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Abstract

Fish Cells as a new metamaterial with zero Poisson’s ratio in two planar directions is introduced with application in

morphing aircraft skin. In order to tailor the design of this metamaterial for arbitrary loadings, equivalent elastic proper-

ties of the Fish Cells metamaterial are derived and analyzed using analytical and numerical methods. The admissible range
of geometric parameters is presented and variation of elastic properties with parameters is studied. The effective elastic

modulus of the metamaterial is derived analytically and verified with finite element models. The in-plane and transverse

shear modulus of the metamaterial are evaluated using finite element analysis where accurate periodic boundary condi-
tions for in-plane shear loading are investigated. The lower and upper bounds of the transverse shear modulus are

derived based on strain and complementary energy relations which are verified with finite element results. As zero

Poisson’s ratio behavior of the Fish Cells topology is proved, derivative geometries from this topology with zero
Poisson’s ratio behavior are also presented.
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1. Introduction

Cellular materials have received extensive attention in

the aerospace engineering applications due to their high

performance and low density. Considering improved

functionality of the aerospace structures, mechanical

metamaterials and their exotic properties have attracted

interest in their design and development. The aim of

metamaterial design is tailoring specific properties such

as bulk modulus, elastic modulus, Poisson’s ratio, and

coefficient of thermal expansion. Many of these mechan-

ical metamaterials possess cellular architecture while the

geometry of the unit cell is tailored to result in a desired

deformed shape under loading which allows for exotic

behavior in macroscale. Among mechanical metamater-

ials, those focused on Poisson’s ratio are zero Poisson’s

ratio (ZPR) metamaterials and auxetic metamaterials

with negative Poisson’s ratio (NPR). ZPR is of particular

interest given their useful applications in morphing skin’s

core. The optimal design of these cores requires simple

models of the metamaterial that may be incorporated

into multidisciplinary system models. Therefore, equiva-

lent structural models are required that retain the depen-

dence on the geometric parameters of the metamaterial.

Due to the high demand for cellular structures, pre-

vious studies have led to many analytical and numerical

models. The focus of these studies has been to develop

analytical formulations or a numerical homogenization

framework for equivalent elastic properties of cellular

structures based on their geometrical parameters. The

main approach for modeling the elastic properties of

cellular materials has been energy method where strain

energy is developed for each member of the unit cell

under loading in each direction (Abd El-Sayed et al.,

1979). Having the displacements of the cell measured

using the energy method under a specific load, the

equivalent elastic modulus in that direction can be

obtained. The formulation of the modulus obtained

using this method is dependent on the deformation

mechanism considered, for example, the inclined mem-

bers of the honeycomb unit cell can be considered as a

cantilever beam with bending as the primary mechan-

ism (Gibson et al., 1982) or also account for extension
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and hinging (Masters and Evans, 1996). Beam model

can simplify the equivalent modulus derivation.

However, it is accurate enough when cellular struc-

ture’s relative density is low and the effect of joints at

the intersection of inclined members of a cellular struc-

ture such as honeycomb is not significant (Malek and

Gibson, 2015). Although the beam model is acceptable

for low relative density cellular structures, modification

of the member’s effective length can help to improve

the results (Grima et al., 2011). Similar to beam, if

thickness to length ratio of members is not small

enough, shell model also results in different in-plane

elastic properties comparing to three-dimensional (3D)

or plane stress models due to the negligence of the out

of plane stress in shell walls (Catapano and

Montemurro, 2014). In this regard, slender members

should be considered to keep the density low and be

able to neglect the effect of joints. Therefore, the beam

model can be used to derive the equivalent elastic mod-

ulus of the metamaterials that bending is their domi-

nant deformation mechanism.

Shear modulus derivation is more complicated than

elastic modulus in two orthogonal directions of the

metamaterial. The first parameter to consider for the

correct derivation of the shear modulus is the type of

shear loading which can be simple or pure shear.

Applying simple shear in two orthogonal directions

results in two different equivalent shear modulus when

the material lacks symmetry because of different defor-

mations in the unit cell. The discussion of the simple

and pure shear for different categories of materials is

complex and less investigated in the literature. It is

shown that simple and pure shear cannot be considered

as equivalent (Destrade et al., 2012). To obtain the

shear modulus of the hexagonal honeycomb, Gibson

(1989; Gibson et al., 1982) has considered the pure

shear loading where bending was considered as the

main deformation mechanism for each member of the

cell. If the simple shear loading on the honeycomb is

considered, then loading in two orthogonal directions

should be considered (Chen et al., 2016), which techni-

cally means Gxy6¼Gyx.

For cellular metamaterials also similar approach like

honeycombs has been followed for shear analysis. Ju

et al. (2011) studied the re-entrant cellular material

under simple shear loading with several geometrical

parameters in order to find the best yield strength for a

predefined equivalent shear modulus. Their results

show that shear resistance was independent of the

Poisson’s ratio value but dependent on the cell topol-

ogy. In another attempt, Huang et al. (2017) considered

re-entrant cell with a thin plate attached and calculated

the shear modulus by application of pure shear loading

where bending of the members is considered using

Timoshenko beam theory to derive the closed form

equation for shear modulus. Similarly, for ZPR cellular

metamaterials with orthotropic cell topology, pure

shear loading is applied and bending as the main defor-

mation of the members was considered to derive the

equivalent shear modulus formulae (Gong et al., 2015;

Liu et al., 2019).

In this article, a new metamaterial called Fish Cells

with ZPR in two planar directions is introduced and its

equivalent elastic properties are investigated. The

importance of a homogenized equivalent model for

elastic properties is in reducing the time to model and

analyze the structure significantly while maintaining

the accuracy level (Steenackers et al., 2016). The in-

plane and out of plane equivalent elastic modulus and

in-plane shear modulus of the Fish Cell are obtained by

considering small deformations of a two-dimensional

(2D) unit cell, in which the members will be modeled as

thin beams. The importance of representative volume

element (RVE) selection and periodic boundary condi-

tions (PBCs) in the shear analysis is discussed and pure

shear analysis on the material is performed. Due to the

complexity of the structure and boundary conditions in

shear loading, the finite element (FE) method is

employed to obtain the equivalent in-plane shear mod-

ulus. Finally, the effect of geometrical parameters of

the Fish Cell on equivalent elastic properties is studied.

The importance of this work is to provide an equivalent

model which uses the geometric parameters of the Fish

Cells metamaterial as variables and obtains equivalent

elastic properties that can be applied for further optimi-

zation studies.

2. Equivalent elastic modulus

The unit cell of the Fish Cells metamaterial is shown in

Figure 1(a), which satisfies the periodicity conditions to

create a tessellation. The unit cell is formed by two Fish

Cells that are attached together followed by a rotation.

Fish Cell, as shown in Figure 1(b), has been introduced

by one axis of symmetry along which the cell can be

assembled periodically but in the normal direction, the

cell should rotate or shift to assemble. Although Fish

Cell is the basis of the metamaterial design, the unit

cell is selected in a way to satisfy periodicity in both

Figure 1. (a) Unit cell of the Fish Cells metamaterial and

(b) Fish Cell parameters’ definition.
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in-plane orthogonal directions and appropriate bound-

ary conditions can be applied considering symmetries

(Li, 2008).

Fish Cell configuration is defined by independent

parameters B, H, C, h, and b, where B is the half base

length, H is the height of the cell, and C is connector’s

length. Parameters b and h are horizontal and vertical

components of the inclined rib’s length, respectively. It

should be noted that half thickness is allocated to the

base of the cell that creates a full thickness member in

tessellation. The feasible range for b and h is described

in equations (1) and (2). Uniform rectangular cross sec-

tion is assigned to all members with thickness t and

extruded out of plane thickness W

0\
b

B
\1 ð1Þ

0\
h

H
\0:5 ð2Þ

2.1. Loading in the x-direction

As detailed in Part I (companion) of this article, the

main deformation in the unit cell under tension in the

x-direction occurs in the inclined members where the

convex section of the Fish Cell contracts and the con-

cave section expands in the y-direction. The deformed

shape of the cell in the middle of a tessellation is shown

in Figure 2(a) where FE analysis using beam elements

with parameters discussed in companion paper was

conducted. The base of the Fish Cell experiences no

bending as moments exerted by inclined members on

the base member neutralize each other. This simplifies

the model required for bending analysis by neglecting

the base member. Considering the symmetry of Fish

Cell as shown in Figure 2(a), half of one Fish Cell can

be modeled as a representative for the unit cell under

loading in the x-direction.

A diagram of this model is presented in Figure 2(b)

where loads and reactions are depicted based on the

deformation of a cell in tessellation. The accurate

boundary condition type for periodic cellular structures

is PBC (Xia et al., 2003, 2006). However, for normal in-

plane loadings, using homogenized boundary condi-

tions that set the value of a degree of freedom equal to

0 does not affect the deformed shape adversely and

results verify with those obtained from tessellation.

Moreover, Castigliano’s theorem can be used to derive

a closed form solution for the equivalent elastic modu-

lus. The boundary conditions and loading for the half

Fish Cell shown in Figure 2(b) are defined in Table 1.

Displacements in the x-direction at nodes ‘‘F’’ and ‘‘A’’

are constrained because of the symmetry and a reaction

load is considered at node ‘‘A’’ due to the support.

Displacement in the y-direction at node ‘‘F’’ is also con-

strained to prevent rigid body motion, while node ‘‘A’’

is free to move in the y-direction. Since base members of

the cell (AB and EF) experience no bending moment,

rotation of the node ‘‘E’’ is constrained and a reaction

moment is applied at node ‘‘B.’’ Rotations of the nodes

‘‘G’’ and ‘‘H’’ are also zero where reaction moments are

imposed to enable derivation of the total strain energy

of the half-cell. In order to calculate the lateral displace-

ment in y-direction using Castigliano’s theorem, which

helps to derive the Poisson’s ratio, P1 and P4 are applied

as virtual loads. To verify the boundary conditions used

in the analytical model, FE analysis is performed by

ABAQUS on the half Fish Cell where fine mesh using

quadratic shear deformable beam elements B22 was

employed. The deformed shape of the half Fish Cell is

in agreement with the deformed shape of a half Fish

Cell in tessellation as depicted in Figure 2(c) where

boundary conditions of Table 1 were imposed.

Since equilibrium equations should be written

for each member, local parameters are defined for

inclined members to simplify the equations. Parameter

Figure 2. (a) Deformed shape of the Fish Cell in a tessellation under loading along the x-direction, (b) free body diagram of half

Fish Cell, and (c) deformed shape of the half Fish Cell obtained from FE analysis.
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u is defined as the angle between inclined ribs and

y-direction as shown in Figure 2(b). Length of the two

bending ribs connected to the base members (AB and

DF) is assumed L and for the middle rib ‘‘CD,’’ the

length is D. The angle between the middle rib and

y-direction is also called u. However, length D is a

dependent parameter with respect to L, u, and u as

D= 2L sin u= sinu. These local parameters are corre-

lated to main Fish Cell parameters by equation (3)

u=tan�1
b

h

� �

L=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 + h2
p

ð3Þ

u=tan�1
2b

H � 2h

� �

Starting from node ‘‘B,’’ the bending moment of

each member can be written as in equation (A-1) in

Supplemental Appendix A while there is no moment

on members ‘‘AB’’ and ‘‘EF.’’ Similarly, the axial force

at each member can be derived as in equation (A-2) in

Supplemental Appendix A. Using forces and moments

at each member, the total strain energy is obtained as

in equation (A-3) in Supplemental Appendix A, where

bending and stretching of the members are considered.

Bending is the main deformation mechanism that con-

tributes the most to the total energy comparing to the

axial deformation. Since very thin members are consid-

ered, the effect of shear deformation is neglected. The

contribution of axial loads and bending moments to

the strain energy is written in equation (A-3), where Es

is the constructing material modulus and moment of

inertia I = Wt3/12. Uniform rectangular cross-section

with area At is assigned to each inclined member and

connectors where At=W3 t. Since the base members

of the Fish Cell are shared between two cells, half of

the thickness is allocated for the base members in each

cell, which affects the axial term of the base members’

strain energy denoted by subscript t/2 where At/2 =

W3 t/2 as shown in equation (A-3).

The deformation corresponding to each load can be

obtained using Castigliano’s theorem by derivation of

total energy function with respect to that load. Since

node ‘‘A’’ has no displacement in x-direction due to

symmetry condition, the total energy derivation with

respect to load R is zero, which concludes equation (A-

4). Rotations at nodes ‘‘B,’’‘‘G,’’ and ‘‘H’’ are also zero,

which result in equation (A-5). Loads P2 and P3 are

equal due to periodicity and are assigned with a con-

stant value Px. Expanding equation (A-4) and substitut-

ing P2 and P3 with Px results in R=2Px. Substituting

these values in equation (A-5), the unknown reaction

moments are obtained as in equations (A-6) and (A-7)

in Supplemental Appendix A.

2.1.1. Equivalent elastic modulus. Using Hooke’s law, the

equivalent elastic modulus of the homogenized Fish

Cells metamaterial in the x-direction is obtained by the

ratio of stress to strain as

Ex =
sx

ex

ð4Þ

The stress sx is equal to the total force in x-direction

divided by the effective area Ax=W3H

sx =
2Px

Ax

ð5Þ

The strain ex is equal to the displacement in x-direc-

tion divided by the effective length lx=B+C

ex =
dx

lx
ð6Þ

Displacement dx is obtained by calculating strain

energy and applying Castigliano’s theorem to the load

P2, as indicated in equation (7). The displacements due

to P2 and P3 have the same value in the x-direction;

therefore, derivation with respect to P2 will be

dx =
∂Utot

∂P2

=
Px

Es

3
L3cos2u 4C3D+ 2C3 L+D3 Lð Þ

12I C3D+ 2C3 L+D3 Lð Þ +
B+C+ b

W 3 t

� �

ð7Þ

Table 1. Boundary conditions applied on half Fish Cell in FE analysis under loading in the x-direction.

Node Degree of freedom Load

u v Rotation x-direction y-direction

A 0 Free Free 0 0
B Free Free 0 0 P1 = 0 (virtual)
G Free Free 0 P2=Px 0
H Free Free 0 P3=Px 0
E Free Free 0 0 P4 = 0 (virtual)
F 0 0 Free 0 0

FE: finite element.
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Combining equations (4) to (7) leads to the closed

form solution for the equivalent elastic modulus in the

x-direction as obtained in equation (8). It is evident that

equivalent modulus relation is independent of the load

Px because the load term in sx is omitted by the load

term in dx

Ex =

2Es B+Cð Þ
W 3H

L3cos2u 4C3D+ 2C3 L+D3 Lð Þ
123 I 3 C3D+ 2C3 L+D3 Lð Þ +

B+C+ b
W 3 t

n o ð8Þ

Elastic modulus obtained by analytical model from

equation (8) for a Fish Cell with B = 8 mm, H = 24

mm, h = 6 mm, b = 6 mm, C = 2 mm, W = 1 mm,

and t = 0.1 mm is compared with FE analysis results in

Table 2 for both unit cell and tessellation. The relative

error relation is (ETes:
x � Ecell

x )=ETes:
x where the equivalent

modulus of the unit cell obtained from the FE analysis

and analytical method is compared to the elastic modu-

lus of tessellation. The constitutive material considered

in FE analysis is steel with Es = 200 GPa and n = 0.3;

however, the normalized parameter Ex/Es is considered

in parametric studies to bypass material dependency.

Using equation (7), the effect of geometrical para-

meters on elastic modulus is studied where aspect ratio

(H/B) of the Fish Cell and three normalized parameters

h/H, b/B, and C/B are considered. Results are shown in

Figure 3 where elastic modulus Ex is normalized with

respect to the constructing material modulus Es where

FE analysis is also used to validate the trend obtained.

Two parameters, which cause large changes in modulus

from orders of magnitude, are aspect ratio and the ver-

tical component of rib’s length as shown in Figure 3(a).

This large effect of the vertical component of rib’s

length is because it acts as the moment arm of the load

Px. Equivalent elastic modulus in x-direction reduces

by increasing both the vertical component of rib’s

length and aspect ratio because of the moment arm

increase. Variation of the modulus with the horizontal

component of the rib’s length and connector’s length is

from the same order of magnitude as shown in Figure

3(b). The equivalent modulus reduces by increasing the

horizontal component of rib’s length since the beam

stiffness reduces by increasing the length. The trend for

connector’s length is not linear where a minimum

equivalent modulus for a specific C/B ratio exists.

2.1.2. Poisson’s ratio nxy. Poisson’s ratio is derived using

equation (9) where displacement in the x-direction, dx,

is offered by equation (7). Length of the cell in the

y-direction, ly, is equal to the height H. Displacement

in the y-direction, dy, at point ‘‘B’’ is obtained by deri-

vation of total energy with respect to P1 as

dy = dbendingy + daxialy where contributions of the bending

and axial strain energy to dy are presented in equations

(10) and (11), respectively

nxy=
�ey

ex

= � dy=ly
� �

dx=lxð Þ ð9Þ

Figure 3. Variation of effective elasticity modulus in x-direction for a Fish Cell metamaterial with t = 0.01B and W = B with respect

to (a) aspect ratio of the cell and vertical component of inclined rib’s length for C = 0.1B and b = 0.5B, (b) connector’s length and

horizontal component of rib’s length for H = B and h = 0.25H.

Table 2. Elastic modulus of the Fish Cell metamaterial

normalized by constitutive material modulus Es, obtained using

FE and analytical methods.

Analysis method Normalized
Young’s
modulus, Ex /Es

Relative error = 1003
j(ETes:x � Ecellx )=ETes:x

FEM (tessellation) 1.8508e26
FEM (unit cell) 1.8416e26 0.5%
Analytical 1.8416e26 0.5%

FEM: finite element method.

Relative errors are calculated with respect to the tessellation.
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dbendingy =
1

2EsI

3 D M1 �M2 +PL cos uð Þ D sinu� 2L sin uð Þ � 2L2 M1 sin u+PL sin u cos uð Þ+ 2L2 sin u M1 +PL cos uð Þ
	 


ð10Þ

daxialy =
1

2EsWt
�L 2R sin u cos u+ 2 P3 +P2 +Rð Þ sin u cos u½ �+ 2D cosu sinu P2 +Rð Þf g ð11Þ

Substituting D= 2L sin u= sinu and

P2=P3=2R=Px in equations (10) and (11) and sim-

plification results in dbendingy = daxialy = 0, which means

there is no lateral displacement in the Fish Cell under

loading in the x-direction. This implies that ey = 0 and

as a result, Poisson’s ratio nxy = 0 for any arbitrary

value of Fish Cell parameters.

2.2. Loading in the y-direction

Similar to loading in the x-direction and considering

the deformation mechanism of the cell in a tessellation,

loading in the y-direction is studied. The deformed

shape of the Fish Cell tessellation is shown in Figure

4(a). The main deformation in the unit cell under load-

ing in the y-direction is bending of the inclined mem-

bers as understood from the tessellation. Extension in

y-direction causes the convex section of the cell to con-

tract, while the concave section expands with the same

value along the x-direction. The magnified view of the

Fish Cell in Figure 4(a) indicates the symmetry of the

deformed shape about the cell axis. Moreover, defor-

mations in the Fish Cell and the adjacent rotated cell

are the same. As a result, half Fish Cell as shown in

Figure 4(b) represents the unit cell deformation to

derive the equivalent elastic modulus in the y-direction,

Ey. Applying the symmetry conditions, displacement in

x-direction and rotation are constrained at node ‘‘F’’

and the corresponding reaction load R and moment

M1 are considered at point ‘‘A.’’ Displacement in the

y-direction at point ‘‘F’’ is also constrained to prevent

rigid body motion, which results in the clamp boundary

condition. Since load transfer from one cell to another

happens through inclined members, loads P1 and P4

that are equal to Py are applied with opposite direc-

tions at nodes ‘‘B’’ and ‘‘E,’’ respectively. Loads P2 and

P3 are virtual loads since nodes ‘‘G’’ and ‘‘H’’ have the

same but opposite displacements in the x-direction.

When two Fish Cells are attached by rotation to form

the unit cell, node ‘‘G’’ of one cell will be connected to

the node ‘‘H’’ of the other via connectors. Because of

the same displacement and no rotation at nodes ‘‘G’’

and ‘‘H,’’ connectors will experience neither tension/

compression nor moment. Similar to section 2.1, the

FE analysis is performed on a half-cell to confirm

the validity of the boundary conditions employed. The

boundary conditions in FE analysis for the half Fish

Cell shown in Figure 4(b) are presented in Table 3. The

deformed shape of the half Fish Cell under described

loading is shown in Figure 4(c) that is compliant with

the deformed shape of the cell in tessellation.

Starting from node ‘‘A,’’ the bending moment of

each member is written in equation (B-1) in

Supplemental Appendix B. Similarly, the axial force at

each member is derived as in equation (B-2). Using

forces and moments at each member, the total strain

energy is obtained using equation (B-3) where bending

and stretching of the members are considered. Loading

and boundary conditions in Table 3 are considered to

model the half Fish Cell deformation. Since there is no

bending moment applied on nodes ‘‘G’’ and ‘‘H,’’ mem-

bers ‘‘CG’’ and ‘‘DH’’ are neglected in bending strain

Figure 4. (a) Deformed shape of the Fish Cell in a tessellation under loading along the y-direction, (b) free body diagram of half

Fish Cell, and (c) deformed shape of the half Fish Cell obtained from FE analysis.
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energy derivation. Displacement in the x-direction and

rotation of the point ‘‘A’’ are zero due to symmetry

along the Fish Cell axis. This means that total strain

energy derivative with respect to the corresponding

reaction load and moment at point ‘‘A’’ is zero as in

equations (B-4) and (B-5) in Supplemental Appendix

B. Hence, relations for reaction load R and moment

M1 are derived as in equations (B-6) and (B-8).

2.2.1. Equivalent elastic modulus. Using Hooke’s law, the

equivalent elastic modulus of the homogenized Fish

Cell metamaterial in the y-direction is obtained by the

ratio of stress to strain as

Ey =
sy

ey

ð12Þ

The stress sy is equal to the total force in y-direction

divided by the effective area Ay=W(B+C)

sy =
Py

Ay

ð13Þ

The strain ey is equal to the displacement in y-direc-

tion divided by the effective length ly=H

ey =
dy

ly
ð14Þ

Displacement dy is obtained by calculating strain

energy and applying Castigliano’s theorem to the load

P1, as indicated in Supplemental Appendix B

dy = dbending + daxial ð15aÞ

dbending =
�1

2EsI
g1 + g2 + g3 + g4 + g5ð Þ ð15bÞ

daxial =
1

2EsWt

2D P1 +Rð Þsin2u+ 4L cos u P1 cos u� R sin uð Þ
	 


ð15cÞ

The coefficients gi (i = 1:5) are described in equa-

tion (16) where reaction load R, moment M1, and

coefficients bi are described in Supplemental

Appendix B

g1 = � 4

3
L3b1 sin u

g2 = b2D
2

2

3
D sinu� L sin u

� �

g3 = 2Lb3b4 + L2 b1b4 +M1 sin u� b3 sin uð Þ ð16Þ

g4 = 8B(RD cosu� P1D sinu�M1 + 2RL cos u

+ 2P1L sin u) D sinu� 2L sin uð Þ

g5 = P1L sin u+RL cos u�M1ð Þ D2 sinu� 2DL sin u
� �

Combining equations (12) to (15) leads to the closed

form solution for equivalent elastic modulus in the

y-direction as obtained in equation (17). It is evident

that equivalent modulus relation is independent of load

Py because the load term in sy is omitted by the load

term in dy

Ey =

2EsH
W B+Cð Þ

dy
ð17Þ

The elastic modulus of the Fish Cell with material

and geometrical parameters mentioned in section 2.1 is

obtained using FE analysis and equation (17). The

results from the analytical method and finite element

method (FEM) are compared in Table 4 where FE

results are developed for both unit cell and tessellation.

Because the base members are shared between two

cells, half of bending stiffness is considered for each

base. As a result, elastic modulus from the analytical

method is verified with FE results for the tessellation

with 1.7% relative error.

Effect of Fish Cell geometrical parameters on the

elastic modulus in the y-direction is shown in Figure 5

where further validation of the trend using FE analysis

is also provided. The diagrams show that elastic modu-

lus is highly sensitive to variations of b where values

decline up to three orders of magnitude by increasing b,

while the other three parameters vary in the same order

of magnitude. This is due to the moment arm of the

loading in the y-direction which is length b. Increasing

the connector’s length also results in elastic modulus

Table 3. Boundary conditions applied on half Fish Cell in FE analysis under loading in the y-direction.

Node Degree of freedom Load

u v Rotation x-direction y-direction

A 0 Free 0 0 0
B Free Free Free 0 P1=Py
G Free Free Free P2 = 0 (virtual) 0
H Free Free Free P3 = 0 (virtual) 0
E Free Free Free 0 P4=2Py
F 0 0 0 0 0
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reduction as shown in Figure 5(b). Variation of elastic

modulus with vertical component of rib’s length is neg-

ligible for small aspect ratios, while a declining trend is

seen at large aspect ratios as shown in Figure 5(a).

Elastic modulus increases by increasing the aspect ratio

for constant b/B and C/B ratios.

2.2.2. Poisson’s ratio nyx. Poisson’s ratio nyx can be proved

mathematically equal to zero; however, for the sake of

brevity and length of the paper, the formulation is not

presented. The detailed justification of zero nyx is dis-

cussed in Part I of this article. Deformations at nodes

‘‘C’’ and ‘‘D’’ are equal but in the opposite directions,

which are followed by nodes ‘‘G’’ and ‘‘H.’’ When two

cells are attached by rotation, nodes ‘‘G’’ and ‘‘H’’ meet

each other. Because of the same displacement, no load

will be exerted on the connectors, which means no force

in the x-direction is transferred from one cell to

another. Since bending deformation of the inclined ribs

occurs inside the cell domain and no lateral loads exist

to cause lateral deformation, Poisson’s ratio nyx is zero.

2.3. Loading in the z-direction

Considering Hooke’s law, the ratio of the stiffness of

cellular material to the stiffness of bulk solid material

can be obtained for the same cross-section area. For a

solid material with a cross-section area of As, stiffness

can be obtained as ks =EsAs=l, where l is the length

of the sample in the loading direction. The stiffness

ratio only depends on the effective area ratio of the

cellular structure and the bulk material as shown in

equation (18)

kz

ks
=

A

As

ð18Þ

where A is the load bearing area of the unit cell and is

equal to the total length of members times thickness.

The total area of the unit cell domain that is the same

as bulk material is As= (B+C)H. The stiffness ratio

in the z-direction for Fish Cell is obtained using equa-

tion (19)

kz

ks
=

B+ 2C+ 2L+D

B+Cð ÞH t ð19Þ

The validity of the equation (19) is investigated

using FE analysis where the tensile load has been

applied to the unit cell as shown in Figure 6 and

Figure 5. Variation of effective elasticity modulus in y-direction for a Fish Cell metamaterial with t = 0.01B and W = B with respect

to (a) aspect ratio of the cell and vertical component of inclined rib’s length for C = 0.1B and b = 0.5B and (b) connector’s length and

horizontal component of rib’s length for H = B and h = 0.25H.

Table 4. Elastic modulus of the Fish Cell metamaterial in

y-direction normalized by constitutive material modulus

Es, obtained using FE and analytical methods.

Analysis metdod Normalized
Young’s
modulus,
Ey /Es

Relative error =
1003 j(ETes:y � Ecelly )j=ETes:y

FEM (tessellation) 5.6565e27
FEM (unit cell) 5.7552e27 1.7%
Analytical 5.7559e27 1.7%

FEM: finite element method.

Figure 6. Loading and boundary conditions imposed on the

unit cell to measure stiffness in the z-direction.
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dimensions of the cell as mentioned in section 2.1 are

considered. To conduct FE analysis, displacement in

the z-direction on the bottom surface is constrained

and on the top surface, uniform displacement in the z-

direction is applied while other degrees of freedom are

free. Only at one point at the bottom surface, all

degrees of freedom are closed to prevent the rigid body

motion. FE analysis is performed using two models:

shell with S8R elements and solid with C3D20 elements

where fine mesh in both cases is applied for great accu-

racy. The results of the two FE models are compliant

with each other and are also verified by the value

obtained for tessellation as shown in Table 5. It should

be noted that under real tensile or compression test, all

degrees of freedom on the top and bottom surface will

be constrained. However, this causes a large error with

respect to results from equation (19) because the effect

of boundary conditions and lateral displacement of the

members due to the Poisson’s ratio are not considered

in equation (19). The relative error of the analytical

model in Table 5 is calculated with respect to the tessel-

lation value.

A parametric study is conducted for out of plane

stiffness kz as shown in Figure 7. The trend of stiffness

variation with geometric parameters is also verified

using FE analysis to further validate equation (19). It is

found from Figure 7 that aspect ratioH/B and the hori-

zontal component of the rib’s length b have a larger

effect on stiffness in the z-direction. Variation of stiff-

ness with respect to the vertical component of rib’s

length h is negligible. At small b/B values, connector’s

length variation does not affect the stiffness value, while

at b/B close to unity, stiffness reduces when the connec-

tor’s length increases.

3. Shear loading

3.1. In-plane shear Gxy

Pure shear loading is considered for shear analysis

where the loading and boundary conditions on the tes-

sellation are shown in Figure 8(a). The magnified view

of the unit cell in tessellation shows that main deforma-

tion under pure shear loading is bending of the base

members. For pure shear loading, same shear stress txy
= tyx = t has been applied to the edges of the tessella-

tion by exerting concentrated forces on the correspond-

ing nodes of each edge. The sum of these concentrated

forces divided by the area of the edge is equal to the

shear stress. Displacements of one node at the corner

of tessellation are constrained in x- and y-direction to

prevent the rigid body motion.

For the unit cell, one full thickness base member is

used as shown in Figure 8(b). Similar to the tessellation,

stress on the edges of the unit cell has been applied as

concentrated loads Px and Py on the corresponding

nodes of each edge where Px and Py are defined in

equation (20). Loads and boundary conditions imposed

on the corresponding nodes of the unit cell are defined

in Table 6. The deformed shape of the unit cell under

described loading is shown in Figure 8(c) where dotted

rectangle shows the unit cell domain before shear defor-

mation and dashed parallelogram shows the domain

after pure shear loading

Figure 7. Variation of effective elastic modulus in z-direction for a Fish Cell metamaterial with t = 0.01B and W = B with respect to

(a) aspect ratio of the cell and vertical component of inclined rib’s length for C = 0.1B and b = 0.5B and (b) connector’s length and

horizontal component of rib’s length for H = B and h = 0.25H. The red circles indicate the values obtained from FE analysis using

ABAQUS.

Table 5. Elastic modulus of the Fish Cell metamaterial in

z-direction normalized by constitutive material modulus Es,

obtained using FE and analytical methods.

Analysis metdod Normalized
stiffness, kz/ks

Relative error = 100
3 j(kTes:z � kcellz )j=kTes:z

FEM-S8R (tessellation) 1.9120e22
FEM-S8R (unit cell) 1.9142e22 0.1%
FEM-C3D20 (unit cell) 1.9083e22 0.1%
Analytical 1.9142e22 0.1%

FEM: finite element method.
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Px = t3 B+Cð ÞW ð20Þ

Py =
t3HW

2

The most important parameter affecting the shear

response and deformation is the boundary conditions.

In order to obtain deformation for a unit cell, similar

to that shown in the magnified view in Figure 8(a),

PBCs must be applied. The only reason homogeneous

boundary conditions on node 1 was applied is to pre-

vent rigid body motion. Xia et al. (2003, 2006) pre-

sented an explicit unified form of boundary conditions

for a periodic RVE that satisfies periodicity conditions

and satisfies any combination of multiaxial loads. They

also showed that homogeneous boundary conditions

on a periodic unit cell can be valid only when normal

tractions are applied on boundaries. Therefore, homo-

geneous boundary conditions used for deriving Ex and

Ey in this article are valid but cannot be expanded to

the shear loading. Because the assumption that planes

remain plane after deformation is not valid anymore

and also violates stress and strain periodicity condi-

tions, homogeneous boundary conditions cannot be

used in the shear analysis. Hence, PBCs are considered

for shear loading to meet periodicity requirements,

which means the boundaries of the unit cell after defor-

mation must exactly meet each other without overlap

or separation. In this regard, PBCs for the unit cell are

presented in Table 6. These conditions engage the

degrees of freedom of the corresponding nodes on two

opposite edges with each other.

Figure 8. (a) Deformation of the tessellation under pure shear loading with a magnified view of the unit cell, (b) schematic of the

unit cell with loads and boundary conditions for pure shear analysis, and (c) deformed shape of the unit cell under pure shear.

Table 6. Boundary conditions and concentrated loads imposed on the unit cell for pure shear analysis.

Node Boundary condition Load

u v Rotation x-direction y-direction

1 0 0 Free 0 0
2 Free Free Free –2Px 0
3 Free Free Free –Px 0
4 Free Free Free –Px 0
17 Free v17=v1 rot17=rot1 Px 0
18 Free v18=v2 rot18=rot2 Px 0
19 Free v19=v3 rot19=rot3 Px 0
20 Free v20=v4 rot20=rot4 Px 0
5 Free Free Free 0 –Py
11 Free Free Free 0 –Py
10 u10=u5 Free rot10=rot5 0 Py
16 u16=u12 Free rot16=rot12 0 Py
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In order to perform parametric study and obtain

equivalent shear modulus for a range of geometrical

parameters, the unit cell FE analysis code was written

in MATLAB. Bending and axial deformations were

considered for each member and cubic shape function

was used where each member was assigned one element.

In order to solve the multi-constraint problem in

MATLAB, master-slave method (MSM) was used

(Felippa, 2004) which allows solving models with multi-

point constraints and PBC. In order to derive the equiv-

alent shear modulus of the unit cell, the displacements

dx and dy as shown in Figure 8(c) were measured to cal-

culate the shear strain as in equation (21). Substituting

shear strain in Hooke’s law as in equation (22), the

effective shear modulus was obtained.

PBCs can be applied in ABAQUS between two

nodes as MPCs by writing a subroutine that allows

defining a relation between desired degrees of freedom

as in Table 6. The shear modulus obtained from two

FE models with material and dimensions mentioned in

section 2.1 is presented in Table 7 for the unit cell and

tessellation. The relative errors of the unit cell shear

modulus are calculated with respect to the tessellation

gxy=
dy

lx
+

dx

ly
ð21Þ

Gxy =
txy

gxy

ð22Þ

Parametric study on the shear modulus is conducted

using equation (22) and the results are presented in

Figure 9. It is evident that effective shear modulus of

the Fish Cell metamaterial is highly dependent on the

aspect ratio of the unit cell. Shear modulus reduces by

several orders of magnitude when aspect ratio increases.

For a constant height H, the shear modulus reduces by

reducing the base members’ length. By increasing the

aspect ratio, variations of shear modulus with the verti-

cal component of rib’s length also increase as shown in

Figure 9(a). Variations of shear modulus with connec-

tor’s length and the horizontal component of rib’s

length are from the same order of magnitude as shown

in Figure 9(b). Shear modulus increases generally by

increasing the connector’s length and has a maximum

before C/B reaches unity. Generally, for most of the

b/B domain, shear modulus reduces by increasing the

horizontal component of the rib’s length.

3.2. Out of plane shear

The Fish Cell transverse shear stiffness is important to

study when the structure sustains shear loads such as

torsion on the wing skin. The equivalent transverse

shear modulus of the honeycomb structures is studied

using unit load and displacement method (Kelsey et al.,

1958) that leads to an upper and lower boundary for

the effective transverse shear modulus. These

lower(Reuss) and upper(Voigt) bounds are used to

evaluate the transverse shear modulus of several 2D

cellular structures (Hohe and Becker, 2002) because the

accurate values can be obtained only using numerical

models due to complex deformations and stress distri-

bution (Gibson and Ashby, 1999; Malek and Gibson,

2015). Therefore, equivalent transverse shear modulus

of the Fish Cell metamaterial in two directions is pre-

sented by the lower and the upper bounds. The lower

bound is obtained from strain energy equation by

Table 7. Comparing the in-plane equivalent shear modulus of

the Fish Cell metamaterial normalized by constitutive material

modulus Es using two FE models.

Analysis metdod Normalized
shear
modulus, Gxy/Es

Relative error = 1003
j(GTes:

xy � Gcell
xy )j=GTes:

xy

FEM (tessellation) 1.3061e27
FEM-ABAQUS
(unit cell)

1.3246e27 1.4%

FEM-MSM
(unit cell)

1.3061e27 0.0%

FEM: finite element method; MSM: master-slave method.

Figure 9. Variation of the in-plane shear modulus with respect to (a) aspect ratio of the cell and vertical component of inclined

rib’s length for C = 0.1B and b = 0.5B and (b) connector’s length and horizontal component of rib’s length for H = B and h = 0.25H.
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considering a strain distribution on the unit cell and the

upper bound is derived from complementary energy by

applying an admissible stress distribution. The unit cell

in 3D format and coordinate system are shown in

Figure 6 where bottom and top surfaces are also anno-

tated. Considering the upper bound for shear modulus

Gxz, the uniform strain gxz is applied on the unit cell.

The equilibrium states that the strain energy of a struc-

ture with equivalent shear modulus is equal or smaller

than the sum of the strain energy of each member as

defined by equation (23), where Gs is the solid materi-

al’s shear modulus

1

2
Gxzg

2

xzV ł
1

2

X

i
Gsg

2

i Vi ð23Þ

The contribution of each member to the strain

energy is calculated using the shear strain and the vol-

ume of each member presented in equations (24) and

(25), respectively. The notation of the members is pre-

sented in Figure 6

gA1A2
= gA7A8

= gxz

gA2A3
= gA5A7

= gxz cos u

gA3A4
= gA5A6

= gxz

gA3A5
= gxz cosu

8

>

>

<

>

>

:

ð24Þ

VA1A2
=VA7A8

=BW t
2

VA2A3
=VA5A7

=Wt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 + h2
p

VA3A4
=VA5A6

=WCt

VA3A5
=Wt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4b2 + H � 2hð Þ2
q

8

>

>

>

<

>

>

>

:

ð25Þ

Substituting equations (24) and (25) in equation (23)

and using the definition of the L and D presented in

section 2.1 and equation (3), the closed form relation

for the upper bound of the Gxz is obtained as in

equation (26).

Gxz

Gs

ł
t

B+Cð ÞH B+ 2C+ 2b2
1

L
+

2

D

� �� �

ð26Þ

Similarly, by considering the shear strains of the

members presented in equation (27) for the orthogonal

direction, the upper bound of the equivalent shear mod-

ulus Gyz is obtained as in equation (28). It must be

noted that under transverse shear loading in the y-direc-

tion, the base and connector members (A1A2, A3A4,

A5A6, and A7A8) do not sustain any shear load due to

bending which has negligible contribution to the overall

shear stiffness; therefore, their shear strain is neglected

gA2A3
= gA5A7

= gyz sin u

gA3A5
= gyz sinu

�

ð27Þ

Gyz

Gs

ł
2t

B+Cð ÞH
2h2

L
+

H � 2hð Þ2
2D

" #

ð28Þ

The lower bound of the equivalent transverse shear

modulus is obtained from the complementary energy as

presented in equation (29)

1

2

t2xz
Gxz

V ł
1

2

X

i

t2i
Gs

Vi ð29Þ

The base and connectors of the Fish Cell have equal

stress and according to the equilibrium in the z-direc-

tion at the joints, the stresses in the members are

defined as in equation (30)

tA2A3
+ tA3A5

= tA3A4

tA1A2
= tA2A3

+ tA5A7

tA2A3
= tA5A7

tA1A2
= tA7A8

= tA3A4
= tA5A6

8

>

>

<

>

>

:

ð30Þ

The stress values are derived by writing the equili-

brium of loads in the x-direction

txzH B+Cð Þ= tA1A2
t B+ 2C+ Lcosu+

1

2
Dcosu

� �

ð31Þ

Substituting the stresses and volumes of the members

in equation (29), the lower bound is derived as

Gxz

Gs

ø
t 2B+ 4C+ 2Lcosu+Dcosuð Þ2
H B+Cð Þ 4B+ 8C+ 2L+Dð Þ ð32Þ

Under shear stress in the y-direction, the base and

connectors do not sustain any shear stress and are

neglected. According to the equilibrium of the shear

stress in the z-direction at joints, the shear stress in

inclined ribs are equal; that is, tA2A3
= tA3A5

.

Considering the equilibrium of the loads in the y-direc-

tion, the shear stress in the inclined ribs is derived

tyzH B+Cð Þ= tA2A3
t 2L sin u+D sinuð Þ ð33Þ

Similarly, the lower bound of the transverse shear

modulus Gyz is obtained from the equilibrium of the

complementary energy

Gyz

Gs

ø
t 2L sin u+D sinuð Þ2
H B+Cð Þ 2L+Dð Þ ð34Þ

Due to the complexity of the stress distribution in

transverse shear loading, the FE models are also devel-

oped using ABAQUS with quadratic shell elements

S8R and fine mesh size to study the equivalent trans-

verse shear modulus. The results of FE analysis are

dependent on the boundary conditions imposed on the

unit cell. The translational boundary conditions consid-

ered for Fish Cell metamaterial are ux = uy = uz = 0

at the bottom surface. At the top surface (Lira et al.,

2009), uy = uz = 0 and ux = gxz3W for shear loading

in the x-direction, while ux = uz = 0 and uy = gyz3W

for shear loading in the y-direction, where gxz =
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gyz=0.01. The rotational degrees of freedom are rotx =

rotz = 0 for shear loading in the x-direction and roty =

rotz = 0 for shear loading in the y-direction on both sur-

faces (Lira and Scarpa, 2010). The effective stress is then

calculated by dividing the sum of reaction forces on a

face to the effective area of the unit cell. The normalized

transverse shear modulus obtained from FE analysis are

compared to the upper and lower bounds in both

directions in Table 8. The difference of the shear modu-

lus obtained from a unit cell and a tessellation is negligi-

ble as shown in Table 8; therefore, the parametric studies

are verified with FE models of a unit cell.

The deformed Fish Cell under shear loading in the

x- and y-direction are presented in Figure 10(a) and (b),

respectively. Figure 10(b) verifies the assumption of

negligible contribution of the base and connectors to

Table 8. Transverse shear modulus Gxz and Gyz obtained for a unit cell with B = 8 mm, W = 1 mm, t = 0.1 mm, b = h = 6 mm, and

H = 24 mm; Gs = Es/(2(1 + n)) is the shear modulus of the solid material.

Shear modulus Analytical FEM

Lower bound Upper bound Unit cell 5 3 5 tessellation

Gxz/Gs 1.17e22 1.21e22 1.19e22 1.20e22
Gyz/Gs 7.07e23 10.61e23 7.16e23 7.20e23

FEM: finite element method.

Figure 10. Deformed shape and stress distribution in Fish Cell metamaterial under shear loading (a) txz and (b) tyz. Effect of the

aspect ratio H/B and the vertical component of the rib’s length, h, on the shear modulus (c) Gxz and (d) Gyz where C = 0.1B and b =

0.5B. Effect of the connector’s length and horizontal components of the rib’s length, b, on the shear modulus (e) Gxz and (f) Gyz

where H = B and h = 0.25H. For all cases, B = 10 mm, W = B, and t = 0.01B.
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the shear modulus Gyz as the stress levels are close to

zero comparing to the inclined ribs. The effect of chang-

ing aspect ratio H/B on the shear modulus Gxz is strong

as shown in Figure 10(c) where the normalized modulus

reduces orders of magnitude by increasing the aspect

ratio. In the other direction, Gyz changes at small aspect

ratios, while the vertical component of rib’s length, h,

has no significant effect on neither Gxz nor Gyz. Figure

10(d) and (f) shows that shear modulus Gyz obtained

from FE is closer to the lower bound.

4. Discussion

In section 2, it was shown that Fish Cell’s ZPR is inde-

pendent of the parameters’ value and originates from

the cell topology. Therefore, an optimized range of

parameters based on desired equivalent elastic proper-

ties can be obtained for Fish Cell. In addition to opti-

mization of the parameters’ values, the topology can

also be subject of optimization by considering geome-

trical requirements. Members BC, CD, and DE have

pointwise symmetry with respect to the midpoint of

member CD as shown in Figure 2(b). This geometrical

relation is the basis of the Fish Cell topology that

results in ZPR. Saving the pointwise symmetry of the

inclined members, other geometries can be also applied

for the inclined section to optimize the elastic proper-

ties of the Fish Cell. The Fish Cell analyzed in sections

2 and 3 was based on the combination of two convex

and concave hexagons by the omission of the mutual

base as discussed in the companion paper. In addition

to the hexagon, higher order regular polygons with

even number such as octagon can be also used as

shown in Figure 11(a). The FE analysis of the octago-

nal Fish Cell tessellation is performed using ABAQUS

in two orthogonal directions with beam elements B22

and fine mesh where ZPR in both directions is proved.

Analytical curves such as spline that provide better

control on the inclined member’s profile design can be

also used and result in ZPR as shown in Figure 11(b).

This flexibility of the Fish Cell topology provides

opportunities for future optimization studies.

5. Conclusion

Fish Cell as a new ZPR metamaterial is presented and

its elastic properties are investigated. The equivalent

elastic properties of the Fish Cell are obtained and veri-

fied using analytical and numerical models. The study

shows that Fish Cell geometry achieves ZPR in both

in-plane directions for any arbitrary value of its geome-

trical parameters. Equivalent elastic modulus in planar

directions and equivalent stiffness in the transverse

direction are derived. Importance of PBCs in the shear

analysis is shown and equivalent shear modulus is

obtained by considering proper PBC in the pure shear

loading to obtain the same deformation in the unit cell

as in the tessellation. The transverse shear modulus is

studied based on Reuss and Voigt bounds and verified

with FE analysis where results are closer to the lower

bound. The elastic properties analysis is followed by

parametric studies where the effect of aspect ratio, hori-

zontal and vertical components of the inclined rib’s

length, and connector’s length are studied. The results

show that aspect ratio of the Fish Cell, H/B, has a

strong effect on the transverse elastic properties.

Results suggest that based on design requirements, an

optimum range of geometrical parameters can be

obtained using optimization methods. Based on the

relations obtained in this article, optimization of the

Fish Cell metamaterial for morphing skin’s core or

other applications can be conducted in future studies.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with

respect to the research, authorship, and/or publication of this

article.

Funding

The author(s) received no financial support for the research,

authorship, and/or publication of this article.

ORCID iDs

Mohammad Naghavi Zadeh https://orcid.org/0000-0001-

9953-8465

Mehdi Yasaee https://orcid.org/0000-0002-7137-7011

Figure 11. Different topologies for Fish Cell inclined section

with ZPR: (a) octagonal polygon and (b) spline curve.

Naghavi Zadeh et al. 2209



Supplemental material

Supplemental material for this article is available online.

References

Abd El-Sayed FK, Jones R and Burgess IW (1979) A theore-

tical approach to the deformation of honeycomb based

composite panels. Composites 10: 209–214.

Catapano A and Montemurro M (2014) A multi-scale

approach for the optimum design of sandwich plates with

honeycomb core. Part I: homogenisation of core proper-

ties. Composite Structures 118(1): 664–676.

Chen Y, Das R and Battley M (2016) Response of honey-

combs subjected to in-plane shear. Journal of Applied

Mechanics 83: 061004.

Destrade M, Murphy JG and Saccomandi G (2012) Simple

shear is not so simple. International Journal of Non-Linear

Mechanics 47(2): 210–214.

Felippa C (2004). Introduction to finite element methods.

University of Colorado, 885. Available at: https://vulcan

hammernet.files.wordpress.com/2017/01/ifem.pdf

Gibson LJ (1989) Modelling the mechanical behavior of cellu-

lar materials.Materials Science and Engineering 110: 1–36.

Gibson LJ and Ashby MF (1999) Cellular Solids: Structure

and Properties. Cambridge: Cambridge University Press.

Gibson LJ, Ashby MF, Schajer GS, et al. (1982) The

mechanics of two-dimensional cellular materials. Proceed-

ings of the Royal Society of London. Series B 42(382):

25–42.

Gong X, Huang J, Scarpa F, et al. (2015) Zero Poisson’s ratio

cellular structure for two-dimensional morphing applica-

tions. Composite Structures 134: 384–392.

Grima JN, Attard D, Ellul B, et al. (2011) An improved ana-

lytical model for the elastic constants of auxetic and con-

ventional hexagonal honeycombs. Cellular Polymers 30(6):

287–310.

Hohe J and Becker W (2002) Effective stress-strain relations

for two-dimensional cellular sandwich cores: homogeniza-

tion, material models, and properties. Applied Mechanics

Reviews 55(1): 61.

Huang J, Zhang Q, Scarpa F, et al. (2017) In-plane elasticity

of a novel auxetic honeycomb design. Composites Part B:

Engineering 110: 72–82.

Ju J, Summers JD, Ziegert J, et al. (2011) Design of honey-

combs for modulus and yield strain in shear. Journal of

Engineering Materials and Technology 134(1): 011002.

Kelsey S, Gellatly RA and Clark BW (1958) The shear modu-

lus of foil honeycomb cores. Aircraft Engineering and Aero-

space Technology 30: 294–302.

Li S (2008) Boundary conditions for unit cells from periodic

microstructures and their implications. Composites Science

and Technology 68(9): 1962–1974.

Lira C and Scarpa F (2010) Transverse shear stiffness of

thickness gradient honeycombs. Composites Science and

Technology 70(6): 930–936.

Lira C, Innocenti P and Scarpa F (2009) Transverse elastic

shear of auxetic multi re-entrant honeycombs. Composite

Structures 90(3): 314–322.

Liu W, Li H, Zhang J, et al. (2019) In-plane mechanics of a

novel cellular structure for multiple morphing applications.

Composite Structures 207: 598–611.

Malek S and Gibson L (2015) Mechanics of materials effective

elastic properties of periodic hexagonal honeycombs. Inter-

national Journal of Mechanics and Materials 91: 226–240.

Masters IG and Evans KE (1996) Models for the elastic defor-

mation of honeycombs. Composite Structures 35: 403–422.

Steenackers G, Peeters J, Ribbens B, et al. (2016) Develop-

ment of an equivalent composite honeycomb model: a

finite element study. Applied Composite Materials 23:

1177–1194.

Xia Z, Zhang Y and Ellyin F (2003) A unified periodical

boundary conditions for representative volume elements

of composites and applications. International Journal of

Solids and Structures 40(8): 1907–1921.

Xia Z, Zhou C, Yong Q, et al. (2006) On selection of repeated

unit cell model and application of unified periodic bound-

ary conditions in micro-mechanical analysis of composites.

International Journal of Solids and Structures 43(2):

266–278.

2210 Journal of Intelligent Material Systems and Structures 31(19)

li2106
Text Box
https://creativecommons.org/licenses/by-nc/4.0/This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).



