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Abstract 

Objective: Photobiomodulation (PBM) is the application of light to promote tissue healing. Current 

indications suggest PBM induces its beneficial effects in vivo through upregulation of mitochondrial 

activity. However, how mitochondrial content influences such PBM responses has yet to be 

evaluated. Hence, the current study assessed the biological response of cells to PBM with varying 

mitochondrial contents.  

Methods: DNA was isolated from myoblasts and myotubes (differentiated myoblasts) and 

mitochondrial DNA (mtDNA) was amplified and quantified using a microplate assay. Cells were 

seeded in 96-wellplates, incubated overnight and subsequently irradiated using a LED array (400nm, 

450nm, 525nm, 660nm, 740nm, 810nm,830nm and white light, 24mW/cm², 30-240s, 0.72-

5.76J/cm²). The effects of PBM on markers of mitochondrial activity including reactive-oxygen-

species (ROS) and real-time mitochondrial respiration (Seahorse XFe96) assays were assessed 8 h 

post-irradiation. Datasets were analysed using general linear model followed by one-way ANOVA 

(and post hoc-Tukey tests); p=0.05). 

Results: Myotubes exhibited mtDNA levels 86% greater than myoblasts (p<0.001). Irradiation of 

myotubes at 400nm, 450nm or 810nm induced 53%, 29% and 47% increases (relative to non-

irradiated-control) in maximal respiratory rates respectively (p<0.001). Conversely, irradiation of 

myoblasts at 400nm or 450nm had no significant effect on maximal respiratory rates. 

Conclusion: This study suggests that mitochondrial content may influence cellular responses to PBM 

and as such explain the variability of PBM responses seen in the literature. 
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1 Introduction 

Photobiomodulation (PBM) is a non-invasive treatment that utilises light at a power output less than 

500mW at wavelengths from 400-1100 nm to promote tissue healing, reduce inflammation and 

induce analgesia (1). Over 800 publications have reported the efficacy of PBM in treating an array of 

musculoskeletal conditions including subacute and chronic low back pain (2) and exercise induced 

muscle fatigue (3). Musculoskeletal disorders relate to an array of conditions that affect movement 

and are a significant burden; not only to the affected individual but also to healthcare systems due 

to the costs associated with management. Indeed, a report by the World Health Organisation 

concluded that up to 33% of the population are affected by lower back pain at any given time (4).  

Despite the positive evidence surrounding the use of PBM in treating musculoskeletal 

conditions, controversy still surrounds its application in practice due to a lack of consistency in the 

recording of treatment parameters. Notably a number of key irradiation parameters should be 

reported including wavelength (nm) and irradiance (mW/cm²), amongst others (5).  These 

parameters are often either misreported or not reported at all making it difficult to compare 

literature currently published.  

Another key caveat in the use of PBM is the lack of knowledge as to how light energy elicits 

its beneficial molecular effects. Current literature indicate light acts directly upon the mitochondrial 

electron transport chain (ETC), specifically complex IV (6). The ETC is formed of five complexes and 

its main purpose is to produce adenosine triphosphate (ATP); the cells energy source. It is 

understood that photons of light at wavelengths including 810nm excite complex IV, causing the 

dissociation of nitric oxide (NO) from its binding site, allowing oxygen to bind in its place and 

therefore allowing the progression of the ETC (6, 7). As the ETC progresses, complexes I and III of the 

chain also produce reactive oxygen species (ROS). The production of ROS and ATP then induce the 

activation of transcription factors and subsequent gene expression changes including increased 

nuclear factor E2-related factor 2 (Nrf2)  (8), a gene whose expression is commonly associated with 

increased mitochondrial biogenesis (9).   

Many studies report the effect of PBM on mitochondrial activity through the use of 

surrogate assays including ROS (10) and ATP (11) generation. However, despite wide evidence 

supporting this ideology, no studies to date report the effects of PBM on mitochondrial respiration 

or whether mitochondrial number can influence response to PBM. In fact, the number of 

mitochondria per cell can vary from 80-2000 dependent upon the cell type explored (12). Robin and 

Wong reported that there are approximately 1000 mitochondria per liver cell whilst there are 

around 300 mitochondria per human lung fibroblast cell (13).  

This study aimed to firstly characterise a system that could be employed to evaluate the 

effects of PBM on changes in mitochondrial respiration in real time and secondly to determine the 

optimal treatment parameters that elicit a molecular response in muscle-derived cells in which 

mitochondrial activity is key to their behaviour. C2C12 myoblasts have been suggested to be an 

appropriate model for mimicking the process of skeletal muscle cell differentiation in vitro (14). 

When exposed to appropriate conditions myoblasts differentiate into myotubes in vitro (15). Mature 

myotubes are cited to have a higher population of mitochondria than myoblasts (16, 17). Hence, 

myoblasts and myotubes were employed to determine whether cells with a higher mitochondrial 

population responded differently to PBM. 
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2 Methods 

2.1 LED array characterisation 

2.1.1  Spectral characterisation  

A UV-Vis spectrometer (USB4000, Ocean Optics, UK) coupled to a 200µm optical fibre and 3.9mm 

cosine corrector and calibrated to (National Institute of Standards and Technology) NIST standards 

was employed to assess the spectral irradiance and wavelength delivered at the base of each 

individual culture well (n=6). Absolute irradiance was determined from the integral of the spectral 

irradiance (380-880nm). Further detail outlining spectral characterisation methods, LED array design 

and selection of wavelengths are described by Hadis et al (18).  

2.1.2  Beam Profile  

A charge coupled device (CCD) beam profile camera (SP620, Ophir, Spiricon, Israel) was employed to 

measure spatial distribution of power emitted from each LED in the array. A 50mm CCTV lens (Ophir, 

Spiricon, Israel) was attached to the camera and focused on the base of each well. Following linear, 

optical and ambient light correction, images were recorded using BeamGage software (Ophir, 

Spiricon, Israel). Detailed experimental procedure has previously been reported by Hadis et al (18). 

Figure 1: a) Shows LED array without any plate b) shows mask constructed from silicon, c) shows seahorse 
XFe96 microplate plate fitted with mask on top of LED array d) shows Seahorse XFe96 microplate fitted 
with mask placed on LED array when on (all wavelengths). All spectral characterisation experiments were 
undertaken with the seahorse plate fitted with mask placed directly above the LED array, ensuring 
concentric alignment with LEDs beneath. 
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2.2 Biological responses 

2.2.1 Myoblasts culture 

A mouse myoblast cell line (C2C12 (ATCC® CRL-1722™), ATCC, LGC standards, UK, passage 8-11) (14) 

were cultured in monolayers in Dulbecco’s modified eagle medium (DMEM, Gibco, UK) 

supplemented with 10% v/v FCS, 1% v/v penicillin/streptomycin (P/S) and 1% v/v L-glutamine 

(Sigma-Aldrich, UK). Cells were seeded into 96-well black clear bottom plates (7000cells/well (Sigma-

Aldrich, UK)) and Seahorse XFe96 plates (10,000cells/well (Agilent, UK)) , incubated overnight (37ºc, 

5% CO₂), irradiated as described in 2.2.3 and changes in mitochondrial activity were assessed 8 or 

24hrs post-irradiation. 

2.2.2 Myotube differentiation 

Myoblast cultures were seeded into Seahorse XFe96 plates as described in section 2.2.1 and  ~70% 

confluency was reached, cultures were washed with PBS and differentiation media was 

subsequently applied which contained phenol red free DMEM containing 2% v/v horse serum and 

1% v/v sodium pyruvate (Sigma-Aldrich, UK) to induce differentiation for six days. Myotubes were 

then irradiated as described above and changes in mitochondrial activity were assessed 8hrs post 

irradiation. 

2.2.3 Array characterisation for Seahorse XF cell mitochondrial stress assay (Agilent, UK). 

A Seahorse XFe96 Analyser (Agilent Technologies, UK) was employed to measure the cells oxygen 

consumption rate (OCR) as a marker of mitochondrial respiration. One-hour prior to undertaking the 

assay, culture media was aspirated, cells washed with phosphate buffered saline (PBS) three times 

and Seahorse XF assay media (25mM glucose, 1mM pyruvate and 2mM glutamine (Agilent, UK)) was 

applied and equilibrated in a CO₂ free incubator (INCU-line®, VWR, UK). Compounds altering 

mitochondrial activity were then applied to the system including: Oligomycin (inhibits complex V of 

the ETC, 1µM), carbonyl cyanide-4(triflouromethoxy)phenylhydrazone (FCCP, uncoupling agent 

induces respiration to be undergone at maximal rates, 2µM), antimycin and rotenone A (inhibit 

complexes I and III, inhibiting ETC activity, 0.5µM). Subsequently the plate was placed in a Seahorse 

XFe96 analyser (Agilent, UK) and compounds were sequentially injected into the system to induce 

changes in ETC activity. The Seahorse analyser then measured changes via assessment of oxygen 

consumption rate in real-time (OCR, pmol/min). OCR values were subsequently normalised for 

protein content in individual wells. Protein concentration was determined using DC protein assay 

(Bio-rad, USA). This enabled calculation of individual parameters including basal respiration, maximal 

respiration, ATP production, spare respiratory capacity and non-mitochondrial respiration (8). During 

analysis, values for non-mitochondrial activity were subtracted from values evaluating the effects of 

PBM directly on mitochondrial activity. This provided a further control step ensuring results would 

reflect the effects of PBM on mitochondrial activity only.  

An opaque dental silicone impression material (Impregum™ Penta Soft, 3M, USA) mask (Figure 1b) 

was created to ensure uniform irradiation of in vitro cultures and to eliminate light bleed at the base 

of wells where cells adhere (Figure 1c and 1d). The distance between the LEDs and specimen surface 

was fixed at 3mm in each well. The spectral irradiance and beam profile of each diode were 

evaluated with the mask fitted to a Seahorse microplate (Figure 1d). Characterisation was then 

undergone as described in section 2.1. The effects of PBM were evaluated at wavelengths spanning 

the visible and near infra-red spectra (400-830nm) at irradiation periods between 30-240s and an 

irradiance output of 24mW/cm² to achieve radiant exposures of 0.72-5.76J/cm². 
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2.2.4  Mitochondrial DNA (mtDNA) quantification 

A REPLI-g® mitochondrial DNA kit (Qiagen, UK) was used to amplify mtDNA in whole DNA samples 

isolated from cell cultures. Sample DNA concentrations were measured spectrophotometrically 

(Eppendorf biophotometer, Eppendorf, UK) and diluted accordingly to contain 10ng/µl of DNA. 

Amplification of mtDNA was then undertaken according to the manufacturer’s protocol. 

To assess mtDNA quantities in cell supernatants, initially a standard curve was generated 

using calf thymus DNA at a maximal concentration of 10ng/µl. SYBR® Safe DNA gel stain (10,000x 

concentrate, Invitrogen, UK) was diluted in TAE buffer at 1:1250. Samples and standards were then 

combined at 2% v/v with the dilute SYBR® Safe dye and incubated for 10 minutes (19). Fluorescence 

was measured using a fluorimeter (Twinkle LB 970, Berthold Industries Ltd, 485nm/535nm, 

excitation/emission respectively).  

2.2.5 3-(4, 5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay 

To assess cell metabolic activity, an MTT assay (Sigma-Aldrich, UK) was utilised (20).  MTT was 

dissolved in PBS at 0.05g/ml and aliquoted at 15µl/well 8/24h post irradiation and incubated for 4h 

at 37ºc. MTT solution was aspirated and replaced with 50µl/well of dimethyl sulphoxide (DMSO, 

Sigma-Aldrich, UK). Absorbance was read at 570nm using a micro-plate reader (ELx800 Universal 

Microplate reader, Bio-Tek Instruments, UK). 

2.2.6 Reactive Oxygen Species (ROS) assay 

ROS formation was assessed using 2', 7’-dichlorodihydrofluorescein diacetate (H₂DCFDA) fluorescent 

probe (Thermo-Fischer Scientific, UK). Free radicals catalyse the conversion of H₂DCFDA to its 

fluorescent bi-marker DCF, enabling quantification of ROS production. At 8h post-irradiation media 

was aspirated, cells were washed with phosphate buffered saline (PBS) and were treated with 10µm 

H₂DCFDA and incubated for 1 hour at 37ºC (22). Fluorescence was read using a fluorimeter as 

described in section 2.2.4. 

 

2.3 Statistical analysis 

Data was processed utilising Excel software (Microsoft) and analysis was performed using SigmaPlot 

software (Systat Software Inc, UK). All data was analysed using a GLM followed by one-way ANOVA 

test followed by a Tukey test to determine significant differences between non-irradiated controls 

and light treated groups (p<0.05). 

 

3 Results and Discussion 

 

3.1 Characterisation of LED arrays for use in Seahorse assays. 

LED arrays provide a high-throughput approach for analysis of multiple parameters and their effects 

in vitro. The current study first aimed to characterise a system that could be employed for use with 

the Seahorse XFe96 analyser system. 
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Figure 2: Array spectral characterisation data where a) Spectral irradiance values of LED channels in 
the array (n=6), b) average absolute irradiance in each channel (n=6). 

Table 1: Indicates values of emitted wavelengths, spectral irradiance and radiant exposure after 
irradiation periods ranging between 30s-240s 
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A mask constructed from silicon was designed to surround each well of the plate, preventing bleed 

between wells to ensure only a single wavelength of light would impact the biological response in 

each well-culture. Spectral characterisation undertaken to confirm wavelength and spectral 

irradiance values were consistent with those used in previous studies employing different plate 

formats (23). Data indicated the array employed for in vitro studies emitted wavelengths ranging 

from 400-830nm (figure 2a) and an average irradiance of 23.05mW/cm² (figure 2b). These data also 

confirmed there was no bleed of light between LED columns where figure 2a indicates LEDs 

exhibited only a single peak of the expected wavelength and figure 2b shows there was no 

significant difference in irradiance output from one wavelength to the next. Similar irradiance values 

have also been used in studies exploring the effect of PBM on myoblast function (see supplementary 

table 3 for examples (24, 25)). Table 1 indicates radiant exposure values, in which there is no 

significant difference from one wavelength to the next (irradiation parameters and the effects of 

PBM on media temperature are further elucidated in supplementary figure 1, figure 2 and table 1). 

Hence the data confirms the accurate delivery of key radiometric parameters without confounding 

effects such as temperature. 

 Another key parameter to be considered was that of the beam profiles of each LED utilised 

in this array. LEDs employed in this array exhibit a typical Gaussian distribution of light (figure 3a, 

indicates a single representative from each wavelength channel)   in which spectral irradiance is 

most intense in the central area and becomes more diffuse towards the edges of the beam area (26). 

Table 2 indicates LEDs emitting a wavelength of 525nm exhibited a significantly smaller (p<0.05) 

beam area and power output than LEDs emitting wavelengths of 400nm and 660nm, whilst there 

was no significant difference at all other wavelengths. In this particular experimental set-up, the LED 

array was designed to enable alignment of LEDs with the plate directly above at a specific irradiance 

value. As described by Hadis et al (18) that whilst there is variability in the homogeneity of each LED, 

the effects of this have been minimised through ensuring there is no significant difference in the 

output of a series of parameters including irradiance (mW/cm²) and radiant exposure 

(J/cm²).However, despite this it will be important to take into account the effects this may have on 

the biological output of our experiment.  These data indicate the importance of evaluation of beam 

area.  

The data obtained for array characterisation indicates its suitability for use in subsequent in 

vitro assay application. 
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Figure 3: Demonstrates spatial distribution of irradiance of LEDs emitting each wavelength on the 
array. Images were taken in the plane of a target screen placed over the array surface to enable 
accurate measurement of beam diameter using BeamGage software. The target screen was placed 
at the same distance away from the array as a Seahorse XFe96 plate. Whilst the target screen could 
not be incorporated with the plate in place supplementary figure 3 and table 1 indicate beam 
profiles, average beam areas and power output with the plate in place.  

Table 2: indicates differences in average beam area and power output emitted from one wavelength 
to the next. Means that do not share the same letter are significantly different, in which LEDs 
emitting wavelengths of 400nm and 660nm (A) exhibit significantly larger beam areas and power 
outputs than LEDs emitting 525nm light (B, p=<0.05). Average beam area was calculated from 
diameters provided from use of BeamGage software. 
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3.2  The effects of PBM on mitochondrial activity 
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The second objective of this study was to evaluate the effects of PBM on mitochondrial activity 

of myoblasts and myotubes. Myotubes are reported to possess higher quantities of mitochondrial 

proteins and enzymes (27) and hence greater numbers of mitochondria. Whilst it is not feasible to 

directly measure number of mitochondria per cell due to the dynamic nature of mitochondria, 

mtDNA copy number has been correlated to mitochondrial content in previous studies (28). Hence, 

mtDNA was isolated from both myoblasts and myotubes and quantified. Figure 4 provides evidence 

that myotubes possessed a greater ratio of mtDNA:nDNA compared with myoblasts (p<0.05). 

Figure 4: Shows relative differences in the ratio of mtDNA:nDNA between myoblasts and myotubes 
(n=4 ,p8). Significance was assessed using a t-test (***=p<0.001). 

 

Figure 4: Indicates high throughput analysis of wavelengths (400-830nm) and irradiation periods (30-
240s) on cell metabolic activity of mouse myoblast cells (C2C12, n=12 replicates, 3 plates irradiated) 
(24mW/cm², 0.72-5.76J/cm², 30-240s). Significance is indicated by ***=p<0.001, **=p<0.01, *=p<0.05 
relative to the non-irradiated control, where all data is shown as a percentage of the non-irradiated 
control, where the non-irradiated control was normalised to 0%.  
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Therefore, an MTT assay was employed as a high-throughput method to examine the effects of a 

series of wavelengths (400-830nm) and irradiation times (30-240s) on cell metabolic activity of 

myoblasts 24hrs post irradiation. Irradiation for 30s at a wavelengths of 400nm and 810nm induced 

18.46%, and 16.38% increases in cell proliferation respectively (figure 5, p<0.05). Interestingly, white 

light induced a significant increase in cell proliferative capacity following irradiation for 240s whilst 

all other wavelengths proved to induce the greatest affect following a 30s irradiation period. This 

may be reflective of the differential biphasic dose response from one wavelength to the next where 

longer or shorter periods of irradiation could cause the most significant effects dependent upon the 

wavelength used. Also, white light is a combination of multiple visible light wavelengths and 

therefore the contribution of a single wavelength for any potential therapeutic effect within the 

white light band must be substantially reduced compared to the use of narrower wavebands at 

similar irradiance. It can also be noted that whilst wavelengths within the red spectra are commonly 

used in PBM research (620-750nm (29)), no effect on cell metabolic activity was measured here. This 

may be due to the homogeneity of the beam profile at 660nm (figure 3) or indeed as discussed 

above, the optimal range for red light to induce an effect was not reached in this experimental 

setup. Hence, further study will be required to determine whether irradiation at 660nm and with a 

more homogenous beam profile will influence biological output in vitro. Whilst other wavelengths 

Figure 5: a) Shows effect of PBM on cell metabolic activity from myoblasts and myotubes (30s, 
0.72J/cm², n=18, 3 plates irradiated) to wavelengths of 400, 450 and 810nm. b) Indicates the 
effects of PBM on ROS production from myoblasts and myotubes (30s, 0.72J/cm², n=18, 3 plates 
irradiated). The effects of PBM were evaluated 8hrs post-irradiation. Means that do not share the 
same letter are significantly different (p<0.05). 
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and irradiation periods proved effective in inducing a significant response from myoblasts, 

wavelengths of 400nm, 450nm and 810nm and an irradiation period of 30s was selected to compare 

the response of myoblasts and myotubes to PBM due to their efficacy in inducing a response from 

an array of other cell types previously studied (data not shown).  

Once parameters were identified for further study a series of key markers for mitochondrial 

activity were explored 8hrs post irradiation. A period of 8hrs post irradiation was selected as a 

previous study indicated this time point post-irradiation induced the most significant and reliable 

changes in real time mitochondrial activity (supplementary figure 4, (1, 8 and 24hrs post irradiation 

were evaluated)). Figure 6 indicates that whilst a wavelength of 400nm and irradiation period of 30s 

induced significant increases in markers for mitochondrial activity from myoblasts and myotubes, 

increases in the activities of these mitochondrial markers at all wavelengths were only observed in 

myotube cultures (p<0.05). This may indicate that cells with higher mitochondrial content have 

increased responsivity to light. Interestingly, Kushibiki et al investigated the effect of PBM at 

wavelengths of 405nm and 808nm at 100mW/cm² on ROS production from C2C12 cells. They found 

that only violet-blue light upregulated ROS production whilst near infrared light had no effect. Our 

data provides similar findings, with a wavelength of 400nm inducing significant increases in ROS 

production from myoblasts (30). Some authors have also reported the effects of PBM in inducing 

myogenic differentiation from myoblasts to myotubes (31, 32). Hence, future work may involve 

evaluation of the effects of parameters illustrated in this study on markers for myogenic 

differentiation.   

Subsequently Seahorse assay technology was utilised to explore the effect of a series of 

wavelengths on real-time mitochondrial respiration. Whilst several studies have explored the effect 

of specific PBM parameters utilising Seahorse technology (33, 34), ours is the first that has explored 

an array of wavelengths and in particular the use of blue light in PBM. Our data showed that PBM at 

all wavelengths upregulated both maximal and basal respiratory rates, ATP production and spare 

respiratory capacity (the amount of extra ATP produced through oxidative phosphorylation available 

in the case of an increase in energy demand (35)) in myotubes (figure 7, p<0.05), whilst these were 

only upregulated at a wavelength of 810nm from myoblasts (p<0.05). Comparatively, previous 

studies exploring the effects of PBM using a Seahorse analyser only explored the effects of red light 

(635-700nm) and only Chu-Tan et al found PBM modulated real time mitochondrial activity (33). 

Data from this study suggests that mitochondrial content may influence cellular response to PBM. 

However, further investigations are required to confirm this finding. Furthermore, our data indicates 

that blue light promoted greater increases in mitochondrial activity from myotubes compared with 

NIR irradiation. Interestingly, PBM research does not often employ light within the blue range. 

However, recently, the application of blue light has gathered considerable interest and several 

authors have provided evidence that blue light not only could be beneficial in reducing inflammation 

by reducing circulating levels of cytokines (36) and  promoting cell proliferation (37). Hence, in future 

studies it will be important to explore the response of other cell types to low doses of blue light. 

However, whilst we have reported blue light induces a greater response compared to NIR light in 

vitro, it may be wise to consider the possible limitations of blue light in terms of tissue penetration 

depth. Hence, future studies may aim to evaluate the effects of combining both blue and NIR light to 

ensure light penetrates target tissue in vivo.  The use of blue light may also be considered for 

superficial injuries including applications for wound healing, which have proven beneficial both in 

vitro (38) and in vivo (39, 40). 

In summary, we demonstrate for the first time that PBM promotes greater increases in 

mitochondrial respiration in myotubes compared with myoblasts, a cell type with higher levels of 
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mitochondrial content. These data may prove useful in understanding why some patients are more 

responsive to PBM in vivo as it is well reported there is a great deal of variability in the mitochondrial 

genome from one individual to the next (41). We also provide novel evidence that blue light could 

also be effective in promoting mitochondrial respiration. These data provide further evidence 

supporting the premise that response to PBM in vitro is induced by changes in mitochondrial activity 

and provides evidence that PBM could be employed to promote increased muscle cell activity. 

Hence, these data support current findings that indicate the potential effectiveness of PBM in sport 

performance and rehabilitation following muscle injury (42).  
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Figure 6: Shows the effects of PBM on markers for changes in real time mitochondrial activity utilising the 
Seahorse assay from myoblasts and myotubes (myotubes, p7, myoblasts p13, n=6, effects evaluated 8hrs 
post irradiation). Markers are denoted by a) indicates trace comparing response of untreated myotubes and 
myotubes treated with 400nm light in which compounds were sequentially applied to the system to alter 
elements of oxidative phosphorylation. This then enabled calculation of specific parameters of oxidative 
phosphorylation including b) basal respiration, c) maximal respiration, d) ATP production and e) Spare 
respiratory capacity. Means that do not share the same letter are significantly different (p<0.05). 
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