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NEW & NOTEWORTHY This study has identified that sympathetically mediated blood pressure 54 

regulation is reduced following ascent to high altitude. Additionally, we show that high altitude 55 

Andean natives have reduced blood pressure responsiveness to SNA outflow compared to 56 

Nepalese Sherpa. However, basal sympathetic activity is inversely related to the magnitude of 57 

SNA-mediated fluctuations in blood pressure regardless of population or condition. These data 58 

set a foundation to explore more precise mechanisms of blood pressure control under 59 

conditions of persistent sympathetic activation and hypoxia. 60 

 61 

 62 

 63 
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ABSTRACT: 64 

High-altitude (>2500m) exposure results in increased muscle sympathetic nervous activity 65 

(MSNA) in acclimatizing lowlanders. However, little is known about how altitude affects MSNA in 66 

indigenous high-altitude populations. Additionally, the relationship between MSNA and blood 67 

pressure regulation (i.e., neurovascular transduction) at high-altitude is unclear. We sought to 68 

determine 1) how high-altitude effects neuro-cardiovascular transduction and 2) whether 69 

differences exist in neuro-cardiovascular transduction between low and high-altitude 70 

populations. Measurements of MSNA (microneurography), mean arterial blood pressure (MAP; 71 

finger photoplethysmography), and heart rate (electrocardiogram) were collected in: I) 72 

lowlanders (n=14) at low (344m) and high-altitude (5050m), II) Sherpa highlanders (n=8; 73 

5050m), and III) Andean (with and without excessive erythrocytosis) highlanders (n=15; 74 

4300m). Cardiovascular responses to MSNA burst sequences (i.e. singlet, couplet, triplet, and 75 

quadruplets) were quantified using custom software (coded in MATLAB, v2015b). Slopes were 76 

generated for each individual based on peak responses and normalized total MSNA. High 77 

altitude reduced neuro-cardiovascular transduction in lowlanders (MAP slope: high-altitude, 78 

0.0075±0.0060 vs low-altitude, 0.0134±0.080; p=0.03). Transduction was elevated in Sherpa 79 

(MAP slope, 0.012±0.007) compared to Andeans (0.003±0.002; p=0.001). MAP transduction 80 

was not statistically different between acclimatizing lowlanders and Sherpa (MAP slope, p=0.08) 81 

or Andeans (MAP slope, p=0.07). When accounting for resting MSNA (ANCOVA), transduction 82 

was inversely related to basal MSNA (bursts/min) independent of population (RRI, r= 0.578 83 

p<0.001; MAP, r= -0.627 p<0.0001). Our results demonstrate transduction is blunted in 84 

individuals with higher basal MSNA, suggesting blunted neuro-cardiovascular transduction is a 85 

physiological adaptation to elevated MSNA rather than an effect or adaptation specific to 86 

chronic hypoxic exposure.  87 

  88 
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INTRODUCTION: 89 

Sympathetic nervous system activity (SNA) has been shown to increase following exposure to 90 

high altitude in lowlanders (12, 17, 22, 26, 28, 39). The mechanism(s) governing persistent 91 

sympatho-excitation during hypoxic exposure remain unclear, but have previously been 92 

attributed to an increase in peripheral chemoreceptor drive (26, 31), elevated intracranial 93 

pressure (27), increased pulmonary artery pressure (29), or a combination of these factors. 94 

While heightened sympathetic outflow at altitude signals for global vascular constriction, mean 95 

arterial pressure (MAP) and total peripheral resistance (TPR) are maintained near sea level 96 

values during acclimatization (4, 28). This shift in communication between the nervous system 97 

and the vasculature (i.e., neurovascular transduction), indicates that there may be a reduction in 98 

the efficacy of SNA to effect vascular tone under conditions of prolonged hypoxia. The causes 99 

and consequences of this uncoupling remain poorly understood.  100 

Of further interest are populations indigenous to high altitude, such as the Tibetan 101 

(Sherpa) and Peruvian (Andean) highlanders, who have been exposed to hypobaric hypoxia for 102 

millennia. Although there is considerable debate regarding specific durations at altitude, it is 103 

generally accepted that the Old World Plateaux (Ethiopian and Tibetan) have been settled for 104 

longer than the Altiplano in the New World (Andes) (1–3, 25, 43). This is suggestive that 105 

duration at altitude may play a role in the respective patterns of adaptation between high altitude 106 

populations. We have previously observed that Tibetan Sherpa show an overall lower degree of 107 

sympathetic activation compared to acclimatizing lowlanders, while having similar resting 108 

arterial pressure and similar or lower reactivity to heightened sympathetic stress (7, 28). In 109 

contrast, high altitude populations in the Andes exhibit  a high reported incidence of excessive 110 

erythrocytosis (EE; defined as having a [Hb] >21g/dL in males, >19g/dL in females), which has 111 

been linked with vascular dysfunction and increased risk of cardiovascular disease (21, 35, 38). 112 

Interestingly, EE is  extremely rare in Tibetan high altitude natives (38), suggesting distinct 113 

differences in the patterns of adaptation between these two high altitude populations. 114 



Phenotypic differences in neuro-cardiovascular transduction 
 

3 
 

Differential adaption to long term hypoxic exposure between these two groups necessitates 115 

further investigation into mechanisms of cardiovascular control. 116 

Although SNA and arterial pressure has been previously documented at altitude in both 117 

low and high altitude populations (3, 5, 7, 17, 22, 28), there is limited work that has investigated 118 

the transduction of sympathetic outflow to the integrated control of blood pressure in response 119 

to hypoxic exposure. Furthermore, there are no studies that have attempted to identify whether 120 

population-based differences exist in this aspect of sympathetic control. Thus, we aimed to 121 

characterize the relationship between spontaneous fluctuations in SNA to cardiovascular 122 

responses in North American and European lowlanders, Tibetan Sherpa, and Peruvian 123 

Andeans (both with EE+ and without EE). While renal adaptation and a shift in blood volume at 124 

high altitude also contribute to the integrated control of blood pressure, this study focuses on 125 

neuro-cardiovascular mechanisms. To address this, we analyzed muscle sympathetic nervous 126 

activity (MSNA) and simultaneous hemodynamic data collected during two previous high 127 

altitude research expeditions (Nepal 2016, and Peru 2018) to assess the impact of SNA on 128 

blood pressure regulation at rest. Our hypotheses were twofold: first, we hypothesized that 129 

lowlanders would show a blunted neuro-cardiovascular transduction response at high altitude 130 

compared to sea level. Second, we hypothesized that Sherpa would show a greater neuro-131 

cardiovascular transduction response compared Andeans and acclimatizing lowlanders, due to 132 

previously observed (7, 28) lower reactivity to sympathetic stress. 133 

  134 
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METHODS: 135 

Data for the current investigation was collected over two previous research expeditions to Nepal 136 

(UBC-Nepal Expedition; (42) and Peru (Global REACH 2018; (36). We have previously 137 

published on basal MSNA (28), and reactivity to exercise and breath-holding in the Sherpa (7). 138 

However, the analyses performed as part of this investigation address a specific novel 139 

hypothesis and report data not previously published. Specifically, the current study focuses on 140 

novel analyses related to the transduction of spontaneous fluctuations in SNA to mean arterial 141 

pressure (MAP) and heart rate (R-R Interval) responses over a ~10 minute baseline period. 142 

Although participants took part in a number of independent investigations during the above 143 

mentioned expeditions, care was taken to ensure that there was no overlap between studies, 144 

and each study addressed distinct a priori research questions.  145 

 146 

Study Participants 147 

Participants were comprised of lowlanders (n=14; 27±1yrs; 2 female), Nepalese Sherpa (n=8; 148 

32±5yrs) and Peruvian Andeans (n=15; 42±3yrs). Note, the Andean group included 7 healthy 149 

(i.e. non-EE) and 8 EE men. Data were grouped for the healthy and EE Andeans since no 150 

differences in neuro-cardiovascular transduction were observed (details below). While 151 

demographics, resting hemodynamic function and basal metrics of MSNA have been published 152 

previously, these values are reported in Table 1 for completeness and context. Lowlanders, 153 

Sherpa, and Andean participants were free of any known respiratory, cardiovascular, metabolic, 154 

and neurological disorders as determined by a self-reported health history questionnaire. No 155 

participants were taking any medication at the time of testing. Lowlander participants were 156 

members of a larger expedition to Nepal in 2016 (42), and the Sherpa highlanders were 157 

recruited during the same expedition from the Khumbu Valley in Nepal. Pre-expedition testing of 158 

lowlanders was performed at 344 m (Kelowna, Canada), and then traveled to Nepal and 159 

ascended over 9-10 days to 5050m. Sherpa were not on any medication and were tested on 160 
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days 1-3 following arrival at 5050m, while Lowlanders were tested between days 1-10. Refer to 161 

Willie et al 2018 (39) for a more detailed description of ascent profiles.  162 

Andean participants were recruited and tested as part of a second expedition (Global 163 

REACH 2018) (34) to Cerro de Pasco, Peru in 2018 (4300 m). Andeans with EE were 164 

diagnosed prior to being contacted and recruited using an existing local database (venous [Hb] 165 

concentration 22.5±0.91 g/dL). All Andeans were born above 3250m and were permanent 166 

residents of Cerro de Pasco.  167 

High altitude residents provided informed written consent in their native language, with 168 

procedures explained in the local dialect as needed. Local Ethical approval was obtained for 169 

both expeditions by the University of Alberta Biomedical Research Ethics Board (Pro00064195 170 

and Pro00077330), Nepal Health Research Council, and Universidad Peruana Cayetano 171 

Heredia (#101686) 172 

 173 

Data Collection  174 

All participants were tested in the supine position. All data were recorded and synced using 175 

Labchart (ADInstruments, Chart Pro v8.3.1, Australia). Heart rate (Electrocardiogram lead II), 176 

and the non-invasive arterial blood pressure waveforms (finger photoplethysmography; 177 

Finometer Pro, Finapres Medical Systems, Netherlands) were collected continuously at 1 KHz 178 

(ADInstruments, Chart Pro v8.3.1, Australia). Heart rate (HR) was calculated from the ECG R-R 179 

interval. Beat-by-beat mean arterial pressure (MAP), systolic (SBP) and diastolic (DBP) 180 

pressures were calculated from the arterial pressure waveform that was calibrated against 181 

manual sphygmomanometry (averaged from three separate readings) during rest. Beat-by-beat 182 

cardiac output (CO) was also calculated using the Model Flow algorithm and used to calculate 183 

total peripheral resistance (TPR = MAP/CO) and conductance (TPC = CO/MAP).  184 

Microneurography was used to directly measure muscle sympathetic nerve activity (MSNA). A 185 

tungsten microelectrode (200μm diameter, 35 mm long, tapered to a 1-5 μm uninsulated tip) 186 
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was inserted percutaneous into the peroneal (common fibular) nerve, with an additional 187 

uncoated tungsten reference electrode inserted subcutaneously 1-3 cm from the recording site. 188 

The recording electrode was manipulated until a pulse-synchronous bursting pattern was 189 

identifiable in response to apnea but not a loud noise (16). The raw MSNA signal was acquired 190 

(Neuroamp EX headstage, ADInstruments; model 662C-3, Iowa University Bioengineering, 191 

USA), amplified (1000x pre-amplifier and 100x variable gain isolated amplifier), band pass 192 

filtered (700-2,000Hz), rectified, and integrated (decay constant 0.1s) to obtain a mean voltage 193 

neurogram. The Neuroamp was used to collect MSNA data during the 2018 Global REACH 194 

expedition; the model 662C-3 was used for MSNA data collection during the 2016 UBC-Nepal 195 

Expedition (at both low and high altitude). Both raw and integrated signals were sampled at 10 196 

KHz (ADInstruments, Chart Pro v8.3.1; Australia). 197 

 198 

Data Analysis 199 

MSNA bursts were identified using a semi-automated detection algorithm (Chart Pro 8.3.1) and 200 

confirmed by a trained observer (SAB/CDS) based on a pulse-synchronous pattern observed 201 

from both raw and integrated MSNA neurograms. Baseline MSNA was quantified as burst 202 

frequency (bursts/min) and incidence (bursts/100 heart beats). MSNA, peripheral oxygen 203 

satruation, and other cardiovascular metrics were extracted on a beat-by-beat basis for each 204 

individual over 11 ± 5 minutes during baseline conditions at low altitude (lowlanders; 334m) and 205 

high altitude (lowlanders; 5050m, Sherpa; 5050m, Andeans; 4300m).  206 

MSNA and hemodynamic variables for each individual were saved to Excel 207 

spreadsheets and read into custom software written in MATLAB (MATLAB 2015b; The 208 

MathWorks, Natick, Massachusetts) (32) to quantify the effect of neuro-cardiovascular 209 

transduction on measured hemodynamic parameters.  The software identified MSNA burst 210 

locations via LabChart comment markers. Once identified, bursts were aligned with respect to 211 

the beat-by-beat data. Once aligned, MSNA was filtered to determine the position of all 212 
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recorded burst sequences consisting of single or consecutive groups of bursts separated on 213 

each side by 1 cardiac cycle without MSNA. Sequences consisting of singlet, couplet, triplet, or 214 

quadruplet (4 or more) bursts were grouped together for analysis (as per Steinback et al 2019) 215 

(32). Following the last burst in each sequence, the change in blood pressure, R-R interval and 216 

associated Finometer derived changes in cardiac output were tracked over the subsequent 15 217 

cardiac cycles, similar to the method described in previous studies (14, 15, 32). MAP, R-R 218 

interval and cardiac output data were used for analysis in order to comprehensively characterize 219 

systemic transduction. The mean change in MAP, R-R interval and cardiac output for different 220 

sequences was calculated by the software for each participant and saved to spreadsheets along 221 

with the standard deviation and number of burst sequences recorded. Peak changes in MAP, R-222 

R interval and cardiac output were identified for each sequence type were subsequently 223 

grouped and overlaid to obtain a mean transduction for each participant (Figure 1) (32). 224 

Sequences of “non-bursts” were analyzed in a similar manner, with MAP, R-R interval and 225 

cardiac output indexed to sequences of cardiac cycles without bursts. To identify whether 226 

changes in R-R interval and cardiac output were directly associated with changes in MAP, we 227 

conducted a time to peak analysis for measures of MAP, R-R interval, and cardiac output. 228 

Additionally, bursts were grouped into a quartile range (Q1-Q4) within each sequence, 229 

with Q1 representing the smallest summed amplitude of bursts, and Q4 being the largest 230 

summed amplitude within a given sequence. To account for individual differences in mean burst 231 

amplitude, burst amplitude was normalized to the mean summed amplitude within singlet Q1 232 

sequences (SQ1) which was set to 100% for each individual. All subsequent amplitudes for all 233 

quartiles were calculated as a percentage of SQ1. This normalization allowed for the 234 

comparison of quartile data between subjects and across groups. A mean transduction 235 

response for each individual was calculated as the slope of the peak responses in outcome 236 

plotted against the 16 normalized burst amplitude quartiles (i.e. 4 sequence types x 4 amplitude 237 

quartiles). Slopes were weighted (IBM SPSS statistics 25, United States, 2017) to account for 238 
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the number of occurrences (proportion) of quartiles within each sequence. Two Andean 239 

participants were excluded from the quartile analysis due to lack of data (<6 data points as 240 

opposed to 16; 4 sequences x 4 quartiles). The relationship between total normalized burst 241 

amplitude (per quartile) and physiological outcome (peak physiological response) is depicted in 242 

Figure 1. Individual slopes were then used to obtain a mean transduction response per group. 243 

As an additional analysis, we assessed the relationship between previously reported baroreflex 244 

gain data (28, 30) and the generated transduction slope.  245 

 246 

Statistical Analyses 247 

Comparisons were made between 1) lowlanders at low- and high-altitude, and 2) Sherpa, 248 

Andeans, and acclimatizing lowlanders. The dynamic relationship of transduction across cardiac 249 

cycles was compared within a given group using one-way ANOVAs. Holm-Sidak post-hoc 250 

analyses were conducted where main effect of group was identified. To assess the influence of 251 

changes in R-R interval on the MAP response, ANCOVA analyses were used, incorporating R-252 

R interval as covariate. Between-group comparisons for lowlanders from low -to high-altitude 253 

were assessed using pre-planned contrasts (paired T-tests), with an adjusted alpha (α’) value 254 

corrected for multiple comparisons (c). This was performed by adjusting the a priori alpha (α, 255 

0.05) using the experiment-wise error rate (αe) (6, 18): 256 𝑎 = 𝑎𝑐  𝑎 = 1 − (1 − 𝑎)  
  257 

Alpha for comparisons between lowlanders at low and high altitude was corrected to p<0.046.   258 

Relationships between variables were evaluated using Pearson correlations and linear 259 

regression. To account for effect of resting MSNA on mean transduction responses, an 260 

ANCOVA analysis was run incorporating basal burst frequency as a covariate. Data are 261 

expressed as mean ± standard deviation (SD) unless otherwise indicated.  All statistical 262 
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analyses performed using SigmaStat v14.0 (Systat Software). A p-value of <0.05 was 263 

considered statistically significant. 264 

 265 

  266 



Phenotypic differences in neuro-cardiovascular transduction 
 

10 
 

RESULTS 267 

Participant demographics and baseline metrics. Participant demographics, baseline 268 

cardiovascular and MSNA metrics are reported in Table 1. Although lowlander and Tibetan 269 

Sherpa data have been reported elsewhere (6, 28), they are included in this novel analysis to 270 

enable comparison with Peruvian Andeans.  271 

Andeans were older compared to lowlanders (p=0.001) but not different to Sherpa. 272 

(p=0.065). Andeans also had significantly elevated body mass index (kg/m2; BMI) compared to 273 

lowlanders and Sherpa (p=0.002 and p=0.027, respectively). There were no significant 274 

differences in SBP, DBP or MAP in lowlanders at high and low altitude (p=0.07, p=0.15, p=0.26, 275 

respectively). There were no significant differences between high altitude groups in SBP, DBP 276 

or MAP (main effects of p=0.871, p=0.154, p=0.773, respectively). Resting MAP was not 277 

significantly different between EE and non-EE Andeans (85±2 vs 89±8 mmHg, respectively; 278 

p=0.24). Although Andean participants without EE appeared to have elevated burst frequency 279 

compared to Andeans with EE (44±14 vs 37±11 bursts/min, respectively), these differences 280 

were not statistically significant (unpaired t-test; p=0.36). Additionally, the mean transduction 281 

slopes for both MAP and RRI were not different between EE and non-EE Andean groups 282 

(p=0.35 and p=0.60, respectively). Therefore, EE and non-EE participants were grouped 283 

together as Andeans for the subsequent analyses. 284 

Representative burst patterns for all groups are shown in Figures 2. At high altitude, 285 

lowlanders had significantly elevated MSNA burst incidence and frequency (p<0.001) compared 286 

to low altitude. Despite Sherpa being tested at a higher altitude than Andeans (5050m vs 287 

4330m), Sherpa had significantly lower burst frequency than Andeans (p=0.006), as well as 288 

lower burst incidence compared to both lowlanders and Andeans (p=0.036 and p=0.001, 289 

respectively). Elevated burst frequency was associated with a lower proportion of single burst 290 

sequences and an elevated proportion of multiple burst sequences in both lowlanders at high 291 

altitude and Andeans (Figure 3). Conversely, lower burst frequency corresponded with a higher 292 
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proportion of singlet sequences and lower proportion of multiple burst sequences in lowlanders 293 

at low altitude and Sherpa (Figure 3).  294 

 295 

The impact of high altitude on neuro-cardiovascular transduction in lowlanders 296 

Cardiac and pressor response to burst sequences. Changes in MAP following MSNA 297 

sequences were greater at low compared to high altitude in lowlanders for both singlet (2.2 ±1.1 298 

vs 0.83 ±0.58 mmHg; p<0.001) and couplet (4.2±2.0 vs 1.8±1.6 mmHg; p=0.005) sequences, 299 

but not different for triplet and quadruplet sequences (p=0.699; p=0.547, respectively). 300 

However, the nadir in MAP following triplet and quad non-burst sequences was greater in 301 

lowlanders at high altitude (p=0.041 and p=0.001; Figure 4).  302 

Following SNA bursts, there was an acute cardio-acceleration (decrease in R-R interval) 303 

occurring within 5 cardiac cycles. There were no significant differences between lowlanders at 304 

low and high altitude in decrease in R-R Interval across any burst sequence (singlets, p=0.575; 305 

couplets, p=0.69; triplets, p=0.56; quad, p=0.30). Following non-burst sequences, there was an 306 

acute cardio-deceleration (increase in RR interval). There were no differences between 307 

lowlanders at low versus high altitude in the R-R interval response to non-burst sequences 308 

(Figure 5).  309 

Mean Transduction Slope. Mean transduction slope was greater in lowlanders at low 310 

altitude for R-R interval (low altitude, 0.00017 ± 0.00014; high altitude, 0.00007 ± 0.00008; 311 

p=0.032).  The transduction slope for MAP was blunted at high altitude (MAP slope, 312 

0.0075±0.0060 at high altitude versus 0.0134 ±0.0080 at low altitude; p=0.03). To examine the 313 

influence of altered basal SNA on transduction, an ANCOVA was run including resting MSNA 314 

(burst frequency) as a covariate.  This analysis subsequently indicated no difference between 315 

low and high altitude for R-R interval or MAP slopes (p=0.718 and p=0.278; ANCOVA).  316 

Differences in neuro-cardiovascular transduction between Sherpa, Andeans, and 317 

acclimatizing lowlanders  318 
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Cardiac and pressor response to burst sequences. Following bursts of MSNA, 319 

Sherpa showed a greater MAP response compared to Andeans (p<0.001) and lowlanders at 320 

high altitude (p=0.010) across all sequence types (main effect of group, p<0.001; Figure 4). 321 

Acclimatizing lowlanders showed a greater MAP response to MSNA bursts compared to 322 

Andeans (p<0.001). The drop in MAP (nadir) following non-burst sequences was greatest in 323 

lowlanders at high altitude (main effect of group, p=0.017; Figure 4). Subsequent post hoc 324 

analyses indicated that the overall fall in pressure following non-burst sequences appeared 325 

greater, but was not statistically different between lowlanders and Sherpa (p=0.152) but was 326 

greater in lowlanders compared to Andeans (p=0.017) (Figure 4).   327 

The decrease in R-R interval following burst sequences was different between groups 328 

(main effect of group, p<0.001; Figure 5). Sherpa showed a greater drop in R-R interval 329 

compared to Andeans (p=0.003) but this was not statistically different to lowlanders (p=0.051). 330 

However, lowlanders exhibited a greater decrease in R-R interval compared to Andeans 331 

(p<0.001) across all burst sequences.  The cardio-deceleration (decrease in R-R interval) was 332 

not difference between groups following non-burst sequences (p=0.129) (Figure 5). 333 

Mean Transduction Slope. Using quartiles data, a main effect of group was identified 334 

for both MAP and R-R interval mean transduction slopes (p=0.04; p=0.006, respectively; Figure 335 

6 & 7). Sherpa had a significantly greater slope for both MAP (0.012 ± 0.007) and R-R interval 336 

compared to Andeans (MAP, 0.0031 ± 0.0024; R-R Interval, 0.00003 ± 0.00004) (p=0.003 and 337 

p=0.005) and a greater R-R interval slope compared to lowlanders (p=0.046). While Sherpa 338 

tended to have a greater MAP transduction slope compared to lowlanders this was not 339 

statistically significant (p=0.08). Lowlanders were not different from Andeans for R-R interval 340 

slope (p=0.201) or MAP slope (p=0.07). 341 

The peak transduction in MAP was inversely related to prevailing degree of sympathetic 342 

activity, independent of group (r= -0.627, p<0.001; Figure 6). Peak transduction in R-R Interval 343 

was also inversely related to prevailing sympathetic activity independent of group (r=0.578; 344 
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p<0.001). Subsequent analysis indicated that mean transduction slopes were no longer 345 

significantly different between groups for either MAP or R-R interval slopes (p=0.160; p=0.203, 346 

respectively) when concurrent SNA burst frequency was taken into account as a covariate 347 

(ANCOVA).  348 

Time to peak responses  349 

Time to peak in lowlanders. Time to peak was assessed in all groups for cardiac 350 

output (CO), MAP, and R-R Interval. At low altitude, changes in MAP occurred 5.6 ± 1.9s 351 

following burst sequences; changes in R-R Interval occurred 2.1 ± 1.0s following bursts; 352 

changes in CO occurred 2.4 ± 1.0s following bursts. Peak MAP responses followed both peak 353 

R-R interval (p<0.001) and peak changes in CO (p<0.001). Time to peak in R-R Interval and CO 354 

were similar (p=0.46). At high altitude, peak changes in MAP (4 ± 2s) also followed peak 355 

changes in both R-R Interval (1.9 ± 1.1s) and CO (2.9 ± 1.1s) (p<0.001). Again, time to peak 356 

changes in R-R Interval and CO were similar (p=0.23).  357 

Time to peak in Sherpa and Andeans. In Sherpa, time to peak change in MAP (4.6 ± 358 

2.5s) followed peak changes in both CO (2.4 ± 1.3s) and R-R interval (2.1 ± 1.5) (p<0.001). 359 

Time to peak for CO and R-R interval were similar (p=0.56). In Andeans, time to peak changes 360 

in MAP (3.1 ± 2.5s) also followed peak changes in CO (1.8 ± 1.0s) and R-R interval (1.3 ± 1.0) 361 

(p<0.01). Time to peak was similar between CO and R-R interval (p=0.17).  362 

  363 
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Discussion 364 

The purpose of the current investigation was to characterize the transduction of spontaneous 365 

bursts of MSNA to cardiovascular outcomes in low and high-altitude populations. The main 366 

findings were: 1) lowlanders exhibited a blunted neuro-cardiovascular transduction slope at high 367 

altitude compared to sea level, but had a greater drop in blood pressure during non-burst 368 

sequences; 2) Tibetan Sherpa showed an elevated transduction response compared to 369 

Andeans, who had consistently blunted neuro-cardiovascular transduction; 3) the increase in 370 

blood pressure following bursts of sympathetic activity was inversely related to prevailing levels 371 

of MSNA independent of population (ANCOVA, p<0.001). Andeans (EE+ and EE-), who had the 372 

highest resting values for burst frequency and incidence, consistently demonstrated a blunted 373 

pressure (MAP) and heart rate (R-R interval) response to burst sequences compared to other 374 

groups (Figures 4 & 5). Conversely, Sherpa showed greater vascular (MAP) and cardiac (R-R 375 

interval) responses to burst sequences despite significantly lower resting SNA, indicating an 376 

elevated transduction (Figures 4 & 5). These findings imply that neuro-cardiovascular 377 

transduction is an inverse function of resting sympathetic activity, and thus may be 378 

representative of a broader physiological adaptation to maintain normotensive pressure. 379 

Alternatively, alterations (elevation or decrease) in the level of sympathetic signaling may be 380 

required to compensate for blunted or heightened vascular responsiveness to vasoconstrictor 381 

signals. Further interventional studies are required to delineate these mechanisms.  382 

 383 

The impact of high altitude on neuro-cardiovascular transduction in lowlanders 384 

Our findings demonstrate that transduction was blunted in lowlanders at high altitude. 385 

This may be attributable to specific physiological changes which occur in response to hypoxic 386 

exposure. Exposure to acute hypoxia is associated with a vasodilatory response (9, 23) which 387 

may be balanced by the concomitant sympatho-excitatory response (20). The dilatory influence 388 

of hypoxia may be reflected as the greater fall in pressure in non-burst sequences. The current 389 
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findings demonstrate that the nadir pressor response (MAP) following non-burst sequences was 390 

greater in lowlanders at high altitude (specifically for triplets and quadruplets+; Figure 4), 391 

supporting the idea that an opposing dilatory response offsets the vasoconstrictor effects of 392 

sympathetic activity following sympathetic bursts. This is supported by previous literature 393 

documenting the influence of vasodilatory pathways on vascular function in lowlanders (9), and 394 

concurs with the notion that the increase in sympathetic nervous system in response to hypoxia 395 

may mask a greater hypoxic vasodilation (23). Additionally, it could be interpreted that the 396 

elevation in SNA in acclimatizing lowlanders occurs to offset the influence of hypoxia mediated 397 

vasodilation and hence act to preserve arterial pressure. Furthermore, a shift to a greater 398 

proportion of larger burst sequences (Figure 3) may be beneficial in offsetting hypoxic 399 

vasodilation. Maintaining oxygen delivery in conditions of hypoxic stress while modulating 400 

sympathetic outflow to defend against hypotension represents a complex homeostatic 401 

interaction in the control of blood pressure.   402 

 403 

Differences in neuro-cardiovascular transduction between Sherpa, Andeans, and 404 

acclimatizing lowlanders 405 

Our results indicate that neuro-cardiovascular transduction is greatest in Sherpa 406 

whereas transduction was overall blunted in the Andeans, with acclimatizing lowlanders falling 407 

in the middle of these two populations. Despite differences in resting MSNA between groups, 408 

(with Sherpa exhibiting low activity and Andeans exhibiting highest levels of activity), all groups 409 

displayed similar values for blood pressure. Taken together, these findings indicate that the 410 

inverse relationship between neuro-cardiovascular transduction and sympathetic activity is likely 411 

an adaptive mechanism to maintain normal blood pressure. Previous work in patients with 412 

obstructive sleep apnea showed that higher resting sympathetic outflow in the absence of 413 

blunted transduction resulted in an elevation in blood pressure, suggesting that unaltered 414 

vascular transduction may contribute to the development of hypertension (33). Conversely, we 415 
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have demonstrated a blunted transduction during healthy pregnancies that appears to offset 416 

sympathetic hyperactivity and maintain blood pressure (32). This supports our interpretation that 417 

an adaptive resetting of neuro-cardiovascular transduction is an important response to maintain 418 

normotensive pressure.  419 

It has been previously reported that transduction is inversely related to sympathetic 420 

baroreflex gain in young males (19).We have previously shown that there is an upward resetting 421 

of the baroreflex upon ascent to high altitude, while Sherpa appear to have a lower baroreflex 422 

operating point compared to acclimatizing lowlanders (28). Additionally, baroreflex operating 423 

point has been reported to be similar between EE+ and EE- Andeans (30). Considering the 424 

interaction between blood pressure control of SNA (baroreflex) and SNA control of blood 425 

pressure (transduction), it is possible that baroreflex sensitivity may be an important regulatory 426 

factor in the capacity of the cardiovascular system to buffer fluctuations in SNA. However, in a 427 

subsequent analysis of our data we did not observe a relationship between previously reported 428 

baroreflex gain values (28, 30) and transduction slope in the groups studied (lowlanders 344m, 429 

r= -0.02; lowlanders 5050m, r= -0.2; Sherpa, r= 0.7; Andeans, r= -0.2). The incongruity between 430 

our findings and those previously published by Hissen et al (2019) may arise due to differences 431 

in methodological quantification of transduction. However, based on our current analyses, 432 

sympathetic baroreflex gain does not appear to be related to the transduction response.   433 

While renal adaptation and shift in blood volume over time at altitude may contribute to 434 

control of blood pressure, our analyses focus specifically on acute neuro-cardiovascular control. 435 

The mechanism(s) by which transduction is altered between high altitude groups remains 436 

unclear. There may be a change in alpha adrenergic sensitivity or density to account for level of 437 

MSNA in order to mitigate the magnitude of changes in pressure. Under resting conditions, tonic 438 

sympathetic control over vascular tone is mediated primarily by noradrenaline binding to alpha 1 439 

and 2 adrenergic receptors (10, 13). Changes in this distribution (i.e., changes in sensitivity or 440 

receptor density) over time at high altitude may account for differences in neuro-cardiovascular 441 
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transduction. This is supported by studies documenting a blunted vasoconstrictor response to 442 

direct adrenergic stimulation in conscious rats following 4 weeks of hypoxic exposure (11, 24). 443 

Although vascular sensitivity was not assessed in the current study, it has been previously 444 

reported that healthy individuals at sea-level with higher resting MSNA demonstrate lower 445 

vascular responsiveness to adrenergic stimulation, indicating that there is an offsetting of MSNA 446 

at the level of the vasculature (8). Reduction in vascular sensitivity to MSNA could explain 447 

blunted transduction in Andeans, who exhibited the highest resting sympathetic activity despite 448 

having similar blood pressure to other groups. Reduced vascular sensitivity may be a 449 

physiological adaptation to higher resting sympathetic outflow. Alternatively, it could be 450 

interpreted that sympathetic outflow increases to account for low vascular sensitivity. 451 

Additionally, differences in noradrenaline release, uptake, or degradation at the level of the 452 

nerve terminal could contribute to the observed differences in the blood pressure response to 453 

sympathetic outflow.  The precise mechanisms underlying blunted (or elevated) transduction 454 

have yet to be explored.  455 

While our results indicate that the blunting (or elevation) in neuro-cardiovascular 456 

transduction is related to prevailing sympathetic activity, phenotypic differences may in turn 457 

drive the variation in resting sympathetic activity. Sherpa have been previously characterized as 458 

having lower basal sympathetic activity but a greater vascular responsiveness to sympathetic 459 

vasomotor drive compared to acclimatizing lowlanders (28). Thus, elevated transduction may be 460 

a physiological mechanism acting in concert with lower resting sympathetic activity to maintain 461 

vascular tone. Conversely, certain high altitude Andean populations have been characterized to 462 

exhibit impaired endothelial function (34, 38). It has previously been suggested that heightened 463 

sympathetic nerve activity may contribute to endothelial dysfunction (37); whether the systemic 464 

vascular dysfunction is related to elevated MSNA in the Andeans is not clear, but possible 465 

(although there are other factors that have been identified as a potential driver of impaired 466 

vascular function, such as EE) (35). (34, 38). Poor endothelial functional and/or lowered nitric 467 
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oxide (NO) bioavailability may contribute to a differential regulation of blood pressure in this 468 

group. However, the absence (or reduction) of a vasodilatory signal to offset transduction would 469 

likely result in a larger, rather than smaller, transduction response. In the current study, the 470 

Andean group demonstrated a consistently blunted transduction response, suggesting that 471 

decreased endothelial function and mechanisms of transduction are acting independently of 472 

each other. Further work is needed to elucidate the relationship between vascular function, SNA 473 

and neuro-cardiovascular transduction in these populations.   474 

Although some form of sympathetic pathology related to vascular dysfunction may be 475 

expected to be more prevalent in Andeans with EE as opposed to non-EE, we did not observe 476 

any differences in our initial analysis of transduction (for both MAP and R-R interval) between 477 

these groups, indicating that both groups have blunted transduction despite notable 478 

hematological differences. While non-EE participants appeared to have elevated burst 479 

frequency compared to EE participants, these differences were not statistically significant 480 

(p=0.36). However, this may be attributable to low sample size within the current data set 481 

(participants with EE, n=8; non-EE, n=7). Post hoc power analysis revealed low power for burst 482 

frequency (0.3). Based on calculated effect size for the current analysis (0.56), 41 participants 483 

would be required in each group to detect significant differences in MSNA burst frequency. 484 

Future studies should aim to include a larger cohort in order to specifically characterize 485 

pathology and neuro-cardiovascular transduction between EE and non-EE individuals.  486 

 487 

CONSIDERATIONS 488 

There are several considerations that should be recognized when interpreting our findings. First, 489 

due to differences in basal MSNA, the proportion of single versus multiple bursts was different 490 

across groups (Figure 3), resulting in a reduced sample size across burst sequences in groups 491 

with lower resting MSNA (specifically for triplet and quad+ sequences). However, a transduction 492 

slope was generated for each individual and scaled to the individual’s SQ1 (Figure 1), and the 493 
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generated relationships were linear regardless of dropout in higher (i.e., triplet, quad+) quartiles. 494 

Additionally, each individual slope was weighted to account for the number of occurrences for 495 

each sequence. Therefore, we believe our data are still representative of transduction across 496 

individuals. 497 

 While we interpreted transduction to be an inverse relationship to resting sympathetic 498 

activity, there remains a possibility that a ceiling effect of MSNA exists, in which elevated 499 

bursting may not allow for vascular relaxation between bursts or groups of bursts (32). Lack of 500 

vascular relaxation between burst sequences could result in pressure remaining elevated 501 

following bursts, leading to an interpretation of apparent loss of transduction in groups with 502 

higher resting burst incidence (31). However, as previously discussed, vascular adrenergic 503 

sensitivity has been shown to be inversely related to resting MSNA (8); this strengthens our 504 

interpretation that populations who exhibit higher MSNA have an adaptive reduction in vascular 505 

sensitivity to, and thus a true blunting in their neuro-cardiovascular transduction rather than a 506 

limitation of our analysis. 507 

 We recognize that the use of local or total vascular conductance would be highly 508 

relevant in characterizing the effect of SNA on cardiovascular tone. However, there are some 509 

methodological considerations and limitations in incorporating these measurements. Firstly, 510 

there are methodological limitations of collecting continuous vascular flow data during the field 511 

studies. We were unable to collect sufficient continuous flow data in all locations or participants 512 

to make meaningful comparisons of local vascular conductance. Second, cardiac output 513 

variations calculated from ModelFlow have not be validated in the populations or conditions 514 

(prolonged hypoxia) of interest.  We also recognize that in the current analysis we cannot 515 

discern how differences in blood volume, contractility, afterload, stroke volume, and cardiac 516 

output may affect the observed transduction (pressor) response. However, previous studies on 517 

neuro-cardiovascular transduction have assessed blood pressure as a key cardiovascular 518 

outcome using similar methodology to ourselves (14, 15, 32, 41). In these studies, using mean 519 
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arterial pressure as an index of vascular tone did not influence the interpretation of differences 520 

in neuro-cardiovascular transduction between groups or conditions. Thus, we believe that our 521 

analysis of changes in mean arterial pressure (MAP) are still relevant in determining how a 522 

given sympathetic stimulus affects cardiovascular function.  523 

Our analysis of changes in R-R interval following burst sequences hinges on the 524 

assumption that cardiac sympathetic activity is related to peripheral MSNA. Additionally, acute 525 

alterations in heart rate could be interpreted as vagal withdrawal. However, the relationship 526 

between burst sequences and the R-R interval response are consistent with what would be 527 

expected for increases in sympathetic activity, i.e. R-R interval decreases (heart rate increases) 528 

following bursts of sympathetic activity in an apparent dose (increasing sequence length and 529 

burst amplitude; Figure 1) dependent manner. Additionally, in attempt to address whether 530 

sympathetically mediated effects on heart rate corresponded to concurrent changes in cardiac 531 

output, we conducted time to peak analyses in each group for measures of MAP, R-R interval, 532 

and finometer derived cardiac output (CO). This analysis revealed that peak changes in BP 533 

followed (by ~2-3s) the peak changes in both CO and R-R interval in all groups, while time to 534 

peak between CO and R-R interval were similar. This finding suggests that changes in heart 535 

rate are associated with concurrent changes in cardiac output. However, the dissociation of the 536 

time to peak between heart rate (and cardiac output) and blood pressure also confirms the 537 

distinct vascular influence of SNA on the observed BP response.   538 

In this study, the Andean participants were significantly older compared to lowlanders; 539 

this could be a contributor to higher prevailing MSNA, as MSNA has been previously reported to 540 

be elevated in older populations (40). Additionally, Andean participants had a greater BMI 541 

compared to both Sherpa and lowlanders. However, the novel finding of this study is that SNA is 542 

inversely correlated with transduction; therefore, although age and/or BMI may account for 543 

higher resting SNA, our findings remain relevant in understanding blood pressure control across 544 

populations exhibiting sympathetic hyperactivity. Additional ANCOVA analyses revealed that 545 
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when both age and BMI were taken into account, burst frequency remained significant (p=0.013 546 

and p=0.034, respectively) as was mean transduction slope (age, p=0.005; BMI, p=0.005).  547 

 548 

PERSPECTIVES 549 

 In the current study we have demonstrated that sympathetic neuro-cardiovascular 550 

transduction is inversely related to resting levels of MSNA. Our data indicates that there is a 551 

downregulation (or upregulation) of vascular sensitivity to MSNA based on the prevailing level of 552 

signaling. Thus, we suggest that although there are adaptive differences between populations, 553 

blood pressure responsiveness to sympathetic outflow is representative of a broader 554 

physiological adaptation to maintain control of blood pressure, rather than a consequence 555 

specific to hypoxic exposure. Alternatively, MSNA could be increased in order to maintain 556 

vascular resistance and therefore blood pressure in cases of blunted vascular responsiveness. 557 

Future analysis should incorporate direct adrenergic stimulation or blockade in order to isolate 558 

whether this adapted response is mediated by the vasculature (i.e., down-regulation of 559 

sensitivity) or neural outflow (i.e., increased MSNA to account for level of sensitivity). 560 

Additionally, experimental studies should directly assess the influence of heightened SNA on 561 

transduction over time.  562 

 563 

  564 
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FIGURE CAPTIONS 732 

Figure 1. Example figure of quartile data. Representative bursts for a given quartile (Q1, Q2, 733 

Q3, Q4) within each burst sequence type (singlets, couplets, triplets, quad+). Bursts are scaled 734 

(LabChart) to mean burst amplitude for each participant. Burst size (i.e., normalized amplitude) 735 

and number of bursts (i.e., sequence) increases linearly with the magnitude of the physiological 736 

(outcome variable) response. Peak responses (Y axis) to burst sequences were identified within 737 

the 15 cardiac cycles (X axis) following a sequence. This quantification of transduction is 738 

indicative of how varying levels of neural activity influence the pressor response. This 739 

relationship was assessed in each individual participant and then used to obtain a mean 740 

transduction slope per group.  741 

Figure 2. Integrated muscle sympathetic nerve activity signal over 30 seconds of baseline. 742 

Bursts are scaled (LabChart) to mean burst amplitude for each participant. Individual signal is 743 

representative of each group. A: Lowlander at low altitude (344m); B, same lowlander 744 

participant at high altitude (5050m); C, Sherpa (5050m); D, Andeans (4380m). Average burst 745 

frequency (bursts/min), burst incidence (bursts/100 heart beats), MAP (mmHg), HR (bpm), 746 

represented for each individual.  747 

Figure 3. Percentage of total activity within a given sequence (singlet, couplet, triplet, quad+) 748 

per group. Data are represented as mean ± SD. A: Lowlanders at low altitude (singlets, n=14; 749 

couplets, n=14; triplets, n=8; quad+, n=6). B: Lowlanders at high altitude (singlets, couplets, 750 

triplets, n=14; quad+, n=13). C: Sherpa at 5050m (singlets, couplets, triplets, n=8; quad+, n=5). 751 

D, Andeans at 4380m (singlets, n=15; couplets, triplets, quad+, n=14). Andeans with diagnosis 752 

of excessive erythrocytosis (EE) are depicted by gray circles.   753 

Figure 4. Change mean arterial pressure (MAP; mmHg) following burst sequences (Panel A) 754 

and non-burst sequences (Panel B). Data are represented as mean ± SD. Panel A: Lowlanders 755 

at low altitude (singlets, couplets, n=14; triplets, n=8; quad+, n=6), Lowlanders at high altitude 756 

(singlets, couplets, triplets, n=14; quad+, n=13), Sherpa (singlets, couplets, triplets, n=8; quad+, 757 
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n=5), Andeans (singlets, n=15; couplets, triplets, quad+, n=14). Panel B: Lowlanders at low 758 

altitude (singlets, couplets, triplets, n=13; quad+, n=14), Lowlanders at high altitude (singlets, 759 

couplets, quad+, n=14; triplets, n=13), Sherpa (n=8), Andeans (singlets, n=15; couplets, n=13; 760 

triplets, n=11; quad+, n=9). Andeans with diagnosis of excessive erythrocytosis (EE) are 761 

depicted by gray circles. Sherpa showed significantly elevated pressor response following burst 762 

sequences compared to lowlanders at high altitude (p=0.010) and Andeans (p<0.001) (Panel 763 

A). Lowlanders at high altitude had a significantly greater drop in pressure following non burst 764 

sequences compared to at low altitude (p<0.001) and compared to Andeans (p=0.017) (Panel 765 

B).  766 

Figure 5. Change R-R interval (RRI; s) following burst sequences (Panel A) and non-burst 767 

sequences (Panel B). Data are represented as mean ± SD. Panel A: Lowlanders at low altitude 768 

(singlets, couplets, n=14; triplets, n=8; quad+, n=6), Lowlanders at high altitude (singlets, 769 

couplets, triplets, n=14; quad+, n=13), Sherpa (singlets, couplets, triplets, n=8; quad+, n=5), 770 

Andeans (singlets, n=15; couplets, triplets, quad+, n=14). Panel B: Lowlanders at low altitude 771 

(singlets, couplets, triplet, n=13; quad+, n=14), Lowlanders at high altitude (singlets, couplets, 772 

quad+, n=14; triplets, n=13), Sherpa (n=8), Andeans (singlets, n=15; couplets, n=13 triplets, 773 

n=11; quad+, n=9). Andeans with diagnosis of excessive erythrocytosis (EE) are depicted by 774 

gray circles. Lowlanders and Sherpa had a greater drop in R-R Interval following burst 775 

sequences compared to Andeans (p<0.01; p=0.02) (Panel A).    776 

Figure 6. Mean transduction slope for arterial pressure (MAP; mmHg) plotted against burst 777 

frequency (bursts/min). Individual slopes are weighted in order to account for proportions of 778 

bursts within each sequence. Panel A, Lowlanders at low (344m) altitude (n=13), r= -0.67; B, 779 

Lowlanders at high (5050m) altitude (n=14), r= -0.65; C, Sherpa at high (5050m) altitude (n=8), 780 

r=-0.53; D, Andeans at high (4300m) altitude (n=13), r= -0.69. Andeans with diagnosis of 781 

excessive erythrocytosis (EE) are depicted by gray circles. Data fitted to linear regression 782 
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model; 95% confidence interval. Pearson correlation coefficient (r), R squared (r2) and p value 783 

are reported for each group.  784 

Figure 7. Mean transduction slope for R-R interval (s) plotted against burst frequency. Individual 785 

slopes are weighted in order to account for proportions of bursts within each sequence. Panel A, 786 

Lowlanders at low (344m) altitude (n=14); B, Lowlanders at high (5050m) altitude (n=14); C, 787 

Sherpa at high (5050m) altitude (n=8); D, Andeans at high (4300m) altitude (n=13). Andeans 788 

with diagnosis of excessive erythrocytosis (EE) are depicted by gray circles. Data fitted to 789 

exponential decay function for regression.  790 

 791 

 792 

 793 

 794 



Table 1: Participant demographics and physiological characteristics               
    LOW ALTITUDE NATIVES   HIGH ALTITUDE NATIVES    

    
Low Altitude 

(344m)  

High 
Altitude 
(5050m)  

Tibetan 
Sherpa 
(5050m)  

Andean 
(4380m)  

Main 
Effect of 
Group

Paired Ttest 
(Low to High)

    (n= 14; 12 M)  
(n= 14; 12 

M)  (n= 8; 8 M)  
(n= 15; 15 

M)  p value p value 
Age (yrs)  27 ± 1  27 ± 1  32 ± 5  42 ± 3  0.001 - 
Height (cm) 177 ± 2  177  ± 2  168 ± 3  161 ± 1  < 0.001 - 
Weight (kg) 72 ± 3  69 ± 2  64 ± 4  70 ± 3  0.396 - 
BMI (kg/m²) 23 ± 1  22 ± 1  23 ± 1  27 ± 1  0.002 - 
            
Heart Rate (bpm) 53 ± 3  64 ± 4  68 ± 5  68 ± 3  0.625 0.03
R-R Interval (sec) 1.2 ± 0.10  0.97 ± 0.05  0.93 ± 0.11  0.9 ± 0.04  0.655 0.025
Mean Arterial Pressure (mmHg) 84 ± 2  86 ± 3  83 ± 3  86 ± 2  0.773 0.638 
MAP Delta Mean (mmHg) 1.1 ± 0.1  1.3 ± 0.1  1.2 ± 0.1  0.87 ± 0.1  0.009 0.26 
Systolic Arterial Pressure (mmHg) 118 ± 3  112 ± 3  110 ± 3  110 ± 2  0.871 0.072 
Diastolic Arterial Pressure (mmHg) 67 ± 2  70 ± 3  65 ± 3  72 ± 1  0.154 0.146 
Cardiac Output (L/min) 5.3 ± 0.3  5.3 ± 0.3  6 ± 0.6  6 ± 0.3  0.441 1 
Total Peripheral Resistance 
(mmHg/L/min) 17 ± 1  17 ± 1  16 ± 2  15 ± 1  0.463 0.595 
Total Peripheral Conductance 
(L/mmHg/min) 0.063 ± 0.003  

0.063 ± 
0.003  0.07 ± 0.01  0.068 ± 0.004  0.218 0.612 

Peripheral Oxygen Saturation (%) -  82 ± 1  82 ± 1  81 ± 1  0.595 - 
            
Burst Incidence (bursts/100 heart beats) 22 ± 3  47 ± 4  30 ± 5   57 ± 4  0.002 < 0.001
Burst Frequency 
(bursts/min)  11 ± 1  30 ± 2  23 ± 4   39 ± 3   0.006 < 0.001
                  
 

BMI, Body Mass Index; Cardiac output, total peripheral resistance and total peripheral conductance calculated from finger 
photoplethysmography. One-way ANOVA used to determine differences between high altitude groups; paired, two tailed t-tests used to 
compare lowlanders from low to high altitude. Values are mean +/- SE.  
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