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Abstract

This article proposes the concept of anisotropy tailoring in multi-material lattices based on a mechanics-
based bottom-up framework. It is widely known that isotropy in a mono-material lattice can be ob-
tained when the microstructure has an isotropic geometry. For example, regular hexagonal lattices
with a unit cell comprised of six equal members and equal internal angle of 120° each, show isotropy
in the elastic properties. Such limited microstructural configuration space for having isotropy severely
restricts the scope of many multi-functional applications such as space filling in 3D printing. We first
demonstrate that there are multiple structural geometries in mono-material lattices that could lead to
isotropy. It is shown that the configuration space for isotropy can be expanded by multiple folds when
more than one intrinsic material is introduced in the unit cell of a lattice. We explicitly demonstrate
different degrees of anisotropy in regular geometrically isotropic lattices by introducing the multi-
material architecture. The contours of achieving minimum anisotropy, maximum anisotropy and a
fixed value of anisotropy are presented in the design space consisting of geometric and multi-material
parameters. Proposition of such multi-material microstructures could essentially expand the multi-
functional design scope significantly, offering a higher degree of flexibility to the designer in terms of
choosing (or identifying) the most suitable microstructural geometry. An explicit theoretical character-
ization of the contours of anisotropy along with physical insights underpinning the configuration space
of multi-material and geometric parameters will accelerate the process of its potential exploitation
in various engineered multi-functional materials and structural systems across different length-scales
with the demand of any specific degree of anisotropy but limitation in the micro-structural geometry.
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1. Introduction

Lattice based periodic material microstructures provide an unprecedented opportunity to artifi-
cially engineer the global mechanical properties of materials based on multi-functional demands of
modern structural systems by identifying (or designing) the intrinsic material distribution and struc-
tural geometry at micro-scale. In such microstructured materials the tailorable effective macro-scale
mechanical properties (such as equivalent elastic moduli, deformation, buckling, energy absorption,
vibration and wave propagation characteristics with modulation features) are defined by the struc-
tural configuration along with intrinsic material properties of the constituent members. Even though
a limited number of natural systems can show few unusual properties (for example, lightweight bone
structures, and auxeticity in various crystalline materials), the scope of having multiple desired me-
chanical properties to the optimum level in a single natural material is rare. Most of the naturally
occurring materials cannot exhibit one or more of the fascinating multi-functional properties like
negative Poisson’s ratio, extremely lightweight characteristics, negative stiffness, pentamode material
characteristics (meta-fluid), programmable constitutive laws etc., which can be achieved by an in-
telligent and intuitive microstructural design [1-9]. For example, the conventional positive effective
Poisson’s ratio in a hexagonal lattice can be converted to negative by considering the cell angle 6
in figure 1 as negative (as indicated in figure 1(C-D) of the supplementary material), or to a ‘zero’
value by intuitively designing the hexagonal unit cell |10, 11]. Recently buckling-induced instability
has been utilized to obtain and modulate unusual mechanical properties like enhanced energy ab-
sorption capacity and strain rate dependent constitutive behaviour [12-14|. Besides static properties,
various unusual and useful properties can be realized in metamaterials under dynamic condition, such
as negative bulk modulus [15]|, negative mass density [16], negative Young’s modulus [17], negative
shear modulus [18] and elastic cloaks [19]. These novel class of artificially engineered materials with
tailorable bespoke properties have tremendous potential for applications in futuristic multi-functional
aerospace, mechanical, civil, electronics and biomedical systems.

In lattice metamaterials two material properties are involved at two different length-scales. One
is the intrinsic material(s) which is actually the material of the constituting elements (such as the
connecting beam members shown in figure 1) at micro-scale. These materials are either naturally
occurring monolithic materials or their alloys and compounds. The intrinsic mechanical properties
depend on the chemical composition, atomic and molecular structure of that material. The second

set of material properties correspond to the effective macro-scale behaviour of the entire lattice. Such
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Figure 1: Multi-material microstructure. (A) Mono-material hexagonal lattice where all the members in a
unit cell are made of same material (B) Multi-material hexagonal lattice where the three constituting members in
a unit cell are made of three different materials (as indicated by separate colours). The respective unit cells with
dimensions are shown using insets. Unit cell of a multi-material lattice has three different intrinsic material properties
corresponding to the three constituting beam elements (E;, E2 and E3). In case of unit cell of the mono-material
lattice £y = F» = E3 = E,. In the mono-material and multi-material lattice configurations shown here, if § becomes
negative, the lattice will become re-entrant that can show auxeticity i.e. negative Poisson’s ratio (refer to figure 1(C-D)
of the supplementary material). The fundamental mechanics of such lattices are normally scale-independent across
micro to macro scales. From a multi-scale point of view, even though there exists a lattice structure at microscale,
the mechanical properties at macroscale could be idealized to have equivalent values of a bulk continuum-like solid for
further analysis. Therefore, for a structural analysis at macroscale, one only needs to consider the effective macroscale
mechanical properties without bothering about the microstructural geometry.

macro-scale properties depend on the intrinsic material properties as well as the microstructural ge-
ometry of the lattice, the compound effect of which presents us with a tremendous opportunity to
achieve unprecedented properties that are not available in conventional monolithic materials. A unit
cell based approach is often adopted to model periodic microstructures leading to a set of effective
elastic moduli at macro-scale, equivalent to an idealized continuous solid material [20-25]. The fun-
damental mechanics for lattices being scale-independent in most cases, the research findings in this
context are normally applicable for a wide range of materials and structural forms. Two dimensional
lattices of hexagonal form can be found across nano to macro scale covering various natural and arti-
ficial systems in abundance (such as nanostructures of graphene, hBN etc., core of sandwich panels,
microstructure of multiple woods and bones, microstructure of metamaterials, space filling pattern for
3D printing etc.) [26-32, 32-34]. In fact hexagonal tessellations can be proved to be the most efficient
2D space-filling pattern. Moreover, from a geometric view-point, it can be noted that a hexagonal
lattice can effectively be converted to rectangular, rhombic and re-entrant configurations as special
cases. Such widespread relevance of hexagonal lattices has led to our current focus on this form of

microstructure in the present article while selecting a lattice configuration to demonstrate the concepts



of anisotropy tailoring.

Most of the investigations for creating mechanical metamaterials focus on the microstructural ge-
ometry for modulation of physical properties, rather than the constituent intrinsic materials. Thus,
one single material, suitable for manufacturing and having adequate mechanical properties, are nor-
mally adopted as the constituent material [35]. However, recent advances in the area of multi-material
additive manufacturing [36-38| have propelled the rationale for creation of a new class of metama-
terial microstructures, where two or more intrinsic materials could be used to form the unit cell.
Such multi-material microstructures could essentially expand the multi-functional design scope signif-
icantly, offering a higher degree of flexibility to the designer in terms of choosing (or identifying) the
most suitable microstructural geometry. The Majority of investigations related to multi-functional
metamaterials try an inverse identification approach to identify the intrinsic materials and their cor-
responding volume fractions based on numerical algorithms [39-41]. Multi-material microstructures
have shown to be a pathway for achieving different unprecedented multi-physical properties like zero
and negative thermal expansion along with other necessary mechanical attributes [42, 43]|. However,
physically insightful analytical formulations of such systems leading to tailorable elastic properties are
limited in the current literature. Anisotropy tailoring is an important design parameter for various
mechanical systems under static and dynamic conditions, where different stiffness components are nec-
essary along different directions. Thus it is necessary to develop the capability of achieving different
degrees of anisotropy in microstructured materials with sufficient options of microstructural config-
urations, from which a designer can choose the most suitable one based on various other functional
demands and manufacturing constraints. Here we aim to present a physics-based analytical framework
for deriving the theoretical contours of microstructures to achieve different degrees of anisotropy in
multi-material lattices.

It is widely known that isotropy in a mono-material hexagonal lattice can be obtained when the
microstructure has an isotropic geometry. For example, regular hexagonal lattices with a unit cell
comprised of six equal members and equal internal angle of 120° each, show isotropy in the elastic
properties. Such limited microstructural configuration space for having isotropy restricts the scope of
many multi-functional applications such as space filling in 3D printing. In this article we first aim to
demonstrate that there could be multiple structural geometries in mono-material lattices that could
lead to isotropy. It will be shown that the design space for isotropy can be expanded by multiple
folds when more than one intrinsic material is introduced in the unit cell of a lattice. Further we

will explore the possibility of having different degrees of anisotropy in regular geometrically isotropic
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lattices by introducing multi-material configurations. The theoretical contours of achieving minimum
anisotropy, maximum anisotropy and any fixed value of anisotropy will be systematically presented
in the design space consisting of geometric and multi-material parameters. In essence, we aim to
decouple the long-standing conventional understanding between relationship of effective (an)isotropy
and (an)isotropic structural geometry by showing that both isotropy and anisotropy (of certain specific
degree) can be achieved in a set of microstructural configurations in multi-material lattices. Though
we would concentrate on hexagonal lattices in this article, the basic concepts are general and it would

be applicable to other two and three dimensional lattice geometries.

2. Effective elastic moduli of multi-material lattices

In principle, multi-material lattices could have two different forms. In the first form, the unit cell
could have multiple intrinsic materials and it may be tessellated to construct a lattice. In the second
form the lattice may be constructed of different unit cells where two or more unit cells have different
intrinsic material properties. The second form of lattice cannot be modelled using the conventional
unit cell based approach as it does not lead to a periodic structure in the true sense. In the present
article, our focus is on the first form of multi-material lattice where the desirable periodicity can be
achieved.

Effective elastic moduli of multi-material lattices would be different from the mono-material lattice
with the same structural geometry. To present adequate insights concerning the anisotropy tailoring in
multi-material lattices, computational models for Young’s moduli of such lattices are required. On the
basis of a unit cell (consisting of three beam-like members connected at a single point, refer to Figure 1)
based approach, closed-form analytical expressions for the effective Young’s moduli in two orthogonal
directions are derived as a function of the intrinsic material properties and structural geometry. In
the analytical derivation, only bending deformation is considered, which is most predominant for thin-
walled lattices with axially rigid members. In most of the advanced mechanical systems including space
filling in 3D printing, thin-walled lattices are preferred due to the fact that it leads to a lightweight
design.

In this section we will focus on the two effective Young’s moduli £, and E, since they are functions
of the multi-material configuration (i.e. E; and Es). It may be noted that the two in-plane Poisson’s
ratios are not dependent on the material properties even in case of multi-material lattices (note that
the Poisson’s ratio’s are reported to be not dependent on the intrinsic material properties in case

of mono-material lattices [20]). Expressions of the two effective Young’s moduli for a multi-material
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Figure 2: Minimum and maximum anisotropy in multi-material lattices. (A) The combination of the
geometric parameters, namely, the cell angle 6 and % resulting in effective isotropy of a mono-material lattice at macro-
scale. The classical case when h/l = 1, # = 30° and a = 1 is shown by a star. (B) The combination of the cell
angle 6 and % resulting in effective isotropy of multi-material lattices with o = % varying from 0.5 to 5. (C) Isotropy
contour of the cell angle # for multi-material lattices as a function of the multi-material parameter (o) and % The point
corresponding to the classical isotropic case when h/l =1, 6 = 30° and « = 1 is shown by a star. (D) Maximum degree

. . . o . . h
of effective anisotropy (corresponding to a = 1) as a function of the geometric parameters 6 and 7.

lattice (refer to the supplementary material for detailed derivation) can be written as

cos
(h/1 + sin @) sin® O(1 + «) (1)

By = 2E, (t/1)°

h/l+sinf)(1+ «)
2 cos3 0

By = B, (/)" @)

where, = and Ey, = aFy = Es (E; and E, are the intrinsic Young’s moduli of the two slant
members, refer to figure 1). Here we define degree of anisotropy as ¢ = —% Note that ), and F,
are macro-scale properties of the lattice, while £y and E5 are micro-scale properties of the intrinsic



materials. It can be noticed from the above expressions that the effective in-plane elastic properties
of a multi-material hexagonal lattice depend only on the intrinsic Young’s modulus of the two slant
members, whereas material properties of the vertical member has no contribution. This observation
is similar to the case of mono-material hexagonal lattices [20]. Here ¢ denotes thickness of the cell
walls. The other geometric parameters involved in the expressions of £} and E5 (such as h, [ and 6)
are indicated in figure 1.

For oo = 1, the expressions of elastic moduli for multi-material lattice (refer to equations 1 and 2)
reduce to the traditional expressions of mono-material lattice |20] as a special case. This observation
provides an exact analytical validation of the derived formulae. To validate the proposed expressions
of B, and F, for different other values of «, we adopt a finite element based approach as discussed in
section 2.3 of the supplementary material. The finite element analysis results are presented in figure
3 of the supplementary material along with the corresponding analytical results (obtained based on
equations 1 and 2) for different values of a. A good agreement between the results of two forms of
analysis can be noticed. It is also interesting to note the increasing level of deviation between F; and F
for higher values of «, essentially corroborating the preliminary evidence of the possibility of anisotropy
tailoring based on multi-material parameters. The exact analytical validation for a = 1 and finite
element based numerical validation for different values of o generate necessary confidence to utilize
the proposed analytical formulae of E; and F, for demonstrating the aspect of anisotropy tailoring
further. Three different cases will be discussed systematically in the following sections leading to: I.
isotropy (i.e. minimum anisotropy), II. maximum anisotropy and III. a fixed value of anisotropy. The
theoretical contours in the design space of multimaterial and geometrical parameters of a unit cell will
be presented considering all these three cases including insightful numerical results for demonstration.
It can be noted that we have used the term ‘contour’ in the context of the current article to describe

the microstructural configuration and their variations to achieve different degrees of (an)isotropy.

2.1. Isotropy or minimum anisotropy

In the case of o # 1, an interplay among h/l, # and « may lead to isotropy of the lattice. In
literature, it is widely mentioned that £, = Ey when h/l = 1, 0 = 30°, a = 1 [20]. The value of Young’s
modulus would be the same, not only in any two orthogonal directions, but in all directions for an
isotropic lattice. Here we show the possibility of unexplored isotropy contours of lattice materials with

multi-material as well as mono-material (i.e. o = 1) configurations. Using the condition of £} = E;



based on the Equations 1 and 2, we get
4o cos*
il
From on the above equation, we investigate two possible cases depending on the value of «.

—— = (h/l +sinf)’ (3)
sin” 6
First we consider the case of a = 1, that is, the lattice is made of a single material. In such case

Equation 3 reduces to
cos

i (h/l+sin6)? (4)
One of the solutions of Equation 4 is
cos? 6
h/l 4 sinf =
/1 + sin e (5)

The above equation leads to

sin9:i —(%)i (?)Zs (6)

Equation 6 provides a set of solutions involving h/l and € that will lead to isotropy in mono-material
hexagonal lattices (refer to Figure 2A). Out of this set, only one solution is widely acknowledged in
the scientific literature corresponding to the case of A/l = 1 and 6 = 30°. It is important to note that
the possibility of physical structural configuration of a honeycomb should always be kept in mind. For
example, the two solutions of Equation 6 corresponding to h/l = 1 are § = 30° and § = —90°, among
which the latter one is physically impossible.

The second solution of Equation 4 is
cos? 0

h/l+sinf = — (7)

sin
The above equation leads to
l

sinf = ~% (8)

Here h and [ are both positive; thus @ must be negative, i.e. the solution corresponds to auxetic
configurations. The possibility of physical structural configuration of a honeycomb should be kept in
mind. For example, the following inequality must be satisfied for an auxetic hexagonal configuration
(6 <0)

h > 2lsin@ 9)

A closed-form solution for Young’s moduli can be readily obtained corresponding to Equation 8 as

PR (;) (10)

sin @ cos 0
Note that 6 is negative in the above equation (i.e. corresponding to the auxetic configuration) and

subsequently £, and E, are positive.



The issue of geometrically isotropic lattice requires further explanation to convey the thought of
the authors with more clarity. By geometrically isotropic lattice, we refer to a particular microstruc-
tural geometry of mono-material lattices where isotropy in the Young’s modulus can be achieved at
macroscale. In the context of hexagonal lattice microstructures, it is a general wisdom in the field of
lattice metamaterials that such isotropy in the elastic properties can be achieved when the cell angle
0 = 30° and h = [. Thus, for a hexagonal lattice, we refer to this particular microstructural con-
figuration as the commonly known ‘geometrically isotropic’ configuration. However, in the preceding
paragraphs, we have shown that there are multiple other solutions for an isotropic lattice (including
re-entrant microstructure) with mono-material configuration besides the conventionally reported solu-
tion corresponding to h/l = 1 and 6 = 30°. The domain of such an isotropic solution can be increased
by many folds if we consider multi-material configuration. In case of multi-material lattices, we rewrite

Equation 3 as

4 1
e _ 8 (11)
(1+a)? K
where % = % (% + sin 9)2 is a function of only structural geometry. The Equation 11 leads to the

condition of isotropy in multi-material lattices as

a:é%:—&+2Ki2¢????§ (12)
where, K? — K > 0 and the honeycomb structure should be physically achievable. The above equa-
tion provides a non-dimensional measure of the multi-material parameters («) in terms of the mi-
crostructural geometry. Figure 2B and 2C show the isotropy contour in a restricted domain of the

multi-material and geometric parameters.

2.2. Mazimum anisotropy

In this section, we aim to maximize ¢ = (%) and obtain the relationship among the multi-material

and geometric parameters of the lattice. Based on Equations 1 and 2, we can write

El (6]

= (&)~ )
Here m = m, which represents a purely microstructural geometric function. For maxi-
mizing the value of ¢, we solve the differential equation % = 0 for a. The solution comes out to be

do
a:LWmmyM®<£ﬂ

da?

a1 < 0), indicating maxima. Thus, the condition of maximum isotropy can

be obtained in the special case of mono-material lattice (i.e. E; = FE3). The corresponding value of
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maximum anisotropy is given by
cos* 0

2
(% + sin 9) sin® 6

From the above expression, it can be found that ¢ is purely a function of the geometric parameters,

(Gmazla=1) = (14)

where it increases monotonically as % and ¢ decrease (refer to figure 2D).
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2.3. Fized anisotropy

B, _

In this section we try to find out the ratio - = a which will lead to a desired degree of anisotropy

g. Thus, for the condition of % = ¢, we can write (refer to Equation 13)

o q

- 1 15
(14+a)> m (15)
The above equation leads to the solution in terms of multi-material parameters as
Ey 1 q q\?
_o_ 2 —2——)i (2—-) 4 16
@ E, 2 [ ( m m (16)

Considering that E; and FEs are both positive, in addition to the constraint of a physically achievable

lattice structure, we get the following two conditions for real solutions from the above equation
2
[—(2—3)1 (Q—i) —4]>o (17)
m m

(2—1)2—4>o (18)

m

Figure 3 shows the contours of 6 for achieving different degrees of anisotropy (¢) in terms of the geo-

metric and multi-material parameters. It is interesting to note that the maximum value of anisotropy

B _

occurs corresponding to o = £

1, which is in agreement with our findings corresponding to the
case of maximum isotropy as presented in the preceding section.

As explained in the introduction section, a hexagonal lattice could show negative Poisson’s ratio
when the cell angle § becomes negative (refer to figure 1(C-D) of the supplementary material). This
fact is evident from the closed-form expressions of Poisson’s ratios (refer to equations 17 and 20 of the
supplementary material) and the physical geometric constraints of a hexagonal re-entrant structure.
However, from the expressions it is noted that the Poisson’s ratios are not dependent on the multi-
material parameters, which are the main focus of this study. The current paper primarily deals with
degree of anisotropy as a function of the two Young’s moduli. For this reason, we have not presented
any numerical results specifically for the auxetic configurations (i.e. negative cell angle). The closed
form formulae for effective Young’s moduli of multi-material lattices are valid for any value of cell
angle (positive, or negative), meaning that the proposed concept of anisotropy tailoring can also be
directly applied to auxetic configurations. In fact, we have shown a particular family of structural
configurations to achieve isotropy that is only valid for auxetic structures (refer to equation (8)). It
can be noted in this context that the current analytical derivation and the following investigation are

carried out in the linear regime of elastic analysis.

In summary, we have discussed the aspect of anisotropy tailoring in this section through the intro-
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duction of multi-material periodic systems. We start by considering a special case of hexagonal lattice,
wherein the results reveal that there are multiple structural geometries in mono-material configura-
tions that could lead to isotropy besides the conventionally considered microstructure with h/l = 1,
0 = 30°, «a = 1 for this purpose. It is shown that the design space for isotropy can be expanded by
multiple folds when more than one intrinsic material is introduced in the unit cell of a lattice. We
explicitly demonstrate different degrees of anisotropy in regular geometrically isotropic lattices by in-
troducing the multi-material architecture in the design domain of geometric and material parameters.
Noteworthy is that the physical models at industry-scale of such multi-material lattices are viably
manufacturable following the tremendous recent advancements in additive manufacturing technology.
Though we have primarily concentrated on two dimensional hexagonal lattices in this article, the
concept of anisotropy tailoring using multiple intrinsic materials in the unit cell could potentially be

extended to other lattice forms and three dimensional microstructures.

3. Conclusions and perspective

This article presents physics-based insights on the possibilities of having anisotropy in geometrically
isotropic lattices and isotropy in geometrically anisotropic lattices. Novelty and impact of the paper lie
in both conceptual development and analytical formulation. We have systematically demonstrated the
aspect of tailoring anisotropy in lattice microstructures by effectively decoupling the existing knowledge
on the relationship between (an)isotropy and microstructural geometry. The theoretical contours of
having minimum anisotropy (i.e. isotropy), maximum anisotropy and any fixed value of anisotropy are
presented in closed-form in terms of the geometric and multi-material parameters. The conventional
wisdom of having limited microstructural configuration space for obtaining isotropy (or a specific
degree of anisotropy) restricts the scope of many multi-functional applications such as space filling in
3D printing. Anisotropy tailoring is an important design parameter for various mechanical systems
under static and dynamic conditions, where different stiffness components are necessary along different
directions. Thus, it is necessary to develop the capability of achieving different degree of effective
anisotropy in microstructured materials with sufficient options of microstructural configurations, from
which a designer can choose the most suitable one based on various functional demands along with
geometrical design and manufacturing constraints. The disseminated generic concepts of this article
on anisotropy tailoring would be crucial in innovating next-generation of multi-functional materials

across different length-scales without the constraint of fixed micro-structural geometry.
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Anisotropy tailoring in multi-material lattices (minimum, maximum and any fixed value of anisotropy)
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