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Abstract 1 

The effects of structural diversity on the carbon dioxide exchange (CO2) of forests has 2 

become an important area of research for improving the predictability of future CO2 3 

budgets. We report the results of a paired eddy covariance tower experiment with 11 4 

years of data on two forest sites of similar mean stand age, near-identical site conditions, 5 

and dominated by beech trees (Fagus sylvatica), but with a very different stand structure 6 

(incl. age, diameter distribution, stocks of dead wood and species composition) because 7 

of different management regimes. Here we address the question of how management and 8 

related structural diversity may affect CO2 fluxes, and tested the hypothesis that more 9 

structurally diverse stands are less sensitive to variations in environmental and biotic 10 

drivers. Higher annual net ecosystem productivity (NEP) was observed in the 11 

homogenous, managed, and even-aged forest (585 ± 57.8 g C m-2 yr-1), than in the 12 

structurally diverse, unmanaged, and uneven-aged forest (487 ± 144 g C m-2 yr-1). About 13 

two-third of the difference in NEP between the sites was contributed by a higher annual 14 

gross primary productivity (GPP, 1627 ± 164 vs 1558 ± 118 g C m-2 yr-1) and one-third 15 

by a lower annual ecosystem respiration (Reco, 1042 ± 60 vs 1071 ± 96 g C m-2 yr-1) in 16 

the homogenous forest. Spring (April - May) and summer (June – July) were the two 17 

main seasons contributing to the overall annual differences between the sites, also, the 18 

sensitivities of seasonal NEP and GPP to environmental variables were stronger in the 19 

homogenous forest during those periods. Inter-annual variation of NEP was higher in the 20 

homogenous forest (Coefficient of variation (CV) = 25 %) compared to the 21 

heterogeneous forest (CV = 12 %). At annual time scale, the higher variability of NEP in 22 

the homogenous forest is mainly attributed to biotic factors such fruit production and a 23 

time-dependent growth trend, outweighing differences in environmental sensitivities.  24 

Keywords: structural diversity; eddy covariance; temperate deciduous forest; CO2 flux.25 



1. Introduction 26 

The carbon uptake of forests is affected by changes in both environmental and biotic 27 

factors (Chen et al., 2015; Ciais et al., 2005). The former includes temperature, radiation, 28 

water and nutrient availability, and their intra and inter-annual variability. Biotic factors 29 

include plant functional traits such as plant physiological parameters, nutrient status, 30 

structure, phenology, etc., that govern photosynthesis and respiration process (Jensen et 31 

al., 2017) as well as inter- and intra-specific competition. Identifying and understanding 32 

the factors that contribute to the variability in net carbon dioxide (CO2) uptake, i.e. net 33 

ecosystem productivity (NEP), between forest ecosystems and the atmosphere is crucial 34 

for understanding how forests will respond to and affect future climate (Baldocchi et al., 35 

2001; IGBP Terrestrial Carbon Working Group, 1998; Luo et al., 2015) as well as for 36 

answering questions relevant to forest management and ecology. 37 

Many eddy covariance (EC) flux studies (e.g. Barr et al., 2007; Dragoni et al., 2011; Hui 38 

et al., 2003; Humphreys and Lafleur, 2011; Jensen et al., 2017; Kitamura et al., 2012; 39 

Richardson et al., 2009; Shao et al., 2016, 2015; Wu et al., 2013; Yuan et al., 2009) have 40 

attributed the inter-annual variability (IAV) of NEP variously to climatic variables, to 41 

phenological changes induced by climatic variables and to biotic changes, with 42 

Richardson et al. (2007) contending that, on an annual scale, variation in NEP is more 43 

strongly dominated by changes in biotic factors than by climate. To date, most studies 44 

have focused on understanding effects of climate and biotic changes on CO2 fluxes at 45 

single sites (Granier et al., 2008; Pilegaard et al., 2011; Wilkinson et al., 2012) or across 46 

contrasting ecosystem types (Baldocchi and Xu, 2005; Chu et al., 2016; Jensen et al., 47 

2017; Ma et al., 2007; Novick et al., 2015; Pereira et al., 2007; Shao et al., 2016, 2015, 48 

2014; Wu et al., 2012). Other studies have used multiple sites from across global and 49 

regional networks to understand the variability of CO2 fluxes from different plant 50 

functional types and/or climatic zones (Beer et al., 2010; Chen et al., 2015; Law et al., 51 



2002; Musavi et al., 2017). Such studies have been beneficial for understanding the 52 

underlying causes of variability in CO2 uptake, but because flux stations are not closely 53 

located, there are typically very large differences in the environmental conditions 54 

between sites, making it challenging to disentangle the effects of environmental vs biotic 55 

factors. The short period of time analysed is also a limitation found in some studies 56 

(Anthoni et al., 2004; Hommeltenberg et al., 2014; Jensen et al., 2017). Only a few have 57 

investigated how structure and management scheme affect CO2 fluxes (Herbst et al., 58 

2015; Musavi et al., 2017) even though it is reasonable to suppose that these are 59 

important drivers of CO2 fluxes and that they may interact with climate and biotic 60 

variables (Luyssaert, 2014).  61 

Here we present a case study that, in contrast, focuses on two forest sites that a) are 62 

characterized by similar site conditions, b) have a similar mean age, and c) are both 63 

dominated by beech trees (Fagus sylvatica) but differ in management regime and 64 

structure. We thus tackle the question of how management and related structural diversity 65 

may affect CO2 fluxes, and directly test the hypothesis that more structurally diverse 66 

stands are less sensitive to variations in environmental and biotic drivers. This study 67 

builds on the work of Herbst et al. (2015), which was done at the same sites and showed 68 

their difference in carbon uptake and water use.  69 

We seek to identify the major drivers of seasonal and inter-annual variability of net 70 

ecosystem productivity (NEP), gross primary productivity (GPP) and ecosystem 71 

respiration (Reco) of a structurally-diverse and a structurally-homogeneous temperate 72 

broadleaf forest. We test two hypotheses:  73 

(1) The annual NEP and GPP of the homogeneous forest is more sensitive to variation in 74 

climate variables compared to the heterogeneous forest. A study utilizing tree rings has 75 

shown that productivity of diverse temperate beech forests exhibited higher temporal 76 

stability than monoculture forests mainly due to lower inter-annual variation as well as 77 



due to overyielding because of asynchronous behaviour of different tree species and their 78 

interactions (Jucker et al., 2014). Grossiord et al. (2014) observed higher water 79 

availability in mixed temperate beech forests than in single species forests during 80 

drought, which they speculate as result of niche partitioning and/or facilitation processes 81 

among the interacting species.  82 

(2) NEP and GPP of the homogeneous forest is more sensitive to intrinsic species-83 

determined characteristics such as fruit production. Synchronous fruit production, also 84 

known as masting, is a sink for plant resources that may compete with vegetative growth 85 

(Obeso, 2002) and a negative correlation between fruit production and radial stem 86 

increment has been observed (Dittmar et al., 2003; Selås et al., 2002). Herbst et al. (2015) 87 

reported higher fruit production in the homogenous forest and here we will also quantify 88 

the effect of fruit production on annual NEP and GPP.  89 

2. Materials and methods 90 

1. Site description 91 

Data were obtained from two forest sites, Hainich (DE-Hai) and Leinefelde (DE-Lnf), 92 

located in central Germany (Figure 1). The two sites are ca. 30 km apart both at an 93 

altitude of 450 mean above sea level. Soil at both sites is composed of Triassic limestone 94 

covered with variable Pleistocene loess deposits. The climate is suboceanic-submontane 95 

with a long-term annual mean air temperature of ca. 8 °C. General site characteristics are 96 

given in Table 1. The phenology of both sites is similar, with the dormant season lasting 97 

typically from November to March and growing season lasting from April to October.  98 



 99 
Figure 1: Map showing the location of the two study sites in the central Germany. Darker 100 
patches are forests and white dots show the positions of the eddy covariance flux towers 101 
at each site. Map of Germany in inset is not to scale.  102 
Hainich: The Hainich site (DE-Hai) is an unmanaged forest with a heterogeneous 103 

structure, located in the central part of the Hainich National Park. Site details can be 104 

Table 1: Instrumentation and stand characteristics for the research sites.  105 
Characteristics Hainich (DE-Hai) Leinefelde (DE-Lnf) 

Latitude 51°04'45,36''N 51°19'41,58''N 

Longitude 10°27'07,20''E 10°22'04,08''E 

Altitude [m] 440 450 

Soil Pleistocene loess deposits with dominance of 
Cambisols 

Pleistocene loess deposits with dominance of 
Luvisols 

Instrumentation   

EC measuring height [m] 44 44 
Displacement height [m] 22 22 

Sonic anemometer Gill Sonic Model R3 Gill Sonic Model R3 

Infra-red gas analyser (IRGA) Li6262 Li6262 
Stand characteristics   

Primary species Fagus sylvatica L (64%)., Fraxinus excelsior L. 

(28%), Acer pseudoplatanus L (7%). and other 
species  

Fagus sylvatica L. (single Quercus petraea) 

Biomass [t C ha-1] 212  237  
Plant density [trees ha-1] 334 224 

Canopy height [m] 35 35 
LAI [m2 m-2] 5.1 4.2 

Age (years) Maximum up to 265,  

biomass weighted average = 140 

130 ± 8 

found in Anthoni et al. (2004) and Knohl et al. (2003). Until the end of the 19th century, it 106 

was managed as a coppice-with-standards system and was subjected to selective cutting 107 

until 1965. From 1965 to 1997, the area was used as a military training base and a large 108 

part of the forest was left untouched, with only single and very valuable trees being cut. 109 

The forest has never been clear felled and, as a result, it exhibits characteristics of an 110 



unmanaged, old-growth forest with highly diverse horizontal and vertical structure, trees 111 

covering a wide range of age classes, up to a maximum of around 265 years, and large 112 

amounts of dead wood (both standing dead wood and coarse woody debris). The main 113 

tree species in the forest are beech (Fagus sylvatica, ca. 64% of tree biomass), ash 114 

(Fraxinus excelsior, ca. 28%), and sycamore (Acer pseudoplatanus, ca. 7%), with some 115 

single trees of European hornbean (Carpinus betulus), elm (Ulmus glabra), maple (Acer 116 

platanoides) and other deciduous species. The main ground vegetation in the forest 117 

includes Allium ursinum, Mercurialis perennis and Anemone nemorosa (Mund, 2004). 118 

The Hainich flux tower site is located on a gentle north facing slope (2–3˚ inclination) 119 

surrounded by forest for more than 3 km in the prevailing wind direction. The only 120 

change in the surface land use is a small clearing located about 800 m perpendicular to 121 

the prevailing wind, with only 5% contribution to the overall wind direction (Knohl et al., 122 

2003).  123 

Leinefelde: The Leinefelde site (DE-Lnf) is an even-aged, pure beech stand managed as 124 

a shelterwood system for maximum wood production since 1938. DE-Lnf is an example 125 

of a homogenous managed even-aged 130 ± 8 years old stand that represents a late point 126 

in time of a rotation period (production cycle) lasting about 120-140 years. Crown 127 

thinning – thinning of dominant trees to reduce crowding within the main canopy – is 128 

carried out in different forest blocks regularly every 10-20 years. The last major thinning 129 

in the footprint area of the flux tower was carried out from 2002 to 2006 (Figure S1). The 130 

ground vegetation includes Galium odoratum, Melica nutans, Milium effusum, Oxalis 131 

acetosella, and Stellaria holostea. The eddy covariance flux tower has been in operation 132 

since April 2002. No measurements were carried out in this site from 2007 to 2009 due to 133 

access limitation.  134 

2. Eddy covariance and meteorological measurements 135 



Fluxes of carbon dioxide, water vapor, sensible heat, and momentum along with standard 136 

meteorological variables were measured at the two study sites. The two sites had identical 137 

eddy covariance instrumental setup and data acquisition techniques. The eddy covariance 138 

measurement system consisted of a three-dimensional sonic anemometer (Solent R3, Gill 139 

Instruments Ltd., Lymington, UK) and a fast response closed-path CO2/H2O infrared gas 140 

analyser in absolute mode (LI-6262, LI-COR Inc., Lincoln, NE, USA). The tube 141 

connecting the gas inlet and gas analyser was 50 m. Data were collected on a field 142 

computer using the “EddySoft” software developed by O. Kolle from MPI-143 

Biogeochemistry, Jena, Germany (Kolle and Rebmann, 2010). Detailed information 144 

about the instrumentation can be found in Anthoni et al. (2004); Knohl et al. (2003). The 145 

turbulent fluxes were calculated using “EddyPro” software with same settings for both 146 

sites and all years. We followed Aubinet et al. (1999) and Foken et al. (2004) for quality 147 

control of the data collection and analyses. We used the ‘‘Fluxnet’’ online-tool 148 

(http://www.bgc-jena.mpg.de/bgi/index.php/Services/REddyProcWeb) and the 149 

REddyProc package in R (Wutzler et al., 2018) based on Reichstein et al. (2005) to 150 

obtain a continuous dataset of net ecosystem exchange and for partitioning this into gross 151 

primary production (GPP) and ecosystem respiration (Reco).  152 

Standard meteorological data were measured at both the sites. Anthoni et al. (2004) and 153 

Knohl et al. (2003) describe the details of the meteorological variables and 154 

instrumentation. 155 

We used the Biljou model to calculate a water availability index (WAI). Details of this 156 

model are available in Granier et al. (1999). 157 

3. Fruit production data 158 

Periodical fruit production is an important characteristic of beech forests. In this study, 159 

we included fruit production as a biotic variable that is assumed to affect annual carbon 160 

fluxes. The fruits (seed and pericarp) were collected in litter traps (DE-Hai 25, DE-Lnf 21 161 

http://www.bgc-jena.mpg.de/bgi/index.php/Services/REddyProcWeb


traps of 0.25 m2) distributed within the main footprint, dried at 70°C and weighed. The 162 

traps are closed plastic funnels with a small sieve at the bottom for retaining fruits while 163 

allowing drainage. The funnels are fixed on a pillar about 50 cm above the ground so that 164 

herbivores (mostly mice) are kept out. 165 

4. Statistical analysis 166 

Data from April 2002 to 2006 and from 2010 to 2016, the period with complete flux and 167 

meteorological data, was used to investigate the effect of meteorological variables on 168 

seasonal fluxes. We calculated zero-order correlations and slopes of the simple linear 169 

regressions between seasonal fluxes and meteorological variables. We also tested the 170 

differences of the sensitivities of seasonal CO2 fluxes to meteorological variables 171 

between sites (Lenth and Love, 2017).  172 

At annual scale, we used data from 2003 to 2006 and 2010 to 2016 (no fruit production 173 

data was available for 2002). Paired T-tests were applied to test for significant differences 174 

in annual CO2 fluxes and meteorological variables between the sites. For selecting which 175 

predictor explained annual NEP, GPP and Reco, we conducted stepwise multiple linear 176 

regression (MLR) using the Akaike Information Criteria (AIC) (Field et al., 2012). The 177 

predictor variables considered for the study were mean annual air temperature (Tair), soil 178 

temperature (Tsoil), global radiation (Rg), vapor pressure deficit (VPD), water availability 179 

index (WAI), spring air temperature, spring soil temperature, fruit production, growing 180 

season length, and time. The variable time was represented by calendar year. Thus, it 181 

integrates the effects of factors that vary and correlate with time, such as growth, effects 182 

of CO2 fertilization (Fernández-Martínez et al., 2017), phenology (Baldocchi et al., 2018; 183 

Froelich et al., 2015; Granier et al., 2008; Pilegaard et al., 2011; Urbanski et al., 2007), 184 

and changes in nutrient deposition (Fernández-Martínez et al., 2017). To create a model 185 

applicable to both sites, we defined a MLR model using all the variables selected as 186 

significant during the per-site fits and fitted it again, this time to the combined data from 187 



both sites. To estimate the relative effects of model predictor variables on response 188 

variables, we calculated the ‘product measure’ which distributes the overall model R2 to 189 

each of the predictors (Nathans et al., 2012). Product measure is the product of a 190 

predictor’s β-coefficient (standardized slope) in a MLR model and its zero-order 191 

correlation. We also conducted simple regressions of predictors against the model 192 

residuals, i.e. after having removed the effects of other predictor variables via multiple 193 

linear regression. R version 3.4.3 was used for analyses (R Core Team, 2017).  194 

3. Results 195 

1. Meteorological characteristics  196 

The two sites were meteorologically similar (Figure 2). Averaged yearly global radiation 197 

(Rg) from 2002 to 2016 was 122.4 ± 6.5 W m-2 (mean ± sd) in DE-Hai and 124.0 ± 7.2 W 198 

m-2 in DE-Lnf (Figure 2a). Mean annual temperature (Tair) during the study period was 199 

8.34 ± 0.72 °C and 8.30 ± 0.7 °C for DE-Hai and DE-Lnf, respectively. This similarity 200 

was consistent for all years with no statistically significant differences between the sites. 201 

The mean annual soil temperature (Tsoil) was 7.61 ± 0.36 °C and 8.23 ± 0.38 °C for DE-202 

Hai and DE-Lnf, respectively. A systematically higher value of 0.62 °C was measured in 203 

DE-Lnf (p < 0.001), possibly resulting from differences in the measurement depth 204 

between the sites (5 vs 4 cm in DE-Hai and DE-Lnf, respectively, Figure S2). Mean 205 

annual vapor pressure deficit (VPD) was 3.45 ± 0.56 hPa and 3.28 ± 0.41 hPa at DE-Hai 206 

and DE-Lnf, respectively, with no statistical difference between the sites. Mean annual 207 

precipitation – based on a single pluviometer per site - was significantly lower (p < 208 

0.001) in DE-Lnf (601 ± 154 mm) than in DE-Hai (744 ± 152 mm). Although DE-Lnf 209 

received less rainfall, the mean annual water availability index (WAI) was similar 210 

between the sites in most years, with average values of 0.86 and 0.84 in DE-Hai and DE-211 



Lnf, respectively. We didn’t observe temporal trend in any meteorological variables 212 

(Table S1). 213 

 214 
Figure 2: Mean annual values of (a) global radiation (Rg) and air temperature (Tair); (b) 215 
soil temperature (Tsoil) and vapor pressure deficit (VPD); and (c) water availability index 216 
(WAI) and rainfall are shown from 2002 to 2016. Tsoil was measured at 5 cm for DE-Hai 217 
and 4 cm for DE-Lnf.  218 



2. Fruit production (masting) in the study sit219 

 220 

Figure 3: Total annual fruit production (g C m-2 yr-1) in DE-Hai and DE-Lnf from 1999 to 221 
2016. No data was recorded in 2001 and 2002.  222 
Figure 3 shows the fruit production (masting) data for DE-Hai and DE-Lnf from 1999 to 223 

2016. Data for 2001 and 2002 was not available due to technical issues. The average fruit 224 

production for the entire period was 73.2 ± 77.9 g C m-2 yr-1 and 91.2 ± 113.1 g C m-2 yr-1 225 

in DE-Hai and DE-Lnf, respectively. We define masting years as those when fruit 226 

production is more than 50 g C m-2 yr-1. Masting years occurred every two or three years. 227 

Average fruit production during such years was 151 ± 46.3 g C m-2 yr-1 and 197 ± 91.8 g 228 

C m-2 yr-1 for DE-Hai and DE-Lnf, respectively, with the former being 76 % of the latter. 229 

The significant differences between DE-Lnf und DE-Hai are restricted to the 230 

extraordinarily high mast years (fruit production > 200 g C m-2).  231 

3. Cumulative net ecosystem productivity (NEP) 232 

Figure 4 shows gap-filled cumulative net ecosystem productivity (NEP) data calculated 233 

from eddy covariance measurements of CO2 fluxes. Positive values correspond to a 234 

cumulative net uptake of CO2 by the vegetation (atmospheric sink) and negative values a 235 

net loss (atmospheric source). At the beginning of each year, both forests are sources of 236 

CO2. The average day of the year (doy) at which the net daily NEP switches from source 237 



to sink (i.e. shortly after leaf-out when the rate of change in the cumulative NEP goes 238 

from negative to positive) was 125 and 121 for DE-Hai and DE-Lnf, respectively ( 239 

Table S2). But this was observed as early as doy 111 in DE-Hai and 112 in DE-Lnf in 240 

2014, and as late as doy 134 in DE-Hai in 2010 and doy 130 in DE-Lnf in 2013. The 241 

forests continued to act as an overall C sink in average for 164 days and 168 days for DE-242 

Hai and DE-Lnf, respectively. This growing season length was significantly correlated 243 

with mean annual temperature (Figure S3). Longer growing season length and earlier 244 

start of growing season corresponded to higher annual carbon fluxes (Figure S4c, f, i).   245 

Most of the variation in annual cumulative NEP occurred between the period of leaf out 246 

and leaf fall. The inter-annual variability in NEP during the growing season was larger in 247 

DE-Lnf compared to DE-Hai. On average, NEP in masting years was lower than in other 248 

years, with this difference being particularly visible in DE-Lnf (black solid lines in Figure 249 

4b). The lowest cumulative NEP for both sites was measured in 2004, a year characterized 250 

by high fruit production but not the highest value observed during the study period. 251 

 252 
Figure 4: Cumulative net ecosystem productivity for (a) DE-Hai and (b) DE-Lnf. The 253 
solid lines indicate masting years and the dashed lines indicate remaining years. The 254 
vertical grey bars indicate the time of leaf out and leaf fall. The positive values of NEP 255 
indicate a cumulative carbon uptake by the ecosystem.   256 

4. Seasonal variability of the CO2 fluxes  257 



Both sites have a similar average annual cycle of NEP (Figure 5a). Each point corresponds 258 

to the mean across years of weekly sums of NEP. Both forests reached the highest carbon 259 

uptake rate between doy 165 and 175. DE-Lnf showed a higher positive NEP at the start of 260 

the growing season, and DE-Hai was a stronger carbon source (black solid lines in Figure 261 

5a) from November to December.  262 

  263 
Figure 5: (a) The average annual NEP cycle, bar represents 95% confidence interval at 264 
5% significance level and (b) standard deviation of weekly NEP. The grey horizontal bars 265 
show the range of the leaf out and leaf fall days of the two sites.  266 
Figure 5b shows the standard deviation of weekly NEP across years. The standard 267 

deviation of the early weeks of the year was low at both sites, and increased with the start 268 

of the growing season. A higher standard deviation in NEP was observed in DE-Lnf 269 

(dashed lines in Figure 5b) over the entire growing season. In DE-Hai (black solid lines 270 

in Figure 5b), the highest standard deviation was observed between doy 215 and 230. 271 



During the last days of the year, DE-Hai exhibited a higher standard deviation compared 272 

to DE-Lnf. For further analysis, we separated the year into different seasons, winter 273 

months (November – December: ND, January -  March: JFM), spring (April – May: 274 

AM), summer (June- July: JJ), August (A) and fall (September – October: SO), to 275 

account for the different drivers and dynamcs of NEP in these periods. August was 276 

treated separately from the main growing season as it is a particularly dry month and 277 

large variability observed in this period (see Figure 5b and Table 2).  278 

5. Meteorological factors controlling seasonal variability in CO2 fluxes 279 

For each site, Table 2 (correlation coefficients) and Figure 6 (absolute slopes) show the 280 

effect of measured meteorological factors on CO2 fluxes for different seasons of the year 281 

(see section 4).  282 

Table 2: Zero-order correlation coefficients between seasonal carbon fluxes (NEP, GPP 283 
and Reco) and meteorological variables (mean of monthly values) for JFM (January -  284 
March), AM (April – May), JJ (June- July), A (August), SO (September – October) and 285 
ND (November – December) in DE-Hai and DE-Lnf. Bold numbers are statistical 286 
significant values at p < 0.05.  287 

Season site 

Tair Tsoil Rg VPD WAI 

NEP GPP Reco NEP GPP Reco NEP GPP Reco NEP GPP Reco NEP GPP Reco 

JFM 

DE-Hai -0.51  0.45 -0.52  0.58 -0.45  0.34 -0.55  0.41    

DE-Lnf -0.57  0.78 -0.49  0.71 -0.47  0.6 -0.66  0.8    

AM 

DE-Hai 0.85 0.88 0.82 0.87 0.91 0.85 0.6 0.53 0.34 0.42 0.33 0.12    

DE-Lnf 0.8 0.85 0.82 0.84 0.9 0.87 0.63 0.59 0.38 0.37 0.35 0.23    

JJ 
DE-Hai 0.22 0.38 0.34 0.27 0.25 0.1 0.27 0.51 0.48 0.11 0.32 0.36 0 -0.07 -0.1 

DE-Lnf 0.11 0.24 0.37 -0.15 -0.04 0.2 0.57 0.54 0.21 0.16 0.23 0.24 -0.1 0 0.18 

A 

DE-Hai -0.36 -0.27 -0.02 -0.36 -0.24 0.06 -0.38 -0.33 -0.15 -0.5 -0.49 -0.35 0.65 0.68 0.54 

DE-Lnf -0.27 -0.24 0.06 -0.41 -0.34 0.13 -0.17 -0.17 -0.02 -0.23 -0.35 -0.3 0.08 0.37 0.65 

SO 
DE-Hai 0.75 0.83 0.74 0.79 0.86 0.73 0.87 0.88 0.55 0.65 0.69 0.53 -0.32 -0.33 -0.23 

DE-Lnf 0.62 0.7 0.81 0.7 0.77 0.86 0.76 0.8 0.75 0.46 0.52 0.59 -0.19 -0.18 -0.12 

ND 

DE-Hai -0.76  0.79 -0.75  0.74 -0.78  0.79 -0.67  0.76    

DE-Lnf -0.69  0.75 -0.72  0.76 -0.61  0.64 -0.52  0.63    



In winter, NEP was correlated with Tair, Tsoil, Rg, and VPD at both sites with stronger 288 

correlation in ND than JFM (Table 2). In ND, NEP was significantly sensitive (higher 289 

absolute slopes) to Tair, Tsoil and VPD in DE-Hai than in DE-Lnf (Figure 6).  290 

With the arrival of spring (April – May, AM), Tsoil became the most important factor 291 

controlling spring NEP, GPP and Reco in both sites, followed in importance by Tair, and 292 

Rg. A 1 °C change in spring Tsoil changed the NEP by 28.07 ± 6.92 and 38.74 ± 11.19 g C 293 

m-2 month-1 in DE-Hai and DE-Lnf, respectively. NEP was driven mainly by GPP, as 294 

seen by comparing BTsoil&GPP (slope between Tsoil and GPP, Figure 6e) and BTsoil&Reco 295 

(slope between Tsoil and Reco, Figure 6f) for this period. NEP and GPP of DE-Lnf was 296 

more sensitive to Tsoil than DE-Hai with significantly higher BTsoil&NEP (Figure 6d) and 297 

BTsoil&GPP (Figure 6e).  298 

In summer (June – July, JJ), Rg remained a significant factor while other relationships 299 

weakened. In DE-Hai, Rg showed a weak relationship with NEP but significantly 300 

correlated with both GPP and Reco, while in DE-Lnf it was significantly correlated with 301 

NEP and GPP. The sensitivity of NEP and GPP to Rg was higher in DE-Lnf compared to 302 

DE-Hai. A change in 1 W m-2 of Rg increased NEP by 0.74 ± 0.47 (p < 0.01) g C m-2 303 

month-1 in DE-Lnf and about 0.23 ± 0.37 (p = 0.11) g C m-2 month-1 in DE-Hai and the 304 

difference between the sites is significant (p < 0.1).  305 

In August (A), only the soil water availability index (WAI) correlated significantly with 306 

CO2 fluxes, specifically with NEP, GPP and Reco in DE-Hai and only with Reco in DE-307 

Lnf.   308 

In fall (September – October, SO), Tair, Tsoil, Rg and VPD, again became significantly 309 

correlated with NEP, GPP and Reco in both sites, with high correlation values for the first 310 

three and slightly lower ones for VPD. 311 



  312 
Figure 6: Slopes (B) between seasonal CO2 fluxes (NEP – column 1, GPP – column 2 and 313 
Reco – column 3) and meteorological variables (mean of monthly values) for JFM 314 
(January -  March), AM (April – May), JJ (June- July), A (August), SO (September – 315 
October) and ND (November – December). The larger circles and squares indicate 316 
slopes, which are significantly different from zero. *** indicate statistical significant 317 
difference of slopes between two sites at p < 0.001; ** significant at p < 0.01; * 318 
significant at p < 0.05; and (*) significant at p < 0.1 at bottom of each figure (if any). The 319 
first letter of each month is used in the timescale. 320 

6. Seasonal differences in CO2 fluxes between the two sites 321 



 322 
Figure 7: Difference in sum of (a) NEP, (b) GPP and (c) Reco between the two sites for 323 
JFM (January -  March), AM (April – May), JJ (June- July), A (August), SO (September 324 
– October) and ND (November – December). The Y-axis represents ΔX = XDE-Lnf – XDE-325 
Hai (X being seasonal NEP, GPP or Reco). Bars represent 95% confidence interval. The 326 
dashed line marks the zero line (indicates no difference between the sites). *** indicate 327 
statistical significance at p < 0.001; ** significant at p < 0.01; * significant at p < 0.05; 328 
and (*) significant at p < 0.1. 329 
In addition to slopes, we also looked at differences of average seasonal sums of NEP, 330 

GPP and Reco between sites (Figure 7). Significantly higher NEPs observed in DE-Lnf 331 

than in DE-Hai in JFM and ND (5.48 and 17.79 g C m-2 month-1, Figure 7a) was due to 332 

lower Reco in DE-Lnf (Figure 7c). DE-Lnf also acted as a stronger carbon sink in the 333 

spring (26 g C m-2 month-1) which was mostly due to higher GPP of 24 g C m-2 month-1. 334 

In JJ, difference between NEP in two sites were insignificant because both GPP and Reco 335 

in DE-Lnf were significantly higher by 19.08 g C m-2 month-1 and 10.94 g C m-2 month-1, 336 



respectively. During August, NEP and GPP were similar in both sites, however, a higher 337 

Reco was observed in DE-Lnf (10.04 g C m-2 month-1). In the fall, NEP, GPP and Reco 338 

were lower in DE-Lnf but differences were insignificant.  339 

7. Annual estimates of NEP, GPP and Reco 340 

Annual gap-filled NEP, GPP and Reco for both sites are presented in Figure 8. Mean 341 

Annual NEP was 487 ± 57.8 (mean ± SD for the mean of all years) and 585 ± 144 g C m-342 

2 yr-1 in DE-Hai and DE-Lnf, respectively. A paired t-test showed that DE-Lnf was a 343 

significantly stronger carbon sink (98 g C m-2 yr-1, p < 0.05). We observed the largest 344 

differences in NEP between the two sites from 2010 (Table S3).  345 

Annual NEP was significantly more variable in DE-Lnf (Levene’s test with p < 0.05), 346 

with coefficients of variation (CV) being 12% and 25 % in DE-Hai and DE-Lnf, 347 

respectively. A significant temporal trend of NEP was observed only for DE-Lnf, with an 348 

increase of 21.8 g C m-2 yr-1 (p < 0.05). 349 

The mean of annual GPP values at DE-Hai and DE-Lnf was 1559 ± 118 and 1627 ± 164 350 

g C m-2 yr-1 respectively, with the difference being statistically significant (p = 0.07). Like 351 

NEP, significantly higher annual GPP was again observed in DE-Lnf from 2010 (Table 352 

S3). The variability in annual GPP was not significantly different between the two sites, 353 

with coefficients of variation (CV) equalling 7.5 % and 10 % in DE-Hai and DE-Lnf, 354 

respectively. As for annual NEP, no temporal trend in annual GPP was observed in DE-355 

Hai, whereas a significant trend of 25.5 g C m-2 yr-1 (p < 0.05) was observed in DE-Lnf.  356 

The mean annual ecosystem respiration (Reco) was 1071 ± 96 and 1042 ± 60 g C m-2 yr-1 357 

in DE-Hai and DE-Lnf, respectively with no significant difference between sites. In 358 

contrast to annual NEP and GPP, annual Reco was lower in DE-Lnf with no significant 359 

difference. Annual Reco showed a positive temporal trend at both sites but it was 360 

statistically insignificant (Table S1). 361 



 362 
Figure 8: Annual sums of GPP, Reco and NEP from 2003 to 2016. Data from 2007 to 363 
2009 was not measured in DE-Lnf.  364 

8. Factors contributing to annual variability of NEP, GPP and Reco 365 

Together, fruit production (FP), time (see the section 2.4) and mean annual soil 366 

temperature (Tsoil) explained ca. 65% and 92% of the variation in annual NEP in DE-Hai 367 

and DE-Lnf, respectively (Table 3). In DE-Hai, Tsoil was the most important factor, 368 

followed by FP (negative correlation). In the case of DE-Lnf, time and FP explained most 369 

of the variation.  370 

Results were similar for annual GPP, with a total R2 of 0.62 and 0.88 in DE-Hai and DE-371 

Lnf, respectively. Tsoil was the only significant variable for DE-Hai, explaining most of 372 

the variation in GPP. In DE-Lnf, time was the strongest predictor variable, followed by 373 

Tsoil and FP (negative correlation). A significant relationship between annual Reco was 374 

found only for DE-Lnf with Tsoil as the only significant variable. 375 

Figure 9 shows the relationship between each of the three significant driving variables 376 

(Tsoil, FP, time) and the three flux quantities (NEP, GPP, Reco) in terms of the residual 377 

variance remaining after the effects of the other two driving variables (e.g. FP and time, 378 

in the case of Tsoil) have been removed. This analysis increased the amount of variation in 379 

NEP and GPP explained by Tsoil. We tested the difference between the slopes of two sites 380 

obtained in Figure 9 (Table S4). The sensitivities of NEP on Tsoil were similar between 381 



the sites when the effect of fruit production and time is removed. The result was similar 382 

for GPP. 383 

Similarly, fruit production was significantly correlated with residuals of NEP after 384 

removing effect of Tsoil and time (Figure 9b) in both sites. We observed that residuals of 385 

GPP decreased with increased fruit production, but significant only for DE-Lnf and with 386 

a more than twice as large slope (Figure 9e and Table S4). Slope between residuals of 387 

annual Reco and fruit production was not significantly different from zero for both sites 388 

but had a positive slope for DE-Lnf.  389 

Only in DE-Lnf, we observed positive slope between time and residuals of NEP after 390 

removing the effect of Tsoil and FP (Figure 9c and Table S4). Higher slope of residuals of 391 

Table 3: Major factors contributing to the variation of annual NEP, GPP and Reco. Var is 392 
the contribution of each predictor to total R2 calculated with the product measure metric.  393 

 

Flux 

 

Predictors 

DE-Hai DE-Lnf 

R2 Coefficients Var R2 Coefficients Var 

NEP  
Tsoil + 

FP + 

Time  

0.65  
110.48 * 

-0.34 (*) 

-0.99 

 
0.49 

0.15 

0.00 

0.92  
79.94 (*) 

-0.74 *** 

22.30 *** 

 
0.07 

0.34 

0.51 

GPP  

Tsoil + 
FP + 

Time 

0.62  

208.08 * 
-0.23 

8.93 

 

0.49 
0.00 

0.13 

0.88  

189.95 * 
-0.60 ** 

22.57 * 

 

0.28 
0.13 

0.46 

Reco  

Tsoil + 
FP + 

Time 

0.45  

97.61 
0.02 

9.92 

 

0.19 
0.00 

0.25 

0.79  

109.90 ** 
0.14 

0.27 

 

0.65 
0.14 

0.00 

*** significant at p < 0.001; ** significant at p < 0.01; * significant at p < 0.05; (*) significant at p < 0.1  394 



GPP (Figure 9f) compared to residuals of Reco (Figure 9i) to that. In DE-Hai, positive 395 

slope between time and residuals of GPP was negated by Reco, thus showing no effect in 396 

residuals of NEP.  397 

 398 
Figure 9: Simple linear regressions between residuals of different carbon fluxes after 399 
removing effect of fruit production and time (1st column, a, d, g), Tsoil and time (2nd 400 
column, b, e, h) or Tsoil and fruit production (3rd column, c, f, i). Here time is represented 401 
by number plus 2000 for clean graph. The solid lines represent linear regression lines and 402 
dashed lines confidence interval at 5% significance level. *** indicate statistical 403 
significance at p < 0.001; ** significant at p < 0.01; * significant at p < 0.05; and (*) 404 
significant at p < 0.1. 405 

1. Discussion  406 

1. Meteorological controls of seasonal CO2 fluxes  407 

We observed stronger sensitivity of winter Reco to Tsoil (Figure 6) resulting in higher 408 

Reco in DE-Hai than in DE-Lnf, thus, higher winter NEP in DE-Lnf (Figure 7). Higher 409 



ecosystem respiration is most likely driven by higher stocks of decaying dead wood and 410 

by higher rates of leaf litter decomposition caused by higher leaf litter quality (proportion 411 

of litter from ash and maple trees) and a higher biological activity in the soil (Mund, 412 

2004). 413 

In spring, NEP, GPP and Reco strongly correlated with Tair and Tsoil with higher 414 

correlation values for Tsoil in both sites. The change of NEP with Tsoil was mostly driven 415 

by the sensitivity of GPP to Tsoil. Similar results were also observed in Borden forest, 416 

Canada, during the spring time (Froelich et al., 2015). Spring temperature is very 417 

important for leaf unfolding and we found that the growing season started earlier when 418 

spring air temperatures were higher (Figure S5). Also, warm soil means favourable 419 

growth conditions for roots (Alvarez-Uria and Körner, 2007), improving nutrient and 420 

water uptake and leading to increased photosynthesis. Along with GPP, Reco also 421 

increases with increased soil temperature, due to the increased activities of tree roots and 422 

microbes (Davidson et al., 1998; Gonzalez-Meler et al., 2013). DE-Lnf was a 423 

significantly stronger sink during spring, primarily driven by GPP (Figure 7). We further 424 

observed higher sensitivity of GPP to Tsoil in DE-Lnf than in DE-Hai (p < 0.1). This could 425 

be explained by an earlier physiological activity in beech than in ash (Cole and Sheldon, 426 

2017). DE-Lnf is a beech monoculture comprising mostly vital trees at their optimal age 427 

(optimal regarding wood growth and fruit production) whereas DE-Hai has 28% ash trees 428 

and includes many small, young, suppressed, very old, semi-dead and dead trees.  429 

In summer (June - July), Rg was the most important environmental factor controlling 430 

carbon fluxes of both sites. DE-Lnf was a stronger sink with higher GPP and Reco 431 

because it is full of optimally growing trees that may have capitalised the radiation more 432 

than DE-Hai. Similarly, the stronger sensitivity of summer GPP and Reco to Rg of DE-433 



Lnf can be attributed to optimally growing trees of similar size and age that react to 434 

weather conditions in same direction and magnitude.  435 

August is of interest for DE-Hai where soil water availability (WAI) influences its CO2 436 

fluxes. DE-Hai is more affected than DE-Lnf by water availability because of ash trees 437 

that are still active when WAI drops below a critical value (e.g. 2003). Trees close their 438 

stomata as the soil water availability reduces to prevent water loss (Chaves et al., 2002) 439 

also decreasing photosynthesis and respiration.     440 

2. Annual CO2 fluxes and its inter-annual variability 441 

 Before comparing DE-Lnf with DE-Hai, it is useful to discuss site management and 442 

history. DE-Lnf is an example of a managed even-aged stand that represents one point in 443 

time of a rotation period (production cycle) lasting about 120-140 years. Within the 444 

production cycle, DE-Lnf represents a mature stand at its late optimum phase -  with “late 445 

optimum” meaning close to the end of highest timber production. If the stand were not a 446 

certified seed production site, and if the eddy tower were not there, the stand would have 447 

been thinned more heavily (preparatory thinning) to start the regeneration under the 448 

shelter of the older trees. This means that if the site were like any other common managed 449 

beech stand, then living biomass and NEP might be much smaller. For a comparison of 450 

managed, even-aged forests with unmanaged forests a chronosequence of several even-451 

aged stands covering the entire production cycle would be needed. We thus note that the 452 

heterogeneous stand is not being compared with the average managed beech forest in the 453 

region, but rather with a particularly mature and productive stand. This must be taken into 454 

account before concluding on the general impact of management on the C cycle. 455 

Both the sites were strong carbon sinks despite one site being in an advanced stage of 456 

growth with trees as old as 265 years. The ranges of annual NEP were comparable with 457 

Oak Ridge forest in Tennessee, US (577 ± 63 g C m-2 yr-1, Wilson and Baldocchi, 2001), 458 

Ozarks forest in Missouri, US (479 ± 65 63 g C m-2 yr-1, Shao et al., 2014), and Oak 459 



woodland forests, UK (486 ± 115 g C m-2 yr-1 , Wilkinson et al., 2012) but slightly higher 460 

than average annual NEP for temperate forests (350 ± 100 g C m2 yr-1, Table S5). 461 

Average annual GPP and Reco of both sites also fell within the range average annual 462 

GPP (1506 ± 214 g C m-2 yr-1) and Reco (1181 ± 158 g C m-2 yr-1) of temperate 463 

deciduous forests.  464 

A previous study of the same sites using seven years of data (Herbst et al., 2015) reported 465 

small but non-significant difference between the sites for NEP. However, by including 466 

four more recent years we found a significant difference in NEP between the two sites. 467 

The absolute difference in mean annual NEP (98 g C m-2yr-1) results from a higher mean 468 

annual GPP of 69 g C m-2yr-1 (2/3 of NEP) plus a lower mean annual Reco of 29 g C m-2 469 

yr-1 (1/3 of NEP) in DE-Lnf. The higher mean annual values of NEP in DE-Lnf is due to 470 

higher annual NEP after 2011 than DE-Hai. After 2011, significantly higher GPP and 471 

lower Reco in DE-Lnf resulted in higher NEP. The higher carbon uptake in DE-Lnf was 472 

determined by the activities during winter, spring and summer (section 1).  473 

We observed lower coefficient of variation (CV) of annual NEP for both the sites 474 

compared to average CV of annual NEP of temperate forests. Average CV of annual NEP 475 

for temperate forests is 35 % (sd = ± 100 g C m-2 yr-1, Baldocchi et al., 2018 and Table 476 

S5) with the highest CV of 66 % observed in the Borden forest (Froelich et al., 2015) and 477 

Sorø forest (Pilegaard et al., 2011). Interestingly, the CV of annual NEP in DE-Hai was 478 

the lowest among reported results for temperate deciduous forests and remained similar 479 

even after adding four years of data. Also, the CV of annual GPP and Reco of both sites 480 

were lower than the average for temperate deciduous forests. Like annual NEP, CV of 481 

annual GPP in DE-Hai was lowest among all the temperate deciduous broadleaved 482 

forests following the results of Musavi et al. (2017) that reported older and diverse forests 483 

had less variation in saturated gross primary productivity (GPPsat). Between our sites, the 484 



managed, homogeneous forest showed a higher CV in NEP and GPP than the 485 

unmanaged, heterogeneous forest.  486 

Long-term studies conducted in temperate deciduous forests have identified many factors 487 

contributing to site-specific inter-annual variation of NEP. Some studies have found that 488 

growing season length explains inter-annual variation in NEP: the Borden forest in 489 

Canada (Froelich et al., 2015), Sorø forest in Denmark (Pilegaard et al., 2011), Hesse 490 

forest (Granier et al., 2008), Morgan-Monroe State Forest in Indiana (Dragoni et al., 491 

2011). In our case, we observed positive correlation between growing season length and 492 

NEP and GPP (Figure S4e, f and g), and at the same time positive correlation between 493 

growing season length and temperatures (Figure S3). Among Tair and Tsoil, we found 494 

stronger relationship of Tsoil with NEP and GPP (Figure S6 and Figure S7), this could 495 

have led to selection of Tsoil in multiple linear model selection using AIC criteria. At an 496 

annual scale, we found that sensitivities of Tsoil to NEP and GPP were similar based on 497 

residual analysis conducted after removing effect of fruit production and time. Other two 498 

important factors that explained annual fluxes were fruit production and time. We will 499 

discuss them separately in section 3 and 4. 500 

3. Effect of fruit production on CO2 fluxes 501 

Fruit production (FP) was negatively correlated with NEP at both sites (Figure S8). The 502 

negative slope of NEP vs fruit production was mostly the result of a reduction of GPP in 503 

high fruit production years, i.e. photosynthesis decreased with increasing fruit production. 504 

Many studies reported that tree ring growth was reduced in years of high fruit production 505 

(e.g. Holmsgaard, 1955; Mund et al., 2010). Different mechanisms have been reported for 506 

this reduced growth in trees, including reduced photosynthetic rates in reproductive 507 

branches due to N or P depletion in those branches (Sala et al., 2012), smaller leaves 508 

(Innes, 1992), reduced leaf area (Ferretti et al., 1998), lower number of leaves during the 509 



mast year (Han et al., 2008) which could be due to diminished shoot growth and 510 

increased foliar bud mortality (Ishihara and Kikuzawa, 2009) as foliar buds are replaced 511 

by seeds (Innes, 1994).  512 

It is important to note that the effect was stronger in DE-Lnf - a homogeneous forests 513 

with trees in a similar fruit-producing age class (150 -170 years) (Herbst et al., 2015). On 514 

the other hand, DE-Hai has a heterogeneous structure with different species and a wide 515 

range of tree age from 0 to 265 years. Thus, fruit production does not occur in all trees 516 

(Figure 3).  517 

4. Effect of time on CO2 fluxes 518 

Many studies report that CO2 fluxes in temperate forests have been increasing 519 

(Fernández-Martínez et al., 2017; Froelich et al., 2015; Granier et al., 2008; Pilegaard et 520 

al., 2011b, etc). A significant increasing temporal trend in CO2 uptake has also been 521 

observed in ca. 80 year-old managed beech forest in Sorø, Denmark (-23 g C m-2 yr-1, 522 

Pilegaard et al., 2011), ca. 40 year-old managed beech forest in Hesse, France (-43 g C m-523 

2 yr-1, Granier et al., 2008) and ca. 95 year-old managed maple, white oak and red oak 524 

Harvard forest in US (-16 g C m-2 yr-1, Urbanski et al., 2007). We observed a similar 525 

temporal trend in NEP in DE-Lnf, a managed homogeneous forest, which was not visible 526 

when Herbst et al., (2015) reported 7 years’ data. The NEP of DE-Hai was reported to be 527 

- 494 g C m-2 and - 490 g C m-2 for 2000 and 2001, respectively by Knohl et al., (2003) 528 

and the capacity remained in the same range for all 12 years described here, exhibiting no 529 

significant temporal trend. However, we observed positive trends in annual GPP and 530 

Reco at DE-Hai which might have cancelled resulting in no trend in NEP.  531 

The normal temporal trend in forest productivity is to follow a sigmoidal growth curve as 532 

individuals age. Overlaid on this, however, are the impacts of increasing atmospheric 533 

CO2 concentration, decreasing sulphur deposition (Fernández-Martínez et al., 2017), 534 

increasing nitrogen deposition, as well as management activities such as thinning. Here 535 



we used time as a variable because it is hard to disentangle these effects. Thus, our 536 

observed temporal trend in DE-Lnf needs a careful interpretation because the trend 537 

appears to reflect an increase in CO2 uptake starting from 2012 (Figure 8), and there was 538 

no significant temporal trend in any of the observed meteorological variables that could 539 

explain this increase (Table S1). We observed a positive trend in growing season length 540 

(0.75 days per year, p < 0.05), which explained about 19% of the variability in NEP (p = 541 

0.16) but which was not as high as reported for Hesse (Granier et al., 2008), Sorø 542 

(Pilegaard et al., 2011), Borden forest (Froelich et al., 2015), and Morgan Monroe state 543 

forest (Dragoni et al., 2011). As an alternate hypothesis, we note that thinning operations 544 

were carried out in the main flux footprint area of DE-Lnf, and we speculate that because 545 

thinning has the effect of increasing productivity in the remaining trees, this might have 546 

impacted NEP subsequently. About 2319 g C m-2 of biomass was thinned from the 547 

footprint area from 2002 to 2006 (Figure S1) and the largest thinning was carried out in 548 

2005 (998 g C m-2). We observed higher NEP of 171 g C m-2 yr-1 in the period 2010 – 549 

2016 compared to 2003 – 2006 (Table S3). About 1197 g C m-2 of additional carbon was 550 

absorbed by DE-Lnf over the period of 7 years. We note that Sorø was thinned about 20 551 

% every 10 years (Pilegaard et al., 2011) and Hesse was thinned every five years (Granier 552 

et al., 2008), yet these authors did not report any significant effect of thinning on CO2 553 

fluxes. This could be due to the effects of thinning being seen only gradually over the 554 

following years as trees adjust to the new conditions, thus making the connection 555 

between C fluxes and thinning difficult to percieve or quantify. 556 

2. Conclusions 557 

We compared two temperate deciduous forest types with similar site and meteorological 558 

conditions but with different structure in terms of diameter distribution, age and species 559 

composition. We found that the homogeneous forest was a higher carbon sink than the 560 

heterogeneous forest due to lower respiration rates in winter and higher carbon uptake 561 



rates in spring and summer. CO2 uptake by the homogeneous forest has increased in 562 

recent years playing a key role in determining differences between the forests. We 563 

identified an overall time-effect but could not disentangle possible contributing factors 564 

such as increasing atmospheric CO2 concentrations or effects of silvicultural 565 

management.  566 

In the introduction section, we put forward two hypotheses. Regarding hypothesis one, 567 

i.e. higher sensitivity of carbon fluxes of homogenous forests to environmental variables, 568 

we concluded that the homogenous forest showed a stronger sensitivity to environmental 569 

variables during spring (Tsoil) and summer (Rg) causing inter-annual differences between 570 

sites. At annual scale, however, the sensitivities of CO2 fluxes to environment variables 571 

are similar due to stronger control by biotic factors. In case of the second hypothesis, i.e. 572 

a higher negative sensitivity of CO2 fluxes of the homogenous forest to fruit production, 573 

we see that the NEP of the homogenous forest showed a stronger sensitivity to fruit 574 

production due to a higher negative sensitivity of GPP and higher positive sensitivity of 575 

Reco to fruit production. The relationships are weak; thus, we suggest that more data are 576 

required to confirm the hypothesis.   577 

Even though both forests are of same average age, structures of these forests vary. This 578 

leads to different responses of the CO2 fluxes to environmental and biotic factors. Thus, it 579 

is necessary that we include structural information along with species traits (fruiting 580 

characteristics) and management activities to be able to predict the CO2 fluxes in 581 

response to future climate.  582 

Acknowledgements 583 

We would like to thank Erasmus Mundus Joint Doctorate Programme Forest and Nature 584 

for Society (EMJD FONASO) and German Federal Ministry of Education and Research 585 

for funding this research. We thank the administration of the Hainich National Park and 586 

the forestry district Leinefelde for the opportunity for research in their forest areas. We 587 



are also indebted to Ernst-Detlef Schulze, Olaf Kolle, Kerstin Hippler, Karl Kübler, 588 

Martin Hertel, Agnes Fastnacht (Max-Planck Institute for Biogeochemistry), Peter 589 

Anthoni (Karlsruhe Institute of Technology KIT, Institute of Meteorology and Climate 590 

Research Atmospheric Environmental Research), Corinna Rebmann (Helmholtz Centre 591 

for Environmental Research – UFZ), Frank Tiedemann, Dietmar Fellert, Heinrich 592 

Kreilein, Martin Lindenberg, Lukas Siebicke (University of Göttingen) and Werner 593 

Kutsch (ICOS) for their work at the Hainich and Leinefelde tower sites.  594 

  595 



References 596 

Alvarez-Uria, P., Körner, C., 2007. Low temperature limits of root growth in deciduous 597 
and evergreen temperate tree species. Funct. Ecol. 21, 211–218. 598 
https://doi.org/10.1111/j.1365-2435.2007.01231.x 599 

Anthoni, P.M., Knohl, A., Rebmann, C., Freibauer, A., Mund, M., Ziegler, W., Kolle, O., 600 
Schulze, E.D., 2004. Forest and agricultural land-use-dependent CO2 exchange in 601 
Thuringia, Germany. Glob. Chang. Biol. 10, 2005–2019. 602 
https://doi.org/10.1111/j.1365-2486.2004.00863.x 603 

Aubinet, M., Grelle, A., Ibrom, A., Rannik, Ü., Moncrieff, J., Foken, T., Kowalski, A.S., 604 
Martin, P.H., Berbigier, P., Bernhofer, C., Clement, R., Elbers, J., Granier, A., 605 
Grünwald, T., Morgenstern, K., Pilegaard, K., Rebmann, C., Snijders, W., Valentini, 606 
R., Vesala, T., 1999. Estimates of the annual net carbon and water exchange of 607 
forests: the EUROFLUX methodology. Adv. Ecol. Res. 30, 113–175. 608 
https://doi.org/10.1016/S0065-2504(08)60018-5 609 

Baldocchi, D., Chu, H., Reichstein, M., 2018. Inter-annual variability of net and gross 610 
ecosystem carbon fluxes: A review. Agric. For. Meteorol. 249, 520–533. 611 
https://doi.org/10.1016/j.agrformet.2017.05.015 612 

Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., 613 
Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, 614 
X., Malhi, Y., Meyers, T., Munger, W., Oechel, W., Paw, K.T., Pilegaard, K., Schmid, 615 
H.P., Valentini, R., Verma, S., Vesala, T., Wilson, K., Wofsy, S., Baldocchi, D., Falge, 616 
E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., 617 
Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., 618 
Munger, W., Oechel, W., Paw, K.T., Pilegaard, K., Schmid, H.P., Valentini, R., Verma, 619 
S., Vesala, T., Wilson, K., Wofsy, S., 2001. FLUXNET: A new tool to study the 620 
temporal and spatial variability of ecosystem–scale carbon dioxide, water vapor, 621 
and energy flux densities. Bull. Am. Meteorol. Soc. 82, 2415–2434. 622 
https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2 623 

Baldocchi, D., Xu, L., 2005. Carbon exchange of deciduous broadleaved forestes in 624 
temperate and Mediterranean regions, in: Griffiths, H., Jarvis, P. (Eds.), The Carbon 625 
Balance of Forest Biomes. Taylor Francis, Trowbridge, UK, pp. 187–214. 626 

Barr, A.G., Black, T.A., Hogg, E.H., Griffis, T.J., Morgenstern, K., Kljun, N., Theede, A., 627 
Nesic, Z., 2007. Climatic controls on the carbon and water balances of a boreal 628 
aspen forest, 1994-2003. Glob. Chang. Biol. 13, 561–576. 629 
https://doi.org/10.1111/j.1365-2486.2006.01220.x 630 

Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rodenbeck, C., 631 
Arain, M.A., Baldocchi, D., Bonan, G.B., Bondeau, A., Cescatti, A., Lasslop, G., 632 
Lindroth, A., Lomas, M., Luyssaert, S., Margolis, H., Oleson, K.W., Roupsard, O., 633 
Veenendaal, E., Viovy, N., Williams, C., Woodward, F.I., Papale, D., 2010. Terrestrial 634 
Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate. 635 
Science (80-. ). 329, 834–838. https://doi.org/10.1126/science.1184984 636 

Chaves, M.M., Pereira, J.S., Maroco, J., Rodrigues, M.L., Ricardo, C.P.P., Osório, M.L., 637 
Carvalho, I., Faria, T., Pinheiro, C., 2002. How plants cope with water stress in the 638 
field. Photosynthesis and growth. Ann. Bot. 89, 907–916. 639 
https://doi.org/10.1093/aob/mcf105 640 

Chen, Z., Yu, G., Zhu, X., Wang, Q., Niu, S., Hu, Z., 2015. Covariation between gross 641 
primary production and ecosystem respiration across space and the underlying 642 



mechanisms: A global synthesis. Agric. For. Meteorol. 203, 180–190. 643 
https://doi.org/10.1016/j.agrformet.2015.01.012 644 

Chu, H., Chen, J., Gottgens, J.F., Desai, A.R., Ouyang, Z., Qian, S.S., 2016. Response and 645 
biophysical regulation of carbon dioxide fluxes to climate variability and anomaly in 646 
contrasting ecosystems in northwestern Ohio, USA. Agric. For. Meteorol. 220, 50–647 
68. https://doi.org/10.1016/j.agrformet.2016.01.008 648 

Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogée, J., Allard, V., Aubinet, M., 649 
Buchmann, N., Bernhofer, C., Carrara, A., Chevallier, F., De Noblet, N., Friend, A.D., 650 
Friedlingstein, P., Grünwald, T., Heinesch, B., Keronen, P., Knohl, A., Krinner, G., 651 
Loustau, D., Manca, G., Matteucci, G., Miglietta, F., Ourcival, J.M., Papale, D., 652 
Pilegaard, K., Rambal, S., Seufert, G., Soussana, J.F., Sanz, M.J., Schulze, E.D., Vesala, 653 
T., Valentini, R., 2005. Europe-wide reduction in primary productivity caused by the 654 
heat and drought in 2003. Nature 437, 529–533. 655 
https://doi.org/10.1038/nature03972 656 

Cole, E.F., Sheldon, B.C., 2017. The shifting phenological landscape: Within- and 657 
between-species variation in leaf emergence in a mixed-deciduous woodland. Ecol. 658 
Evol. 7, 1135–1147. https://doi.org/10.1002/ece3.2718 659 

Davidson, E.A., Belk, E., Boone, R.D., 1998. Soil water content and temperature as 660 
independent or confounded factors controlling soil respiration in a temperate 661 
mixed hardwood forest. Glob. Chang. Biol. 4, 217–227. 662 
https://doi.org/10.1046/j.1365-2486.1998.00128.x 663 

Dittmar, C., Zech, W., Elling, W., 2003. Growth variations of Common beech (Fagus 664 
sylvatica L.) under different climatic and environmental conditions in Europe - A 665 
dendroecological study. For. Ecol. Manage. 173, 63–78. 666 
https://doi.org/10.1016/S0378-1127(01)00816-7 667 

Dragoni, D., Schmid, H.P., Wayson, C.A., Potter, H., Grimmond, C.S.B., Randolph, J.C., 668 
2011. Evidence of increased net ecosystem productivity associated with a longer 669 
vegetated season in a deciduous forest in south-central Indiana, USA. Glob. Chang. 670 
Biol. 17, 886–897. https://doi.org/10.1111/j.1365-2486.2010.02281.x 671 

Fernández-Martínez, M., Vicca, S., Janssens, I.A., Ciais, P., Obersteiner, M., Bartrons, M., 672 
Sardans, J., Verger, A., Canadell, J.G., Chevallier, F., Wang, X., Bernhofer, C., Curtis, 673 
P.S., Gianelle, D., Grünwald, T., Heinesch, B., Ibrom, A., Knohl, A., Laurila, T., Law, 674 
B.E., Limousin, J.M., Longdoz, B., Loustau, D., Mammarella, I., Matteucci, G., 675 
Monson, R.K., Montagnani, L., Moors, E.J., Munger, J.W., Papale, D., Piao, S.L., 676 
Peñuelas, J., 2017. Atmospheric deposition, CO2, and change in the land carbon 677 
sink. Sci. Rep. 7, 1–13. https://doi.org/10.1038/s41598-017-08755-8 678 

Ferretti, M., Baratozzi, L., Cenni, E., Cozzi, A., Savini, P., 1998. Crown transparency of 679 
beech (Fagus sylvatica L.) in the northern Apennines (Italy) - Status, changes and 680 
relationships with site characteristics and other indices of tree condition. 681 
Chemosphere 36, 1037–1042. https://doi.org/10.1016/S0045-6535(97)10168-0 682 

Field, A.P., Miles, J., Field, Z., 2012. Discovering statistics using R. Sage. 683 
Foken, T., Göockede, M., Mauder, M., Mahrt, L., Amiro, B., Munger, W., 2004. Post-field 684 

data quality control, in: Handbook of Micrometeorology. Kluwer Academic 685 
Publishers, Dordrecht, pp. 181–208. https://doi.org/10.1007/1-4020-2265-4_9 686 

Froelich, N., Croft, H., Chen, J.M., Gonsamo, A., Staebler, R.M., 2015. Trends of carbon 687 
fluxes and climate over a mixed temperate-boreal transition forest in southern 688 
Ontario, Canada. Agric. For. Meteorol. 211–212, 72–84. 689 
https://doi.org/10.1016/j.agrformet.2015.05.009 690 



Gonzalez-Meler, M.A., Hopkins, F., Flower, C.E., Lynch, D.J., Czimczik, C., Tang, J., Subke, 691 
J.-A., 2013. Ecosystem-level controls on root-rhizosphere respiration. New Phytol. 692 
199, 339–351. https://doi.org/10.1111/nph.12271 693 

Granier, A., Bréda, N., Biron, P., Villette, S., 1999. A lumped water balance model to 694 
evaluate duration and intensity of drought constraints in forest stands. Ecol. 695 
Modell. 116, 269–283. https://doi.org/10.1016/S0304-3800(98)00205-1 696 

Granier, A., Bréda, N., Longdoz, B., Gross, P., Ngao, J., 2008. Ten years of fluxes and 697 
stand growth in a young beech forest at Hesse, North-eastern France. Ann. For. Sci. 698 
65, 704. https://doi.org/Artn 704\nDoi 10.1051/Forest:2008052 699 

Grossiord, C., Granier, A., Ratcliffe, S., Bouriaud, O., Bruelheide, H., Checko, E., Forrester, 700 
D.I., Dawud, S.M., Finer, L., Pollastrini, M., Scherer-Lorenzen, M., Valladares, F., 701 
Bonal, D., Gessler, A., 2014. Tree diversity does not always improve resistance of 702 
forest ecosystems to drought. Proc. Natl. Acad. Sci. 111, 14812–14815. 703 
https://doi.org/10.1073/pnas.1411970111 704 

Han, Q., Kabeya, D., Iio, A., Kakubari, Y., 2008. Masting in Fagus crenata and its influence 705 
on the nitrogen content and dry mass of winter buds. Tree Physiol. 28, 1269–1276. 706 
https://doi.org/10.1093/treephys/28.8.1269 707 

Herbst, M., Mund, M., Tamrakar, R., Knohl, A., 2015. Differences in carbon uptake and 708 
water use between a managed and an unmanaged beech forest in central 709 
Germany. For. Ecol. Manage. 355, 101–108. 710 
https://doi.org/10.1016/j.foreco.2015.05.034 711 

Holmsgaard, E., 1955. Tree-ring analyses of Danish forest trees. Det Forstl. forsøgsvæsen 712 
i Danmark XXII, 1–246. 713 

Hommeltenberg, J., Schmid, H.P., Drösler, M., Werle, P., 2014. Can a bog drained for 714 
forestry be a stronger carbon sink than a natural bog forest? Biogeosciences 11, 715 
3477–3493. https://doi.org/10.5194/bg-11-3477-2014 716 

Hui, D., Luo, Y., Katul, G., 2003. Partitioning interannual variability in net ecosystem 717 
exchange between climatic variability and functional change 433–442. 718 

Humphreys, E.R., Lafleur, P.M., 2011. Does earlier snowmelt lead to greater CO 2 719 
sequestration in two low Arctic tundra ecosystems? Geophys. Res. Lett. 38, n/a-720 
n/a. https://doi.org/10.1029/2011GL047339 721 

IGBP Terrestrial Carbon Working Group, I.T.C.W., 1998. CLIMATE: The Terrestrial Carbon 722 
Cycle: Implications for the Kyoto Protocol. Science (80-. ). 280, 1393–1394. 723 
https://doi.org/10.1126/science.280.5368.1393 724 

Innes, J.L., 1994. The occurrence of flowering and fruiting on individual trees over 3 725 
years and their effects on subsequent crown condition. Trees 8, 139–150. 726 
https://doi.org/10.1007/BF00196638 727 

Innes, J.L., 1992. Observations on the condition of beech (Fagus sylvatica L.) in Britain in 728 
1990. Forestry 65, 35–60. https://doi.org/10.1093/forestry/65.1.35 729 

Ishihara, M.I., Kikuzawa, K., 2009. Annual and spatial variation in shoot demography 730 
associated with masting in Betula grossa: Comparison between mature trees and 731 
saplings. Ann. Bot. 104, 1195–1205. https://doi.org/10.1093/aob/mcp217 732 

Jensen, R., Herbst, M., Friborg, T., 2017. Direct and indirect controls of the interannual 733 
variability in atmospheric CO2 exchange of three contrasting ecosystems in 734 
Denmark. Agric. For. Meteorol. 233, 12–31. 735 
https://doi.org/10.1016/j.agrformet.2016.10.023 736 

Jucker, T., Bouriaud, O., Avacaritei, D., Coomes, D.A., 2014. Stabilizing effects of diversity 737 
on aboveground wood production in forest ecosystems: linking patterns and 738 



processes. Ecol. Lett. 17, 1560–1569. https://doi.org/10.1111/ele.12382 739 
Kitamura, K., Nakai, Y., Suzuki, S., Ohtani, Y., Yamanoi, K., Sakamoto, T., 2012. 740 

Interannual variability of net ecosystem production for a broadleaf deciduous 741 
forest in Sapporo, northern Japan. J. For. Res. 17, 323–332. 742 
https://doi.org/10.1007/s10310-012-0335-4 743 

Knohl, A., Schulze, E., Kolle, O., Buchmann, N., 2003. Large carbon uptake by an 744 
unmanaged 250-year-old deciduous forest in Central Germany 118, 151–167. 745 
https://doi.org/10.1016/S0168-1923(03)00115-1 746 

Kolle, O., Rebmann, C., 2010. 10: EddySoft : documentation of a software package to 747 
acquire and process eddy covariance data. Tech. reports, Max-Planck-Institut für 748 
Biogeochem. 10. 749 

Law, B.., Falge, E., Gu, L., Baldocchi, D.., Bakwin, P., Berbigier, P., Davis, K., Dolman, A.., 750 
Falk, M., Fuentes, J.., Goldstein, A., Granier, A., Grelle, A., Hollinger, D., Janssens, I.., 751 
Jarvis, P., Jensen, N.., Katul, G., Mahli, Y., Matteucci, G., Meyers, T., Monson, R., 752 
Munger, W., Oechel, W., Olson, R., Pilegaard, K., Paw U, K.., Thorgeirsson, H., 753 
Valentini, R., Verma, S., Vesala, T., Wilson, K., Wofsy, S., 2002. Environmental 754 
controls over carbon dioxide and water vapor exchange of terrestrial vegetation. 755 
Agric. For. Meteorol. 113, 97–120. https://doi.org/10.1016/S0168-1923(02)00104-1 756 

Lenth, R., Love, J., 2017. Package “lsmeans” Title Least-Squares Means. 757 
https://doi.org/10.1080/00031305.1980.10483031> 758 

Luo, Y., Keenan, T.F., Smith, M., 2015. Predictability of the terrestrial carbon cycle. Glob. 759 
Chang. Biol. 21, 1737–1751. https://doi.org/10.1111/gcb.12766 760 

Luyssaert, S., 2014. Land management and land-cover change have impacts of similar 761 
magnitude on surface temperature. Nat. Clim. Chang. 4, 5. 762 
https://doi.org/10.1038/NCLIMATE2196 763 

Ma, S., Baldocchi, D.D., Xu, L., Hehn, T., 2007. Inter-annual variability in carbon dioxide 764 
exchange of an oak/grass savanna and open grassland in California. Agric. For. 765 
Meteorol. 147, 157–171. https://doi.org/10.1016/j.agrformet.2007.07.008 766 

Mund, M., 2004. Carbon pools of European beech forests (Fagus sylvatica) under 767 
different silvicultural management 189, 256. 768 

Mund, M., Kutsch, W.L., Wirth, C., Kahl, T., Knohl, A., Skomarkova, M. V., Schulze, E.D., 769 
2010. The influence of climate and fructification on the inter-annual variability of 770 
stem growth and net primary productivity in an old-growth, mixed beech forest. 771 
Tree Physiol. 30, 689–704. https://doi.org/10.1093/treephys/tpq027 772 

Musavi, T., Migliavacca, M., Reichstein, M., Kattge, J., Wirth, C., Black, T.A., Janssens, I., 773 
Knohl, A., Loustau, D., Roupsard, O., Varlagin, A., Rambal, S., Cescatti, A., Gianelle, 774 
D., Kondo, H., Tamrakar, R., Mahecha, M.D., 2017. Stand age and species richness 775 
dampen interannual variation of ecosystem-level photosynthetic capacity. Nat. 776 
Ecol. Evol. 1, 1–6. https://doi.org/10.1038/s41559-016-0048 777 

Nathans, L.L., Oswald, F.L., Nimon, K., 2012. Interpreting Multiple Linear Regression: A 778 
Guidebook of Variable Importance. Pract. Assessment, Res. Eval. 17, 1–19. 779 
https://doi.org/10.3102/00346543074004525 780 

Novick, K.A., Oishi, A.C., Ward, E.J., Siqueira, M.B.S., Juang, J.-Y., Stoy, P.C., 2015. On the 781 
difference in the net ecosystem exchange of CO 2 between deciduous and 782 
evergreen forests in the southeastern United States. Glob. Chang. Biol. 21, 827–783 
842. https://doi.org/10.1111/gcb.12723 784 

Obeso, J.R., 2002. The costs of reproduction in plants Author. New Phytol. 155, 321–348. 785 
https://doi.org/10.1046/j.1469-8137.2002.00477.x 786 



Pereira, J.S., Mateus, J.A., Aires, L.M., Pita, G., Pio, C., David, J.S., Andrade, V., Banza, J., 787 
David, T.S., Paço, T.A., Rodrigues, A., 2007. Net ecosystem carbon exchange in 788 
three contrasting Mediterranean ecosystems – the effect of drought. 789 
Biogeosciences 4, 791–802. https://doi.org/10.5194/bg-4-791-2007 790 

Pilegaard, K., Ibrom, A., Courtney, M.S., Hummelshøj, P., Jensen, N.O., 2011. Increasing 791 
net CO2 uptake by a Danish beech forest during the period from 1996 to 2009. 792 
Agric. For. Meteorol. 151, 934–946. 793 
https://doi.org/10.1016/J.AGRFORMET.2011.02.013 794 

R Core Team, 2017. R: A Language and Environment for Statistical Computing. 795 
Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, 796 

C., Buchmann, N., Gilmanov, T., Granier, A., Grunwald, T., Havrahkova, K., 797 
Ilvesniemi, H., Janous, D., Knohl, A., Laurila, T., Lohila, A., Loustau, D., Matteucci, G., 798 
Meyers, T., Miglietta, F., Ourcival, J., Pumpanen, J., Rambal, S., Rotenberg, E., Sanz, 799 
M., Tenhunen, J., Seufert, G., Vaccari, F., Vesala, T., Yakir, C., Valentini, R., 2005. On 800 
the separtion of net ecosystem exchange into assimilation and ecosystem 801 
respiration: review and improved algorithm. Glob. Chang. Biol. 11, 1424–1439. 802 

Richardson, A.D., Hollinger, D.Y., Dail, D.B., Lee, J.T., Munger, J.W., O’Keefe, J., 2009. 803 
Influence of spring phenology on seasonal and annual carbon balance in two 804 
contrasting New England forests. Tree Physiol. 29, 321–331. 805 
https://doi.org/10.1093/treephys/tpn040 806 

Sala, A., Hopping, K., McIntire, E.J.B., Delzon, S., Crone, E.E., 2012. Masting in whitebark 807 
pine (Pinus albicaulis) depletes stored nutrients. New Phytol. 196, 189–199. 808 
https://doi.org/10.1111/j.1469-8137.2012.04257.x 809 

Selås, V., Piovesan, G., Adams, J.M., Bernabei, M., 2002. Climatic factors controlling 810 
reproduction and growth of Norway spruce in southern Norway. Can. J. For. Res. 811 
32, 217–225. https://doi.org/10.1139/x01-192 812 

Shao, J., Zhou, X., He, H., Yu, G., Wang, H., Luo, Y., Chen, J., Gu, L., Li, B., 2014. 813 
Partitioning Climatic and Biotic Effects on Interannual Variability of Ecosystem 814 
Carbon Exchange in Three Ecosystems. Ecosystems 17, 1186–1201. 815 
https://doi.org/10.1007/s10021-014-9786-0 816 

Shao, J., Zhou, X., Luo, Y., Li, B., Aurela, M., Billesbach, D., Blanken, P.D., Bracho, R., 817 
Chen, J., Fischer, M., Fu, Y., Gu, L., Han, S., He, Y., Kolb, T., Li, Y., Nagy, Z., Niu, S., 818 
Oechel, W.C., Pinter, K., Shi, P., Suyker, A., Torn, M., Varlagin, A., Wang, H., Yan, J., 819 
Yu, G., Zhang, J., 2016. Direct and indirect effects of climatic variations on the 820 
interannual variability in net ecosystem exchange across terrestrial ecosystems. 821 
Tellus B Chem. Phys. Meteorol. 68, 30575. 822 
https://doi.org/10.3402/tellusb.v68.30575 823 

Shao, J., Zhou, X., Luo, Y., Li, B., Aurela, M., Billesbach, D., Blanken, P.D., Bracho, R., 824 
Chen, J., Fischer, M., Fu, Y., Gu, L., Han, S., He, Y., Kolb, T., Li, Y., Nagy, Z., Niu, S., 825 
Oechel, W.C., Pinter, K., Shi, P., Suyker, A., Torn, M., Varlagin, A., Wang, H., Yan, J., 826 
Yu, G., Zhang, J., 2015. Biotic and climatic controls on interannual variability in 827 
carbon fluxes across terrestrial ecosystems. Agric. For. Meteorol. 205, 11–22. 828 
https://doi.org/10.1016/j.agrformet.2015.02.007 829 

Urbanski, S., Barford, C., Wofsy, S., Kucharik, C., Pyle, E., Budney, J., McKain, K., 830 
Fitzjarrald, D., Czikowsky, M., Munger, J.W., 2007. Factors controlling CO2 831 
exchange on timescales from hourly to decadal at Harvard Forest. J. Geophys. Res. 832 
Biogeosciences 112, 1–25. https://doi.org/10.1029/2006JG000293 833 

Wilkinson, M., Eaton, E.L., Broadmeadow, M.S.J., Morison, J.I.L., 2012. Inter-annual 834 



variation of carbon uptake by a plantation oak woodland in south-eastern England. 835 
Biogeosciences 9, 5373–5389. https://doi.org/10.5194/bg-9-5373-2012 836 

Wilson, K.B., Baldocchi, D.D., 2001. Comparing independent estimates of carbon dioxide 837 
exchange over 5 years at a deciduous forest in the southeastern United States. J. 838 
Geophys. Res. Atmos. 106, 34167–34178. https://doi.org/Doi 839 
10.1029/2001jd000624 840 

Wu, C., Chen, J.M., Black, T.A., Price, D.T., Kurz, W.A., Desai, A.R., Gonsamo, A., Jassal, 841 
R.S., Gough, C.M., Bohrer, G., Dragoni, D., Herbst, M., Gielen, B., Berninger, F., 842 
Vesala, T., Mammarella, I., Pilegaard, K., Blanken, P.D., 2013. Interannual variability 843 
of net ecosystem productivity in forests is explained by carbon flux phenology in 844 
autumn. Glob. Ecol. Biogeogr. 22, 994–1006. https://doi.org/10.1111/geb.12044 845 

Wu, C., Chen, J.M., Gonsamo, A., Price, D.T., Black, T.A., Kurz, W.A., 2012. Interannual 846 
variability of net carbon exchange is related to the lag between the end-dates of 847 
net carbon uptake and photosynthesis: Evidence from long records at two 848 
contrasting forest stands. Agric. For. Meteorol. 164, 29–38. 849 
https://doi.org/10.1016/j.agrformet.2012.05.002 850 

Wutzler, T., Reichstein, M., Moffat, A.M., Menzer, O., Migliavacca, M., Sickel, K., Sigut, 851 
L., 2018. Title Post Processing of (Half-)Hourly Eddy-Covariance Measurements. 852 

Yuan, W., Luo, Y., Richardson, A.D., Oren, R., Luyssaert, S., Janssens, I.A., Ceulemans, R., 853 
Zhou, X., Grünwald, T., Aubinet, M., Berhofer, C., Baldocchi, D.D., Chen, J., Dunn, 854 
A.L., Deforest, J.L., Dragoni, D., Goldstein, A.H., Moors, E., Munger, J.W., Monson, 855 
R.K., Suyker, A.E., Starr, G., Scott, R.L., Tenhunen, J., Verma, S.B., Vesala, T., Wofsy, 856 
S.T.E., 2009. Latitudinal patterns of magnitude and interannual variability in net 857 
ecosystem exchange regulated by biological and environmental variables. Glob. 858 
Chang. Biol. 15, 2905–2920. https://doi.org/10.1111/j.1365-2486.2009.01870.x 859 

  860 



Supplementary materials 861 

 862 
Figure S1: Annual footprint weighted thinning in eddy flux footprint area of DE-Lnf from 863 
1995 to 2016. The highest thinning of 998 g C m-2 was conducted in 2005 from the 864 
footprint area. 865 

 866 
Figure S2: Linear regression between mean annual Tsoil of DE-Lnf and DE-Hai. Dashed 867 
line represents a line with slope 1. Systematic difference between sites is due to 868 
difference in measurement depths (5 vs 4 cm in DE-Hai and DE-Lnf, respectively).  869 
  870 



Table S1: Average Annual values (mean and sd) and the temporal trend during the study 871 
period for all dependent and selected predictor variables for both sites. Units for GSS 872 
(growing season start day), and GSE (growing season end day) is doy yr-1 where doy 873 
indicates Julian day of the year. Trend is the temporal trend and * indicates the 874 
statistically significant values at 5% significance level.   875 

Variables Units 

DE-Hai DE-Lnf 

mean sd trend mean sd trend 

Rg  W m-2 122 6.5 0.18 124.0 7.2 0.62 

Tair  °C yr-1 8.34 0.72 0.03 8.30 0.70 0.05 

Tsoil  °C yr-1 7.61 0.36 0.01 8.23 0.38 0.02 

VPD  hPa yr-1 3.45 0.56 0.02 3.28 0.48 0 

Rain mm yr-1 744 152 -6.76 601 154 -9.12 

WAI  yr-1 0.86 0.09 -0.01 0.84 0.1 0 

        

NEP  g C m-2 yr-1 487 57.8 -3.14 585 144 21.8* 

GPP  g C m-2 yr-1 1558 118 4.25 1627 164 25.5* 

Reco g C m-2 yr-1 1071 96 0.28 1042 60 0.08 

        

GSS  doy yr-1 125 7 -0.42 121 5 -0.29 

GSE doy yr-1 289 4 -0.35 288 5 0.45 

GSL day yr-1 164 7 0.07 168 6 0.75* 

        
Fruit 

production g C m-2 yr-1 73.2 77.9 4.53 91.2 113.1 5.43 

 876 
 877 
Table S2: Growing season start day (GSS), end day (GSE) and length (GSL) for DE-Hai 878 
and DE-Lnf during the study period. 879 

Year 
DE-Hai  DE-Lnf 

GSS (doy) GSE (doy) GSL (days)  GSS (doy) GSE (doy) GSL (days) 

2003 125 292 167  123 290 167 

2004 123 288 165  121 281 160 

2005 125 293 168  122 291 169 

2006 127 294 167  126 294 168 

2010 134 283 149  123 283 160 

2011 117 288 171  114 285 171 

2012 129 289 160  124 290 166 

2013 131 288 157  130 292 162 

2014 111 284 173  112 288 176 

2015 114 284 170  117 293 176 

2016 130 292 162  117 292 175 

Average 125 289 164  121 289 168 

Sd 7 4 7  5 4 6 



 880 
Figure S3: Relationship between Tair and Tsoil with growing season matrix. GSS is 881 
growing season start day indicated by day of the year (doy), GSE is growing season end 882 
day indicated by day of the year (doy) and GSL is growing season length indicated by 883 
number of days. The solid lines represent linear regression lines and dashed lines its 884 
confidence interval at 5% significance level. *** indicate statistical significance at p < 885 
0.001; ** significant at p < 0.01; * significant at p < 0.05; and (*) significant at p < 0.1. 886 



 887 
Figure S4: Simple linear regression between NEP, GPP and Reco with growing season 888 
start day (GSS), growing season end day (GSE) and growing season length day (GSL). 889 
The solid lines represent linear regression lines and dashed lines confidence interval at 890 
5% significance level. *** indicate statistical significance at p < 0.001; ** significant at p 891 
< 0.01; * significant at p < 0.05; and (*) significant at p < 0.1. 892 
Table S3: Mean annual fluxes for two periods (2003-2006 and 2010-2016) and 893 
differences between two sites. Differences between sites were tested using paired t-test. 894 

period Flux 
DE-Hai (mean ± sd) 

[g C m-2 yr-1] 

DE-Lnf (mean ± sd) 

[g C m-2 yr-1] 

Diff(DE-Lnf-DE-Hai) 

[g C m-2 yr-1] 

 NEP 506 ± 84 476 ± 122 30 

2003-2006 GPP 1542 ± 76 1517 ± 128 25 

 Reco 1035 ± 50 1040 ± 25 2 

 NEP 476 ± 41 647 ± 121  171** 

2010-2016 GPP 1568 ± 142 1689 ± 156 121** 

 Reco 1092 ± 112 1042 ± 76 -50 

 895 
Table S4: Difference between the two sites with respect to slopes between each of the 896 
three significant driving variables (Tsoil, FP, time) and the three flux quantities (NEP, 897 



GPP, Reco) in terms of the residual variance remaining after the effects of the other two 898 
driving variables (e.g. FP and time, in the case of Tsoil) have been removed. 899 

CO2 flux Variable 

Slope difference  

(DE-Hai – DE-Lnf) SE  

NEP Tsoil 32.6 44.5  

GPP Tsoil 26.6 79.6  

Reco Tsoil -5.9 63.4  

NEP FP 0.4* 0.2  

GPP FP 0.3 0.3  

Reco FP -0.1 0.3  

NEP Time -21.2** 4.3  

GPP Time -11.9(*) 7.0  

Reco Time 9.3(*) 5.5  
Slope difference indicates the difference between two sites with respect to slopes between each of the three significant 900 
driving variables (Tsoil, FP, time) and the three flux quantities (NEP, GPP, Reco) in terms of the residual variance 901 
remaining after the effects of the other two driving variables (e.g. FP and time, in the case of Tsoil) have been removed. 902 
SE is the standard error of that difference. *** indicate statistical significance at p < 0.001; ** significant at p < 0.01; * 903 
significant at p < 0.05; and (*) significant at p < 0.1.  904 

 905 
Figure S5: Relationship of growing season start day (GSS) and growing season length 906 
(GSL) with spring air (AM Tair) and soil temperature (AM Tsoil). The solid lines represent 907 
linear regressions and dotted lines 95% confidence interval.  *** indicates statistical 908 
significance at p < 0.001; ** significant at p < 0.01; *   significant at p < 0.05; and (*) 909 
significant at p < 0.1.  910 



 911 
Figure S6: Regression between annual NEP and annual mean of meteorological variables 912 
(except for rain which was summed). The solid lines represent linear regressions and 913 
dotted lines 95% confidence interval.  *** indicates statistical significance at p < 0.001; 914 
** significant at p < 0.01; *   significant at p < 0.05; and (*) significant at p < 0.1.  915 



 916 
Figure S7: Regression between annual GPP and annual mean of meteorological variables 917 
(except for rain which was summed). The solid lines represent linear regressions and 918 
dotted lines 95% confidence interval.  *** indicates statistical significance at p < 0.001; 919 
** significant at p < 0.01; *   significant at p < 0.05; and (*) significant at p < 0.1.  920 



 921 
Figure S8: Linear regression between residual of NEP, GPP and Reco after removing the 922 
effect of time and fruit production (FP). CI is 95% confidence interval of slope and rsq 923 
the coefficient of determination of linear regression, and sig its significance. The solid 924 
lines represent linear regression lines and dashed lines confidence interval at 5% 925 
significance level. *** indicate statistical significance at p < 0.001; ** significant at p < 926 
0.01; * significant at p < 0.05; and (*) significant at p < 0.1.   927 



Table S5: Temperate broad-leaved deciduous forests with long term eddy covariance measurements. The table was modified after Baldocchi et al. 928 
(2018). CV is coefficient of variation (standard deviation divided by mean).  929   

 NEP GPP Reco  
 

Site Country n mean sd CV 

-- 

mean sd CV mean sd CV  Reference 

  -- (g C m-2 yr-1) (g C m-2 yr-1) (g C m-2 yr-1) (g C m-2 yr-1) -- (g C m-2 yr-1) (g C m-2 yr-1) --   

Borden Canada-Ontario 18 177 116 0.66 1373 164 0.12 1196 188 0.16  Froelich et al. 

(2015) 

Soroe Denmark 13 156 103 0.66 1727 136 0.08 1570 97 0.06  Pilegaard et al. 

(2011) 

Hesse France 10 386 171 0.44 1397 192 0.14 1011 137 0.14  Granier et al. 

(2008) 

Takayama Japan 9 237 98 0.41 1110 409 0.37 829 264 0.32  
 

Straights 

Inclosure 

United Kingdom 12 486 115 0.24 1993 275 0.14 1548 192 0.12  Wilkinson et al. 

(2012) 

Morgan-Monroe US-Indiana 13 351 81 0.23 1452 118 0.08 1098 82 0.07  Sulman et al. 

(2016) 

Harvard Forest, 

Petersham 

US-

Massachusetts 

13 245 100 0.41 1400 164 0.12 1153 105 0.09  Urbanski et al. 

(2007) 

Ozarks US-Missouri 5 479 65 0.14 1125 164 0.15 646 121 0.19  Shao et al. (2014) 

Duke Forest, 

Durham 

US-North 

Carolina 

8 402 96 0.24 1982 300 0.15 1580 237 0.15  Novick et al. 

(2015) 

Oak Ridge US-Tennessee 5 577 63 0.11 Na Na Na Na Na Na  Wilson and 

Baldocchi (2001) 

Average 
 

 350 100 0.35 1506 214 0.15 1181 158 0.14    

 930 
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