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Abstract 
Human olfactory mucosa cells (hOMCs) have potential as a regenerative therapy for spinal cord injury. 

In our earlier work we derived PA5 cells, a polyclonal population that retains functional attributes of 

primary human OMCs. Microcarrier suspension culture is an alternative to planar 2D culture to 

produce cells in quantities that can meet the needs of clinical development. This study aimed to screen 

the effects of 10 microcarriers on PA5 hOMCs yield and phenotype. Studies performed in well plates 

led to a 2.9-fold higher cell yield on Plastic compared to Plastic Plus microcarriers with upregulation of 

neural markers β-III tubulin and nestin for both conditions. Microcarrier suspension culture resulted in 

concentrations of 1.4x105 cells/mL and 4.9x104 cells/mL for Plastic and Plastic Plus, respectively, after 

7 days. p75NTR transcript was significantly upregulated for PA5 hOMCs grown on Plastic Plus 

compared to Plastic. Furthermore, co-culture of PA5 hOMCs grown on Plastic Plus with a neuronal 

cell line (NG108-15) led to increased neurite outgrowth. This study shows successful expansion of PA5 

cells using suspension culture on microcarriers, and it reveals competing effects of microcarriers on 

cell expansion versus functional attributes, showing that designing scalable bioprocesses should not 

only be driven by cell yields. 

Key words: human olfactory mucosa cells, spinal cord injury, allogeneic cell therapy, microcarrier, 
suspension culture  
Introduction 
250,000 to 500,000 people are affected by spinal cord injury every year worldwide (Bickenbach et al., 

2013). The spinal cord is part of the central nervous system (CNS), and unlike the peripheral nervous 
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system (PNS), has limited regenerative capacity after injury (Ahuja et al., 2017). The slow regenerative 

capacity of the CNS is attributed to the generation of a “glial scar” after injury which constitutes a 

barrier for axonal regrowth. Human olfactory mucosa cells (hOMCs) have shown promising results in 

both pre-clinical and clinical studies for the treatment of spinal cord injury (SCI) (F. Féron et al., 2005; 

Iwatsuki et al., 2008; Mackay-Sim et al., 2008; Tabakow et al., 2013). The regenerative capacity of 

OMCs is attributed to their unique ability to support the regeneration of olfactory receptor neurons 

(ORNs) which extended their axons from the PNS to the CNS, a property unique to the olfactory 

system in mammals (R. Doucette, 1991). The hOMC population can be obtained through biopsies of 

the olfactory mucosa, a source safer than the olfactory bulb which requires invasive intracranial surgery 

to be accessible (François Féron et al., 1998; Jani & Raisman, 2004). After biopsy, the cell population 

is subjected to a differential adhesion step to enrich neuroprotective cell types such as OECs, late 

adherent primary hOMCs, by removing rapidly adherent cells (i.e. fibroblasts) considered to be 

contaminants (Santiago-Toledo et al., 2019, Nash et al 2001). Early and recent studies have attributed 

the neural regeneration of the hOMC population to the presence of several different cell types, such as 

neural stem cells (NSCs), mesenchymal stem cells (MSCs), olfactory neurons and olfactory 

ensheathing cells (OECs), a type of glia (Delorme et al., 2010; J. R. Doucette, 1984; Lindsay et al., 

2013; Wolozin et al., 1992). Markers reported in hOMCs primary populations include glial (p75NTR, 

GFAP and S100β), neural stem cell (nestin), early neural differentiation (β-III tubulin), mesenchymal, 

and fibroblast associated markers (CD90/Thy1 and fibronectin) (Au et al., 2002; Bianco et al., 2004; 

Hahn et al., 2005; Kawaja et al., 2009). 

Reported clinical trials have used an autologous approach which can lead to variable outcomes. Since 

hOMCs populations are highly variable between patients, these are challenging to expand and there is a 

lack of consistency between protocols used for tissue biopsy and preparation of cells for transplant (F 

Féron et al., 1999). Therefore, it would be beneficial to develop an allogeneic or universal “off-the-

shelf” approach. We previously reported the generation of a candidate cell line from late-adherent 

hOMCs by genetic modification of primary cells with c-MycERTAM conditional immortalization 

technology, to advance a potential allogeneic therapeutic product for the treatment of SCI denominated 

PA5 hOMCs (Santiago-Toledo et al., 2019). It is yet unclear whether a unique cell type within a 

hOMCs population is responsible for neural regeneration, or whether there is benefit in transplanting 

several types of cells within the population (Anna et al., 2017; Reshamwala et al., 2019). Clones from 

polyclonal populations such as PA5 hOMCs can be further derived, expanded, banked and screened to 

generate an allogeneic cell therapy product for the treatment of SCI. The generation of a conditionally-

immortalized hOMC population, such as PA5 hOMCs, enables a potentially extended life span, 

allowing the application of a cell-banking model-based manufacturing process, necessary for an 

allogeneic cell therapy. 

The translation of such a therapeutic product to the market would require the development of a scalable 

bioprocess, able to yield large amounts of cells which can reach doses up to 1x107 cells/dose (Casarosa 

et al., 2014). Commonly, adherent or anchorage-dependent cells have been grown in two-dimensional 

platforms such as tissue-culture flasks, cell factories and automated systems. Even though these 

systems are reliable due to their wide spread use in the industry, they are not easily scalable for 
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producing large quantities of allogeneic cells, making them unsuitable for commercial stages 

(Brandenberger et al., 2011; Simaria et al., 2014). Among available technologies, microcarriers are a 

suitable alternative to perform expansion of adherent cells in a scalable manner in stirred tank 

bioreactors and offer a higher larger surface per unit volume of bioreactor. It may be feasible to 

manufacture early-stage clinical products using planar systems and then transition to stirred tank 

bioreactors for late-stage clinical trials and commercialisation, yet this would require significant 

validation work to meet regulatory approval, and risk product specification failure later in development 

due to manufacturing process changes. Therefore, early adoption of market scale manufacturing 

technology is necessary. 

Microcarrier cell culture platforms have been reported for the successful expansion of mesenchymal 

stem cells (MSCs) (dos Santos et al., 2014; Rafiq et al., 2013), embryonic stem cells (ESCs) (Oh et al., 

2009) and induced pluripotent stem cells (iPSCs) (Badenes et al., 2017; Carlos AV Rodrigues et al., 

2018). Stirred tank bioreactors are well explored systems that enable the monitoring and control of 

several culture parameters such as oxygen tension, pH and agitation regimes. These platforms also 

offer a closed bioprocess environment with reduced operator interference and variability. Therefore, 

these are platforms that offer more robust and reproducible bioprocesses that theoretically can deliver 

consistent quality products, compliant with Good Manufacturing Practice (GMP) and Good Clinical 

Practice (GCP) requirements. 

In this work, we report the microcarrier expansion of a candidate cell population for the treatment of 

SCI, PA5 hOMCs, on microcarrier stirred culture using spinner flasks, with the aim to identify a 

microcarrier type that maximize the expansion of neuroprotective cell types such as OECs, NSCs, and 

MSCs, which can lead to increased potency. First, a variety of commercially available microcarriers 

were selected based on a screening methodology using ultra-low attachment 96-well plates. Besides the 

suitability of the microcarrier, considerations of compliance for good manufacturing practices (GMP) 

and adaptability to xeno-free conditions were considered for microcarriers selection. Then, cells were 

grown on two types of microcarriers using spinner flasks, based on protocols previously reported for 

the expansion of hMSCs (Santos et al., 2011). To further understand growth kinetics, PA5 hOMCs 

were grown on microcarriers for 7 days. Cell phenotype was assessed through immunocytochemistry 

and RT-qPCR. Potency of PA5 hOMCs was assessed through the capacity of the harvested cells to 

promote neurite outgrowth using a co-culture assay of hOMCs and NG108-15 neurons. 

We report the use of a microcarrier-based spinner flasks system for the expansion of the PA5 hOMCs 

population of cells, a candidate cell line for the treatment of spinal cord-injury. 

Materials and methods 
hOMC monolayer culture 
PA5 hOMCs were expanded in T-flasks, freshly coated with poly-L-lysine (PLL, Sigma, UK, 100 

μg/mL), using as complete medium DMEM/F12 + GlutamaxTM (Gibco, Life Technologies, UK) 

supplemented with 10% fetal bovine serum (FBS) (Sigma, Germany) and 4-hydroxitamoxifen (4-

OHT’, 1:10,000). Cells were maintained in a standard incubator (37⁰C, 5% CO2 in air). A seeding 

density of 6000 cells/cm2 was used and feeding was performed every two days. Cells were passaged 

when 60-80% confluency was reached, through incubation with TryPLE (Gibco, UK) for 5 minutes. 
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The dissociation reagent was quenched with complete medium and the cell suspension was centrifuges 

for 5 minutes at 400 x g. 

Microcarrier screening in well plates 
10 commercially available microcarriers were tested for expansion of PA5 hOMCs in ultra-low 

attachment 96-well plates: Plastic, Plastic Laminin Coated (Plastic L), Plastic Plus, PronectinF®, 

Collagen, FACT III, Star-Plus, Hillex II, all from Pall, UK. Synthemax II ® (Low and High 

Concentration) (Corning, UK) and Cytodex I (GE Healthcare, UK) were also used. Microcarriers 

specifications are shown on Table 1. Sterilization of Pall microcarriers and Cytodex I microcarriers was 

achieved by resuspension in distilled water (Gibco, UK) and PBS Ca+ and Mg+ free (Lonza, UK), 

respectively, followed by autoclaving at 121 ºC for 15 min. Synthemax II ® microcarriers were 

sterilized under a UV lamp for 90 minutes. 

A monolayer of microcarriers with a total surface area of 1.28 cm2 was used per well, in order to cover 

the bottom of a 96-well plate well. For 6-well plates, a monolayer of microcarriers with a total surface 

area of 38 cm2 was used per well. Total working volumes were of 200 µL and 6 mL for 96-well plates 

and 6-well plates, respectively. Plastic L microcarriers were incubated with a solution of 20 µg/mL 

Cultrex ® Mouse Laminin I (Trevigen, UK) for 1 hour in a standard incubator prior to cell seeding. All 

microcarriers were let to equilibrate for 1 hour in a standard incubator with complete medium. A 

seeding density of 6000 cells/cm2 was used. Medium exchanges were performed for 50% of the total 

volume, every two days. Cells were culture in ultra-low 96-well plates for a total of 7 days. For 96 

well-plates, relative viable cell number was measured using the cell Counting Kit-8 (CCK-8) (Dojindo, 

Japan) every time medium exchanges were performed. Briefly, 10 µL of reagent were added per 100 

µL of microcarrier suspension. After incubation for 1 hour in a standard incubator, the supernatant was 

transferred to a 96-well plate and absorbance readings at 450 nm were performed in a microplate reader 

(Tecan, Switzerland). Quantification of the of cells per well was performed based on a standard curve 

performed on the first day of culture. 

Spinner-flask culture 
The protocol used for spinner flask culture was based on Santos et al 2011. Suspension culture 

experiments were performed in 100-mL flat bottom spinner-flasks (Bellco) with 80 mL as working 

volume. Spinner-flasks were siliconized using Sigmacote (Sigma, Germany) to avoid cell attachment. 

After applying the reagent to all the glass surface and aspirating it, vessels were let to dry for 24 hours 

in a fume hood. After, vessels were rinsed three times with distilled water (Gibco, UK). Plastic and 

Plastic Plus microcarriers were used for spinner-flask culture with a total surface area of 518.4 cm2. 

Microcarriers were prepared by autoclaving in distilled water (Gibco, UK) for 121 ºC for 15 min. 

After, the distilled water was aspirated as much as possible and complete medium was added. 

Microcarriers were let to equilibrate for 1 hour in a standard incubator. 60-80% confluent PA5 hOMCs 

were detached as described in section “hOMC cell culture” and an adequate amount of cells was added 

to the tube containing the microcarriers suspension in complete medium to a seeding density of 6000 

cells/cm2. After transferring the microcarrier and cell suspension to spinner-flasks containing adequate 

amounts of complete medium, an agitation of 40 rpm was started. Spinner-flasks were maintained on a 

Bell-EnniumTM Compact 5 position magnetic stirrer platform (BellCo) in a standard incubator. In order 

to allow for air exchange, a side-arm of the spinner-flask was kept loosened (half a turn of the cap). 
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Cell expansion was maintained for 7 days. Feeding was performed every two days by removing 50% of 

the expanded medium and adding the same amount of fresh complete medium. Sampling, also 

performed every two days, was achieved by retrieving 2 mL of a homogeneous microcarriers 

suspension for manual cell counting and immunocytochemistry. Cell counting and viability 

measurements were performed by trypan blue exclusion, using a haemocytometer. 

Harvest  
Exhausted medium was retrieved from the vessel and the microcarrier-cell suspension was washed with 

40 mL of HBSS (Gibco, UK) twice. 20 mL of TryPLE Select (Gibco, UK) were incubated with the 

microcarrier-cell suspension for 15 minutes, at an agitation of 100 rpm in a standard incubator. To 

quench the dissociation reagent, 30 mL of complete medium were added. The suspension was passed 

through 40 µm cell strainers and centrifuged for 5 minutes at 400 xg. Harvested cells were counted 

using the trypan blue exclusion method and were either pelleted for RT-qPCR or plated at 6000 

cells/cm2 to perform several assays such as immunocytochemistry and NG108-15 co-culture assay.  

Analytical techniques  
Metabolite analysis 
On the days medium exchange occurred, metabolite analysis was performed using the the CuBian 

HT270 analyzer (Optocell GmbH & Co, KG, Germany to obtain the concentration of glucose, lactate 

and ammonia. 

Immunocytochemistry 
Samples were fixed using a solution of 4% PFA in PBS for 20 minutes at RT. After washing with PBS 

(Lonza) for 5 minutes, twice, permeabilization was done through incubation of samples with a solution 

of 0.1% Triton X-100 (Sigma) in PBS for 20 minutes at room temperature. After washing samples 

twice with PBS for 5 minutes, samples were incubated with a blocking solution of 5% Goat Serum 

(DAKO) in PBS for 1 hour at room temperature. Primary antibodies against p75NTR (Millipore), 

fibronectin (Sigma), CD90 (Millipore), nestin (Millipore), GFAP (Dako), S100β (Dako) and β-III 

tubulin (Sigma) (Table 2) were used with a dilution of 1:200 in blocking solution and incubated for 90 

minutes at room temperature. After washing with PBS, secondary antibodies (Goat anti-rb IgG (H+L)-

Alexa Fluor 594; Goat anti-Ms (H+L)-Alexa Fluor 488, Invitrogen) and Hoechst 33342 (Molecular 

Probes) were diluted in blocking solution using a dilution of 1:200 and 1:1000, respectively. Images of 

planar culture were acquired using the microscope system EVOS® FL (ThermoFisher Scientific), while 

microcarrier culture 16-bit multi-color montage images were obtained with a Zeiss LSM 880 with 

Airscan confocal microscope system (Carl Zeiss) and Zen 2009 acquisition software (Carl Zeiss).  

qRT-PCR 
Cells expanded on microcarriers in ultra-low attachment 6-well plates were detached as previously 

described. Cell suspensions were centrifuged and excess medium was removed prior to storage at -

80oC until further analysis. Pellets were first re-suspended in RLT Buffer (QIAGEN) before being 

homogenised in Qiashredder Columns (QIAGEN) according to the manufacturer’s instructions. 

Synthesis of complementary deoxyribonucleic acid (cDNA) and removal of genomic DNA was 

performed using the QIAGEN RT-PCR kit following the manufacturer’s instructions. Genomic DNA 

was eliminated using gDNA Wipeout Buffer (QIAGEN) with up to 1 µg template RNA and RNAse 

free water in a total reaction volume of 14 µL. The entire 14 µL reaction volume was subsequently 
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mixed with a MasterMix (Bio-Rad): template RNAs or no template for NTC (no template control), RT 

Primer Mix Quantiscript RT Buffer and Quantiscript Reverse Transcriptase or with RNA free water for 

no-RT (No reverse transcriptase control), in a total volume of 20 µL. The qPCR reactions were 

performed in Bio-Rad Hard-Shell Low Profile Thin-Wall 96 Well Skirted PCR plates on the Bio-Rad 

CFX 96 Connect Real-Time PCR System using the Quantitect SYBR Green PCR Kits (QIAGEN) 

according to the manufacturer’s instructions. For each reaction Quantitect Mastermix Buffer, 

Quantitect pre-validated primer assay (Table 2), water and cDNA were combined to make final 

reaction volumes of 25 µL. On each 96-well plate samples were analysed in triplicate with β-actin as an 

internal reference control and standard controls No-RT and NTCs to check for cross contamination. 

The 2-ΔΔCt method was used to analyse the data. 

Co-culture assay 
A co-culture of NG108-15 neurons with PA5 cells after expansion on microcarriers was used to assess 

neuron outgrowth. NG108-15 cells (ATCC HB-12317) are a hybrid rodent glioma-neuroblastoma cell 

line. As a positive control, a rat SCL 4.1/F7 (ECACC 93031294) Schwann cell line was used. 

NG108-15 and F7 cells were grown for two passages on T-flasks coated with poly-L-lysine (PLL, 

Sigma, 100 µg/mL) or uncoated, respectively. When 60-80% confluency was reached, NG108-15 cells 

were passaged by hitting the flask and re-plated at 6000 cells/cm2, while F7 cells were passaged 

following the same protocol used for PA5 hOMCs and re-plated at 6000 cells/cm2. For the co-culture 

assay PA5 hOMCs were plated at 6000 cells/cm2 onto freshly coated 24-well plates with poly-L-lysine 

(PLL, Sigma, 100 µg/mL). After 24 hours, NG108-15 cells were plated on wells with PA5 hOMCs or 

F7 cells using a seeding density of 500 cells/well. Medium changes were performed every two days 

and samples fixed after 5 days. 4-OHT was not added in the medium for this assay. 

Immunocytochemistry was performed as previously described. Images were acquired with EVOS FL 

Imaging System (Thermo-Scientific) at a 100x total magnification. 15 frames were acquired per 

condition (5 per technical repeat) and neurite quantification was performed manually using the NeuronJ 

(Meijering et al., 2004) plugin in ImageJ. 

Statistical methods 

The Kolmogorov-Smirnov test was used for data normality and Levene's test was used for 

homogeneity of variance. For pairwise-comparisons, one-way ANOVA was used with post-hoc 

Tukey's or Games-Howell test. A difference of p<0.05 was considered significant. All tests were 

performed using OriginPro 2016 (OriginLab, USA).  

Formulae 

The specific growth rate, µ (day-1): 
ln(𝑋) =  𝜇𝑡 + ln (𝑋0) 

Where 𝑋 is the concentration of cells, 𝑋0 is the concentration of cells at 𝑡0. 𝜇 for the exponential phase, 
considered to be from day 3 to 7.  
Doubling time, 𝑡𝑑 (days): 

𝑡𝑑 =
ln (2)
𝜇

 

Fold-increase: 

𝐹𝑜𝑙𝑑 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 =  
𝑋𝑡
𝑋0
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Where 𝐶𝑋(𝑡) is the cell concentration at the end of the culture and 𝐶𝑋(0) is the initial cell concentration. 

Specific nutrient consumption and metabolite production rate, 𝑞𝑚𝑒𝑡 (pmol.cell-1.day-1) 

𝑞𝑚𝑒𝑡 =
𝜇
𝑋0

𝐶𝑚𝑒𝑡(𝑡) − 𝐶𝑚𝑒𝑡(0)

𝑒𝜇𝑡 − 1
 

Where 𝐶𝑚𝑒𝑡(𝑡) and 𝐶𝑚𝑒𝑡(0) are the concentration of metabolite at the end and start of the exponential 

phase.  

Lactate yield from glucose, YLac/Glc 

𝑌𝐿𝑎𝑐/𝐺𝑙𝑐 =
∆[𝐿𝑎𝑐]
∆[𝐺𝑙𝑐]

 

Where ∆[𝐿𝑎𝑐] is the lactate production and ∆[𝐺𝑙𝑐] is the glucose consumption during the exponential 

phase. 

Results 
PA5 hOMCs planner cell culture 
PA5 hOMCs were cultured on a monolayer at a seeding density of 6,000 cells/cm2 for 7 days in 96-

well plates. Viable cell counts, performed with the CCK-8 viability reagent, showed increased growth 

over time, with the highest number of viable cells of 5.5×104 reached by day 7 (Figure 1 A). 

Morphologically, PA5 hOMCs showed an elongated, fibroblastic like shape (Figure 1 B). Cells stained 

positive for the glial markers p75NTR, S100β, and GFAP which are commonly used to characterise the 

OEC phenotype (Au et al., 2002; Bianco et al., 2004; Hahn et al., 2005; Kawaja et al., 2009). PA5 

hOMCs stained positive for other markers, such as nestin and β-III tubulin, associated with the 

neuronal phenotype (Gómez-Virgilio et al., 2018; Murrell et al., 2005). The population also stained 

positive for fibronectin (fibroblast marker) (Ito et al., 2006; Yiu & He, 2006) and CD90 (MSC marker) 

(C. Chen et al., 2014; Holbrook et al., 2011). 

Microcarrier screening for PA5 hOMCs growth on well plates 
The growth of PA5 hOMCs was tested on 10 commercially available microcarriers in ultra-low 

attachment 96-well plates. The growth of PA5 hOMCs was followed over 7 days as this is the length of 

time for the duration of one passage (Figure 2 A). After seeding on day 0, viable cell number was 

measured every two days, when media was exchanged. On day 1, viable cell numbers ranged from 

8.1x103 cells/well to 9.6x103 cells/well for Plastic LC, Synthemax II LC, Synthemax II HC, Plastic, 

Plastic Plus and FACT II (Figure 2 B). At the same time point, Star-Plus and Cytodex I microcarriers 

provided a viable cell number between 3.3x103 to 5.0x103 cells/well. As shown in Figure 2 C, by day 7, 

three distinct groups of microcarriers were observed. Plastic and Collagen microcarriers supported high 

growth of 8.8x104 and 7.5x104 cells/well. Plastic L, Synthemax II LC, Synthemax II HC, Collagen, 

PronectinF, FACT III and Cytodex I performed similarly between each other, yielding between 4.5x104 

and 6.4x104 cells/well. Plastic Plus and Star-Plus microcarriers yielded low cell numbers, lower than 

3.0x104 cells/well. All microcarriers except Star-Plus led to increase cell number across the days of 

culture, where after day 3 there was an increase in cell number/well (Figure 2 A). 

A second experiment was performed using ultra-low attachment 6-well plates using an increased 

working volume but maintaining scalable parameters. The number of microcarriers per well surface 

and the same initial seeding density of 6000 cells/cm2 were used. Haemocytometer counts were 

performed to measure viable cell density on day 7 and phenotypic changes were assessed through RT-
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qPCR. Plastic microcarriers led to the highest cell numbers (1.7±0.1x106 cells/mL), while Plastic Plus 

led to the lowest numbers (7.5±0.4x105 cells/mL) (Figure 3 A). Cell viability analysis revealed >95% 

viability of PA5 hOMCs on all microcarriers tested (Figure 3 B). Metabolite analysis of glucose, lactate 

and ammonium were performed on day 7 (Figure 3 C, D and E). Glucose concentrations were all 

between 4 - 8.5 mM, with Plastic showing the lower concentration and Plastic Plus the highest. The 

opposite trend was seen for lactate concentration with values between 12 - 16.5 mM. The concentration 

of ammonia was similar between all conditions with 0.8 mM for all microcarriers, except for Plastic 

microcarriers which produced a concentration of 0.65±0.1 mM. The phenotype of PA5 hOMCs was 

investigated using RT-qPCR. It is known that the olfactory mucosa population of cells harbours a mix 

of different cell types including mesenchymal stem cells, neural stem cells, fibroblasts and olfactory 

ensheathing cells (OECs). The OEC phenotype has been characterised by the expression of the glial 

markers p75NTR, S100β, GFAP and the neural stem cell marker nestin and early neural differentiation 

marker β-III tubulin. Fibronectin has been used as a marker of ‘contaminating’ cell types as it can 

indicate the presence of fibroblasts. Results show the upregulation of neural stem cell markers β-III 

tubulin for Plastic L, Plastic and Plastic Plus microcarriers by 2-fold, and nestin for Plastic and Plastic 

Plus by 1.6-fold (Figure 3 F). Given the phenotypic traits obtained for cells grown in ultra-low 

attachment in 6 well-plates, with the objective to create a scalable bioprocess, Plastic and Plastic Plus 

were subsequently used to grow PA5 hOMCs in agitated cell culture conditions in spinner flasks.  

Expansion of hOMCs in microcarriers suspension culture using spinner-flasks 
PA5 hOMCs growth and metabolic profile in cell cultures using Plastic and Plastic Plus 
microcarriers 
A method previously developed by Santos et al 2011 was adopted to performed PA5 hOMCs 

microcarrier cell culture in spinner flasks. A total working volume of 80 mL in 100-mL Belco spinner 

flasks was used with 50% of media change every two days, for a total of 7 days. An initial seeding 

density of 6000 cells/cm2 was used, which is equivalent to 3.4x104 cells/mL. Figure 4 A shows that 

both Plastic and Plastic Plus microcarrier cultures experienced a decrease in cell concentration after day 

1 from 3.4±0.03x104 cells/mL to 1.4±0.3x104 cells/mL and 9.4±1.3x103 cells/mL, respectively. Cell 

number started increasing after day 3. On day 7, the concentration of cells in cultures employing Plastic 

microcarriers was 1.4±1.1x105 cells/mL and for Plastic Plus microcarriers was 4.9±1.8x104 cells/mL 

(statistically significant, p<0.05). Cell viability remained above 90% (Figure 4 A) throughout the 

culture period. Representative images of Hoechst-counterstained PA5 hOMCs attached on Plastic and 

Plastic Plus microcarriers for each day of sample show cells were expanding on the microcarriers 

(Figure 4 E). Moreover, PA5 cells were completely detached from the microcarriers following the 

harvest in a gentle dissociation reagent and agitated conditions with high viability (Figure 4 F). 

Metabolic analysis of glucose, lactate and ammonia revealed similar concentration of these nutrient and 

metabolites for both conditions (Figure 4 B-D). On day 7, glucose concentration was of 10.5±1.7 mM 

and 11.5±1.6 mM, while lactate concentration was of 7.3±2.3 mM to 5.2±2.5 mM, for PA5 hOMCs 

grown on Plastic and Plastic Plus, respectively. The concentration of ammonia was of 0.7 mM for both 

conditions. Considering an exponential phase starting on day 3, specific consumption of glucose, 

specific production of lactate and ammonia, as well as yield of lactate per glucose were calculated. PA5 

hOMCs grown of Plastic Plus led to a specific glucose consumption rate of 24.4±2.3 pmol.day-1cell-1, 
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similar to the one measure for PA5 hOMCs grown on Plastic which was 20.4±4.7 pmol.day-1cell-1. 

Specific production rates for lactate and ammonia was 47.9±6.3 pmol.day-1cell-1 and 0.6±0.1 pmol.day-

1cell-1, respectively for PA5 hOMCs grown on Plastic Plus. These results were on average 2 times 

higher than the specific production rates observed for PA5 hOMCs grown on Plastic microcarriers 

(24.6±7.2 pmol.day-1cell-1 and 0.3±0.05 pmol.day-1cell-1 for lactate and ammonia, respectively). The 

yield of lactate per glucose was 1.4±0.4 and 2.0±0.3 for PA5 hOMCs grown on Plastic and Plastic Plus 

microcarriers, respectively.  

PA5 hOMCs phenotype and promotion of neuron outgrowth after growth on Plastic and Plastic 
Plus microcarrier suspension culture 
Immunocytochemistry was performed for characteristic hOMCs biomarkers as presented in Figure 5 

for PA5 hOMCs grown on Plastic and Plastic Plus microcarriers for 7 days. Immunocytochemistry 

results show the expression of p75NTR, GFAP, S100β (glial markers), β-III tubulin, nestin (neural 

markers), fibronectin (fibroblastic marker) on both Plastic and Plastic Plus microcarriers. RT-qPCR 

results (Figure 6 A and B), show the upregulation of several markers for PA5 hOMCs grown on Plastic 

Plus compared to cells at day 0. β-III tubulin (2.3-fold), Fibronectin (3.5-fold), KDR (2.9-fold) and 

Sox9 (2.9-fold) are upregulated for PA5 hOMCs grown on Plastic Plus microcarriers compared to PA5 

hOMCs grown on Plastic microcarriers by day 7. Most importantly, p75NTR, a neurotrophic marker 

expressed by OECs is expressed 2.3-fold more on day 7 by PA5 hOMCs grown on Plastic Plus 

microcarriers compared with cells on day 0, while PA5 hOMCS grown on Plastic microcarriers 

maintained the same level of expression of this marker (1.0-fold) (p<0.05). Furthermore, a co-culture 

assay with NG108-15 cells was used as an assay indicative of the capacity of PA5 hOMCs to promote 

neurite outgrowth, using F7 Schwan cells as positive control and NG108-15 cell only as a negative 

control. Representative images used to quantify neurite outgrowth are shown in Figure 5 C. The 

average neurite length was 36±1.3 µm for Plastic Plus microcarriers, significantly higher (p<0.05) than 

the average neurite length obtained for Plastic (29.1±1.5 µm) microcarriers and the positive control 

(27.9±0.1 µm) (Figure 5 D). The maximum neurite length obtained for Plastic Plus was 96±7.0 µm, 

significantly higher (p<0.05) than the maximum neurite length obtained for Plastic microcarriers 

(81.8±3.2 µm) and the positive control (57.9±3.3 µm) (Figure 5 E). The average neurite per neuron was 

of 0.38±0.05, significantly higher (p<0.05) than the one obtained for cells grown on Plastic 

microcarriers (0.23±0.02) and the positive control (0.22±0.04) (Figure 5 F).  

Discussion 
PA5 hOMCs are a potential candidate therapy for an allogeneic cell therapy for the treatment of spinal 

cord injury (Santiago-Toledo et al., 2019). High cell doses of up to 1 billion cells will be required to 

produce cell banks to be supplied to patients (Casarosa et al., 2014). It has been shown that stirred tank 

bioreactor cell culture using microcarriers is a reliable, reproducible method to achieve high numbers 

of cells in a scalable manner (Qiu et al., 2016; Rafiq et al., 2013; Carlos AV Rodrigues et al., 2018; 

Santos et al., 2011). The first step to develop such a production method would be to select the right 

type of microcarrier and several authors have shown the successful screening of microcarriers for the 

growth of MSCs and NSCs (T. Chen et al., 2011; Rafiq et al., 2016; Carlos A. V. Rodrigues et al., 

2011). Therefore, a similar strategy to those already presented for other cell types was used and in 

addition cell phenotype analysis was performed. PA5 hOMCs growth was followed for 7 days on 
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microcarriers using static 96-well plates. In terms of cell concentration after 7 days, while Plastic, 

Plastic L, Synthemax II LC, Synthemax II HC and PronectinF showed the most promising results, 

FACT III, Plastic Plus and Star-Plus microcarriers led to the lowest cell yields. Interestingly, it was 

observed that in spite of PA5 hOMCs efficiently attached to Plastic Plus microcarriers, the yield of 

cells on day 7 was lower than all other microcarriers with similar attachment efficiency (Plastic, Plastic 

L, Synthemax II LC, Synthemax II HC, and Collegen). This observation suggests that PA5 hOMCs 

grown on Plastic Plus microcarriers results in a slower growing population, in contrast with cells grown 

on neutrally charged surfaces. Interestingly, this has been reported for other anchorage-dependent cell 

types such as BM-MSCs (Rafiq et al., 2016). 

In order to further investigate the phenotype of PA5 hOMCs after 7 days of culture, static microcarrier 

cultures on ultra-low attachment 96-well plates were scaled up to ultra-low 6-well plates. Interestingly, 

RT-qPCR results show the upregulation of neural stem cell marker nestin and early neural 

differentiation marker β-III tubulin on Plastic and Plastic Plus microcarriers. Neural stem cells are a 

cell type present in the olfactory mucosa (Delorme et al., 2010; Murrell et al., 2005; Nash et al., 2001) 

and may therefore be regenerative constituents of the PA5 hOMC populations. The upregulation of 

nestin for cells grown on Plastic and Plastic Plus microcarriers could contribute to increased neural 

regeneration, and may have led to the survival of olfactory neurons, displaying the expression of β-III 

tubulin, an early neural differentiation marker. Furthermore, even though Plastic Plus microcarriers did 

not led to such an increase in cell number, positive surfaces have been used in the past to promote 

attachment of neuronal cell types that may lead to neural regeneration (Kozak et al., 1978). 

These results led to the selection of Plastic and Plastic Plus microcarriers for suspension culture in 

spinner flasks following a previously described method to grow hMSCs (Santos et al., 2011). Plastic L 

microcarriers were not taken into further studies due to the impracticality of in-house coating of 

microcarriers which is an additional expense and manipulation which would have to be considered in 

the manufacturing process. 

Suspension microcarrier culture of PA5 hOMCs was carried out for 7 days. After day 1, a drop in 

viable cell concentration was observed due to only around 70-75% of cells attaching for both 

conditions, indicating inefficient cell attachment. After day 3, cells in both conditions start to grow, 

however, lower cell expansion was observed on Plastic Plus microcarriers. Thus Plastic microcarriers 

may encourage expansion of faster growing clones. By day 7 significantly higher viable cell 

concentration is obtained for PA5 hOMCs grown on Plastic microcarriers compared to Plastic Plus 

microcarriers, showing comparable results to studies performed in ultra-low attachment well-plates. 

Even though lower amount of PA5 hOMCs was obtained on Plastic Plus microcarriers on day 7, 

compared to Plastic microcarriers, cultures produced similar concentrations of glucose, lactate and 

ammonia over time. The concentrations of ammonium and lactate were below the reported inhibitory 

levels for hMSCs of 35.4 mM and 5.8 mM, respectively (Schop et al., 2009). Therefore, it is unlikely 

that the concentration of lactate and ammonia had a negative impact on PA5 hOMCs growth, assuming 

that hOMCs and hMSCs share similar metabolic response properties. The specific consumption of 

glucose was similar for both cultures, while the production of lactate and ammonia was double the 

amount for PA5 hOMCs grown on Plastic Plus microcarriers. In this study, the yield of lactate from 
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glucose is close to 2 for PA5 hOMCs grown in both conditions, suggesting that glucose is metabolised 

through aerobic glycolysis. In aerobic glycolysis, in the presence of oxygen, glucose metabolism is 

shifted from OXPHOS to glycolysis (Jones & Bianchi, 2015). These results can be explained by the 

upregulation of LDH activity promoted by the presence of the oncoprotein c-Myc (Shim et al., 1998). 

The PA5 hOMCs population is genetically modified with a fusion gene, c-MycERTAM, activated by the 

synthetic estrogen-like agonist 4-hydrotamoxifen (Santiago-Toledo et al., 2019; Wall et al., 2016).  

Phenotype analysis performed through immunocytochemistry showed that expression of hOMCs 

characteristic biomarkers such as p75NTR, GFAP, S100β (glial markers), β-III tubulin, nestin (neural 

markers), fibronectin (fibroblastic marker) was maintained on both Plastic and Plastic Plus 

microcarriers after 7 days of expansion. Phenotype analysis was also assessed through RT-qPCR for 

PA5 hOMCs harvested at day 7 from Plastic and Plastic Plus microcarriers. Neurotrophin receptor 

p75NTR expression has been attributed to the presence of OECs, a slow adherent cell type present in the 

olfactory mucosa, which has been reported to promote neural regeneration (Franceschini & Barnett, 

1996; Pixley, 1992; Ramon-Cueto et al., 1993). Phenotypic analysis performed through RT-qPCR, 

revealed the upregulation of p75NTR more than 2.5-fold for PA5 hOMCs grown on Plastic Plus 

microcarriers compared to Plastic microcarriers, after day 7. Factors related to microcarrier surface 

such as charge and stiffness may have led to an increase in the expression of p75NTR for PA5 hOMCs 

grown on Plastic Plus microcarriers (Yang et al., 2017). The upregulation of β-III tubulin, although not 

statistically significant, might indicate the presence of a higher number of early neural differentiated 

cells or the promotion of survival of olfactory neurons on Plastic Plus microcarriers compared to 

Plastic microcarriers on day 7. 

PA5 hOMCs potency was assessed in terms of ability to promote neurite outgrowth in a co-culture 

assay with NG108-15 cells. Results reveal that PA5 hOMCs grown on Plastic and Plastic Plus 

microcarriers retained promising functional activity. Studies of PNS repair which employed this assay 

shown that neurite outgrowth in vitro can be associated with Schwann cell potency to enhance neurite 

length in vivo (Daud et al., 2012; Jonsson et al., 2013). 

The increased neurite outgrowth observed on NG108 co-culture assay using PA5 hOMCs grown on 

Plastic Plus microcarriers is likely to be related with the increased expression of p75NTR, a marker of 

OECs (Delorme et al., 2010; J. R. Doucette, 1984; Lindsay et al., 2013; Wolozin et al., 1992). 

Therefore it is hypothesized that Plastic Plus led to an enrichment of OECs, which were then 

responsible for the increase in neurite outgrowth on this condition. In order to fully elucidate the 

mechanism of action it will be necessary to subclone the PA5 hOMCs population. These clones will 

have to be phenotypically characterized through immunocytochemistry or flow cytometry, expanded 

and checked for potency using the NG108 co-culture assay as well as animal studies. 

In conclusion, we have demonstrated that expansion of PA5 hOMCs on Plastic and Plastic Plus 

microcarriers in suspension culture in agitated culture using spinner flasks is permissive. This study 

shows that expanding c-MycERTAM-derived hOMCs on Plastic Plus microcarriers leads to cells with 

increased potency and increased expression of p75NTR, a marker expressed by OECs. The work 

presented in this manuscript is a proof of concept that reveals competing effects of microcarriers on cell 

expansion versus functional attributes, showing that designing scalable bioprocesses should not only be 
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driven by cell yields, but also by phenotype and potency. This method contributes for the design of a 

bioprocess that in the future can support the expansion of clones of the PA5 hOMCs population in 

order to create an off-the-shelf advanced therapy for the treatment of CNS injuries such as those for the 

spinal cord. 
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Tables 
Table 1 - List of microcarriers used and respective properties. 

Microcarrier Manufacturer Diameter 
(µm) 

Matrix Surface 
coating/charge 

Average 
density 

Plastic Pall 125-212 Polystyrene None 1.02 

Plastic Laminin 
coated (Plastic L) 

Pall 125-212 Polystyrene Cultrex ® Mouse 
Laminin I 

1.02 

Plastic Plus Pall 125-212 Polystyrene Cationic surface 1.02 

PronectinF ® Pall 125-212 Polystyrene Recombinant 
Fibronectin 

1.02 

Collagen Pall 125-212 Polystyrene Type I porcine 
collagen 

1.02 

FACT III Pall 125-212 Polystyrene Type I porcine 
collagen 

1.02 

Star-Plus Pall 125-212 Polystyrene Cross-linked 
polystyrene 

1.02 

Hillex II Pall 160-200 Polystyrene Cross-linked 
polystyrene 

Cationic surface 

1.09 

Synthemax II ® 

(Low and High 

Concentration) 

Corning 125-212 Polystyrene Synthemax II ® 1.02 

Cytodex ITM GE Healthcare 60-87 Dextran Positively 

charged N,N-

diethylaminoethy

l groups 

1.03 

 
Table 2 - List of antibodies used for immunocytochemistry. 

Reactivity Antibody Host Company Code 

p75NTR IgG polyclonal Rabbit Millipore ab1554 

Fibronectin IgG monoclonal Mouse Sigma F6140 

Nestin IgG monoclonal Mouse Millipore MAB5326 

S100β IgG polyclonal Rabbit Dako Z0311 

GFAP IgG polyclonal Rabbit Dako Z0334 

β III Tubulin IgG monoclonal Mouse Sigma T8660 

CD90 IgG monoclonal Mouse Millipore MAB1406 
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Rabbit IgG (H+L) IgG DyLight 594 Goat Thermo Scientific 35560 

Mouse IgG (H+L) IgG DyLight 488 Goat Thermo Scientific 35510 

 

Table 3 - List of Primers used for qRT-PCR. 

Biomarker Description NCBI Accession QuantiTect Primer 
Assay 

Catalog Number 

p75NTR Glial Marker NM_002507 Hs_NFGR_1_SG QT00056756 

S100β Glial Marker NM_006272 Hs_S100B_1_SG QT00059164 

GFAP Glial Marker NM_001131019 Hs_GFAP_1_SG QT00081151 

Nestin Neural stem cell 
marker 

NM_006617 Hs_NES_1SG QT00235781 

β-III-tubulin Neural differentiation 
marker 

NM_006086 Hs_TUBB3_vb.1_SG QT02399950 

Fibronectin Cell adhesion marker NM_002026 Hs_FN1_1_SG QT00038024 

CD34 Negative MSC 
Marker 

NM_001773 Hs_CD34_1_SG QT00998284 

CD45 Negative MSC 
Marker 

NM_002838 Hs_PTPRC_1_SG QT00028791 

CD73 MSC Marker NM_002526 Hs_NT5E_1_SG QT00027279 

CD90 MSC Marker NM_001311160 Hs_THY1_1_SG QT00023569 

CD105 MSC Marker NM_00118 Hs_ENG_1SG QT00013335 

KDR Endothelial Cell 
Marker 

NM_002253 Hs_KDR_1_SG QT00069818 

Sox9 Chrondrogenic 
Marker 

NM_000346 Hs_SOX9_1_SG QT00001498 

Runx2 Osteogenic Marker NM_001015051 Hs_RUNX2_1_SG QT00020517 

SPP1 Osteogenic Marker NM_000582 Hs_SPP1_1_SG QT01008798 

PPARγ Adipogenic Marker NM_005037 Hs_PPARG_1_SG QT00029841 

β-actin Housekeeping gene NM_001101 Hs_ACTB_2_SG QT01680476 
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Figure Legends 
Figure 1 - Growth and phenotype of PA5 hOMCs on monolayer culture. (A) Cell growth was 
quantified using the CCK-8 viability reagent for 7 days. (B) Brightfield image of cells in culture. Cells 
stained positive for (C) p75NTR, (D) S100β, (E) GFAP, (F) β-III tubulin, (G) nestin, (H) fibronectin, 
and CD90 (I). Cell nuclei were counterstained with Hoechst (blue). Data is represented as mean±SEM, 
n = 3. (Scale bar =400μm). 

 
Figure 2 - PA5 hOMCs were grown on microcarriers in 96-well plates for 7 days on 10 different 
microcarriers. (A) Growth curve showing viable cells/well obtained through measurements of 
metabolite activity using the CCK-8 viability reagent. (B) Total viable cell/well achieved for each 
microcarrier on day 1. (C) Total viable cell/well achieved for each microcarrier on day 7. Data 
represented as mean ± SEM, n=3. Three independent repeats were performed for each condition. 
Significant differences were noted with (*) for p<0.05. 
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Figure 3– PA5 hOMCs were grown on Plastic L, Synthemax II LC, Collagen, Plastic, PronectinF and 
Plastic Plus microcarriers for 7 days with 50% media change every 2 days and using an initial seeding 
density of 6000 cells/cm2. Viable cell concentration (A) and cell viability (B) were measured. 
Metabolite analysis for glucose (C), lactate (D), and ammonium (E) were performed. (F) Expression of 
p75NTR, S100β, GFAP, β-III tubulin, nestin and fibronectin by PA5 hOMCs grown on Plastic L, 
Synthemax II LC, Collagen, Plastic, PronectinF and Plastic Plus, assessed through RT-qPCR on day 7. 
PA5 hOMCs before seeding were used as a reference. Data represented as mean ± SEM, n = 3. Three 
independent repeats were performed for each condition. Significant differences were noted with (*) for 
p<0.05. 
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Figure 4- Comparison of PA5 hOMCs growth on Plastic and Plastic Plus microcarriers, in spinner 
flasks for 7 days. (A) Viable cell concentration (cells/mL) and cell viability was measured via 
haemocytometer counts. Metabolite analysis was performed to determine concentration of (B) glucose 
(mM), (C) lactate (mM) and (D) ammonium (mM). (E) Representative images of cells on Plastic and 
Plastic Plus microcarriers, for each day of sample. Hoechst was used as a nucleic dye. (F) 
Representative bright field pictures of PA5 cells before and after harvest from Plastic and Plastic Plus 
microcarriers. Data is presented as mean ± SEM, n=3. Three independent runs were performed for each 
spinner flask condition. Significant differences were noted with (*) for p<0.05. Scale bar = 200 µm. 
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Figure 5 – Expression of p75NTR, GFAP, S100β (glial markers), β-III tubulin, nestin (neural markers), 
fibronectin (fibroblastic marker) after 7 days of growth of PA5 hOMCs on Plastic, Plastic Plus 
microcarriers under stirred suspension cultures in spinner flasks. 
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Figure 6 - The expression of p75NTR, GFAP, S100β (glial markers), β-III tubulin, nestin (neural 
markers), fibronectin (fibroblastic marker), CD90, CD105, CD73 (positive MSCs markers), CD34, 
CD45 (negative MSCs markers), PPARg (adipogenesis marker), SPP1, Runx2 (osteogenesis markers), 
Sox9 (chondrogenesis marker) and VEGFR2 (endothelial cell marker). (A) Heat map for gene 
expression variation relative to cells before seeding. (B) Values of expression relative to cells before 
seeding. NG108-15 co-culture assay to assess the potential for neural regeneration of PA5 hOMCs. F7 
Schwann cells were used as a positive control, and NG108-15 neurons only were used as negative 
control. (C) Representative images used to quantify neurite outgrowth. (D) Average neurite length, (E) 
maximum neurite length (F) average neurite per neuron, were higher for Plastic and especially Plastic 
Plus microcarriers (scale bar=400 µm). Data represented as mean ± SEM (n=3). Three independent 
runs were performed for each spinner flask condition. Significant differences were noted with (*) for 
p<0.05. 

 
 




