTF_combined FTO_combined HIF1A_combined MSTN_combined VDR_combined 

Total 

(n = 48) 
0.02 ± 5.26 0.64 ± 0.01 7.27 ± 5.78 2.73 ± 1.73 2.14 ± 0.46 3.73 ± 2.88 1.02 ± 2.15 2.16 ± 0.02 5.43 ± 2.93 

Sarcopenic 

(n = 24) 
5.21 ± 0.53# 0.64 ± 0.01 7.53 ± 6.02 2.68 ± 1.59 2.12 ± 0.49 3.90 ± 3.06 0.91 ± 2.08 2.16 ± 0.02 4.46 ± 2.93* 

Non-

sarcopenic 

(n = 24) 

-5.17 ± 0.37 0.64 ± 0.01 7.01 ± 5.65 2.78 ± 1.88 2.16 ± 0.44 3.55 ± 2.73 1.13 ± 2.26 2.16 ± 0.02 6.39 ± 2.65 

*: lower than non-sarcopenic group (p < 0.05); #: greater than non-sarcopenic group (p < 0.01) 
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Figure 4. Distribution of genetic and methylation profile scores. (A) MSSAR based on 

CpGs selected by sarcopenia-driven LASSO regression is higher in the sarcopenic 

than the non-sarcopenic group (p < 0.01). Black diamond markers represent the 

mean MSSAR in each group. (B) MSSNP is not different between the sarcopenic and 

non-sarcopenic groups (p = 0.96). (C) Fisher's exact test for the distribution of 

GPSSNP showed no difference between the sarcopenic and non-sarcopenic group 

(p = 0.67). 

3.2. CpG sites selected from the sarcopenia-driven LASSO logistic regression 

379 CpG sites were selected from the sarcopenia-driven LASSO logistic regression, 

indicating a possible association between these CpGs and sarcopenia. These 

selected CpGs located in 190 genes, with the PIWIL1 gene contributing most (n = 

4) CpGs (Supplementary Table 3A). GO analysis on the identified genes showed 

that 29 GO terms were enriched after FDR control (q value < 0.05, Supplementary 

Table 3B). Many of these GO terms were associated with protein binding (e.g. 

antigen binding and cell adhesion), MHC protein complex, signal transduction (e.g. 

receptor binding and transport vesicle membrane) and synapse structure (e.g. 

synapse assembly and synapse organization). The most enriched GO term was the 

“peptide antigen binding” term (q value = 0.002), which included four 

hypermethylated (higher methylation in the sarcopenic group than non-sarcopenic 

group) CpGs and three hypomethylated (lower methylation in the sarcopenic group) 

CpGs (Supplementary Table 3C). KEGG analysis showed 46 pathways that were 
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enriched (q value < 0.05, Supplementary Table 3D). Many pathways were related 

to immune system function (e.g. allograft rejection and T helper cells differentiation) 

and diseases (e.g. autoimmune thyroid disease and viral myocarditis), and chronic 

disorders (e.g. type I diabetes mellitus and rheumatoid arthritis). The most enriched 

pathway was the “Asthma” pathway with three hypermethylated CpGs and four 

hypomethylated CpGs (Supplementary Table 3E). 

3.3. Muscular phenotypes with genetic and methylation scores 

Main results of linear regression models with both genetic and methylation scores 

are presented in Table 3 (complete results in Supplementary Table 4). In Model 1, 

the MSSAR was negatively related to MVCEF and MVCKE (p < 0.01) and explained 

33.2% and 39.4% of the variance, respectively. With one unit increase in the MSSAR, 

MVCEF and MVCKE decreased by 0.67 and 2.63 N·m, respectively. The GPSSNP was 

not significantly associated with any muscular phenotypes. In Model 2, neither the 

MSSNP nor the GPSSNP was significantly correlated to muscular phenotypes. In 

Model 3, only the combined genetic and methylation score in the CNTF was 

positively related to MVCKE (p = 0.03) and explained 12.2% of the MVCKE variance. 

A one-score addition in the CNTF combined score was associated with 15.7 N·m 

increase in MVCKE.  

Results of linear models with only a genetic/methylation score are presented in 

Table 4 (complete results in Supplementary Table 4). The MSSAR alone (Model 4) 

was negatively associated with ACSAVL, MVCEF and MVCKE, and explained 10.1%, 

35.5% and 40.1% of the variance, respectively. The MSSNP and GPSSNP were not 

associated with any muscular phenotypes. Specifically, the MSSNP explained less 

than 8% of the variance in muscle size and less than 1% of the variance in muscle 

strength. The GPSSNP accounted for less than 5% of the variance in all muscular 

phenotypes. 

Explained variance of muscular phenotypes by the six models are presented in 

Table 5. Model 1 with both the MSSAR and GPSSNP explained less phenotype 

variance than Model 4, which included only an MSSAR, and more variance in muscle 

strength than Model 6, which included only a GPSSNP. Model 2 with the MSSNP and 

GPSSNP explained less variance in muscle size than Model 5. When compared with 

Model 6, Model 2 explained more variance in muscle size but less variance in 

muscle strength. Models with an MSSAR (Model 1 and 4) explained more variance in 

muscle strength (MVCEF and MVCKE) than models without MSSAR. When comparing 
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models with genetic and methylation profile scores within the pre-selected seven 

muscle-related genes, Model 3 explained less variance than Model 2 in all muscular 

phenotypes except for MVCKE. Notably, the explained variance in muscle size 

(THKBB and ACSAVL) was similar across all models. This was possibly because BMI 

was closely related to muscle size and explained a considerable percentage (20.1% 

to 61.4%) of the variance (Table 3 and 4).  

In the aspect of model evaluation, Model 5, which included only an MSSNP, explained 

the most variance in THKBB (with the highest adjusted R2 value) and outperformed 

other models in the prediction of THKBB (with the lowest AIC value). Model 4, which 

includes only an MSSAR, explained the most variance in ACSAVL, MVCEF and MVCKE 

(with the highest adjusted R2 values), and performed better than other models in the 

prediction of those muscular phenotypes (ACSAVL, MVCEF and MVCKE) (with the 

lowest AIC values). Notably, the AIC differences were smaller than two between 

Model 2 and 5 (in THKBB), and Model 1 and 4 (in ACSAVL, MVCEF and MVCKE), 

indicating that more data might be needed before deciding if GPSSNP should be 

included into a model. 
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Table 3. Main results of linear models (Model 1-3) with combined genetic and methylation scores 

  
Model 1  Model 2  Model 3 

  
MSSAR GPSSNP Age BMI  MSSNP GPSSNP Age BMI  CNTF_combine Age BMI 

THKBB 
 

             

 
Coef <0.01 -0.01 0.03 0.04  -16.47 -0.02 0.04 0.04  0.09 0.03 0.04 

 
Partial R2 0.002 0.003 0.145 0.201  0.080 0.007 0.198 0.270  0.017 0.142 0.258 

 
p 0.76 0.74 0.01 <0.01  0.07 0.60 <0.01 <0.01  0.44 0.02 <0.01 

ACSAVL 
 

             

 
Coef -0.16 0.16 -0.02 0.57  -97.93 0.26 -0.02 0.64  1.33 -0.04 0.73 

 
Partial R2 0.080 0.008 0.001 0.499  0.041 0.023 0.001 0.591  0.052 0.004 0.614 

 
p 0.07 0.56 0.89 <0.01  0.20 0.34 0.84 <0.01  0.18 0.72 <0.01 

MVCEF 
 

             

 
Coef -0.67 0.29 -0.05 0.08  -23.51 0.78 -0.27 0.37  2.02 -0.24 0.42 

 
Partial R2 0.332 0.009 0.001 0.006  0.001 0.042 0.033 0.086  0.023 0.026 0.094 

 
p <0.01 0.55 0.81 0.62  0.88 0.18 0.23 0.05  0.36 0.33 0.06 

MVCKE 
 

             

 
Coef -2.63 -0.37 -0.58 -0.53  193.22 1.56 -1.30 0.72  15.68 -0.99 1.70 

 
Partial R2 0.394 0.001 0.019 0.021  0.003 0.014 0.053 0.028  0.122 0.042 0.142 

 
p <0.01 0.82 0.38 0.36  0.74 0.45 0.14 0.29  0.03 0.22 0.02 
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Table 4. Main results of linear models (Model 4-6) with only genetic or methylation scores 

  
Model 4  Model 5  Model 6 

  
MSSAR Age BMI  MSSNP Age BMI  GPSSNP Age BMI 

THKBB 
 

           

 
Coef <0.01 0.03 0.04  -15.80 0.04 0.04  -0.01 0.03 0.04 

 

Partial 

R2 
0.001 0.147 0.211  0.075 0.194 0.272  0.002 0.147 0.248 

 
p 0.82 0.01 <0.01  0.07 <0.01 <0.01  0.80 0.01 <0.01 

ACSAVL 
 

           

 
Coef -0.17 <0.01 0.57  -107.42 <0.01 0.64  0.31 -0.07 0.64 

 

Partial 

R2 
0.101 <0.001 0.496  0.048 <0.001 0.583  0.031 0.009 0.579 

 
p 0.04 1.00 <0.01  0.16 0.98 <0.01  0.26 0.54 <0.01 

MVCEF 
 

           

 
Coef -0.69 -0.02 0.06  -51.35 -0.22 0.34  0.79 -0.28 0.37 

 

Partial 

R2 
0.355 <0.001 0.004  0.003 0.022 0.074  0.044 0.036 0.087 

 
p <0.01 0.90 0.69  0.73 0.33 0.07  0.17 0.21 0.05 

MVCKE 
 

           

 
Coef -2.60 -0.61 -0.51  115.81 -1.17 0.68  1.45 -1.21 0.72 

 

Partial 

R2 
0.401 0.022 0.020  0.001 0.044 0.026  0.013 0.051 0.029 

 
p <0.01 0.34 0.37  0.84 0.18 0.31  0.47 0.15 0.28 
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Table 5. Adjusted R2 and AIC of linear models 

  
Model 1  Model 2  Model 3  Model 4  Model 5  Model 6 

THKBB 
 

           

 
Adj R2 0.240  0.299  0.255  0.256  0.311  0.256 

 
AIC -103.5  -107.2  -100.4  -105.4  -108.9  -105.4 

ACSAVL 
 

           

 
Adj R2 0.585  0.568  0.561  0.592  0.568  0.560 

 
AIC 86.4  88.3  92.9  84.8  87.3  88.1 

MVCEF 
 

           

 
Adj R2 0.371  0.060  -0.013  0.380  0.042  0.081 

 
AIC 148.4  167.3  174.8  146.8  167.3  165.3 

MVCKE 
 

           

 
Adj R2 0.392  <.001  0.112  0.406  0.010  0.021 

 
AIC 251.4  273.8  272.5  249.5  272.5  272.0 
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3.4 Correlation and regression analysis on actual and predicted values inferred by 

Model 4 

As Model 4 is the most powerful model in predicting muscle size and strength than 

the rest models in Table 5, correlation and linear analysis were made between 

actual and predicted values inferred by Model 4 (Figure 5, Supplementary Table 4F). 

Moderate associations were found between the actual and predicted values with 

correlation coefficients ranging from 0.55 to 0.79. Notably, there are two distinct 

clusters in the plots of MVCEF and MVCKE. This is because the MSSAR was strongly 

related to the two muscular phenotypes and accounted for a considerable percent 

of the variance in the corresponding phenotype (Table 4). Since the sarcopenic 

participants received positive MSSAR and the non-sarcopenic participants had 

negative MSSAR, the average MVCEF and MVCKE differences between the 

sarcopenic and non-sarcopenic group led by the MSSAR difference were 7 N·m and 

27 N·m, respectively, while negligible average differences (0.1 N·m in MVCEF and 

0.9 N·m in MVCKE) were attributable to age and BMI. Therefore, the two clusters in 

the plots of MVCEF and MVCKE actually represent the sarcopenic and non-

sarcopenic groups. 

 

Figure 5. Plots of actual and predicted values of muscular phenotypes inferred by 

Model 4. Actual and predicted values are moderately correlated with coefficients 
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ranging from 0.55 to 0.79. The two distinct clusters in the plots of MVCEF and MVCKE 

are due to the difference of MSSAR in the sarcopenic and non-sarcopenic groups. 

4. Discussion 

The current study explored the association between muscular phenotypes, genetic 

architecture and DNA methylation via linear regression models in sarcopenic and 

non-sarcopenic elderly women. Genetic architecture was represented as a GPS that 

was calculated from seven muscle-related SNPs. The DNA methylation was 

represented as either a sarcopenia-driven methylation score, which was calculated 

as a weighted sum of the methylation levels of 379 sarcopenia-driven CpG sites, or 

a gene-wise methylation score, which was calculated as an average of the 

methylation levels within muscle-related genes. Based on the six linear models used 

in this study, the sarcopenia-driven methylation score was negatively related to 

ACSAVL, MVCEF and MVCKE, and explained more variance in these muscular 

phenotypes than the GPS, the gene-wise methylation score and the models with 

combined genetic and methylation scores. The adjusted R2 and AIC showed that 

models with only a methylation score had the best performance in explaining inter-

individual variance in muscular phenotypes while more data are needed to 

determine the inclusion of GPS into the models. Moreover, the model with gene-

wise combined genetic and methylation scores demonstrated that the genotype and 

methylation level in CNTF was closely related to knee extensor strength, indicating 

a close association between CNTF and knee strength. 

4.1. Sarcopenia-driven CpG sites 

DNA methylation changes have been examined in studies of ageing and resistance 

training, but no study has reported the DNA methylation association with sarcopenia 

except for our own work.281 Using the sarcopenia-driven LASSO logistic regression, 

our study identified 379 CpG sites that were possibly related to sarcopenia. Zykovich 

et al.101 identified 5,963 CpG sites that were related to ageing based on skeletal 

muscle tissue. Bell et al.230 found 490 ageing-associated CpGs from blood samples. 

However, none of those ageing-related CpGs were found among the sarcopenia-

driven CpGs identified in our study. Seaborne et al. studied DNA methylation 

changes in skeletal muscle during resistance training and identified 2,445 CpG sites 

that were differentially methylated after a seven-week loading stimuli and 1,883 

CpGs that were association with an unloading phase. We shared one CpG site in 

each of the loading and unloading phase, with both CpGs located in the intergenic 
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region (Supplementary Table 5A). We further compared our CpGs with those 

identified by Turner et al.,104 who analysed transcriptome and methylome 

associations after acute/chronic resistance training, but no common CpG was found. 

Notably, Turner et al. reported three genes (ETF1, ETV1 and SH3KBP1) that were 

up-regulated after acute/chronic resistance training104 while some hypermethylated 

sarcopenia-driven CpGs identified in our study were found to locate in promoter 

regions of those three genes (Supplementary Table 5B). 

The gene ETF1 is a member of the human transcriptional enhancer family. Recent 

research on human liver HepG2 cell line showed that the ETF1 gene was involved 

in the regulation of transcript stability.284 The gene ETV1 is involved in multiple 

cellular activities that are related to physical performance. ETV1 knockout mice 

demonstrated abnormal cardiac conduction285 and neuromuscular impairment.286 

The gene SH3KBP1 belongs to a gene group of putative motility modifiers, and the 

knocking down of SH3KBP1 leads to reduced cell migration in scratch wound 

assays.287 Since it has been established that hypermethylated gene promoters are 

associated with repressed gene expression,288 the identification of hypermethylated 

CpGs in promoters of these three genes (ETF1, ETV1 and SH3KBP1) in our study 

indicates possible down-regulated cellular activity in association with sarcopenia. 

4.2. Evaluation of linear models 

In our study, the sarcopenia-driven methylation score (MSSAR) was closely related 

to muscle strength and explained 33.2% to 40.1% of inter-individual variance in all 

models (Model 1 and 4). This indicates a possible application of the MSSAR to the 

estimation of skeletal muscle strength in older women. Meanwhile, we should be 

aware that the participants in this study belong to two groups (i.e. sarcopenic and 

non-sarcopenic groups) which have significant difference in muscle strength (Table 

1) and MSSAR (Table 2). Therefore, when applying the MSSAR to a population with 

less variability in muscle strength (e.g. a group with only physically fit older people 

or a group with only sarcopenic participants), the corresponding muscular variance 

explained by the MSSAR might decrease to some extent. In fact, the MSSAR was 

found to explain less than 8% of the muscular variance within the sarcopenic or non-

sarcopenic group when analysed separately (Supplementary Table 4E). Clearly, 

future studies on larger cohorts are still needed to evaluate the feasibility of applying 

the MSSAR for muscle strength evaluation. 
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Additionally, we found that genetic profile scores based on seven selected genes 

(GPSSNP) explained up to 4.4% of the variance in muscle size and strength, 

methylation levels in the seven selected genes (MSSNP) explained up to 8% in the 

studied phenotypes, while the MSSAR explained 10.1–40.1% of the individual 

differences in muscle size and strength in our sample of older women. These results 

showed that genetic and methylation profiles on several representative genes only 

explained limited muscular variability. Moreover, by comparing the AIC, the model 

with only an MSSAR showed the best performance in explaining the variance in 

muscle size and strength. This, again, indicated that using the data from a small set 

of representative genes might not well explain muscular variability. Admittedly, the 

GPSSNP in this study is based on only seven SNPs, however, the individual muscular 

variance explained by genetic structures might still have limited improvement even 

with an increased number of candidate SNPs. Previous studies have demonstrated 

that even based on a larger candidate pool of more than one hundred genetic 

variants, the data-driven GPS only explained up to 7% of the variance in muscle 

mass and strength.124,212 Therefore, it is possible that the genetic architecture only 

accounts for a small portion of muscular variability during ageing – or we have not 

yet used the optimal methodology to include all contributing genetic factors, while a 

larger proportion of the variance is taken up by DNA methylation. Since DNA 

methylation is representing the sum of short-term and long-term environmental 

factors, the finding that methylation levels explains a larger proportion of the 

variance in muscle morphology and strength than genetic profiles might indicate that 

environmental elements account for more variance than genetic factors in skeletal 

muscle during ageing, which is in line with the findings of previous heritability 

studies.59,61,289 

Notably, the model with gene-wise combined genetic and methylation score (Model 

3) showed that the genotype and methylation level in CNTF was closely related to 

knee extensor strength. The CNTF gene encodes ciliary neurotrophic factor, a 

polypeptide that promotes neuronal cell differentiation and neurite outgrowth, and 

exerts a neuroprotective effect by preventing motor neuron degeneration.290 Indeed, 

CNTF G allele carriers have shown higher knee strength than A allele homozygotes 

at both slow and fast contraction speed across a large age span (20–90 yr).291 Our 

finding provides supportive evidence for the association between CNTF and knee 

strength. 
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4.3. Limitations 

We acknowledge that, despite presenting signficant associations, our study has a 

limited sample size. Because of the limited sample size, we could only use adjusted 

R2 and AIC for model evaluation. Therefore, our results still need to be examined in 

different cohorts with large sample sizes. Moreover, DNA methylation is only one 

mechanism of epigenetic regulation. Future models including other epigenetic 

mechanisms (e.g. histone methylation and acetylation), genome conformation, and 

transcriptome analysis might make the model more reliable.  

Another limitation is that the methylation data used in this study was based on blood 

samples. It is well known that DNA methylation is tissue-specific,95 so the 

methylation data obtained from blood might not fully represent the methylation 

status in other tissues. Although venous blood is more easily obtained, methylation 

status could be more informative if DNA was derived from skeletal muscle tissue. 

Meanwhile, the Illumina MethylationEPIC BeadChip used for methylation analysis 

in our study only covers 850K CpG sites, which is a small proportion of the 28 million 

CpG sites in the human genome, and is not always informative since many CpG 

sites are omitted.143 Therefore, a methylome-wide association study should be more 

powerful in identifying sarcopenia-driven or muscle-related CpG sites for model 

building. 

5. Conclusions 

Our study combined genotypes and DNA methylation levels to evaluate their 

associations with muscle size and strength in older women. We found that a 

sarcopenia-driven methylation score explained more inter-individual variance in 

muscle strength and thigh muscle size than a genetic score or models with both 

genetic and methylation scores. Our results suggest a possible application of a 

sarcopenia-driven methylation score to identify older adults who are at risk of muscle 

weakness conditions (e.g. sarcopenia and frailty) using routine blood samples, while 

the combination with a genetic score still needs to be further studied. 
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1. Summary  

Inter-individual differences in muscle mass and strength are observed during the 

ageing process, when muscles adapt to exercise training and after the cessation of 

exercise. Muscle mass and strength phenotypes are found to be partly related to 

DNA sequence variation and epigenetic regulation, with DNA methylation as the 

most studied mechanism. However, few studies have been done to unravel muscle-

related inter-individual differences among older adults with focus on genetic 

variation and DNA methylation. Insights in the genetic associations and methylation 

patterns with inter-individual differences in ageing muscle will enhance our 

understanding of muscle degeneration during the ageing process and can be helpful 

for the identification of individuals at risk of muscle weakness conditions (e.g. 

sarcopenia and frailty).  

Therefore, the objective of this thesis was to explore the exploratory power of sets 

of genetic sequence polymorphisms and methylation information in ageing muscle. 

Those genetic and methylation markers are firstly identified based on a list of 

candidate gene polymorphisms and genome-wide methylation data (paper 1, 2, and 

4), and are subsequently transformed into a genetic/methylation profile score to 

explore their underlying relationships with ageing muscle. To complete these goals, 

this thesis firstly studied the genetic association with baseline muscle mass and 

strength in older people (paper 1), and their responses in muscular phenotypes after 

one year of supervised training (paper 1). Gaining new insights into the contribution 

of genetic sequence variation in the variability in detraining responses one-year after 

the cessation of training was the objective of paper 2. Based on blood methylation 

profiles, the thesis further identified DNA methylation differences that were 

associated with muscular variance among older women (paper 3). Finally, genetic 

and methylation profiles were combined to study their associations with muscle 

morphology and strength in older women (paper 4). D-Table 1 summarises the 

hypotheses and results of each paper. 
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D-Table 1. Summary of hypotheses/research questions and results of each paper 

Paper Hypotheses/Research questions Results 

1 

 Data-driven GPS has a significantly predictive value in 

baseline muscle mass and strength in older adults. An 

individual with a higher GPS will have a larger muscle 

mass and strength. 

 Muscle mass and strength will increase after training, 

however, substantial inter-individual variability in these 

muscular response phenotypes exists. 

 Data-driven GPS is positively associated with muscle 

adaptations to exercise. An individual with a higher GPS 

will have a larger muscular improvement after structured 

training. 

 Data-driven GPS was positively related to isometric knee extensor 

strength at baseline and explains 3.2% of the variance. A one-unit 

increase in GPS leaded to 4.73 Nm increase in knee strength. 

(Hypothesis confirmed) 

 Muscle mass and knee strength increased significantly after one-year of 

training with obvious inter-individual variance of -16–22% in muscle 

mass and -21–59% in knee strength. (Hypothesis confirmed) 

 Data-driven GPS was positively related to muscle mass and knee 

extensor strength changes induced by exercise. GPS explained 14% 

and 27% of the variance in muscle mass and knee strength, respectively. 

In response to the training program, with one-unit increase in GPS, 

muscle mass and knee strength increased by 1.78% and 3.86%, 

respectively. (Hypothesis confirmed) 

 Four out of the 19 identified SNPs were significantly associated with 

gene expression in skeletal muscle based on the GTEx database292 and 

three out of the four SNPs showed the same expression direction as that 



148 
 

reported in the GTEx database. These three SNPs were involved in 

domains of muscle growth and muscle structure. (Additional findings) 

2 

 Muscle mass and strength will decrease after a one-year 

cessation of training with inter-individual differences. 

 Data-driven GPS is negatively related to the decline in 

muscle mass and strength after the cessation of training. 

An individual with a higher GPS will have smaller loss in 

muscle mass and strength. 

 Isotonic and isokinetic knee extensor strength decreased, but muscle 

mass and isometric knee extensor strength did not decrease after one-

year cessation of training. (Hypothesis partially confirmed) 

 Inter-individual variance was found in changes of muscle mass and knee 

strength. The change in muscle mass ranged from -14% to 35%. The 

change in isometric knee strength was -32% to 41%. The peak speed of 

isotonic knee movement showed a change range of -22–13%, and the 

isokinetic knee strength had a change range between -29% and 21%. 

(Hypothesis confirmed) 

 A data-driven GPS was closely related to changes in muscle mass and 

strength after the cessation of training, and explained 26–37% of the 

variance. Participants with a higher GPS had smaller losses in muscular 

phenotypes. (Hypothesis confirmed) 

 23 out of the 46 identified SNPs were closely associated with gene 

expression in skeletal muscle based on the GTEx database and 8 out of 

the 23 SNPs showed the same expression direction as that reported in 

the GTEx database. The 8 SNPs were involved in domains of muscle 



149 
 

growth, metabolism, DNA methylation and neural control. (Additional 

findings) 

3 

 To identify sarcopenia-related genes and CpGs that 

demonstrate differentially methylated patterns between 

sarcopenic and non-sarcopenic older women.  

 To explore possible sarcopenia-related biological 

functions and pathways based on sarcopenia-related 

genes.  

 6,258 CpGs were differentially methylated (p < 0.01) between generally 

age-matched sarcopenic and non-sarcopenic women. The sarcopenic 

group had higher methylation levels in gene promoters and lower 

methylation levels in gene bodies (Hypothesis confirmed) 

 Differentially methylated genes are involved in multiple pathways that 

are related to muscle function, actin cytoskeleton regulation, energy 

metabolism and signal transduction. (Hypothesis confirmed) 

4 

 Both genetic and methylation profile scores have a 

significant predictive value to explain muscle size and 

strength variability in older women.  

 A model with both genetic and methylation profile scores 

explains more inter-individual variability in muscle 

morphology and strength than a model with only a genetic 

or methylation profile score. 

 GPSSNP was not related to muscular phenotypes. MSSAR was related to 

vastus lateralis size, elbow and knee strength. (Hypothesis partially 

confirmed) 

 A model with only an MSSAR explained the highest proportion of 

variability in muscle morphology and strength in older women compared 

to other models: either a model with only a GPSSNP or an MSSNP, or 

models containing both genetic and methylation profile scores. 

(Hypothesis rejected) 
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2. General discussion 

Regardless whether this thesis was based on two projects, which had different 

participants and candidate gene sets, we will explore the associations of genetic 

and methylation markers with individual variability in ageing muscle characteristics 

based on the results of each paper and the comparisons between them. 

2.1. Genetic association with baseline muscle mass and strength in older people 

Heritability studies have shown that a considerable proportion of muscle mass and 

strength can be explained by genetic factors. Abney et al.293 conducted a study in a 

founder population with extensive genealogical records, which increased the power 

to detect dominance genetic variance, and found that genetic factors contributed up 

to 76% of the variance in fat free mass. Arden et al.58 studied 353 pairs of 

postmenopausal twins and reported that the explained variance by genotypes was 

52% in lean body mass, 30% in grip strength, and 46% in leg extensor power. 

Carmelli et al.59 conducted a 10-year follow-up study in 152 pairs of older male twins 

and reported that genes accounted for 35% of the grip strength variance at baseline 

and 22% of the variance 10 years later. They further analysed the genetic 

association with hand grip strength change during the 10-year period and 

demonstrated a genetic contribution of 35% to the variance in strength loss. 

Frederiksen et al.60 studied 1,757 twin pairs aged 45–96 years and found a 52% 

heritability in grip strength. Besides heritability studies on grip strength, the genetic 

effect on low limbs was also reported. In a study of Finnish twin older women (aged 

63–96 yrs), Tiainen et al.289 found 31% of the knee extensor strength was explained 

by genes. The same research team also studied female twins (aged 63–76 yrs) over 

a 3-year follow-up and found that the genetic effect on muscle strength decreased 

with age. Genetic factors were found to explain 58% of the variance in knee extensor 

strength at baseline and 56% at follow-up level, and 67% of the variance in knee 

extensor power and 48% of the variance after three years.61 

Compared to reported heritability estimates, studies testing a genetic predisposition 

score (GPS) often demonstrate only limited power to explain variability in muscular 

phenotypes. Charlier et al.124 analysed muscular phenotypes of 565 adults (aged 

19–73 yrs) by GPS models built on 153 muscle-related single nucleotide 

polymorphisms (SNPs). The explained variance by GPS was 2.9–6.1% in muscle 

mass, 3.8–5.4% in isometric knee extensor strength, 2.2–6.8% in isotonic knee 

strength and 3.5–6.8% in isokinetic knee strength.124 Similarly, paper 1 in this thesis 
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also showed that only 0.7% of the variance in muscle mass and 3.2% of the variance 

in isometric knee extensor strength could be explained by data-driven GPSs (based 

on 170 candidate SNPs). The total GPS calculated from seven muscle-related SNPs 

(ACTN3 rs1815739, ACE rs4341, CNTF rs1800169, FTO rs9939609, HIF1A 

rs11549465, MSTN rs1805086 and VDR rs2228570) contributed to 0.2–3.1% of the 

variance in muscle size and 1.3–4.4% of the variance in muscle strength in older 

women using a genetic model (Model 6) of paper 4. Using the shared five SNPs 

(ACTN3 rs1815739, CNTF rs1800169, MSTN rs1805086, FTO rs9939609 and 

HIF1A rs11549465) in paper 1 and 4, GPSs were calculated with the predisposing 

alleles as defined in paper 4 (P4-Supplementary Table 1). As presented in D-Table 

2, those GPSs only explain up to 3.7% of the variance in both muscle mass and 

knee extensor strength at baseline.  
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D-Table 2. Genetic association with muscle mass and knee strength (based on five shared SNPs in paper 1 and 4) 

Paper Paper 1  Paper 4 

Parameter 

SMM_baseline (kg)  PTIM60_baseline (Nm)  SMM (kg)  PTIM60 (Nm) 

Estimate 
β 

value 

Partial 

r2 
p  Estimate 

β 

value 

Partial 

r2 
p  Estimate 

β 

value 

Partial 

r2 
p  Estimate 

β 

value 

Partial 

r2 
p 

GPS -0.45 -0.09 0.037 0.007  -4.53 -0.14 0.037 0.009  0.22 0.07 0.007 0.586  0.18 0.01 <0.001 0.955 

SEX (M=1, 

F=0) 
11.66 0.90 0.802 <0.001  56.95 0.69 0.497 <0.001  - - - -  - - - - 

AGE -0.10 -0.07 0.024 0.030  -2.45 -0.28 0.144 <0.001  -0.10 -0.13 0.024 0.306  -1.12 -0.21 0.044 0.178 

BMI 0.15 0.08 0.034 0.010  0.05 <0.01 <0.001 0.934  0.35 0.53 0.282 <0.001  0.69 0.16 0.026 0.300 

Intercept  22.89  300.97  13.89  119.54 

Adj. r2 0.803  0.525  0.257  0.009 
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D-Table 3. Comparisons of significant SNPs contributing to data-driven GPSs at different timepoints 

Timepoints SNP Gene 
SMM 

baseline 

PTIM60 

baseline 

∆SMM 

training 

∆PTIM60 

training 

∆SMM 

detraining 

∆PTIM60 

detraining 

∆PTIK60 

detraining 

∆PTIK240 

detraining 

Baseline and Training          

 rs3110697 IGFBP3 X X  X     

           

Baseline and Detraining          

 rs10497520 TTN  X     X  

 rs3797297 FST  X      X 

           

Training and Detraining          

 rs2390760 METTL21C   X  X X X  

 rs3762546 MSTN   X  X X  X 

 rs7703033 MTRR    X   X  
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The gap in explained variance between heritability and measured genetic variant 

studies, known as the problem of missing heritability, has been fuel for discussions 

for more than a decade.294 One possible explanation is the incompleteness of the 

candidate genetic variants set used in a GPS study. For instance, the GPS studies 

in the current thesis did not include all muscle-related genetic variants. In recent 

years, several genome-wide association studies (GWASs) have identified multiple 

SNPs that are closely related to muscle strength and mass. Matteini et al.295 

conducted a meta-analysis of GWASs on handgrip strength among older Europeans 

aged over 65 yrs and identified two significant (p-value < 5 × 10−8) and 39 suggestive 

(p-value < 5 × 10−5) SNPs that were associated with grip strength. Willems et al.191 

identified 16 loci associated with grip strength (p-value < 5 × 10−8) based on a large-

scale genetic analysis and those loci were involved in multiple pathways such as 

myofiber function, neuronal maintenance and signal transduction. Tikkanen et al.110 

conducted a GWAS of grip strength and identified 101 loci (p-value < 5 × 10−8) which 

explained 1.5% of the variance in grip strength. The same research team further 

completed a meta-analysis of the discovery GWASs and identified 139 grip strength-

associated loci, which explained 1.7% of the variance in grip strength.110 In a GWAS 

on one thousand Americans, Liu et al.111 identified two genome-level significant 

SNPs (rs16892496 and rs7832552), and another 146 suggestive (p-values < 1.26 

× 10−4) SNPs associated with lean body mass (LBM). When comparing those SNPs 

identified by GWAS with the 226 candidate SNPs used in this thesis (paper 1, 2 and 

4), only two SNPs (rs16892496 and rs7832552) within the gene TRHR were found 

in common. Notably, the two TRHR SNPs were significantly associated with LBM in 

the study of Liu et al.111 However, neither of these SNPs was closely correlated with 

any muscular parameters in this thesis. Besides nuclear genes, some mitochondrial 

genes have also been connected with skeletal muscle. Bray et al.210 summarised 

18 mitochondrial genes that have been associated with exercise intolerance, fitness 

or physical performance. Yet, no mitochondrial genes were analysed in this thesis. 

Therefore, the incomplete candidate SNP set and the lack of gene expression 

measurement might contribute to a smaller proportion of explained variance in 

muscular phenotypes (mass and strength) in a GPS study compared to a heritability 

study. 

Notably, Young296 summarised in a recent review that even with a complete trait-

specific SNP set identified from a GWAS, the problem of missing heritability might 

still exist. One of the main reasons is that the application of a GWAS was only able 
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to detect genetic variants that are rather common in the population and have 

relatively strong connections with a trait, and some very rare genetic variants that 

are related to a trait might fail to be captured by a GWAS. For example, heritability 

studies have reported that genetic factors account for more than 68% of the variance 

in height.297,298 Yet, Yengo et al.299 reported that SNPs that were significantly related 

to height or BMI only explained 24.6% and 6% of the variance, respectively. Yang 

et al.300 analysed a large set of common (not height-specific) SNPs (n = 294,831) 

and could explain 45% of variance in height. Wood et al.301 conducted a GWAS 

meta-analysis on height of 253,288 individuals and found that SNPs with a strong 

association with height explained up to 29% of the variance in height while all 

common variance together could explain 60% of the variance. These findings 

indicate that GWASs cannot detect all contributing genetic variations that are related 

to a trait despite that increasing GWAS sample size will enhance the proportion of 

explained variance, and consequently, trait-specific SNPs explain less variance 

than that estimated in a heritability study. Another possible reason is that by 

estimating heritability, one assumes that the genetic factor is a result of an additive 

influence from each contributing genotype and therefore fails to take into account 

any gene-gene302 and gene-environment interactions.303 For example, Zuk et al.302 

reported that genetic interactions could account for 80% of the missing heritability 

in Crohn’s disease and suggested that genetic interactions was also important to be 

examined in estimating heritability. 

2.2. Genetic association with adaptations in muscle mass and strength after training 

and detraining 

By far, only one study from Thomaes et al.123 has reported the association between 

GPS and muscle adaptations to exercise. In the study, 260 coronary artery disease 

(CAD) patients followed a three-month cardiac rehabilitation program. A data-driven 

GPS (based on 54 SNPs, selected by backward regression) was calculated to 

examine the genetic association with exercise-induced changes in fat free mass and 

knee strength. Their results showed that fat free mass and isometric quadriceps 

strength were improved by 1.2% (SD 3.6%) and 11.5% (SD 16.0%) after the training. 

The data-driven GPS explained 2.6% of the variance in isometric quadriceps 

strength change. In the current work (paper 1), exercise induced a 2.7% (SD 7.3%) 

and 13.3% (SD 15.5%) improvement in muscle mass and isometric knee strength, 

respectively, while the data-driven GPS explained 27% of the variance in isometric 

knee strength change. The different results between these two studies might be due 
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to the difference in training protocols and GPS calculations. In Thomaes’ study, the 

cardiac rehabilitation program mainly consisted of aerobic exercise and calisthenics 

with a comparatively short intervention period of three months. The training protocol 

in paper 1 included both resistance and aerobic training with a comparatively high 

intensity during a one-year of intervention. Therefore, there was a more intensive 

and longer-lasting exercise stimulus and a longer genotype*training interaction 

phase in paper 1, resulting (partially) in higher average responses of muscle mass 

and knee strength. Moreover, Thomaes’ study was based on 54 SNPs and only 2 

SNPs (ACVR1B rs746434 and AMPD1 rs17602729) were selected as being closely 

related to isometric knee strength. Paper 1 selected eight SNPs (none of them were 

shared with Thomaes’ study) that were correlated with isometric knee strength out 

from a 170-candidate SNP pool. Therefore, the data-driven GPS in paper 1 

explained more variance in isometric knee strength change after exercise 

intervention. Notably, the fact that no common SNPs were shared between 

Thomaes’ study and paper 1 indicates a genetic association with the characteristics 

(e.g. type, intensity and frequency) of the training intervention. As reported in paper 

1, the strength-related GPSs were not closely related to aerobic adaptations of the 

participants. Therefore, further understanding of the susceptibility of SNPs towards 

different exercise characteristics will be helpful for personalised regimen design in 

the future. 

The genetic association with muscular changes after the cessation of training has 

never been studied before. If the muscular phenotypes at baseline (paper 1) are 

seen as overall results of environmental and genetic effects over a long (life-) time, 

then the muscular changes after a one-year cessation of training (termed as 

“detraining” in paper 2) can be roughly regarded as the results of a short-term 

environmental and genetic interaction (genotype*detraining interaction) 

characterised by the lack or sudden stop of supervised exercise training. In paper 

2, a data-driven GPS explained 26–37% of the variance in muscular changes during 

detraining. This indicates that at least part of the training gains are lost after quitting 

training depends on your genetic architecture. Since no other studies are available 

to compare with, limited data on more general longitudinal aging changes can be 

interpreted. The explained detraining variability in paper 2 resembled the finding of 

a 35% genetic contribution to the variance in a 10-year grip strength decline in older 

twins reported in a heritability study.59 However, as discussed in paper 2, extra data 
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such as food consumption and physical activity also need to be controlled when 

analysing the genetic association with muscular changes during detraining.   

2.3. Shared genetic variants across baseline muscle mass and strength, and 

muscular phenotypic changes during training and detraining (based on paper 1 and 

2) 

Paper 1 and 2 explored the genetic association with inter-individual muscular 

variability at baseline and after exercise among 200 older Flemish adults. Paper 1 

identified seven SNPs (located in six genes) associated with baseline muscle mass 

and knee strength, 13 SNPs (located in 11 genes) were associated with muscle 

mass and knee strength changes induced by a one-year of structured training. 

Paper 2 identified 46 SNPs (located in 34 genes) that were related to muscular 

changes after a one year of detraining. In total, 60 SNPs from 43 genes were 

identified from those two studies. Those identified genes are related to multiple 

domains such as DNA methylation regulation (MTHFR, MTR and MTRR), 

growth/differentiation factors (e.g. IGF1, MSTN and TGFB1), hormone receptors 

(e.g. ACVR1B, ESR1 and VDR) and neural factors (e.g. CNTF, RIMS1 and 

ZNF804A). To investigate if a genetic variant is involved at more than one timepoint 

or condition (baseline, training or detraining), comparisons of data-driven SNPs 

between different timepoints were made. No common SNP is found among the three 

timepoints while in total, six SNPs (located in six genes) were shared between each 

two timepoints (D-Table 3).  

The SNP rs3110697 from the gene IGFBP3 was related to baseline muscle mass, 

knee strength and knee strength adaptation to training. Based on cultured myoblasts, 

Foulstone et al.162 reported that the IGFBP-3 secretion was positively associated 

with myoblast differentiation. The addition of antisense IGFBP-3 reduced the 

IGFBP-3 secretion, resulting in decreased skeletal muscle differentiation.162 The 

SNP rs3110697 demonstrates a strong connection with plasma IGFBP-3 levels,163 

and is also closely related to the appetite loss in cancer patients, which might further 

result in weight loss and cachexia.304 The identification of rs3110697 indicates its 

possible connection with baseline values of muscle mass and knee strength, and 

knee strength adaptation to exercise.  

Two SNPs (rs10497520 and rs3797297) in TTN and FST are found in both baseline 

knee strength and detraining-related strength change, indicating a possible 

involvement of corresponding SNPs in baseline muscle strength and a muscular 
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change induced by a one-year detraining period. Titin (encoded by the TTN gene) 

is a crucial protein in striated muscle structure and function. It connects the Z disk 

to the M line in a sarcomere, and therefore, assists force transmission during muscle 

contraction and contributes to muscle stiffness in passive stretching. Stebbings et 

al.167 reported that the TTN rs10497520 C/T polymorphism was associated with 

skeletal muscle fascicle length. Marathon runners with the T allele had shorter 

vastus lateralis fascicle length and better performance in a marathon competition.167 

Thomaes et al.123 studied the rs10497520 polymorphism and reported an 

association with isokinetic knee extension strength in CAD patients. The FST gene 

encodes follistatin, a protein that is involved in myogenesis regulation. Lee et al.165 

showed that transgenic mice, with high levels of follistatin, exhibited dramatic 

increases in muscle mass and gastrocnemius muscle fibre size compared to control 

mice. The researchers further reported that the FST mutant mice, with reduced 

follistatin levels, had significant decrease in muscle size and tetanic force 

production.305  

The comparison between training and detraining showed three SNPs (rs2390760, 

rs3762546 and rs7703033) in the gene METTL21C, MSTN and MTRR, respectively, 

suggesting that those SNPs might be sensitive to exercise stimulus and loss of the 

stimulus. METTL21C (encoded by the gene METTL21C) is specifically expressed 

in MYH7-positive skeletal muscle fibers.306 The gene METTL21C was identified as 

being closely related to bone and muscle function via a bivariate GWAS for paired 

bone geometry and muscle phenotypes.178 Cell line analyses further showed that 

partial silenced METTL21C inhibited myoblast differentiation, reduced the amplitude 

of caffeine-induced peak Ca2+ release from the sarcoplasmic reticulum, and 

promoted cell death.178 The gene MSTN encodes myostatin, a TGF-β family 

member that negatively regulates skeletal muscle mass. Animal studies have shown 

that the muscle weights in MSTN-knockout mice are almost twice as heavy as that 

in wild-type mice and such muscle mass difference is primarily due to muscle fibre 

hypertrophy.114,307 Schuelke et al.308 examined a child with a rare MSTN mutation 

(without mature myostatin in serum) and reported that the child showed an 

extremely larger quadriceps size (7.2 SD above the mean value of age- and sex-

matched controls) and a thinner subcutaneous fat layer (2.88 SD lower than the 

mean value of controls). These findings provide strong evidence of the negative 

regulator role of MSTN in muscle mass in human beings. Exercise is found to trigger 

an alteration in the myostatin level. Hittel et al.309 reported that a 6-month moderate 
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aerobic exercise induced myostatin reduction in both muscle and plasma samples 

from middle aged adults. The research team also mentioned a notable inter-

individual variance in plasma myostatin at pre- and post-training levels, suggesting 

a possible genetic association with myostatin expression.309 Methionine synthase 

reductase (encoded by MTRR) plays a crucial role in the metabolic cycle of 

producing methyl groups for DNA methylation.183 In rs7703033, the A allele is 

associated with reduced MTRR expression, leading to decreased DNA methylation 

level. The identification of the MTRR gene in both training and detraining timepoints 

indicates a possible involvement of differential DNA methylation in individual 

muscular responses to exercise stimulus. 

2.4. DNA methylation and sarcopenia 

Previous studies compared DNA methylation differences between older and young 

adults based on various tissues such as saliva,100 blood,229,230 muscle,101 skin231 and 

brain232, in which age might be an important factor to induce methylation changes.98 

To restrict the age effect on DNA methylation and to better explore sarcopenia-

related methylation differences per se, we controlled the ageing effect by selecting 

generally age-matched older women with a limited age difference (paper 3 and 4). 

Possibly also because of the control for age, the age (as a covariate) was not 

significantly related to most muscular phenotypes (vastus lateralis size, elbow and 

knee strength) in paper 4. Moreover, to better explore the association between DNA 

methylation and skeletal muscle, methylation profiles were compared between two 

groups with significant muscle differences (sarcopenic vs. non-sarcopenic). 

Therefore, the observed methylation differences might be largely related to inter-

individual variability in muscular phenotypes among older adults with similar ages.  

This thesis (paper 3) analysed DNA methylation differences related to sarcopenia. 

To our best knowledge, no similar studies have been reported before. As 

summarised in paper 3, a general hypermethylation in gene promoters and 

hypomethylation in gene bodies was correlated with sarcopenia. In total, 6,258 

sarcopenia-related differentially methylated CpGs (dmCpGs, p < 0.01) were 

identified. Genes containing these dmCpGs were involved in pathways of multiple 

domains such as muscle function, actin cytoskeleton regulation and energy 

metabolism. Seven genes (HSPB1, PBX4, CNKSR3, ORMDL3, MIR10A, ZNF619 

and CRADD) were found with the same methylation direction as that reported in 

previous ageing-related methylation studies based on blood samples,229,230 
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indicating a possible connection between these seven genes and ageing-related 

muscle degeneration. Notably, although paper 3, which was based on blood tissue, 

also shared multiple CpGs with methylation studies on ageing101 and resistance 

training in young adults,102,104 which were based on muscle tissue, the methylation 

directions of those CpGs were not always consistent between the two tissues. The 

inter-tissue inconsistency of methylation supports the observation that DNA 

methylation pattern is tissue specific,95 and therefore, it might not be feasible to 

estimate the methylation status in skeletal muscle based on the methylation data 

obtained from blood tissue. 

Instead of selecting sarcopenia-related CpGs from dmCpGs (n = 6,258), which was 

identified in paper 3 by comparing M values between the sarcopenic and non-

sarcopenic group, paper 4 conducted the selection based on all initially measured 

CpGs (n = 788,074). The rationale includes (1) to select (possibly) more CpGs that 

might be related to sarcopenia status without the restriction of p-values from an 

association test (t-test in paper 3), (2) to control for the collinearity of selected CpGs, 

(3) to obtain the weight of each CpG site for the calculation of a sarcopenia-driven 

methylation score. The concern behind the first rationale is that the dmCpG set (in 

paper 3) was determined by an arbitrary p-value threshold of 0.01, therefore, some 

CpGs which were closely correlated with sarcopenia might be excluded due to a 

higher p-value (greater than 0.01). While the lasso regression analysis on the initial 

CpG dataset allows to choose CpGs without the p-value restriction, therefore, many 

representative CpGs that are related to sarcopenia can be selected. The concern 

behind the second and third reasons are related to the research aim of each paper. 

Paper 3 explored the DNA methylation difference and corresponding pathways in 

association with sarcopenia, therefore, the main purpose was to identify the CpGs 

that showed significant methylation differences between the sarcopenic and non-

sarcopenic group. Because of this, a p-value threshold was used for CpG selection. 

In this approach, CpGs that locate closely in the same gene region or are 

functionally correlated might be identified together. Paper 4 aimed to investigate the 

association between DNA methylation profiles (represented by a methylation score) 

and muscular phenotypes. Therefore, in the calculation of a sarcopenia-driven 

methylation score, the collinearity between CpG sites should be controlled and the 

weight of each CpG needs to be estimated. For this purpose, a lasso regression 

was used to select CpGs that had relatively strong correlations (non-zero 

coefficients) with sarcopenia, and were not closely related to each other. As 
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demonstrated in D-Table 4 and D-Figure 1, the proportion of weakly correlated 

CpGs selected by the lasso regression (paper 4) is higher than that in dmCpGs 

identified in paper 3.  

Yet, stricter CpG selection criteria can still be applied by combining both the lasso 

regression results (n = 379) and the p-value threshold (n = 6,258), which gives a 

more representative set of sarcopenia-related CpGs (n = 76, D-Supplementary 

Table 1A). The shared CpGs have the smallest count of strong correlation, and the 

percentages of weak and moderate correlations in shared CpGs are between that 

in dmCpGs and sarcopenia CpGs (D-Table 4, D-Fig 1). Chi-squared test showed 

that the distributions of weak, moderate and strong correlations are different among 

the three groups (p < 0.01). 

D-Table 4. Description of correlations between CpGs identified in paper 3, 4 and the 

current discussion. 

Correlation 

dmCpGs  

(paper 3) 
 

Sarcopenia-driven 

CpGs (paper 4) 
 

Shared CpGs  

(current discussion) 

Count Percentage  Count Percentage  Count Percentage 

Weak (< 0.3) 13,726,712 70.11  66,027 92.18  2,230 78.25 

Moderate (0.3 - 0.7) 5,846,997 29.86  5,542 7.74  613 21.51 

Strong (> 0.7) 4,444 0.03  62 0.08  7 0.24 

The count represents the total correlation count among CpGs: n(n-1)/2, in which n 

is the amount of CpGs.  

 

D-Figure 1. Correlation heatmap of CpGs. (A) dmCpGs (n = 6,258) identified by p-

value (p < 0.01) in paper 3, (B) sarcopenia-driven CpGs (n = 379) identified by the 

lasso logistic regression in paper 4, (C) shared CpGs (n = 76) in this discussion. 

Gene ontology (GO) enrichment analysis on these 76 CpGs identified 223 terms 

that are significantly enriched (unadjusted p-value < 0.05) (D-Supplementary Table 



162 
 

1A). The top 20 GO terms are associated with many muscle-related activities such 

as neural control, signal transduction, calcium ion transport and myoblast 

differentiation (D-Supplementary Table 1B). The “synapse assembly” is the most 

significantly enriched GO term which includes three CpGs (cg25340050, 

cg15714846 and cg19524037) located in different regions (1stExon, 3'UTR and 

gene body) of the genes PCDHB16, FZD5 and NRG1 (D-Supplementary Table 1C).   

Multiple studies have analysed the association between exon methylation and gene 

expression.310–313 Brenet et al.311 analysed genome-wide DNA methylation with 

gene expression and found a close negative association between the first exon 

methylation level and DNA transcription. A recent study by Shayevitch et al.313 

showed that the methylation of exon regions helped to regulate alternative splicing 

(AS, D-Figure 2), a mechanism that contributes to transcriptomic and proteomic 

diversity by generating multiple mRNA products from a single gene.310 The research 

team reported that the lack of DNA methylation inhibited the infusion of intragenic 

exons during the formation of mature mRNA.313 The same results were also found 

by Li et al.,312 who showed that gene expression was negatively correlated with 

methylation levels in promoters and first exons, while exon expression was 

positively associated with methylation densities in intragenic exons. The result of 

hypomethylated cg25340050 (lower methylation level in the sarcopenic group than 

non-sasrcopenic group, D-Supplementary Table 1C) located in the first exon of 

PCDHB16 indicated a down-regulated PCDHB16 expression in the sarcopenic 

group, and the PCDHB16 gene is relate to the function of cell-cell neural 

connection.314 
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D-Figure 2. RNA alternative splicing regulated by intragenic DNA methylation. 

Without DNA methylation, exons will be kept in mature mRNA. With DNA 

methylation, some exons will be dropped in the formation of mature mRNA. Adapted 

from Baker-Andresen, 2013.315 

The gene FZD5 encodes frizzled class receptor 5, a protein that is regarded as the 

receptor for Wnt5A ligand.314 Wnt5A is involved in multiple cellular processes such 

as the development of the reproductive tract, the inducement of gland formation and 

the process of oestrogen mediated cellular and molecular responses in uterine 

tissue.316 The identification of gene FZD5 suggests possible cell development and 

molecular response changes associated with sarcopenia. The gene NRG1 encodes 

neuregulin 1, a glycoprotein which plays a role in synaptic plasticity. Based on a 

study in mice, Agarwal et al.317 demonstrated that abnormal (deficient or 

overexpressed) expression of Neuregulin 1 led to disrupted hippocampal plasticity 

(with impaired long-term potentiation), and imbalanced excitatory and inhibitory 

neurotransmission. As a result, the learning ability and memory might also be 

disrupted.318 Since DNA methylation of the gene body is associated with increased 

gene expression,94,241 the hypomethylated cg19524037 located in the gene body of 

NRG1 (D-Supplementary Table 1C) might indicate a lower expression of Neuregulin 

1 in association with sarcopenia. However, further gene expression analysis in blood 

samples would be needed to confirm this assumption. 

KEGG pathway analysis on the 76 CpGs showed that only the pathway “synthesis 

and degradation of ketone bodies” is significantly enriched (unadjusted p-value = 

0.02, D-Supplementary Table 1D). Ketone bodies, mainly acetoacetate (AcAc) and 

β-hydroxybutyrate (β-HB), are generated from fatty acid oxidation products in the 

liver under a glucose starvation condition.319 They serve as an alternative fuel 

source for peripheral tissues such as brain and skeletal muscle.319 After being 

generated, the ketone bodies diffuse into the bloodstream. In extrahepatic tissues, 

Ketone bodies are converted into acetyl-CoA with the catalysis by 3-oxoacid CoA-

transferase (encoded by the OXCT1 gene).320 The acetyl-CoA is later transported 

into mitochondria for energy production. The pathway “synthesis and degradation 

of ketone bodies” (10 genes in the pathway) contains one hypermethylated (higher 

methylation level in the sarcopenic group than non-sarcopenic group) CpG in the 

OXCT1 gene (D-Supplementary Table 1E), implying a possible alteration in energy 

production accompanied with sarcopenia. 
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Notably, the “mTOR signalling pathway” (152 genes in the pathway) shows a 

marginal significance (unadjusted p-value = 0.05, D-Supplementary Table 1D). The 

mTOR signalling pathway is known for promoting muscle growth.321 The animal 

study conducted by Bodine et al.261 showed that the mTOR pathway was 

upregulated during muscle hypertrophy and downregulated during atrophy. 

Moreover, with the presence of mTOR blocker, muscle hypertrophy was also 

inhibited.261 Studies on human skeletal muscle have shown that acute resistance 

training increases the phosphorylation of ribosomal protein S6, a substrate of p70 

S6 kinase (p70S6k) in the mTOR pathway322, and leads to rapid translocation of 

mTOR/LAMP2 towards the cell membrane with concurrent increase in mRNA 

translation capacity.323 These changes in the mTOR pathway might partly explain 

the increased muscle protein turnover324 and enhanced myofibrillar protein 

synthesis325 after acute resistance training. The KEGG analysis identified two genes 

(PRR5 and FZD5) from the mTOR pathway. The function of FZD5 has been 

previously discussed. The gene PRR5 encodes proline rich 5 protein, which is a 

component of the mTOR complex 2 (mTORC2). Woo et al.326 demonstrated that 

PRR5 silencing reduced the expression of the growth factor receptor PDGFR, and 

repressed Akt and S6K1 phosphorylation through the PDGF signalling pathway. The 

discovery of the gene PRR5 and FZD5 suggests a change of muscle growth ability 

in sarcopenic women compared with non-sarcopenic women. 
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D-Table 5. Genetic and methylation scores in paper 4. 

Genetic and methylation score Calculation method Rationale 

Muscle-driven genetic 

predisposition score (GPSSNP) 

A summed GPS of seven muscle-related 

SNPs 

This score is used to represent an overall genetic 

effect based on DNA sequence variants in seven 

genes that are established for their associations 

with skeletal muscle phenotypes. 

Sarcopenia-driven methylation 

score (MSSAR) 

A weighted sum of the selected CpG 

methylation levels (the weight for each 

CpG site is the coefficient from the lasso 

regression) 

This score is used to represent an overall 

sarcopenia-related methylation level.  

SNP-driven methylation score 

(MSSNP) 

An average of the methylation levels in 

muscle-related genes 

This score is used to represent an average 

methylation level across selected muscle-related 

genes where the seven muscle-related SNPs 

locate. 

Together with GPSSNP, it is designed to evaluate 

associations between seven selected muscle-

related genes at the genetic sequence level 

(GPSSNP) and the methylation level (MSSNP) with 

individual variation in muscular phenotypes. 
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Gene-wise combined score The ratio of a SNP score to the average 

methylation level in promoters of the 

corresponding gene (Seven gene-wise 

combined scores) 

This score is used to represent a genetic 

sequence and methylation level interaction 

within each muscle-related gene. 
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2.5. DNA methylation profile scores and inter-individual variability in muscle 

morphology and strength 

Regardless of the methods used for sarcopenia-related CpGs selection (p-value 

based in paper 3, lasso regression based in paper 4, or combined criteria discussed 

previously in section 2.4), the identified CpGs might be closely related to sarcopenia 

status as well as inter-individual variability in muscle morphology and strength.  

Paper 4 is the first study to analyse both genetic and methylation profile scores and 

their predictive value in ageing muscle. In paper 4, multiple models were built based 

on separate/combined genetic and methylation scores at an overall/gene-specific 

level (D-Table 5). In short we found that genetic profile scores based on seven 

selected genes (GPSSNP) explained up to 4.4% of the variance in muscle size and 

strength, methylation levels in the seven selected genes (MSSNP) explained up to 8% 

in the studied phenotypes, while the methylation profile score based on sarcopenia-

related CpGs (MSSAR) explained 10.1–40.1% of the individual differences in muscle 

morphology and strength in our sample of older women. These results showed that 

genetic and methylation profiles on several representative genes were not strong 

enough to fully explain muscular variability. Moreover, by comparing the Akaike 

information criterion (AIC), the model with only MSSAR showed the best performance 

in explaining the variance in muscle size and strength. This, again, indicates that 

using the data from a small set of representative genes cannot well explain muscular 

variability. Notably, as discussed in section 2.1, even the data-driven GPS based on 

a larger gene set (paper 1) only explained up to 3.2% of the variance in muscle 

mass and strength. Therefore, it is possible that the genetic architecture only 

accounts for a small portion of muscular variability in ageing muscle – or we have 

not yet used the optimal methodology to include all contributing genetic factors, 

while a larger proportion of the variance is taken up by DNA methylation. Since DNA 

methylation is representing the sum of short-term and long-term environmental 

factors, the finding that methylation levels explains a larger proportion of the 

variance in muscle morphology and strength than genetic profiles might indicate that 

environmental elements account for more variance than genetic factors in skeletal 

muscle during ageing, which is supported by several heritability studies.59,61,289 

To further explore if there is a possible synchronization between the SNP genotype 

and the methylation status of a corresponding gene, i.e. the gene with a higher SNP 

score has a lower promoter methylation level (a higher expression level), ANOVA 
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analysis was made to compare gene promoter methylation levels between SNP 

genotype groups in each gene. Although no significant difference was detected, the 

results showed that SNP scores in the gene ACE, CNTF, FTO and HIF1A were in 

the same direction as that in promoter methylation levels (D-Table 6). Participants 

with a higher SNP score also had a higher promoter methylation level in the 

corresponding gene. Therefore, this thesis shows that genetic structures do not 

necessarily cooperate with the methylation status of corresponding genes. 

Interestingly, if the scoring of muscle-predisposing alleles is based on dominant 

alleles that are closely associated with increased gene expression in skeletal muscle 

(based on the GTEx database),292 as in the case of SNP scores in the gene CNTF 

and FTO, we observed an opposite direction of promoter methylation levels 

compared to SNP scores in these two genes. Therefore, higher SNP scores in the 

gene CNTF and FTO tend to be associated with lower promoter methylation levels 

and higher gene expression levels. 

As a pilot study, paper 4 indicates that the methylation levels of sarcopenia-related 

CpGs can be possibly used to identify older (female) adults who are susceptable to 

muscle degeneration. Based on this identification, many preventive interventions, 

such as a personalised exercise regimen, extra nutrient supplements and additional 

home care service,  can be applied before the occurrence of functional limitations 

caused by degenerated skeletal muscle. However, at the current stage, multiple 

validations on different independent cohorts are still needed to verify the predictive 

power of these CpG sites.  

D-Table 6. SNP scores and methylation levels of promoter regions in corresponding 

genes from paper 4. 

SNP# Mean SD 
Dominant allele in 

GTEx* 

ACTN3  

(rs1815739 T/C) 
  - 

0 0.3947 0.0049  

1 0.3972 0.0101  

2 0.3966 0.0129  

ACE 

(rs4341 C/G) 
  - 

0 0.4487 0.0071  
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1 0.4489 0.0066  

2 0.451 0.0077  

CNTF 

(rs1800169 A/G) 
  A 

1 0.8422 0.0105  

2 0.8474 0.0155  

FTO 

(rs9939609 A/T) 
  A 

0 0.2446 0.0048  

1 0.2451 0.003  

2 0.2469 0.0047  

HIF1A 

(rs11549465 C/T) 
  T 

0 0.1811 0.0059  

1 0.1836 0.0057  

VDR 

(rs2228570 G/A) 
  - 

0 0.2238 0.0018  

1 0.2231 0.0036  

2 0.2225 0.0034  

# SNPs examined in paper 4. Alleles predisposing to muscle mass and strength 

(based on published association studies) are presented in bold. The MSTN SNP 

(rs1805086) is not included because all the participants in paper 4 had the same 

TT genotype (T allele frequency in general population: 96.9%). 

* The dominant allele is the allele associated with increased gene expression in 

skeletal muscle based on the GTEx database. Alleles that are not significantly 

related to gene expression in skeletal muscle are not presented. 

2.6. Summary of SNPs and pathways (methylation based) associated with inter-

individual variance in muscle mass and strength 

This thesis identifies 43 genes (paper 1 and 2) that are associated with individual 

variability of muscle mass and strength under different conditions (baseline, 

exercise training and detraining) among older people. Moreover, based on 

sarcopenia-related CpGs, 37 pathways are identified as being related to muscular 

differences (paper 3). These genes and pathways are involved in multiple biological 
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processes such as hormonal function (e.g. IGF1, IGF2, insulin resistance, thyroid 

hormone signaling pathway), muscle function (e.g. MSTN, TTN, apelin signaling, 

cGMP-PKG signaling), actin cytoskeleton regulation (e.g. phosphatidylinositol 

signaling, focal adhesion, adherens junction), energy metabolism (e.g. 

thermogenesis, AMPK signaling, glucagon signaling), neural control (e.g. CNTF, 

RIMS1, ZNF804A, axon guidance, GABAergic synapse), signal transduction (e.g. 

Wnt signaling, MAPK signaling, cAMP signaling), methylation regulation(e.g. 

MTHFR, BHMT, MTR) and cell regeneration (e.g. CCL2, CCR2, cell cycle, oxytocin 

signaling). All these processes are connected directly/indirectly to muscle 

mass/strength and can probably (partially) explain inter-individual variations in 

muscular phenotypes. Appendix table 1 has categorised these genes and pathways 

in terms of muscle mass, muscle strength, muscle recovery and methylation 

regulation. 13 genes and 10 pathways are connected with muscle mass, 23 genes 

and 18 pathways are related to muscle strength, 9 pathways are related to both 

muscle mass and strength, 2 genes are associated with muscle recovery and 5 

genes are connected to methylation regulation. 

3. Limitations and suggestions for future research 

(1) Studies in this thesis have limited sample sizes, which affect statistical power. 

Although the sample size in the one-year exercise training study is large given the 

nature and time-demanding aspects of a supervised intervention study of long 

duration, it is still rather small for a genetic association study.327 Therefore, 

additional studies with a large sample size are needed to validate our findings. 

Within the MMU study in older women, both the thresholds used to define 

sarcopenia, as well as limited financial resources resulted in a small set of women 

for which an Infinium MethylationEPIC BeadChip methylation analysis could be 

performed. Moreover, the participants in the methylation studies of this thesis are 

older women. Compared to older men, older women have lower sex hormone levels 

and less relative loss in muscle mass and strength during muscle degeneration.328 

Other hormonal functions, such as the insulin and glucagon responses for glucose 

homeostasis,329 and thyroid function,330 are also reported as sex-specific. In this 

thesis, methylation level differences were identified in genes contributing to multiple 

hormone-related pathways, e.g. insulin resistance, glucagon signaling pathway and 

thyroid hormone signaling pathway (Appendix table 1). Therefore, the methylation 

findings in paper 3 and 4 might not be fully generalised to older men. In the future, 



171 
 

similar methylation researches on sarcopenia-related DNA methylation changes in 

older men are needed.  

Since no CpGs were found with significance after the false discovery rate (FDR) 

correction at 5%, an arbitrary p-value threshold (p < 0.01) was used in paper 3. The 

selection of a p-value threshold can be a weakness in this thesis because the 

selected p-value will affect the identification of dmCpGs and subsequent GO and 

KEGG analysis results. In ageing-related methylation studies, Heyn et al.229 

analysed blood methylation patterns between a newborn and a centenarian, and 

identified 214 dmCpGs after FDR correction at 1%. Bell et al.230 analysed DNA 

methylation (blood based) of 172 female twins (aged between 32 and 80 yrs) and 

identified 490 hypermethylated dmCpGs related to chronological age after 

epigenome-wide association scans (EWAS) and FDR correction at 5%. In future 

studies, a larger sample size will be helpful to identify significant sarcopenia-related 

dmCpGs after FDR correction. 

(2) The methylation analysis in this thesis is based on DNA methylation data of blood 

cells. Although methylation profiles were normalised for white blood cell counts, 

which were estimated through an R package “FlowSorted.Blood.EPIC”, the 

methylation profiles would be more accurate if flow cytometry measurements of 

cell composition had been made from blood samples. Additionally, since 

methylation is tissue-specific, future methylation studies on muscle biopsies in 

older subjects can be more informative for the understanding of muscle 

degeneration and the derived methylation score might explain more inter-individual 

muscular variance.  

(3) On the other hand, despite that DNA methylation patterns are tissue-specific, 

future comparisons of DNA methylation differences based on blood and 

skeletal muscle tissues are still needed to identify CpGs with a fixed (either 

positive or negative) correlation between both tissues. If some overlapping CpGs 

can be found, then the more easily accessible blood sample can be used in further 

studies and applications compared to muscle biopsy. 

(4) This thesis only used stepwise and lasso regression for SNP and CpG selection. 

In fact, many other techniques can be used in the selection of genetic and 

methylation markers, as well as the calculation of GPS and methylation profile 

scores.  
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For instance, instead of using a preselected candidate gene set, a GWAS can be 

used to select muscle-related genetic variants. Shah et al.130 used a GWAS and a 

methylome-wide association study (MWAS) to identify SNPs and CpGs that were 

significantly associated with BMI/height, and tested the BMI/height models with 

these significant genetic and methylation markers in other independent cohorts. 

The lasso regression used in this thesis is one of the machine learning methods for 

variable selection. The random forest (RF) method has also been used for variable 

selection in previous genetic studies. Dogan et al.131 used the RF method with 

combined genetic and methylation markers for coronary heart disease (CHD) 

detection. The research team first selected SNPs with low linkage disequilibrium 

(threshold of 0.5) and close correlation (p-value < 0.1) with CHD status. They also 

selected CpGs based on their correlations with CHD status (more than 0.1) and the 

correlations between each other (less than 0.8). Subsequently, RF models were 

built based on selected genetic and methylation markers for a further identification 

of SNPs and CpGs that contribute to a high prediction for CHD. In the end, the 

predictive model with the identified SNPs and CpGs were evaluated in an 

independent test set with an accuracy higher than the conventional classification 

(78% vs. 65%). With a large dataset, similar methods can also be used in the 

identification of sarcopenia. 

Additionally, different methodologies of processing SNP data can be applied. In this 

thesis, the SNP is scored as 0, 1, and 2 based on the number of predisposing alleles. 

Such process is based on the assumption that an allele, which is not favourable to 

muscle, does not contribute to any muscular phenotype. If assuming that an allele 

that is less favourable to muscle also contributes to muscular phenotypes, then a 

different scoring system of 1, 1.5, and 2 can be applied. Additionally, we should be 

aware that the SNP scoring used in this thesis is different from the conventional idea 

of the “risk allele” in disease studies, in which the weights of SNP genotypes are not 

given arbitrarily, but are based on the effect size of the genotype in a population. 

Moreover, besides a scoring system, the genotype in a SNP can also be converted 

into two dummy variables in further analysis.  

(5) In this thesis, genetic structure and DNA methylation explains up to 43% of the 

variance in muscle mass and strength, which is close to the genetic influence (31–

67%) on muscle mass and knee strength estimated in heritability studies (as 

described in section 2.1). This also means that 57% of inter-individual variability in 
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muscle size and strength characteristics are related to other variables that are not 

included in the analysis. Therefore, future studies can be conducted with the 

inclusion of additional genetic factors (e.g. muscle-related mitochondrial gene 

variants, GWAS identified gene variants, copy number variation, gene interactions), 

gene expression data, epigenetic factors (e.g. histone modification, noncoding 

RNA), and measured environmental factors (e.g. food pattern, physical activity 

level, living habits and toxic environmental factors). 

(6) The methylation analysis in this thesis is cross-sectional, therefore, only the inter-

individual variability in muscle morphology and strength is studied. In the future, a 

longitudinal study of methylation changes during the ageing process can also 

enhance the understanding of ageing. Moreover, methylation markers can be 

identified that predict muscular changes during ageing process, which will be helpful 

for preventive screening for older adults who have a faster muscle degeneration 

speed so that preventive treatments (e.g. exercise training and nutrient 

supplementation) can be made. Future intervention studies in older adults can also 

investigate whether the methylation status at the set of identified dmCpGs (paper 

3) or sarcopenia-based CpGs (paper 4) can be altered towards the more ‘healthy’ 

pattern following strength or other types of training. 

4. General conclusion 

The current thesis contributes to the understanding of the roles that genetic 

sequence variation and DNA methylation play in individual differences in muscle 

morphology and strength in older people.  

Genetic architecture – as captured in a genetic predisposition score - is not only 

related to one’s strength level in the untrained state, but also partially determines  

whether you are a high- or low responder after one year of training as well as after 

a period of detraining. Specifically, the results show that genetic predisposition 

scores account for the variance in muscle mass and strength by 0.7–3.2% at 

baseline, 14–27% after a one-year training intervention, and 26–37% after a one-

year cessation of training. Additional genetic information is needed to improve the 

predictive power of these genetic predisposition scores. 

Environmental factors like nutrition, physical activity or other lifestyle choices can 

affect the studied phenotypes through epigenetic mechanisms, of which 

(de-)methylation of gene regions is one mechanism influencing gene expression. 

This thesis further provided new insights on the role of DNA methylation by 
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identifying sarcopenia-related methylation differences in the DNA of blood cells in 

older women. A general hypermethylation in gene promoters and hypomethylation 

in gene bodies was associated with sarcopenia. Genes that were identified as 

differentially methylated are mainly connected with muscle function, actin 

cytoskeleton regulation and energy metabolism. The construction of methylation 

scores showed that a sarcopenia-driven methylation score explained 10.1–40.1% 

of the variance in muscle size and strength at baseline level in older women. 

Although further replication of these findings is needed, our results indicate that the 

use of a sarcopenia-driven methylation score to estimate muscle condition and 

sarcopenia-risk is merited.  
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Appendix table  

Table 1. Summary of genes and pathways associated with muscle mass and strength identified in this thesis 

Terms Categories Names 

Muscle mass Genes (n = 13) ACVR1B, AKT1, FST, H19, IGF1, IGF2, IGF2AS, IGFBP3, IL15-RA, MSTN, MYOG, OPN/SPP1, 

TGFB1 

 Pathways (n = 10) Thermogenesis, cGMP-PKG signaling pathway, Aldosterone synthesis and secretion, Cell cycle, 

Wnt signaling pathway, Focal adhesion, Proteoglycans in cancer, MAPK signaling pathway, 

Hedgehog signaling pathway, ErbB signaling pathway 

   

Muscle strength Genes (n = 23) APOA1, ATP1A2, CACNA1S, CKM, DNMT3L, ESR1, GR/NR3C1, HIF1A, INS, KBTBD13, LEPR, 

PPARa, RYR1, VDR, BMP2, FN1, GSC, SMG6, SPP1, TTN, CNTF, RIMS1, ZNF804A 

 Pathways (n = 18) Phosphatidylinositol signaling system, AMPK signaling pathway, Axon guidance, Oxytocin signaling 

pathway, Insulin resistance, Pantothenate and CoA biosynthesis, Glucagon signaling pathway, 

Thyroid hormone signaling pathway, Inositol phosphate metabolism, Human papillomavirus 

infection, Endocrine and other factor-regulated calcium reabsorption, Gastric acid secretion, 

Glycerophospholipid metabolism, Vasopressin-regulated water reabsorption, Adrenergic signaling 

in cardiomyocytes, Insulin secretion, GABAergic synapse, Insulin signaling pathway 
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Both muscle mass 

and strength 

Pathways (n = 9) Apelin signaling pathway, Cushing syndrome, Endocytosis, cAMP signaling pathway, Tight 

junction, Adherens junction, Fc gamma R-mediated phagocytosis, Purine metabolism, 

Adipocytokine signaling pathway 

   

Muscle 

injury/recovery 

Genes (n = 2) CCL2, CCR2 

   

Methylation 

regulation 

Genes (n = 5) MTHFR, BHMT, METTL21C, MTR, MTRR 
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