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Introduction 

Scleral lenses entirely rest on the sclera, with a complete bridging of the cornea. 

Consequently, corneal topography does not seem to be helpful in their fitting process 

and corneal asymmetry has been shown to be a poor predictor for the need to fit a 

scleral contact lens with toricity.1-4  

 

Formerly, the topography of limbal and anterior scleral shape only could be analysed 

by using imprint techniques or by grading the limbal profiles termed the “Corneo-

Scleral-Profile” at the slit-lamp.5-7 However, these methods are either invasive or 

have shown poor repeatability.6-8 Newer non-invasive measuring techniques such as 

optical coherence tomography or fourier-based profilometry imaging can make a 

valuable contribution in the understanding of corneo-scleral-topography and support 

the fitting process of scleral lenses.3, 9-16 Sagittal height (depth) data, determined by 

those techniques, are particularly useful for initial scleral lens selection.17, 18   

 

The Eye Surface Profiler (Eagle Eye, Houten, The Netherlands) is a newly developed 

corneal and scleral topographer, capable of measuring the sagittal height for a chord 

length up to 20 mm diameter of the anterior ocular surface using fourier-based 

profilometry.10 The Eye Surface Profiler, which is based on the principle of the 

Maastricht shape topographer (1998), has been validated and used in several 

studies.9-11, 19-25  

 

More recently a new corneo-scleral-profile software module for the Pentacam 

(Oculus, Wetzlar, Germany) was introduced to the market. The corneo-scleral-profile 

module uses Scheimpflug imaging to measure the sagittal height up to an 18 mm 

chord length of the anterior ocular surface. First attempts to measure scleral 



curvature by Scheimpflug photography were described by Tiffany et al. in 2004.26 

However, up to now no commercially available Scheimpflug instrument for scleral 

topography was on the market. 

 

Consequently, the aim of this study was to investigate the agreement and 

repeatability of fourier-based profilometry and Scheimpflug imaging in the 

measurement of sagittal height, and toricity of the corneo-scleral region. 

 

Material and methods 

Participants 

Thirty-eight participants with a mean age of 25.4 ± 3.2 (SD) years (22 females) were 

recruited from the students of the Cologne School of Optometry (Höhere Fachschule 

für Augenoptik Köln), Cologne, Germany. Mean spherical equivalent (SE) of the 

participants was -0.9 ± 1.3 D. All participants that were invited to take part in the 

study received a subject information sheet explaining the study, prior to giving signed 

consent. Participants were excluded if they were pregnant or breastfeeding; had a 

history of previous ocular surgery, including refractive surgery, eyelid surgery, or 

corneal surgery; had any previous ocular trauma, were diabetic, had worn contact 

lenses less than two weeks prior to this study or had worn any kind scleral lenses 

before. All procedures obtained a favourable ethical opinion and governance 

approval of the Aston University Human Ethics Committee and were conducted in 

accordance with the requirements of the Declaration of Helsinki. 

 

Procedures 



Minimal and maximal sagittal height as well as the maximum possible measurement 

zone diameter were analysed using the Eye Surface Profiler (Eagle Eye, Houten, 

The Netherlands) and the corneo-scleral-profile module of the Pentacam (Oculus, 

Wetzlar, Germany). The difference between the sagittal heights in the perpendicular 

meridians (maximal sagittal height - minimal sagittal height) was recently defined as 

scleral toricity.16 However, previous reports have shown that especially in subjects 

with corneal ectasias, highest and lowest sagittal height values are not necessarily 

located 90 degrees apart.27 As a consequence, we used the difference between the 

maximal and minimal sagittal heights given from both devices as toricity values. J0 

and J45, which are Jackson cross-cylinder values, were used for the analysis of 

toricity through power vector analysis.28 The orientation (axis) of the flattest meridian 

(minimal sagittal height) was categorized into six groups: with-the-rule 0° to 30°, with-

the-rule150° to 180°, against-the-rule 60° to 90°, against-the-rule 90° to 120°, oblique 

30° to 60° and oblique 120° to 150°. Measurements were performed between 9 and 

12 AM by one examiner in a randomized order of the instruments on two consecutive 

days. To avoid any influence of remaining fluorescein on the eye, there was a wash-

out time of at least 10 minutes between the measurements with different instruments. 

Only the right eyes of the participants were measured. Participants were asked to 

fixate on a central target and their upper lid was gently raised by the examiner to 

avoid pressure on the bulbus. 

 

The Eye Surface Profiler is a topographer based on the principle of Fourier domain 

profilometry and covers an area of up to 20mm in diameter. Therefore, the entire 

cornea, limbus and parts of the scleral can be imaged and the corneo-scleral 

topography analysed with this system.10, 11 The Eye Surface Profiler consists of two 

blue-light fringe projectors and a centrally positioned camera equipped with a yellow 



filter (Figure 1).11 To achieve good results with The Eye Surface Profiler it needs to 

be considered that the instillation of fluorescein is required.10 In contrast the corneo-

scleral-profile module of the Pentacam uses Scheimpflug images without fluorescein 

to detect the edges of the cornea, the limbus and the sclera (Figure 2). One central 

and four peripheral Scheimpflug scans (nasal, temporal, superior and inferior) are 

necessary to create the total corneo-scleral-profile report with 25 meridians (Figure 

4).    

 



 

The minimum and maximum sagittal height, the axis and the maximum measurable 

chord length given by the software of both instruments were used for analysis (Figure 

3 and 4). Agreement between two instruments was analysed using an equal chord 

length, which was given by the lower maximum measurable chord length of the two 

instruments. Repeatability of the single instrument was analysed using the maximal 

measurable chord length of the respective instrument.     

 



 

 

 

Statistical analyses 

Data were tested for normality using the Shapiro-Wilk test. As the data was normally 

distributed, correlations between the instruments were analysed using the Pearson 

coefficient. Differences between sessions and instruments were analysed using 

Bland-Altman and paired-t-tests. P values of less than .05 were deemed statistically 



significant. The data were analysed using SigmaPlot 12 (Systat Software Inc., 

Chicago, USA). 

 

Results 

The mean values ± standard deviations measured with both instruments are 

summarised in Table 1. Maximum possible measurement zone diameter with the Eye 

Surface Profiler (16.4 ± 1.3mm) was significantly greater than with Pentacam (14.8 ± 

1.1mm) (P < .001) (Figure 5). 

 

Table 1: Descriptive data for means ( standard deviation) of minimal, maximal 

sagittal height, toricity, vector J0 and vector J 45 and horizontal white-to-white 

corneal diameter measured with the two instruments (chord length 14.8 ± 1.1 mm). 

 

 

 

 

 

 

 Pentacam Corneo-
Scleral-Profile 
module 

Eye Surface 
Profiler 

P-value 

Minimal sagittal height (μm) 3609 ± 408 3266 ± 392 < .001 

Maximal sagittal height (μm) 3716 ± 442 3436 ± 416 < .001 

Mean sagittal height (μm) 3663 ± 423 3351 ± 401 < .001 

Toricity (μm) 107 ± 87 170 ± 105 < .001 

Power vector J0 (μm) 0 ± 62 28 ± 83 = .004 

Power vector J45 (μm) -17 ± 26 -5 ± 49 = .152 

Corneal diameter (mm) 11.9 ± 0.36 12.3 ± 0.35 < .001 



 

Minimal sagittal height (3266 ± 392 μm) and maximal sagittal height (3436 ± 416 μm) 

measured with the Eye Surface Profiler and minimal sagittal height (3609 ± 408 μm) 

and maximal sagittal height (3716 ± 442 μm) measured with the Pentacam were 

significantly very high correlated (r = 0.989 and r = 0.988; P < .001), while toricity 

measured with the Eye Surface Profiler (170 ± 105 μm) and Pentacam (107 ± 87 μm) 

was moderately correlated (r = 0.562; P < .001). 

 

For an equal chord length (14.8 ± 1.1 mm) the measurement with Pentacam was 

significantly greater for minimal sagittal height (344 μm; CI 322 to 364; P < .001) 



(Figure 6), significantly greater for maximal sagittal height (280 μm; CI 256 to 305; P 

< .001) (Figure 7), but significantly smaller for toricity (-63 μm; CI -95 to -31; P < .001) 

(Figure 8). Power vector analysis showed that J0 calculated from Pentacam data 

were significantly smaller (-28 μm; CI -49 to -8; P = .004) (Figure 9) than Eye Surface 

Profiler values, while there was no significant difference for J45 (-12 μm; CI -28 to 5; 

P = .152) (Figure 10). The orientation (axis) of scleral toricity defined by the flattest 

meridian (minimal sagittal height) is summarized in Table 2.  

 



 

 

 



 

 

Table 2: Scleral toricity classified by orientation (axis of minimal sagittal height) for a 

chord length of chord length 14.8 ± 1.1 mm. 

Scleral Toricity 
Orientation (axis) 

 
Pentacam 
corneo-scleral-
profile Toricity 

 
Eye Surface Profiler 
Toricity 

 
Subjects Mean±SD (μm) Subjects Mean±SD (μm) 



With-the-rule 13 111 ± 106 20 177 ± 127 

0°-30° 5 60 ± 33 6 163 ± 134 

150°-180° 8 144 ± 124 14 183 ± 129 

Against-the rule 14 115 ± 80 4 118 ± 59 

60°-90° 3 134 ± 100 4 118 ± 59 

90-120° 11 110 ± 75 0  

Oblique 7 81 ± 75 10 177 ± 64 

30°-60° 1 51 1 180 

120°-150° 6 86 ± 81 9 177 ± 86 

 

Repeated measurements of mean sagittal height from session 1 and session 2 were 

not significantly different for Pentacam and Eye Surface Profiler (paired-t-test: P = 

.737 and P = .636, respectively). The 95% CIs around the differences indicated good 

repeatability for Pentacam (mean difference -0.9 μm; 95% CI: -6.7 to 4.8) and Eye 

Surface Profiler (4.6 μm; -22.4 to 31.6). 

 

Discussion 

This prospective study reports on the use of Scheimpflug imaging and fourier 

profilometry to measure sagittal height and toricity of the anterior corneo-scleral-

region in individuals with healthy eyes. The measurements of mean sagittal height of 

the Pentacam (3663 ± 423 μm) for an average chord length of 14.8 ±1.1mm are in 

good agreement with previously reported optical coherence tomography 

measurements of 3670 to 3760 μm for a chord length of 15 mm.16, 29-31 In contrast the 

Eye Surface Profiler measurements (3351 ± 401 μm) were smaller and in agreement 

with previously reported data using the same instrument (3250 to 3544 μm).32, 33 

While the measurement of sagittal height on optical coherence tomography images 

requires manual image analysis, the two devices used in this study automatically 

measure sagittal height in multiple medians.  

 



Sagittal height based fitting of scleral lenses has been found to be an effective 

method of determining the appropriate lens/cornea relationship.18, 34 Central apical 

reservoir thickness and centration of a scleral lens seems to be influenced by 

variations in sagittal height.16, 35 The apical reservoir thickness of scleral lens vary 

between 50 and 400 μm, depending on the fitting philosophy and are influenced by 

settling time.12, 34, 36, 37 Thus, the reported difference in sagittal height measurement 

of the two devices of 280 μm (minimal sagittal height) and 344 μm (maximal sagittal 

height) can be assumed to be clinically relevant in initial  selection of a scleral lens. It 

can be hypothesis that the differences in sagittal height measurements are due to the 

diversity of the imaging techniques used. While optical coherence tomography and 

Scheimpflug imaging are both tomography techniques that uses sections through the 

three-dimensional object (cornea and scleral) to calculate the sagittal height, the 

Fourier transform profilometry uses a fringe projection technique to extrapolate the 

height data.  

 

Scleral toricity has been defined as the greatest difference in scleral sagittal height 

between two perpendicular meridians.16 The asymmetry and toricity of the sclera is 

less pronounced near the limbus, increasing with greater distance (chord length).1, 15, 

16, 19 Furthermore, subjects with corneal ectasia seem to have a different scleral 

shape compared to those with normal corneal profiles, largely presenting as a 

quadrant specific effect along the same axis.27, 38 A limitation of this study is that 

corneo-scleral shape was analysed in a group with regular corneas. Therefore, the 

findings of scleral toricity cannot be translated to irregular corneas where scleral 

shape seems to be more asymmetric than toric.27, 38 

 



Over a 15 mm chord length Ritzman et al.16 reported average toricity values of 198 ± 

47 μm in normal eyes measured with optical coherence tomography, while Kowaslski 

et al.35 reported values of 150 ± 77 μm in normal eyes using fourier-based 

profilometry. This seems to be in agreement with the fourier-based profilometry 

values of 170 ±105 μm in ths study. However, toricity values of the Scheimpflug 

imaging systems (107 ±87 μm) were found to be lower.  

 

It was suggested that a sclera (15 mm chord length) with less than 100 μm of toricity 

may be fit with a spherical scleral lens, while with increasing lens diameter and 

scleral toricity (≥ 200 μm), special haptic lens designs are required.15-17 Thus, a 

difference in toricity measurement between devices might influence the decision as 

to whether a spheric or toric scleral lens is required. In addition, further analysis of 

sagittal heights in different quadrant might help in the decision as to whether a toric 

or quadrant-specific approach will improve the outcome of contact lens selection. 

 

A previous study has reported on the repeatability of sagittal height measurements 

using the sMap3D corneo-scleral topographer, a topographer similar to the Eye 

Surface Profiler used in this study.39 For a group of 25 scleral patients, repeated 

sagittal height measurements for a chord length of 16 mm showed a mean difference 

of 14 μm, while a difference of -0.9 μm (Pentacam) and 4.6 μm (Eye Surface Profiler) 

was found in this study.39 However, as well as the instruments being comparable for 

the average of a group of patients, for the data derived to be useful in making clinical 

decisions for an individual, the intra-session repeatability 95% confidence interval 

must be small. While this was the case for the Pentacam at 6 μm, this was not the 

case for the Eye Surface Profiler at 27 μm. It is unlikely that this can be attributed to 



the difference in the chord length that was analysed, which might explain differences 

in the mean.  

 

In summary a detailed analysis of the topography of the limbal sclera and the 

corneal-sclera transition zone with modern devices such as Scheimpflug imaging and 

fourier profilometry is of increasing interest for the scleral lens fitting process. 

Furthermore, sagittal height data of the corneo-scleral region also seems to be a 

promising tool in the fitting of soft contact lenses.31, 40 

 

Conclusions 

Although both instruments deliver useful data especially for the fitting of scleral and 

soft contact lenses, the sagittal height and the toricity measurements cannot be 

considered as interchangeable.  
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