
Figure 2.  The storm induced sea surface temperature (SST) anomaly compared with modelled 

storm wind footprint. (a) Satellite observed SST anomaly valid 0000 UTC on 20 September (source: 

https://marine.copernicus.eu/about-us/about-producers/sst-tac/, accessed 21 September 2020). 

(b) Time-integrated maximum 10-m mean wind speed (shaded) and diagnosed gusts (contours 

every 5ms–1 starting at 30ms–1) obtained from a 72h Weather Research and Forecasting (WRF) 

simulation initialised with ECMWF ERA5T reanalysis data at 0000 UTC 16 September 2020. (Credits: 

EU Copernicus Marine Service/ ECMWF. Contains modified Copernicus Climate Change Service 

Information 2020.)
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Introduction

Under the United Nations Framework 

Convention on Climate Change (UNFCCC), 

developed countries are required to report 

their national emissions using greenhouse 

gas (GHG) inventories, which combine data 

on GHG-producing activities (e.g. energy 

production or waste management) with 

emissions factors for each activity. While it is 

considered best practice for these ‘bottom–

up’ methods to be evaluated using atmos-

pheric data-based ‘top–down’ techniques, 

currently, only the United Kingdom (UK), 

Switzerland and Australia have included 

such methods in their National Inventory 

Reports (Brown et al., 2019).

Cities are becoming a more important 

modelling scenario as various sub-national 

groups, including cities, universities and 

large companies, declare climate emer-

gencies and produce policies designed to 

reduce GHG emissions in line with a +1.5 

degC target (Masson-Delmotte et al., 2018). 

The mayor of London has developed and 

begun enacting plans to make London 

carbon neutral by 2050 (Greater London 

Authority,  2018). These policies, the size 

of the city and the presence of a national-

scale network (Stanley et al.,  2018) make 

London a prime case study for the develop-

ment of top–down, urban inverse modelling 

techniques.

Inverse models calculate the unknown 

cause of an observed effect rather than the 

more straightforward problem of predict-

ing the effect of a known cause. For esti-

mating GHG emissions, this means using 

observations of atmospheric composition, 

with atmospheric transport and statistical 

models, to calculate the causal GHG emis-

sions. Atmospheric transport models can 

introduce substantial uncertainty into the 

process. For this reason, the models need 

to be evaluated in the context of new sce-

narios such as cities.

The two most abundant long-lived GHGs 

are carbon dioxide and methane, and both 

gases have been the subject of top–down 

investigations in other cities (using differ-

ent models than those used in this study), 

such as Boston, USA (McKain et al.,  2015; 

Sargent et al.,  2018); Los Angeles, USA 

(Verhulst et al.,  2017); and Paris, France 

Development of an urban 
greenhouse gas modelling 

system to support a London 
monitoring network



Figure 1.  Methane emissions from NAEI 2016 dataset across London for the two largest sectors;  

(a) waste treatment and disposal, (b) natural gas distribution – labelled ‘offshore’ in the inventory and 

(c) the total methane emissions on the model grid. Outlines show UK coast and London boundaries.

Figure 2.  Schematic depiction of a Lagrangian particle dispersion model, such as NAME. Each 

sphere represents a modelled particle, which is released from the measurement location and 

transported backwards in time through advection and diffusion, and its passage near the surface 

is recorded to estimate where the air may have picked up methane emitted from the surface.354
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(Staufer et al.,  2016). Because emissions 

inventories only quantify anthropogenic 

sources, any influence from the biosphere 

must be accounted for. However, it is an 

ongoing research challenge to isolate 

anthropogenic carbon dioxide emissions 

in top–down studies as the biosphere (the 

photosynthesis and respiration of plants) 

can dominate the observations (White 

et  al.,  2019). For this reason, our study 

focuses on modelling methane, whose 

emissions are overwhelmingly anthropo-

genic in London and the southeast of the 

UK. Furthermore, methane inventories are 

thought to be more uncertain than those 

of carbon dioxide (±16.7% for methane vs 

±2.9% for carbon dioxide in the UK inven-

tory (Brown et al., 2019)) and could benefit 

more from top–down evaluation.

London’s methane emissions are esti-

mated in the 2016 National Atmospheric 

Emissions Inventory (NAEI) to be 62kT per 

year, which is 3.1% of the UK total, despite 

London only occupying 0.64% of the UK’s 

land surface (using Office for National 

Statistics data). Cities across the UK are 

similar hotspots of methane emissions due 

to the density of gas transmission infra-

structure and waste management facilities. 

Verified emissions reductions in London 

may provide evidence for similar policies 

to be used in other cities.

The London GHG network ‘London GHG’ 

will comprise around 10 high-frequency 

instruments distributed across the city. 

To minimise difficulties in modelling the 

urban roughness layer, instruments are pri-

marily being set up on buildings that lie 

high above the local urban canopy, such 

as lone tower blocks and tall church spires. 

In this paper, we will present and discuss 

early results from the measurements and 

modelling of a test site in central London. 

These results will inform future stages of the 

London GHG project.

Methods

We have established an initial measurement 

site at the Thames Barrier in central London 

(51.497°N, 0.037°E). This site measures car-

bon dioxide and methane using a Picarro 

G2401 cavity ringdown spectrometer, which 

performs a measurement every 5s with a 

precision of approximately 50 parts per bil-

lion (ppb) for carbon dioxide and 1ppb for 

methane. These measurements are known 

as mole fractions, which is the atmospheric 

concentration of the gas measured as the 

fraction of particles in the air of the gas 

being observed. This instrument is similar 

to those installed in the national-scale UK 

Deriving Emissions linked to Climate Change 

(UK DECC) network (Stanley et al., 2018). In 

this article, we will examine the initial period 

of data collected from 5 May 2018 to 31 

July 2018.

We combine two bottom–up invento-

ries to use as our emissions in this work, 

with NAEI used over the UK and Emissions 

Database for Global Atmospheric Research 

(EDGAR) used in surrounding countries. The 

NAEI is a gridded inventory produced by the 

UK government and provides a resolution 

of 1km × 1km, which can identify emissions 

within London, while EDGAR is produced 

by the European Commission Joint Research 

Centre at 0.1° × 0.1° (approximately 10km 

× 10km in the UK). The latest versions of both 

inventories available at the time of writing 

are used, which are 2016 for the NAEI and 

2012 for EDGAR. Both inventories provide 

annual mean estimates but unfortunately 

do not include any seasonal or diurnal time 

variations nor spatial uncertainty estimates.

Within London, NAEI methane emissions 

are predominantly due to waste water 

treatment and leakages in the domestic 

gas distribution system. Emissions from 

the gas network are roughly distributed by 

population in the inventory, while waste 

emissions are centred on multiple emis-

sion hotspots across the city, as shown in 

Figure 1. These hotspots may provide a chal-

lenge for atmospheric modelling as they 

are of a size similar to, or smaller than, the 

model resolution.

Two models are required to infer GHG 

emissions from atmospheric concentra-

tions: a physical model and a statistical 

model. The physical model is usually an 

atmospheric or chemical transport model 

that estimates the atmospheric concen-

tration at a given location and time using 

emission (flux) data and meteorological 

input. The statistical model compares the 

modelled and observed concentrations and 

calculates the emissions field that enables 

the model to best replicate observations, 

subject to various constraints (Ganesan et 

al., 2014). In this work, we focus on analys-

ing and comparing the performance of the 

two physical models in an urban environ-

ment. We use two models that work quite 

differently in order to identify the best path 

forward for future modelling in the London 

GHG project.

The first of the two physical models used 

in this work is the Met Office Lagrangian 

particle dispersion model, the Numerical 

Atmospheric-dispersion Modell ing 

Environment (NAME) (Jones et al.,  2007). 

Atmospheric transport is simulated in 

NAME as the advection and diffusion of 

thousands of particles, which are tracked 

backwards in time from the measurement 

location, recording where they pass near  

(within 40m of ) the surface – the assumed 

source of emissions (Manning et al.,  2011) 

(Figure  2). The model provides estimates 

of observation sensitivities known as ‘foot-

prints’, which are 2D fields that map how 

much the different regions in the emissions 



(a) (b)

(c) (d)

Figure 4.  NAME and ADMS-URBAN footprints over London for (a, b) calm weather 1500 UTC, 10 May 

2018, and (c, d) a passing front at 1500 UTC, 24 May 2018. Single-site meteorology ADMS-URBAN 

agrees qualitatively with NAME using gridded meteorological input in most weather conditions 

over London, but differences are found in the overall magnitude of the footprint and during com-

plex meteorological conditions (e.g. passage of fronts).

Figure 3.  Domain and boundaries for NAME; height not to scale.
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field contribute to the observed atmospheric 

concentration of the gas for each measure-

ment. The model also estimates where and 

when particles leave the domain so that 

boundary conditions can be accounted 

for. Mole fractions at the measurement site 

can be estimated as the product of each 

footprint and the emissions field, plus any 

contribution from the mole fraction at the 

boundary of the domain. The domain and 

boundaries used in this work are shown 

in Figure  3. The boundary conditions are 

taken from the Copernicus Atmosphere 

Monitoring Service global methane prod-

ucts, which use satellite measurements and 

models to produce global four-dimensional 

methane fields (Inness et al., 2019), adjusted 

to better match background measurements 

at Mace Head, Ireland.

The NAME model was run offline using 

Met Office Unified Model meteorology. 

We use the high-resolution (1.5km) UKV 

meteorological data, where available, and 

the approximately 12km-resolution global 

dataset elsewhere. While the UKV meteorol-

ogy has a high enough resolution to resolve 

urban-scale phenomena such as the urban 

heat island, NAME itself does not explic-

itly account for urban turbulent transport. 

Footprints and emissions are combined 

in a multiple-resolution grid shown in 

Figure  1(c), with London and its surround-

ings in a high-resolution (0.032° × 0.021°, 

~2.5km) grid embedded in a low-resolution 

(0.352° × 0.234°, ~25km) grid used for previ-

ous national modelling (Lunt et al., 2016).

The second physical model used is 

ADMS-URBAN produced by Cambridge 

Environmental Research Consultants 

(Stocker et al., 2012; Hood et al., 2018). This 

model is designed specifically to model 

urban environments at a very high (street 

level) resolution, taking account of complex 

features such as the effect of buildings. 

ADMS-URBAN differs from NAME in several 

key ways: ADMS-URBAN can explicitly rep-

resent large numbers of individual sources, 

including point sources (with specified 

heights) and road sources, but is limited in 

domain, and the concentration downstream 

of each source is represented by an ana-

lytic distribution that, for point sources, is 

Gaussian in neutral and stable conditions 

and skewed Gaussian in unstable conditions 

but has other more complex forms for road 

sources. The concentration distribution is 

stationary in time for each successive hour 

and may use single-site or gridded mete-

orology to calculate the footprint. Here, 

we drive ADMS-URBAN with meteorologi-

cal measurements from Heathrow Airport. 

These measurements are internally modi-

fied according to the difference in rough-

ness lengths from the urban landscape at 

Heathrow and the Thames Barrier, resulting 

in a lower windspeed. This is the same setup 

that has been successfully used for model-

ling air quality in London (Hood et al., 2018). 

The boundary layer height is calculated 

internally as opposed to NAME, which 

uses the value diagnosed in the Unified 

Model. In this study, the domain for ADMS-

URBAN is the same as that used by the 

London Atmospheric Emissions Inventory, 

which encompasses all London boroughs 

and everything within the M25. As ADMS-

URBAN does not estimate the influence of 

fluxes outside London or regional bound-

ary conditions, the ADMS-URBAN footprint 

requires additional information so that the 

total methane concentration can be simu-

lated. In this study, we embedded ADMS-

URBAN footprints within the larger-scale 

NAME footprints. The ADMS-URBAN foot-

prints are coarsened to match the NAME 

high-resolution grid (~2.5km) and thus loses 

some spatial information as the grid carto-

graphic projections are otherwise incom-

patible. The geographic extent of London 

used throughout the paper is taken from 

the OpenStreetMap London administration 

polygon, rasterised onto the NAME high-

resolution grid.

Results and Discussion

Examples of NAME and ADMS-Urban foot-

prints are shown for two different mete-

orological conditions in Figure  4. The top 

row shows footprints under steady westerly 

winds at 1500 UTC, 10 May 2018, whereas the 

bottom row shows footprints at 1500 UTC, 24 

May 2018, under more complex conditions, 

with fronts passing over London (Figure 5). 

Under the steady westerly winds, both foot-

prints are qualitatively similar, with observa-

tions at the Thames Barrier being influenced 



Figure 6.  Histogram of boundary layer heights used by NAME and ADMS-URBAN. The peak in 

ADMS-URBAN data is due to the lower limit of 120m used by the model. Lower boundary layer 

heights result in higher sensitivity to emissions, all else being equal.

Figure 5.  Met Office analysis charts for 1200 UTC 24 May and 0000 UTC 25 May 2018, showing the passage of fronts through London. (Reproduced from 

the Met Office Daily Weather Summary 2018, © Met Office Crown Copyright.)
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by fluxes from western and central London, 

although the ADMS-URBAN footprint is four 

times more sensitive to emissions when 

both models are integrated over London. 

Under the more complex meteorological 

scenario, the NAME footprints indicate sen-

sitivity to a wider area of London with nearly 

twice the total London sensitivity as ADMS-

URBAN, presumably reflecting the range of 

wind directions experienced by the model 

particles, whereas ADMS-URBAN shows sen-

sitivity to a narrower region upwind of the 

measurement site.

On average, ADMS-URBAN is about twice 

as sensitive to London fluxes as NAME, with 

a mean (5th–95th percentile) total London 

sensitivity of 0.97 (0.24–2.96) (molm−2s−1)−1 

compared to 0.43 (0.09–1.39) (molm2s−1)−1 

for NAME. One possibility for the difference 

in sensitivity is the internal boundary layer 

height used by each model. Figure 6 shows 

a histogram of the boundary layer heights, 

demonstrating ADMS-URBAN’s overall shal-

lower boundary layers. The boundary layer 

is important in determining surface sensitiv-

ity as it limits the vertical mixing of air. In the 

models, this increases surface sensitivity, 

reflecting how low boundary layers trap 

GHGs and increase their atmospheric con-

centration near the surface.

Figure  7(a) shows the hourly median 

and 33rd–66th and 5th–95th percentile 

ranges of methane observations at the 

Thames Barrier between 5 May 2018 and 

31 July 2018 inclusive. Observed mole 

fractions are generally higher and more 

variable at night than during the day, and 

the lowest values observed are typically 

observed during the daytime. This differ-

ence is thought to be largely due to diur-

nal changes in atmospheric stability, with 

stable nocturnal boundary layers trapping 

locally emitted methane in contrast to 

strong mixing of nearby sources during 

the day (Stull,  1988).

Figure  7(b) shows the mean observed 

mole fractions as a function of wind direc-

tion and wind speed (from the Met Office 

UM analysis meteorology as measurements 

were not made at the Thames Barrier), 

which highlights that the highest observed 

concentrations occur at low windspeeds 

and/or from an easterly direction, with a 

spot of high emissions from the northeast. 

There are several possibilities why easterly 

winds are associated with higher methane 

concentrations. The first reason is that these 

winds are likely to be carrying emissions 

from mainland Europe, with the Benelux 

region being particularly high in emissions 

according to the EDGAR inventory. In con-

trast, when winds come from the west, they 

arrive in the UK or Ireland with mole frac-

tions consistent with the hemispheric back-

ground. A contribution from local sources 

is also possible, with several large methane 

emission hotspots within several kilome-

tres of the Thames Barrier, according to 

the NAEI. For example, emissions from the 

Beckton Sewage Treatment Works approxi-

mately 4 km away may be consistent with 

the maximum rise in the mole fraction at 

around 50o. Mole fractions associated with 

this wind direction tend to be highly vari-

able, suggesting a nearby plume imping-

ing on the measurement site, rather than a 

more well-mixed regional source. Data from 

the addition sites planned around London 

could help distinguish between these two 

cases by providing different viewpoints on 

local emissions.

By combining the footprints for NAME 

or ADMS-URBAN (embedded within NAME) 

with the NAEI and EDGAR emissions fields, 

we can produce a modelled time series that 

can be compared to the Thames Barrier 

data. An example for a typical 2-week period 

is shown in Figure  8. The modelled mole 

fractions are attributed to three different 

factors: fluxes from within London, fluxes 

outside London and contribution from the 

boundary conditions at the edge of our 

NAME domain. The two models only differ 

in their modelled London contribution as 

the ADMS-URBAN footprints are embedded 

into the NAME-derived regional footprints 

and boundary conditions. The full period 

mean and 5th–95th percentiles of the mole 

fraction due to sources within London for 
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Figure 8.  Time series comparison of modelled and observed fluxes for both NAME and ADMS-

URBAN embedded in NAME. The different colours represent the contribution from different geo-

graphical regions, with the Background and Non-London Fluxes being the same between the two 

models. The purple segments show where the two London contributions overlap.

(a) (b)

(c) (d)

(e) (f)

Figure 7.  (a, c, e) Methane hourly median (black line) and 33rd to 66th (orange area) and 5th–95th (blue area) percentile range mole fractions and  

(b, d, f ) rose plot (angular: wind direction, radial: wind speed in ms−1) for the Thames Barrier (51.497°N, 0.037°E) for (top) observations, (middle) NAME 

and (bottom) ADMS-URBAN between 5 May 2018 and 31 July 2018. Extreme values in a are not shown to allow a clearer comparison to model values.
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NAME and ADMS are 34.2 (4.37–121) ppb 

and 55.9 (9.30–173) ppb, respectively, com-

pared to 45.2 (9.67–113) ppb from regional 

sources and 1921 (1910–1937) ppb from the 

boundary conditions. The modelled con-

centrations generally capture the observed 

diurnal cycle, although the magnitude of 

the night-time peaks can differ from the 

observed data by around a factor of two 

or more. NAME mostly underpredicts meth-

ane concentration, while the ADMS-URBAN 

model underpredicts on some nights and 

overpredicts on others.

Figure  7(c–f ) shows the hourly medians 

and wind dependence for the observed, 

NAME and ADMS-URBAN modelled mole 

fractions. From the hourly medians, the 

night-time underestimation seen in Figure 8 

is more evident. Both models show an 

increase in mean mole fractions at low wind 

speeds, but at a much lower magnitude 

than in the observations. This finding could 

be because nearby sources (within a few 

km) are larger than estimated in the inven-

tory, or it could show that the models tend 

to overestimate mixing during low-wind 

conditions, with both possibilities suggest-

ing the high observations are not primarily 

due to the Benelux region. The hotspot to 

the northeast is also not captured in the 

models, which may indicate that a source 

in this direction is not present or underesti-

mated in the inventory, or it could show that 
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Table 1.

Linear fit statistics for model-observation comparison. The slope is derived with the model-predicted mole fraction as the independent 

variable (as in Figure 9), and the bias is the mean of the data minus the model (i.e. a positive bias, or a slope greater than one shows a 

model underestimate and vice versa).

Model configuration Slope R2 Bias (ppb) Standard deviation (ppb)

NAME 1.3 0.67 +12 59

ADMS embedded in NAME 0.71 0.43 –17 79

NAME (London) 1.5 0.46 +28 72

ADMS embedded in NAME (London) 0.53 0.19 –2.9 92

NAME (well mixed) 1.2 0.77 +1.8 16

ADMS embedded in NAME (well mixed) 0.95 0.63 –6.6 20

Figure 9.  The top row shows the hourly mean mole fractions (contributions from London, regional 

sources and boundary conditions) for NAME (left) and ADMS (right). The bottom row shows the 

London contribution only, by subtracting the modelled non-London component from both the 

data and the model.
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model transport is generally too dispersive 

for this wind sector.

Figure  9 shows the modelled mole frac-

tions plotted against the observations for 

the two dispersion models, for total con-

centrations and the London contribution 

only. For this analysis, the data were filtered 

to retain only points where the observa-

tional variability within each hour period 

was less than one half of the modelled 

London contribution. This removes points 

heavily influenced by local emissions that 

the models are not expected to capture 

accurately. Summary statistics are shown in 

Table 1. Overall, the models show broadly 

similar correlations with the data, despite 

their very different architectures. The NAME 

model has a slope of regression greater 

than 1, suggesting that the emissions or 

modelled sensitivities are underestimated. 

The opposite is true for the ADMS model, 

although the line of regression is skewed 

by a small number of points where the 

model greatly overpredicts methane con-

centrations. For both models, the R2 value 

decreases when looking at just the London 

contribution, perhaps because they strug-

gle to accurately represent complex urban 

meteorology or because of errors in the 

distribution of nearby emissions sources in 

the NAEI. During the most well-mixed condi-

tions (between 1100 and 1700, when hourly 

observation variability is below 5 ppb), the 

models are in closer agreement but show 

lower sensitivity to London emissions than 

at other times. Overall, model output from 

NAME correlates more strongly with the 

observations than ADMS-URBAN, perhaps 

due to the use of three-dimensional meteor-

ology compared to single-site meteorology. 

However, ADMS-URBAN better captures the 

diurnal cycle present in the observations, 

possibly due to the different boundary layer 

height calculations used, although there 

could be many factors that contribute to 

both differences between the models.

These simulations show that NAME and 

ADMS combined with the NAEI can capture 

some of the major features in a methane 

mole fraction time series at an urban site. 

The two models show similar features in their 

simulated mole fractions, despite a different 

modelling approach and driving meteorol-

ogy, which suggests that a substantial por-

tion of the model–measurement mismatch 

is due to the differences between the truth 

and inventory emissions magnitude, distri-

bution and/or temporal variability. The next 

step in the development of a modelling sys-

tem to support the London GHG network 

is to develop a new statistical model, an 

inverse modelling system that can determine 

whether changes in emissions and their dis-

tribution can improve the fit between the 

model and the data (Lunt et al.,  2016). The 

differences between the models will lead 

to differences in inferred emissions from an 

inverse modelling system. These differences 

will capture some of the sensitivity of the 

inverse models to atmospheric transport 

error and can help better inform interpreta-

tion of inferred emissions as a result.

Conclusion

As the first step in the development of a 

network for monitoring of London’s carbon 

dioxide and methane emissions, we have 

established a continuous measurement site 

on the Thames Barrier. We analysed meth-

ane data from this site during the summer 

of 2018 and compared the observations to 

two distinct atmospheric transport models, 

NAME and ADMS-URBAN. Results showed 

that, over a 3-month period, the models 

could capture some of the broader features 

in the data, such as the diurnal cycle and 

wind direction dependence. The consist-

ency of the difference between the model 

prediction of some of these features and 

the data suggests that a substantial propor-

tion of the model–observation discrepancy 

is due to errors in the emission inventories.

We will use both models in a future emis-

sions estimation framework to provide some 

estimate of the sensitivity of the derived 

emissions to atmospheric transport model 

errors. Further work towards a London GHG 
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monitoring network will involve the set-up 

of additional measurement sites across the 

city and the development of an urban-scale 

inverse modelling system that will use the 

transport models from this work to obtain 

top–down emissions estimates for London.

Provided that the network can be sup-

ported over the coming years, the results 

from these estimates will be supplied to 

policymakers to help determine whether 

London’s emissions reduction targets have 

been successful. The London GHG system 

also has the potential to identify missing 

sources or spatial discrepancies in the NAEI 

and may be able to give some insight into 

the temporal variability in emissions not 

accounted for in the bottom–up inventories.
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When did you first become 
interested in the weather?
Two notable people sparked my interest in 

the weather, the first of which is my Nan. 

For as long as I can remember, we have not 

had a conversation where one of us has not 

mentioned the weather, and who can blame 

her; us Brits love nothing better than talking 

about it! My second influence is a slightly 

unique one. When I was 8 years old, I got the 

opportunity to sing on a well-known morn-

ing TV show with my school choir, and just 

before we aired, I watched the production 

of a live weather forecast broadcast. From 

then on, I have been following my goal to 

work in meteorology, and ultimately, I have 

landed a job communicating the forecast 

through the media.

Flood Forecasting Centre, Met Office 

Weather in my life – 
Kathryn Chalk
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