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Abstract 
In this paper, novel solutions are proposed for energy and thermal management in Formula-E cars 
using optimal control theory. Optimal control techniques are used to optimize net energy 
consumption (accounting for loss-reductions from energy recovery from regenerative braking) to 
achieve minimal lap time which is a crucial element in developing a competitive race strategy in 
Formula E races. A thermal battery model is used to impose thermal constraints on the optimal 
energy management strategy in order to realistically capture working constraints during a race. The 
effects of energy and thermal constraints on the proposed strategy are then demonstrated and two 
different pedal lifting techniques were introduced. Both the current second generation and a concept 
third generation type of formula-E cars are studied and compared. While third generation is 
significantly more efficient with 10% to 30% less energy consumption, it potentially faces more 
critical thermal issues with more than 60% more heat generation. 
 

Key words: Formula-E car; optimal control; lap time simulation; energy management; thermal 
management 

1. Introduction 

Energy management has been a popular topic in vehicles with multiple energy sources (e.g. fuel and 
battery [1]) or multiple motors(e.g. dual axle drive [2]). A range of strategies and algorithms have 
been proposed in the literature to manage the power flow among the sources and consumers such 
as rule-based fuzzy control [3] and optimization-based control [4]. Such techniques are applied in 
real-time and usually tested on widely-used driving cycles to verify their effectiveness in improving 
energy economy. Apart from real-time applications, a number of studies took the entire driving cycle 
or route as a fixed known condition in the trip-based optimizations aiming to solve a global optimal 
solution for the entire trip [5] given boundaries such as battery state of charge (SOC) or time[6].  

In the modern motorsport, energy management is a crucial problem in race events.  To create a fair 
competition environment, the governing bodies’ technical regulations have imposed upper limits on 
power and energy. For example, for the hybrid system in current Formula-One cars, the technical 
regulations state that fuel mass flow rate for the internal combustion engine (ICE) must not exceed 
100 kg/h and the maximum power for the Motor Generator Unit – Kinetic (MGUK) is limited to 
120 kW[7]. In Formula-E, this appears as restrictions on the output power out of a car’s 
Rechargeable Energy Storage System (RESS), which may vary for different events (e.g. qualifying, 
race, etc.) and restrictions on the amount of energy that can be delivered to the Motor Generator 
Unit (MGU) [8]. With these restrictions introduced, drivers and engineers are not able to go ‘flat 
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out’ during the race simply because this is not efficient and there is not enough energy on board. 
Therefore, managing ‘energy per lap’ under various constraints while optimizing the lap times has 
become a crucial part in developing a competitive race strategy in Formula-E races. 
Simulation and optimization have been the core of motorsport performance and strategy analysis. 
Driver-in-the-loop (DIL) simulation is a high-level real-time simulation method with high-fidelity 
models for validation and assessment. While this method is capable of involving human element in 
the simulation and provides detailed and direct feedback from the virtual environment for 
sophisticated tasks [9], it is very slow in terms of optimization iterations as simulations must be 
performed in real time and outside these simulation tools due to the lack of embedded powerful 
optimization algorithms which is the common weakness shared by commercial software. Therefore 
traditionally, these high-fidelity tools are usually used as a validation tool to test a strategy which is 
established through optimizations before hand. A classic development procedure can be 
demonstrated with figure 1. This study focuses on step 1 and 2 which lays the foundation for high-
fidelity validations. This requires techniques with high computational efficiency and optimization 
capabilities for lap time analysis. 

 

Figure 1: Classic development steps of FE race strategy optimization, modelling and 
implementation 

 

In the early 2000s, quasi-steady-state (QSS) methods were proposed and have become a popular 
method for performance sensitivity analysis [10]. The introduction of QSS methods has saved 
tremendous time that would have otherwise been spent testing different configurations either on 
track or DIL simulators. In these methods, as its label ‘quasi-steady-state’ suggests, the vehicle 
models are commonly rather simplified; optimization horizons are often short(meters level) so these 
methods have less utility when a cost function need to be minimized subject to a series of constraints 
being met through the whole lap. Model predictive control (MPC), in contrary, is capable to 
accommodate more complex models and various constraints. However, MPCs are most powerful 
being applied as a real-time controller [11] based on iterative, finite-horizon optimization. Note that 
the energy and thermal problem in Formula E is a management problem whose optimization horizon 
should be the length of a whole lap. This fundamental feature makes MPC unfavourable because of 
its shorter optimization horizon may easily yield a suboptimal solution. 
Another approach is to formulate an optimal control problem (OCP). By taking driver inputs 
(Throttle, brake, etc.) as a sequence of inputs and applying constraints such as track boundaries, 
calculation for minimal time maneuvers (MTM) is an typical example of OCP. Early OCPs with 
smaller multibody dynamics model such as a motorbike [12] or track as simple as a U-turn [13] 
were solved with indirect methods based on Pontryagin Maximum Principle [14]. In recent years, 
direct methods based on full collocation have become more popular, thanks to the solver IPOPT [15] 
that is an efficient interior point algorithm for solving large nonlinear programming (LNP) problem 
resulted from direct collocation. The computational time of a full-lap simulation has been reduced 



from dozens of hours [16] using a direct multiple shooting technique to acceptable minute-level 
[17].  

A number of recent publications in the literature have been focused on different methods of track 
and vehicle modeling. Giacomo proposed modeling the track using a curvilinear-coordinate-based 
description of the centre line in both 2D [18] and 3D [19] ways. The track was generated by solving 
an OCP based on GPS data to reduce the noise level in the coordinates. The complexity of vehicle 
modeling has a big effect on computational time and solubility of the optimization problem. Recent 
literatures adopt different simplified modelling methods targeting different problems. For example, 
differential optimization has been studied in [18] Where the slip rate of four wheels were taken as 
optimal control inputs. A limited-slip differential was modeled and applied on rear axle as a path 
constraint for the problem. But involving front wheels in the inputs allows traction to the front 
wheels which is not realistic and by directly propelling each wheel with differential constraint may 
result in solution that is not doable in real life. In [20], drive torque was set as optimal input with 
wheels/tyres as additional degree of freedoms (DOFs). The front wheels are free-rolling with drags 
adding wheel rotation DOFs. The differential torque was calculated based on rear wheel speed 
differential then added on each rear wheel dynamic equations. But this study was only completed 
on a U-shape turn. Tyre is one of the most crucial elements in motorsport vehicles. A thermal-
dynamic tyre model was introduced in [21] to study the influence of tyre, track and ambient 
temperature on the MTM. Tremlett [22] added temperature-friction sensitivity and wear model into 
the OCP in which the optimal tyre warming and usage strategy were studied. Apart from the tyres, 
based on the work in [18], Limebeer[23] modelled the energy recovery systems (ERSs) and 
demonstrated that a third of fuel can be saved by using hybrid power system in a Formula One car. 
Masouleh [24] added quasi-static aero-suspension model in the OCP to study the optimization of 
aero-suspension interaction. 
In Formula E championships season 2020, the technical regulation [8] restricts the use of energy in 
various ways. In term of power out of the RESS, in qualifications where drivers compete for their 
starting position for the race start, the limit is set to 250 kW whereas in race events, 200 kW and 
235 kW are set as limits for normal and attack modes respectively. For the energy restrictions, a 
driver who has a Fanboost bonus will be given an extra energy of 100 kJ to be used while raising 
the max power from 200 kW in normal mode by 40-50 kW. However, the total amount of energy 
that can be delivered to the MGU during a race still must not exceed 52 kWh. In addition to the 
energy restrictions, battery thermal dynamics is another crucial factor to concern in strategy 
development. Because of safety reasons, the battery only functions normally under a certain 
temperature limit. After reaching the limit, the battery management system (BMS) will 
automatically shut down the power. As a result, a driver with an overheating battery may lose his 
positions or even have a Did-Not-Finish (DNF) for the race. 
According to the literature and to the authors’ knowledge and experience, applying optimal control 
methods to solve the energy/thermal management problem of a Formula-E car has the following 
advantages: 

1. It is capable to optimize the control inputs and race car trajectory simultaneously. The latter 
contributes to a unique feature in formula-E compared to other series because of the attack 
mode when the drivers need to drive through an activation zone that is deviated from 
normal race lines. 

2. It is powerful enough to deal with complex models, e.g. higher vehicle DOFs, non-linear 



tyre models, thermal models, etc.; 
3. It can deal with non-fixed constraints on different sections of the track, e.g. change of power 

restrictions due to different power mode or yellow flag scenarios; it can be formulated into 
a multi-phase optimal control problem. 

4. It is a robust method requiring less from initial guess and cost decent amount of 
computational time (dozens of minutes) 

In this paper, orthogonal collocation method [25] is used to solve the optimal control problem of 
Formula-E energy/thermal management. Recent seasons from 2018 have been featured with second 
generation Formula-E cars with upgraded battery and other features which significantly improved 
the performance in comparison to the first generation. In December 2019, Fédération Internationale 
de l'Automobile (FIA; English: International Automobile Federation) published the tenders for the 
third generation of formula E race cars which will be used from 2022 onwards. This allows the 
public to have a preview of potential specifications of future electric race cars. 
 

Table 1: Specifications of different generations of Formula-E cars 

Generation Weight Battery capacity Drive type Max power 
Gen1 880kg 28kWh Rear wheel drive 200kW 

Gen2 900kg 52kWh Rear wheel drive 250kW 

Gen3 

(Tender option A) 
780kg 51kWh Rear wheel drive 

Front & rear axle 
regeneration 

350kW 

 

The most radical change is the powertrain configuration. The current Gen2 cars are propelled by the 
MGU through the rear axle. From season 2022, the Gen3 cars will feature one MGU on each axle, 
propelled only by the rear one and regenerate energy from both front and rear MGUs which indicates 
that more energy will be recovered from front axle through braking. This study is focused on the 
energy/thermal management of the Gen2 cars then a prospective study on the succeeding Gen3 cars. 
In Section 2, track model is introduced. The vehicle is modelled next with non-linear tyre models 
and other essential DOFs to describe the features of both Gen2 and Gen3 cars. Then a thermal 
dynamic model of the powertrain system is presented which includes a lump thermal model of the 
battery and the heat exchange model for the liquid cooling system. In Section 3, orthogonal 
collocation method for optimal control technique is briefly explained and the energy/thermal 
management problem is formulated for OCP. The result and discussion of energy/thermal 
management for Gen2 cars under different constraints and environment conditions are presented in 
Section 4 along with the perspective study of Gen3 cars and their comparison. Finally, the 
conclusion and potential future works are presented in Section 5. 
The novelty of this study is that 1) optimal control techniques are used to study the optimal 
management solution under both energy and thermal constraints; 2) two different powertrain 
configurations are investigated; 3) a novel technique to reduce battery temperature rise has been 
found. 



2. Track, vehicle and thermal dynamics model 

2.1 Track model 
In this paper, the track is modeled using curvilinear coordinates instead of traditional xy coordinates. 
The curvature of a point on the track and the centerline distance from the start/finish line of that 
point are treated as ordinate and abscissa values. 
 

 
Figure 2: Track modelling coordinate 

 

Illustrated in figure 2, the location of the vehicle on the track can be described using s and n, of 
which the former gives the distance traveled along the centerline from the start/finish line and the 
latter gives the perpendicular distance of the vehicle mass center from the centerline to the 
centerline’s tangent direction. 
Followed by Perantoni [18], the lateral position n is calculated using its derivative: �̇� = 𝑢 𝑠𝑖𝑛𝜉 + 𝑣 𝑐𝑜𝑠𝜉                          (1) 
In which u and v represent the longitudinal and lateral velocity of the vehicle respectively. The 
parameter ξ is the angle between the vehicle heading direction and the track centerline tangent 
direction and is calculated by: �̇� = �̇�− 𝐶 �̇�                               (2) 
The traveled distance s can therefore be calculated by �̇� = 𝑢 𝑐𝑜𝑠𝜉−𝑣 𝑠𝑖𝑛𝜉1−𝑛𝐶                                (3) 

C gives the centerline curvature of the abscissa point where the vehicle is located. For a left turn, C 
is positive and n is positive when the vehicle is on the left hand side of the centerline. It should be 
noted that the dot notation in this paper denote that these are derivatives with respect to time. The 
traveled distance s is a monotonically increasing function of time because cars are not supposed to 
go backwards on the track realistically. In order to minimize the lap time t in the OCP, s is used as 
an independent variable. According to equation (4), the derivatives respective to time can be 
converted as respective to distance by multiplying the time derivatives by 𝑆𝑓 where the 𝑆𝑓 is the 
reciprocal of velocity of vehicle along the track centerline.  𝑑𝑡 = 𝑑𝑡𝑑𝑠 𝑑𝑠 = 1−𝑛𝐶𝑢 𝑐𝑜𝑠𝜉−𝑣 𝑠𝑖𝑛𝜉 𝑑𝑠                         (4) 

𝑆𝑓 = (𝑑𝑠𝑑𝑡)−1 = 1−𝑛𝐶𝑢 𝑐𝑜𝑠𝜉−𝑣 𝑠𝑖𝑛𝜉                          (5) 

There follows  



𝑑𝑛𝑑𝑠 = (𝑢 𝑠𝑖𝑛𝜉 + 𝑣 𝑐𝑜𝑠𝜉)𝑆𝑓                          (6) 

and 𝑑𝜉𝑑𝑠 = 𝑆𝑓𝜔− 𝐶                               (7) 

where 𝜔 = �̇� is the vehicle yaw rate. 

2.2 Vehicle model 
We choose not to use higher-fidelity models to include pitch and roll motions in this study because 
the motions of pitch and roll are more of a priority when a task is more dominated by vehicle 
dynamics studies. In high level motorsport (Formula one, Formula E), the roll and pitch motions 
themselves have relatively low magnitudes due to the high stiffness of suspensions on these cars. 
The main reason why these are important is that they have crucial effect on aerodynamics 
performance like in Formula One where aerodynamics downforce character is one of the dominant 
factor thus cannot be overlooked in performance analysis[24] . However in Formula E, the body 
work used by teams are identical and its design concept is very different from formula one [26] and 
is of much less concern in downforce generation thus the performance is less aerodynamic 
dependent or sensitive to pitch and roll motions[27] . Therefore, the vehicle used in this paper is 
modeled with 7 DOFs including longitudinal, lateral, yaw motions and 4 wheel rotations with 
aerodynamic loads and load transfer taken into account. A limited-slip differential (LSD) is 
modelled due to the fact that the cars are driven by one motor per axle. 

2.2.1 Body dynamics 

As illustrated in figure 3, the longitudinal, lateral and yaw motions are described using the following 
equations: 𝑀 𝑑𝑑𝑡 𝑢(𝑡) = 𝑀𝜔𝑣 + 𝐹𝑥                       (8) 

𝑀 𝑑𝑑𝑡 𝑣(𝑡) = −𝑀𝜔𝑢 + 𝐹𝑦                       (9) 

𝐼𝑧 𝑑𝑑𝑡𝜔(𝑡) = 𝑎 (𝑐𝑜𝑠𝛿(𝐹𝑦1 + 𝐹𝑦2) + 𝑠𝑖𝑛𝛿(𝐹𝑥1 + 𝐹𝑥2)) − 𝑤(𝑠𝑖𝑛𝛿𝐹𝑦2 − 𝑐𝑜𝑠𝛿𝐹𝑥2) + 𝑤𝐹𝑥3 −𝑤(𝑐𝑜𝑠𝛿𝐹𝑥1 − 𝑠𝑖𝑛𝛿𝐹𝑦1) − 𝑤𝐹𝑥1 − 𝑏(𝐹𝑦3 + 𝐹𝑦4)              (10) 
 

where 𝑀  is the vehicle mass, 𝐼𝑧  is the vehicle yaw moment of inertia, 𝛿  is the front wheel 
steering angle and 𝑤 is the track width. 𝑎 and 𝑏 are the distances from the vehicle’s center of 
mass to the front and reat axle respectively. The 𝐹𝑥𝑖 and 𝐹𝑦𝑖 are the longitudinal and lateral forces 
respectively generated by the tyres with subscript i (i=1,2,3,4) denoting the tyre on the front left, 
front right, rear right and rear left. The total longitudinal and lateral forces 𝐹𝑥 and 𝐹𝑦 acting on 
vehicle are given by 𝐹𝑥 =  𝑐𝑜𝑠𝛿(𝐹𝑥1 + 𝐹𝑥2) − 𝑠𝑖𝑛𝛿(𝐹𝑦1 + 𝐹𝑦2) + (𝐹𝑥3 + 𝐹𝑥4) − 𝐹𝑎𝑥         (11) 𝐹𝑦 =  𝑐𝑜𝑠𝛿(𝐹𝑦1 + 𝐹𝑦2) + 𝑠𝑖𝑛𝛿(𝐹𝑥1 + 𝐹𝑥2) + (𝐹𝑦3 + 𝐹𝑦4)          (12) 

 

where 𝐹𝑎𝑥 is the longitudinal aerodynamic load on the car which will be defined in Section 2.2.3. 



 

Figure 3: 7-DOF Vehicle model 

2.2.2 Wheel dynamics 

The tyre model used in this paper is an empirical tyre model [28] with linearized interpolation for 
peak values of longitudinal and lateral friction coefficient [29]. The longitudinal and lateral forces 
are given by: 𝐹𝑥𝑖 = 𝜇𝑥𝑖𝐹𝑧𝑖 𝜅𝑛𝑖√𝛼𝑛𝑖2 +𝜅𝑛𝑖2 +𝜖                       (13) 

𝐹𝑦𝑖 = 𝜇𝑦𝑖𝐹𝑧𝑖 𝛼𝑛𝑖√𝛼𝑛𝑖2 +𝜅𝑛𝑖2 +𝜖                       (14) 

 

where 𝐹𝑧𝑖 is the tyre normal force, 𝜅𝑛𝑖 and 𝛼𝑛𝑖 are the normalized tyre slip with respect to the 
slip value where peak friction coefficient happens: 𝛼𝑛𝑖 = 𝛼𝑖𝛼𝑚𝑎𝑥𝑖                              (15) 

𝜅𝑛𝑖 = 𝜅𝑖𝜅𝑚𝑎𝑥𝑖                              (16) 

The slip angles 𝛼𝑛𝑖 and ratios 𝜅𝑛𝑖 are given by: 𝛼1 = 𝛿 − arctan (𝑣+𝜔𝑎𝑢−𝜔𝑤) , 𝜅1 = −1+ 𝑅𝜔1𝑐𝑜𝑠𝛿(𝑢−𝜔𝑤)−𝑠𝑖𝑛𝛿(𝑣+𝜔𝑎)           (17) 

𝛼2 = 𝛿 − arctan (𝑣+𝜔𝑎𝑢+𝜔𝑤) , 𝜅2 = −1+ 𝑅𝜔2𝑐𝑜𝑠𝛿(𝑢+𝜔𝑤)−𝑠𝑖𝑛𝛿(𝑣+𝜔𝑎)           (18) 

𝛼3 = −arctan (𝑣−𝜔𝑏𝑢+𝜔𝑤) ,  𝜅3 = −1 + 𝑅𝜔3𝑢+𝜔𝑤                    (19) 

𝛼4 = −arctan (𝑣−𝜔𝑏𝑢−𝜔𝑤) , 𝜅4 = −1+ 𝑅𝜔4𝑢−𝜔𝑤                    (20) 

In which 𝜔𝑖 is the angular velocity of each wheel and R the tyre radius. 
The peak friction values are given by linear interpolation which treats them as linear function or the 
tyre normal loads. The symbols are explained in table2. 𝜇𝑥 𝑚𝑎𝑥 = (𝐹𝑧 − 𝐹𝑧 𝑅1)(𝜇𝑥 𝑚𝑎𝑥2−𝜇𝑥 𝑚𝑎𝑥1𝐹𝑧 𝑅2−𝐹𝑧 𝑅1 ) + 𝜇𝑥 𝑚𝑎𝑥1                 (21) 



𝜇𝑦 𝑚𝑎𝑥 = (𝐹𝑧 − 𝐹𝑧 𝑅1)(𝜇𝑦 𝑚𝑎𝑥2−𝜇𝑦 𝑚𝑎𝑥1𝐹𝑧 𝑅2−𝐹𝑧 𝑅1 ) + 𝜇𝑦 𝑚𝑎𝑥1                 (22) 

𝜅𝑚𝑎𝑥 = (𝐹𝑧 − 𝐹𝑧 𝑅1)(𝜅𝑚𝑎𝑥2−𝜅𝑚𝑎𝑥1𝐹𝑧 𝑅2−𝐹𝑧 𝑅1 ) + 𝜅𝑚𝑎𝑥1                    (23) 

𝛼𝑚𝑎𝑥 = (𝐹𝑧 − 𝐹𝑧 𝑅1)(𝛼𝑚𝑎𝑥2−𝛼𝑚𝑎𝑥1𝐹𝑧 𝑅2−𝐹𝑧 𝑅1 ) + 𝛼𝑚𝑎𝑥1                    (24) 

 

Table 2 Description of symbols 

Symbol Description Front value Rear value 𝐹𝑧 𝑅1 Reference normal load 1 2000 N 2000 N 𝐹𝑧 𝑅2 Reference normal load 2 6000 N 6000 N 𝜇𝑥 𝑚𝑎𝑥1 Peak longitudinal friction coefficient at load 1 1.4 1.75 𝜇𝑥 𝑚𝑎𝑥2 Peak longitudinal friction coefficient at load 2 1.12 1.4 𝜅𝑚𝑎𝑥1 Slip coefficient for the friction peak at load 1 0.11 0.11 𝜅𝑚𝑎𝑥2 Slip coefficient for the friction peak at load 2 0.10 0.10 𝜇𝑦 𝑚𝑎𝑥1 Peak lateral friction coefficient at load 1 1.62 1.8 𝜇𝑦 𝑚𝑎𝑥2 Peak lateral friction coefficient at load 2 1.3 1.45 𝛼𝑚𝑎𝑥1 Slip angle for the friction peak at load 1 9° 9° 𝛼𝑚𝑎𝑥2 Slip angle for the friction peak at load 2 8° 8° 𝑄𝑥 Longitudinal shape factor 1.9 1.9 𝑄𝑦 Lateral shape factor 1.9 1.9 

 

Next, the longitudinal and lateral friction coefficient in equation 13 and 14 are described by  𝜇𝑥𝑖 = 𝜇𝑥𝑖 𝑚𝑎𝑥 sin (𝑄𝑥 arctan( 𝜋2arctan(𝑄𝑥)√𝛼𝑛𝑖2 + 𝜅𝑛𝑖2 ))            (25) 

𝜇𝑦𝑖 = 𝜇𝑦𝑖 𝑚𝑎𝑥 sin (𝑄𝑦 arctan( 𝜋2arctan(𝑄𝑦)√𝛼𝑛𝑖2 + 𝜅𝑛𝑖2 ))            (26) 

where 𝑄𝑥and 𝑄𝑦 Are shaping factors. 
By simplifying the tyre model in such way, the computation time for the OCP can be reduced while 
some important features of a race tyre remain to be described. This includes: 1) nonlinear tyre 
characteristics with respect to tyre slip, 2) variations of peak friction coefficients due to change of 
normal force, 3) combined slip and shaping factors for friction coefficients determination. It should 
be noted that in equation 13 and 14, a small value 𝜖 is added into the denominator of the combined-
slip coefficient. This is a value to avoid zero-slip scenario leading to an infinite gradient derivative 
which will make the OCP solver to struggle. Meanwhile it should be small enough (10e-06) to 
maintain the accuracy of the tyre model.   

For current Gen2 and future Gen3 cars, the driving wheels are propelled by torques from motors 
through LSD and drive shafts. The LSD torque is transferred from the faster rotating wheel to the 
slower wheel. This torque is given by: 𝑇𝑑𝑖𝑓𝑓 = 0.5𝑘𝑑(𝜔𝑖𝑛𝑛𝑒𝑟 −𝜔𝑜𝑢𝑡𝑒𝑟)                     (27) 
where 𝜔𝑖𝑛𝑛𝑒𝑟 and 𝜔𝑜𝑢𝑡𝑒𝑟 are the wheel angular velocities of inner and outer wheel on the same 
axle and 𝑘𝑑 is the rotational damping coefficient of the LSD.  

Finally, the wheel motions are defined by: 𝐽𝑤𝜔1̇ = 𝑘𝑏𝑇𝑏𝑟𝑎𝑘𝑒 + 𝑇𝑑𝑖𝑓𝑓_𝑓 − 𝐹𝑥1𝑅                      (28) 



𝐽𝑤𝜔2̇ = 𝑘𝑏𝑇𝑏𝑟𝑎𝑘𝑒 − 𝑇𝑑𝑖𝑓𝑓_𝑓 − 𝐹𝑥2𝑅                      (29) 𝐽𝑤𝜔3̇ = 𝑇𝑑𝑟𝑖𝑣𝑒 + (1 − 𝑘𝑏)𝑇𝑏𝑟𝑎𝑘𝑒 + 𝑇𝑟𝑒𝑔𝑒𝑛_𝑝 − 𝑇𝑑𝑖𝑓𝑓_𝑟 − 𝐹𝑥3𝑅        (30) 𝐽𝑤𝜔4̇ = 𝑇𝑑𝑟𝑖𝑣𝑒 + (1 − 𝑘𝑏)𝑇𝑏𝑟𝑎𝑘𝑒 + 𝑇𝑟𝑒𝑔𝑒𝑛_𝑝 + 𝑇𝑑𝑖𝑓𝑓_𝑟 − 𝐹𝑥4𝑅        (31) 
In which 𝐽𝑤 is the wheel rotational inertia, 𝑘𝑏 is the brake bias to the front, 𝑇𝑑𝑟𝑖𝑣𝑒 and 𝑇𝑏𝑟𝑎𝑘𝑒 
are drive torque from the motor brake torque generated by the caliper or the motor regeneration. 𝑇𝑟𝑒𝑔𝑒𝑛_𝑝 is additional regenerative torque which in real life operated by driver on the steering wheel. 
To avoid overlapping of the pedals, these three torques are subject to the constraints of : 𝑇𝑑𝑟𝑖𝑣𝑒𝑇𝑏𝑟𝑎𝑘𝑒 = 0                             (32) 𝑇𝑑𝑟𝑖𝑣𝑒𝑇𝑟𝑒𝑔𝑒𝑛 = 0                             (33) 
In this study, the 𝑇𝑑𝑖𝑓𝑓_𝑓 is zero on Gen2 cars and non-zero for Gen3 cars because the difference 
of powertrain configuration on front axle. 
Therefore, the drive power 𝑃𝑑𝑟𝑖𝑣𝑒 and regeneration power 𝑃𝑟𝑒𝑔𝑒𝑛 are given by: 𝑃𝑑𝑟𝑖𝑣𝑒 = (𝑇𝑑𝑟𝑖𝑣𝑒 + 𝑇𝑑𝑖𝑓𝑓_𝑟)𝜔4 + (𝑇𝑑𝑟𝑖𝑣𝑒 − 𝑇𝑑𝑖𝑓𝑓_𝑟)𝜔3           (34) 𝑃𝑟𝑒𝑔𝑒𝑛𝑔𝑒𝑛2 = (𝑘𝑟(1 − 𝑘𝑏)𝑇𝑏𝑟𝑎𝑘𝑒 + 𝑇𝑟𝑒𝑔𝑒𝑛𝑝 + 𝑇𝑑𝑖𝑓𝑓𝑟)𝜔4 + (𝑘𝑟(1 − 𝑘𝑏)𝑇𝑏𝑟𝑎𝑘𝑒 +𝑇𝑟𝑒𝑔𝑒𝑛_𝑝 − 𝑇𝑑𝑖𝑓𝑓_𝑟)𝜔3                          (35) 
where 𝑘𝑟 denotes the portion of much of regenerative brake in total brake torque. For Gen3 cars 
with front wheel MGU, the regeneration power becomes: 𝑃𝑟𝑒𝑔𝑒𝑛𝑔𝑒𝑛3 = (𝑘𝑟(1 − 𝑘𝑏)𝑇𝑏𝑟𝑎𝑘𝑒 + 𝑇𝑟𝑒𝑔𝑒𝑛𝑝 + 𝑇𝑑𝑖𝑓𝑓𝑟)𝜔4 + 

(𝑘𝑟(1 − 𝑘𝑏)𝑇𝑏𝑟𝑎𝑘𝑒 + 𝑇𝑟𝑒𝑔𝑒𝑛𝑝 − 𝑇𝑑𝑖𝑓𝑓𝑟)𝜔3 + (𝑘𝑟𝑘𝑏𝑇𝑏𝑟𝑎𝑘𝑒 + 𝑇𝑟𝑒𝑔𝑒𝑛_𝑝 + 𝑇𝑑𝑖𝑓𝑓_𝑓)𝜔1 + (𝑘𝑟𝑘𝑏𝑇𝑏𝑟𝑎𝑘𝑒 + 𝑇𝑟𝑒𝑔𝑒𝑛_𝑝 − 𝑇𝑑𝑖𝑓𝑓_𝑓)𝜔2        (36) 
    

2.2.3 Normal tyre loads 

The normal forces on the tyres have to be calculated at each time step to be used for calculation of 
the longitudinal and lateral tyre forces. These forces have to satisfy the basic balancing equations of 
the car. In the vertical direction: 𝐹𝑧1 + 𝐹𝑧2 + 𝐹𝑧3 + 𝐹𝑧4 −𝑀𝑔 − 𝐹𝑎𝑧 = 0                    (37) 
where 𝐹𝑧𝑖  are the tyre normal force on each tyre, 𝑀  is the total vehicle mass, 𝑔  is the 
acceleration due to gravity and 𝐹𝑎𝑧 is the aerodynamic vertical load on the car. To balance the 
moment around the x-axis (illustrated in figure 3) of car: 𝑤(𝐹𝑧4 − 𝐹𝑧3) + 𝑤(𝐹𝑧1 − 𝐹𝑧2) + 𝐹𝑦 = 0                    (38) 
and for the moment around the y-axis: 𝑏(𝐹𝑧3 + 𝐹𝑧4) − 𝑎(𝐹𝑧1 + 𝐹𝑧2) − ℎ𝐹𝑥 − (𝑎𝐴 − 𝑎)𝐹𝑎𝑧 = 0               (39) 
in which h is the height of the vehicle mass center to the ground. 
To ensure a unique solution for the four normal forces, the lateral load transfer bias 𝐷 is introduced 
to formulate the fourth balancing equation. This describe the lateral load transfer distribution 
between the front and rear axle: 𝐷(𝐹𝑧2 + 𝐹𝑧3 − 𝐹𝑧1 − 𝐹𝑧4) − 𝐹𝑧2 + 𝐹𝑧1 = 0                   (40) 
where the aero loads 𝐹𝑎𝑧 and 𝐹𝑎𝑥 are given by: 𝐹𝑎𝑧 = 0.5𝐶𝑙𝜌𝑎𝐴𝑢2                             (41) 𝐹𝑎𝑥 = 0.5𝐶𝑑𝜌𝑎𝐴𝑢2                             (42) 
in which 𝐶𝑑 and 𝐶𝑙 are the aerodynamic coefficient of drag and lift,  𝜌𝑎 is the air density and 𝐴 



is the frontal area of the car. 

2.3 Thermal dynamics model 
The battery temperature is another important factor that should be taken into account in Formula-E 
energy management optimization. In particular races on the calendar, such as Santiago E-prix, the 
ambient and track temperature are so high that the battery temperature needs to be carefully 
managed to avoid derating in power.  

In this study, the battery thermal behavior is modelled using a lump model. The heat generation of 
the battery is mainly composed of reversible heat and irreversible heat [30]. The irreversible heat 
mainly comes from the overpotential heat, material phase changes and mixing [31]. The 
overpotential heat is the main component which includes ohmic loss, charge transfer at the interface 
and mass transfer limitation, while in many studies, the heat generation due to phase change and 
mixing are often neglected [32].  

The reversible heat is generated from entropy change in the cells. Bernardi [33] proposed the initial 
model of this component based on which different forms have been developed in the literature later. 
The reasons that both reversible heat and irreversible heat are both considered here are as follows: 
1) the irreversible heat is dominant in high current applications [34] such as Formula–E application, 
2) the reversible heat component significantly affects the battery temperature during 
discharging/charging cycles because of the change of current direction which happens very often on 
Formula-E cars due to regenerative brakes, and 3) the effect of change of state of charge (SOC) on 
reversible heat generation is obvious so the heat generation rate varies at different stage of a race 
i.e. different SOC. 
The battery temperature 𝑇𝑏 is described by: 𝑚𝑏𝐶𝑏 𝑑𝑑𝑡 𝑇𝑏(𝑡) = 𝑄1 +𝑄2 − 𝑄3 − 𝑄4                    (43) 

in which 𝑚𝑏 is the battery total cell mass, 𝐶𝑏 is the specific heat capacity of the cell, 𝑄1 is the 
irreversible heat generation component, 𝑄2 is the reversible heat generation component,  𝑄3 is 
the conductive heat transfer rate from the cell mass to environment through the coolant and 𝑄4 is 
the radiative heat transfer rate. The heat flow is illustrated in figure 4. 
 

 

Figure 4: Schematic of heat flow used in battery thermal model in FE car 
 

Because the only passive cooling device is the radiator and the rest of the system is covered under 
the vehicle body work, we consider the batteries and coolant as a whole. The 𝑚𝑏𝐶𝑏 in eq.43 is 
added with 𝑚𝑐𝐶𝑐 to include the coolant mass 𝑚𝑐 and specific heat capacity 𝐶𝑐.According to [35], 



the heat generation is given by: 𝑄1 +𝑄2 = 𝐼(𝑈𝑜𝑐_𝑏 − 𝑉𝑏) − 𝐼(𝑇𝑏 𝑑𝑈𝑜𝑐_𝑏𝑑𝑇𝑏 )                  (44) 

where 𝑈𝑜𝑐_𝑏  is the open circuit voltage, 𝑉𝑏  is the terminal voltage, 𝐼  is the current. The term (𝑈𝑜𝑐_𝑏 − 𝑉𝑏) is caused by internal resistance: 𝑈𝑜𝑐_𝑏 − 𝑉𝑏 = 𝐼(𝑅𝑝 + 𝑅𝑜)                           (45) 
in which 𝑅𝑜 and 𝑅𝑝 are ohmic and polarization resistance of the battery which vary at different 

SOC. The term (𝑇𝑏 𝑑𝑈𝑜𝑐_𝑏𝑑𝑇𝑏 ) in equation 44 is often referred to as the entropy coefficient which is 

also SOC dependent. Therefore, the heat generation can be rewritten as follows: 𝑄1 +𝑄2 = 𝐼2𝑅(𝑆𝑂𝐶) − 𝐼𝑇𝑏(𝑑𝑈𝑜𝑐𝑏𝑑𝑇𝑏 )(𝑆𝑂𝐶)                (46) 

In which 𝑅(𝑆𝑂𝐶) is the sum of polarization and ohmic resistance of the battery as a function of 

SOC and (𝑑𝑈𝑜𝑐𝑏𝑑𝑇𝑏 )(𝑆𝑂𝐶) denotes the entropy coefficient which is also a function of SOC. 

The heat transfer rate is given by: 𝑄3 = ℎ𝑐𝐴𝑏(𝑇𝑏 − 𝑇𝑎𝑚𝑏)                        (47) 𝑄4 = 𝜎𝜀𝑒(𝑇𝑏4 − 𝑇𝑎𝑚𝑏4 )                         (48) 
In which 𝐴𝑏 is the area of cell surface, 𝑇𝑎𝑚𝑏 is the ambient temperature, ℎ𝑐 is the convective 
heat transfer coefficient, 𝜎  is the Stefan Boltzmann constant and the 𝜀𝑒  emissivity of the cell 
surface [36]. However, because the difference between the battery and environment is relatively low, 
the radiative heat transfer rate can be simplified [31] by linearization as: 𝑄4 = 4𝜎𝜀𝑒𝑇𝑎𝑚𝑏(𝑇𝑏 − 𝑇𝑎𝑚𝑏)                      (49) 
Therefore the sum of convective and radiative heat transfer rate can be reformulated as: 𝑄ℎ𝑡 = ℎ𝑐𝑜𝑚𝑏(𝑉) 𝐴𝑏(𝑇𝑏 − 𝑇𝑎𝑚𝑏)                   (50) 
where ℎ𝑐𝑜𝑚𝑏 is a combined heat transfer coefficient as a function to vehicle speed. 
The battery and cooling data are obtained from authors’ previous study [37] that is presented in 
appendix. 

3. Optimal control problem formulation 

The optimal control problem is formulated in order to minimize the following cost function in Bolza 
form: 𝐽 = ∅(𝑡0, 𝑥(𝑡0), 𝑡𝑓, 𝑥(𝑡𝑓), 𝑝) + ∫ 𝑙(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝑝)𝑑𝑡𝑡𝑓𝑡0             (51) 

which is subjected to these constraints:  

{  
  𝑑𝑥𝑑𝑡 − 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝑝) = 0𝑔(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝑝) = 0ℎ(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝑝) ≤ 0𝑔𝑏(𝑥(𝑡0), 𝑥(𝑡𝑓), 𝑢(𝑡0), 𝑢(𝑡𝑓), 𝑝) = 0                    (52) 

where the first term in equation 51 is the boundary (Mayor) cost and the second term is the stage 
(Lagrange) cost. 
In the problem, 𝑝 ∈ 𝑅𝑛𝑝 denotes the constant parameters to be optimized in the form of vector of 𝑛𝑝 dimensions, 𝑥(𝑡) ∈ 𝑅𝑛 is the state vector and u(𝑡) ∈ 𝑅𝑚 is the control vector. The system 



dynamics is described by 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝑝) ∈ 𝑅𝑛, and vectors 𝑔 ∈ 𝑅𝑛𝑔 and 𝑔𝑏 ∈ 𝑅𝑛𝑔𝑏 are the 
quality constraints whereas the latter defines the constraints of the boundaries. The inequality 
constraints are defined in ℎ ∈ 𝑅𝑛ℎ. 
In this study, the aim is to optimize the MTM along the track length which is an integration of 𝑆𝑓 
(i.e. reciprocal of velocity of vehicle along the track centerline), so the cost function will not contain 
the boundary cost but only the Lagrange stage cost which is:  𝐽 = ∫ (𝑆𝑓 + 𝜖�̇�𝑇𝑊�̇�)𝑑𝑠𝑠𝑡𝑠0                           (53) 

where 𝑊 is a positive definite weight matrix, 𝑠0 and 𝑠𝑓 are the initial and terminal length of the 
track respectively, �̇� and �̇�𝑇 denote the change rate of control vectors and its transposed form. 
The term 𝜖�̇�𝑇𝑊�̇� is piece-wise derivative variation perturbation term which is added to the stage 
cost to regularize the problem. This is to avoid singular arcs and oscillatory in the solution caused 
by the nature of numerical algorithms [38]. Despite that this additional term would change the 
formulation to no longer a pure minimal time problem, a choice of a very small value for 𝜖 ∈(10𝑒 − 4,10𝑒 − 2) makes the influence to the solution negligible meanwhile it provides the benefit 
of a quicker convergence [39].  

The system dynamics equations are included in 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝑝) , whereas the load transfer 
equations and equation for pedal overlapping constraint are treated as equality path constraints 
included in 𝑔(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝑝). And finally, the bounds for states and controls, and path constraint 
for power are included in the inequality constraints ℎ(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝑝). Table 35 details the elements 
in the formulation. 
 

Table 3: OCP formulation elements and their physical meanings 

Components Elements Physical meaning 

Lagrange stage cost 𝑆𝑓 + 𝜖�̇�𝑇𝑊�̇� 𝑆𝑓 (i.e. reciprocal of velocity of vehicle 
along the track centerline) and 
regularization 𝜖�̇�𝑇𝑊�̇� 

Change rate of control vectors �̇� Including pedal change rate of steering 
angle, acceleration pedal, braking pedal 
and regeneration pedal. 

System dynamics 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝑝) Equations describing the vehicle 
dynamics, track positions and battery 
thermal dynamics 

Equality constraints 𝑔(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝑝) Load transfer equations (eq.37,38,39,40) 
The inequality constraints ℎ(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝑝) Constraints of states (e.g. vehicle lateral 

position), controls (e.g. steering angle). 
Path constraints (e.g. MGU power) and 
boundary constraints (e.g. energy 
consumption) 

 

The optimal control problem in this study is transcribed into a large NLP using Legendre-Gauss-
Radau (LGR) quadrature orthogonal collocation method and Radau’s integration formula [40]. To 
implement this, the General-Purpose Optimal Control MATLAB Toolbox GPOPS-II [41] and 
underlying interior point algorithm IPOPT [42] are used. A ph-method for mesh refinement [43] is 



used to reduce the polynomials approximating errors which will further reduce the influence of the 
problem characteristics (e.g. singular arcs, rapidly changing controls and constraints). Similar 
problems and detailed discussion of such collocation and integration methods can be found in [44]. 
Scaling is another factor that can significantly affect the convergence performance of the 
optimization algorithms. Instead of simply scaling into the range of [-0.5, 0.5], to map the variables 
into a more spherical space[38], the base quantities are scaled into dimensionless quantities as 
shown in table 4. 
With this method, the vehicle mass of 900kg now is dimensionless value of 1. Other derived 
quantities such as power of 250 kW now is 5.14, tyre normal force of 6000 N now is 0.68 and 50000 
J of energy is scaled to 1.8, etc. 
 

Table 4: Non-dimensional scalers, which are used in the optimization algorithms 

Base quantity Unscaled (with unit) Scaled (dimensionless) 
Mass 1 kg 0.001111111 

Length 1 m 0.322580645 

Time 1 s 1.778001778 

Electric current 1 A 0.005 

Thermaldynamic temperature 1 K 0.05 

 

4. Result and discussion 

4.1 Reference performance 

This section introduces two performance references whose energy consumption and thermal 
behavior are not restricted. The power out of RESS is restricted to 200 kW (race mode) for the first 
reference and 250 kW (qualification mode) for the second reference. The key differences are shown 
in Table 5. 
 

Table 5: Performance references whose energy consumption and thermal behavior are not 
restricted 

Case Power 
(kW) 

Energy consumption 
(kWh) 

Temperature rise (℃) 
Tenv* (25℃) SOCi*   
(100%) 

Lap time(s) 

Ref 1 200 2.03 1.558 80.48 

Ref 2 250 2.26 2.071 78.57 

Tenv* and SOCi* denote the environment temperature and initial SOC respectively 

 

Figure 5 shows the track layout and race lines. The difference in power doesn’t affect the race line 
much. The biggest difference occurred near turn 2 with maximum difference of 0.5 m shown in 
figure 5(b) and (d). In the majority parts of the track, the race lines are very close. In contrast, the 
higher power is generated in Ref 2 car, the more advantage is seen over speed of 50 m/s as shown 
in figure 5(c). As a result, this has improved the lap time of the Ref 2 car by 1.91s (2.37%) faster 
than the Ref 1 car. However this has also led to an extra energy consumption of 0.23 kWh (11.3%). 
It should be noted that such a higher energy consumption did not significantly improve the lap time. 



In terms of thermal behavior, with 50 kW more power in the qualification mode, the battery 
temperature rises higher in the Ref 2 case. Since the thermal behavior is more complex to be 
analyzed under different initial and environment conditions, this is discussed in details in the 
following sections. 

 

Figure 5: Lap time simulation: a) track layout and race lines, b) enlarged view of turn 2, c) speed 
profiles, d) lateral positions of the vehicle to the centreline 

4.2 Performance with limited energy 

This section demonstrates the effect of energy restriction on the vehicle’s performance. Figure 6 
shows how the energy restriction affects the speed on the track. It can be observed that given less 
available energy, the optimal solution for minimum lap time cuts more on the high-speed sections 
(blocks shown in figure 6). The car starts to slow down before reaching the possible high speed. The 
deceleration during the high-speed cut-off (arrow A in figure 6) is lower than the brake phase (arrow 
B in figure 6). This is because the former one is due to the combined effect of aerodynamic drag 
and rear axle regenerative torque by operating the regenerative pedal on the steering wheel as 
mentioned in Section 2.2.2. While in the latter, steeper deceleration is achieved by directly applying 
torque on both front and rear axles. The torque differences are shown in figure 7. 
 



 

Figure 6: Speed profiles with different energy consumption limitations 

 

 

Figure 7: Drive, brake and regenerative pedal torques : a) unlimited energy case, b) restricted 
energy consumption to 1.4 kWh per lap 

 

It can be observed that in the unlimited case, brake torque is immediately applied after drive torque 
becomes zero (driver lifts his foot off the acceleration pedal). In contrast, when given an upper limit 
of energy consumption, there’s an observable gap between the drive and brake torques which 
suggests that neither the acceleration pedal nor the brake pedal is pressed. This technique is referred 
to ‘lift and coasting’ (referred as LaC later in this paper), by which the car is slowing down on its 
momentum due to aerodynamic drag and energy is harvested by the additional regenerative torque. 
The amount of LaC increases as the energy consumption is restricted to a lower value as shown in 
figure 8(b). The slowing down before corner entry relies more on LaC than conventional braking 
when comparing figure 8(b) and (d). When the energy-per-lap is restricted to less than 1.4 kWh, the 
car is under LaC state for more than half of the distance of the track. Also, it should be noted that in 
the unlimited case, the regenerative pedal is still used, the purpose of this operation aims no longer 
for energy saving but as a way to alter the brake bias in order to enhance the corner entry brake 



performance. From the previous vehicle model(equation 8, 11 and 42) and the result presented in 
figure 7, the reasons why LaC technique is an effective way to save energy can be explained in two 
aspects: 1) spending energy to gain higher speed advantage in high-speed sections is very inefficient 
because the race car hardly accelerates in those sections due to high aerodynamic drag. Therefore, 
energy consumption at such a high rate can only give very little time advantage; 2) LaC reduces 
energy cost in those high-speed sections and harvests energy from rear axle. This is different from 
stepping the brake pedal which in the meantime causes waste of energy on front axle through heat 
dissipation. 
 

 

Figure 8: lap time simulation: a) torque applied by regeneration pedal, b) regeneration pedal usage 
throughout a lap, c) acceleration pedal usage, d) brake pedal usage 

 

The energy restriction also has a minor effect on the choice of racing lines solved by the OCP. As 
shown in figure 9, the influence lies in some specific parts of the track, enlarged in figure 9 (b),(c) 
and (d). The racing line with less energy is usually wider than the one with more energy. This can 
help to reduce the speed loss due to tight corners. 
It is obvious that with a limited energy, the pace will be compromised; the effect of energy 
consumption limit on lap time is shown in figure 10. It is shown in the figure that the relation 
between energy-per-lap and lap time follows a very regular smooth polynomial curve: 𝑡𝑙𝑎𝑝 = 2.717𝐸𝑝4 − 20.53𝐸𝑝3 + 64.13𝐸𝑝2 − 97.43𝐸𝑝 + 139.6        (54) 
where 𝐸𝑝 is the restricted energy per lap and 𝑡𝑙𝑎𝑝 is the resultant lap time. 
It should be noted that such a relation is crucial for management for multiple laps which is too large 
for an OCP. The regulation states that a race lasts for 45 minutes plus one lap. With this relation, the 
time of 45 minutes can be converted to number of laps along with an energy-per-lap target. Then 
the race strategy can me formulated into a multi-stage problem.  

 



 

Figure 9: Racing lines in a lap time simulation: a) track-size view of race lines, b) enlarged view 
of block b, c) enlarged view of block c, and d) enlarged view of block d 

 

 

Figure 10: lap time as a function of energy consumption 

 

4.3 Battery thermal behavior analysis and its effect as a constraint  

4.3.1 Unconstrained cases 

It is obvious that with more energy consumed, the battery temperature rises higher (shown in figure 
11). However, the battery thermal behavior is more complex because it is affected by many factors 
such as initial conditions (e.g. initial battery temperature, SOC) and environment temperature. The 
most dominant factor is the battery SOC because the battery properties change with it such as 1) 
open circuit voltage (OCV), 2) polarization and ohmic resistance values, and 3) entropy coefficient. 



Three representative cases whose initial SOCs are 100% ,50% and 10%, are investigated here. All 
of which are under the same 1.6 kWh energy per lap restriction with initial temperature of 25℃, 
which is a common ambient temperature when a race is held around March in Merrakesh (i.e. the 
track used in this study). Figure 12 shows the irreversible (Qirr) and reversible (Qrev) heat 
generation rate of the three cases. The first observed outcome is that the general magnitude of the 
heat generation rate is higher at lower SOCs. This is due to the characteristic of OCV versus SOC 
where more current is required when OCV drops at lower SOC given the same output power of 
RESS. The RESS current signal is shown for all the three cases in figure 13. 
 

 

Figure 11: Battery temperature change at 25℃ environment temperature with initial battery 
temperature at 25℃ and SOC at 95% under different energy restrictions 

 

Figure 12: Battery heat generation rate under different SOC conditions 



 

 

Figure 13: Current of the RESS under different SOC conditions 

 

As is shown in figure 13, the current is higher in magnitude at lower SOC during both discharge 
(positive) and charge (negative). The combined effect of current and entropy coefficient also lead 
to changes in magnitude of different heat components. One feature of interest in figure 12 is that the 
signs of irreversible heat and reversible heat isn’t the same at all time. This is because the change 
of entropy coefficient at different SOCs. At SOC of 50%, the entropy coefficient is positive (shown 
in appendix) which means during regeneration the reversible component contributes to lower the 
total heat generation rate whereas during propelling, it increases the total rate. When the entropy 
coefficient is negative such as at SOC of 100% and 10%, the effect is opposite. The battery 
temperature results also show big difference. Starting with an initial battery temperature of 35 ℃, 
the 10% SOC case resulted in a 4.8 ℃ temperature rise which is 9 times higher compared to the 
0.5℃ rise with 100% SOC. However, in real life, this wouldn’t happen because lower SOC always 
happen in the later phase of a race where battery temperature is already relatively high. This 
increases the temperature difference between the battery and ambient temperature which raises the 
cooling power (equation 50). As shown in figure 14, when the initial temperature is changed to a 
more realistic value, e.g. 55℃, the temperature rise is decreased to 3.5℃. 



 

Figure 14: Battery temperature change: a) different SOCs starting at same temperature 35 ℃, b) 
same SOC (10%) starting at 35 ℃ and 55 ℃ 

 

The following conclusions can be drawn from the unconstraint cases: 1) during a race, the heat 
generation is expected to be higher in the later phase due to the battery voltage drop, 2) in a certain 
range of SOC, the entropy coefficient is positive and harvesting energy will bring less heat 
generation. Therefore, more regeneration would cost less thermal penalty than a case where entropy 
coefficient is negative, and 3) the temperature difference between the battery and environment 
significantly influence the battery temperature rise. In places like Santiago where ambient 
temperature is high, thermal management would become more crucial. An example is discussed in 
the next section. 

4.3.2 OCP solution with thermal constraints 

This section demonstrates the OCP solution with thermal constraints added to a base energy 
constraint of 1.6 kWh per lap. The initial battery temperature and SOC is set to 30℃ and 100% 
respectively with ambient temperature of 25℃. Figure 15 shows battery temperature change under 
different constraints. The black line in the figure shows the reference case with no limit on battery 
temperature rise. The temperature rise is 0.82℃ finishing at a lap time of 81.59s. The blue and red 
lines show the cases with maximum temperature rise of 0.67℃ and 0.48℃ respectively. The 
corresponding lap times are 81.89s and 83.01s. Given such initial conditions, the lap time sensitivity 
to temperature follows the pattern shown in figure 16. 
 



 

Figure 15: Battery temperature change under different constraints 

 

 

 
Figure 16: Lap time as a function of battery temperature rise 

 

In the formulation of the OCP, the energy consumption is treated as an upper bound which means if 
other constraints are more dominant, the total given amount of energy doesn’t need to be fully 
consumed. Empirically, to reduce temperature rise, the most direct way is to reduce the energy 
consumption. However, from the OCP result, every solution fully consumed the available 1.6 kWh 
of energy. Therefore, the OCP produced a more efficient technique to reduce temperature rise. This 
is shown in figure 17. For the unlimited temperature case, the typical LaC technique can be clearly 
observed as previously discussed. The solution suggested an immediate complete lift off at certain 
points. When temperature constraints are applied, a clearly different style drive torque curve from 
the typical LaC can be observed. Instead of a sharp lift off, the solutions suggested a more gentle 
decrease of the drive torque (blocks shown in figure 17). It is observed that the more strict the 
temperature constraint is, the more gentle the decrease in drive torque is. This brings the starting 
point more advance and delays where it decreases to 0. The effect of such technique on speed and 
heat generation is shown in figure 18. 



For the unlimited case, when lift and coasting is performed, the speed profile changes sharply. In 
contrast, the constrained cases showed very smooth speed profiles which is unusual in race cars. 
The solution suggested to cut out some parts of high-speed performance while braking actions are 
not compromised. This decreases the amount of heat generated at those high-speed sections as can 
be observed in figure 17(b) to reduce the total temperature rise. The results in this section 
demonstrate a novel type of solution to thermal constraints compared to energy constraints. 
 

 

Figure 17: Drive and brake torques during lap time simulation under different battery thermal 
constraints 

 

 

Figure 18: lap time simulation under different battery thermal constraints: a) speed profile, b) heat 
generation rate 

4.3.3 Battery resistance investigation 

As previously introduced in Section 2.3, the combined ohmic and polarization resistance of the 
battery in this study is assumed to be a function only of battery SOC (eq.46). However in real life, 
the characteristic of the resistance is usually more complex and resistance can change with battery 
temperature [45] and battery state of health [46]. This feature is strongly non-linear and sometimes 



non-monotonical with increase/decrease magnitude over 50% [50]. While the detailed data are not 
easily accessible, as an alternative way, we have investigated the effect of resistance changes on the 
FE race strategy performance in this section by assuming changes of -50% and +20% in battery 
combined resistance. The decreased resistance is assumed to be the result of battery temperature 
rise and the increased resistance could be result of either temperature rise or aging. The initial 
condition for this investigation is set to 50% SOC and battery temperature of 43℃ which is a very 
likely state in a race suggested by [41]. The battery temperature rise is constrained to 1.5℃ and 
energy consumption is restricted to 1.6kWh. The key summary is shown in table 6. 
 

Table 6: Comparison between Gen 2 and Gen 3 simulation models 

Case 1 2 3 

Resistance R(SOC) R(SOC)+20% R(SOC)-50% 

Terminal battery temperature (℃) 44.5 44.5 44.4185 

Peak heat generation rate during 
propulsion (kW) 

16.97 19.99 9.46 

Lap time(s) 83.8975 84.8694 81.6203 

 

The first noticeable difference is the temperatures at the end of the lap. Case 3 with 50% reduced 
resistance did not reach the 1.5℃ constraint of battery temperature rise while the other two reached 
the limit. This indicates that Case 3 is not thermal-constrained. As a result, the lap time is clearly 
faster than the first two cases. Also it can be seen that the peak heat generation rate during propulsion 
is nearly proportional to the resistance. This is because the dominant component of the total heat 
generation is the irreversible heat, which is proportional to the battery combined resistance. The 
detailed results are shown in figure 19. 

 



 

Figure 19: Detailed states and controls under three different cases of battery internal resistance: (a) 
Drive and brake torques; (b) heat generation rate; (c) battery temperature; (d) speed profile 

 

It can be observed from figure 19(a) that for Case 3 with 50% less resistance and not being thermal-
constrained, gentle lift-off is not needed. While for the first two cases, Case 2 with higher resistance 
than Case 1, needs more gentle lift-off and starts earlier like what was observed in section 4.3.2. 
This leads to a significant lower high-speed performance demonstrated in figure 19(d). It should be 
noted that in table 6, only propulsion heat generation peaks are compared. This is because different 
lift-off strategy leads to different speed at braking point shown by figure 19(b) and (d). With less 
lift-off, the braking starts at a higher speed thus increases the regeneration power. As a consequence, 
this makes the peak regeneration power less comparable.  

Overall, changes in battery resistance have non-negligible effects on performance, therefore if more 
detailed data is available, more influence factors should be accounted in the resistance calculation.  

 

4.4 Comparison between Gen 2 and Gen 3 specs 

Because the details of Gen 3 is yet to be determined by the FIA at the time this study is being 
completed, the vehicle specs of Gen 3 used here remains the same as that of Gen 2 except that for 
the formulation of Gen 3 problems, a differential is added to the front axle as stated in Section 2.2.2 
and power limit is raised from 200 kW to 300 kW in race mode. 
Similar to the performance shown in Section 4.3.2, the energy sensitivity of a Gen 3 car follows a 
similar pattern. The relation between energy per lap and lap time can also be fitted into: 𝑡𝑙𝑎𝑝 = 3.063𝐸𝑝4 − 22.32𝐸𝑝3 + 67.24𝐸𝑝2 − 100.1𝐸𝑝 + 138.3 

Comparison between the two shows that with same amount of energy, a Gen 3 car is much faster 
than the Gen 2 one. Horizontally, with same lap time as target, a Gen 3 car uses 10%(target of 88s) 
to 30%(target of 81s) less energy than a Gen 2 car. The result can be explained in two main aspects. 
First, as shown in figure 21, with 100 kW more power going out of the RESS during acceleration, 
the Gen 3 gains significant speed advantage before braking into a corner when the acceleration is 
power-limited. It can be seen from a G-G diagram that the Gen 3 car has larger acceleration capacity 
in the relatively high speed range. Second, as shown in figure 22(a), the Gen 3 car consumes energy 
at a higher rate (steeper slope) compared to Gen 2. Although the acceleration costs more energy of 
a Gen 3 car ( 17% more than Gen 2 as shown figure 22(b)), what makes it remarkably more efficient 
is the MGU on the front axle which harvests kinetic energy during braking instead of wasting it like 



the Gen 2 through friction brakes. Meanwhile, LaC operation can also be found applicable on Gen3 
cars as blocked in figure 22. The front axle MGU allows a Gen3 car to slightly postpone the start of 
LaC to gain more speed at high speeds. By the end of a lap, Gen 3 is able to harvest 55% more 
energy in comparison to Gen 2. The cases here illustrated the energy usage of Gen 2 and Gen 3 
based on the same energy per lap of 1.6 kWh.  

 

 

Figure 20: Performance comparison of Gen 2 and Gen 3 Formula-E cars 

 

 

Figure 21: Comparison between Gen 2 and Gen 3: a) speed profile, and b) G-G diagram 

 



 

Figure 22: Energy usage comparison between Gen 2 and Gen 3 Formula-E cars 

 

 

Figure 23: Comparison of thermal behavior in Gen 2 and Gen 3 cars: a) battery temperature b) 
heat generation component 

 

It is clear that Gen 3 car is more time-energy efficient than Gen 2. In terms of thermal behavior, 
however, a Gen 3 car would faces more critical situations as shown in figure 23. In that figure, 
Qdrive denotes the heat generation during propelling and Qreg denotes the heat generated during 
harvesting. 
The examples are given the same initial SOC of 100% and initial temperature of 35℃ assuming 
that the battery and cooling characteristics are the same for Gen 2 and Gen 3 cars. It is observed that 
Gen 3 suffers from battery heating more than Gen 2 car. The heat generation increases mainly from 
the propelling phase. It should be noted that theoretically the difference in regeneration part should 
also be huge. However, the similarity of regeneration heat in this case is due to 𝑘𝑟 in equation (36) 
that is adjusted to 0.65 for Gen 3 to comply with the maximum regeneration power stated by the 
technical regulation. The summary of energy and thermal comparison is presented in Table 7. 
 

 



Table 7: Comparison between Gen 2 and Gen 3 simulation models 

 Gen2 Gen3 Difference(compared to Gen2) 
Energy per lap (kWh) 1.6 1.6 - 
Initial SOC 100% 100% - 
Initial Battery temperature (℃) 35 35 - 
Propelling energy (kWh) 2.332 2.733 +17.2% 

Regenerated energy (kWh) 0.733 1.133 +54.67% 

Lap time (s) 81.59 78.93 -3.26% 

Temperature rise (℃) 0.51 1.11 +117.6% 

Heat generated from propelling 

(k𝐽) 324 528 +63.0% 

Heat generated from regeneration 

(𝑘𝐽) 87.3 94.6 +8.36% 

 

According to FIA, in the future Gen 3 era, fast-charge pitstops might be introduced into the race 
events. This allows drivers to pit in and perform a fast charging which gives additional 4 kWh energy. 
This process cost approximately 30 seconds which driver has to make up in the remaining laps. In 
the case of the Merrakesh track used in this study, a simplified race planning problem without fast-
charge pitstop can be formulated as follows: 𝑀𝑖𝑛 𝑓 = 1𝑛 

 𝑠. 𝑡. { 𝑛𝐸𝑝 < 51𝑘𝑊ℎ45𝑚𝑖𝑛 < 𝑛𝑡𝑙𝑎𝑝 < 45𝑚𝑖𝑛 + 𝑡𝑙𝑎𝑝                     (54) 

where 𝑛  is the total number of laps, and if pitstop strategy is adopted, the problem can be 
transferred to:  𝑀𝑖𝑛 𝑓 = 1𝑛1 + 𝑛2 

 𝑠. 𝑡. { 𝑛1𝐸𝑝1 + 𝑛2𝐸𝑝2 < 51𝑘𝑊ℎ + 4𝑘𝑊ℎ45𝑚𝑖𝑛 < 𝑛1𝑡𝑙𝑎𝑝1 + 𝑛2𝑡𝑙𝑎𝑝2 + 30𝑠 < 45𝑚𝑖𝑛 + 𝑡𝑙𝑎𝑝2          (55) 

 

The subscript 1 and 2 denotes the value before and after the fast-charge pitstop respectively. For the 
non-pitstop problem, the solution is 𝑛 = 34  and lap time of 79.62s, while for the fast-charge 
strategy, the solution is also 𝑛1 + 𝑛2 = 34  and with slight improvement of lap time to 78.82s. 
However, the cost of 30 seconds of time is too much that it turns out the total race time with fast-
charge pitstop is 2.8s longer which suggests that the fast-charging is not favorable in this simplified 
case at Merrakesh track. It could be potentially favorable if the charging time can be reduced by 
such 2.8s or perhaps on another track. And it should also be noted that such fast charging might 
generate huge amount of heat which might ruin the thermal management. Therefore the worthiness 
of a fast-charging pitstop is still under investigation. This is not the main concern of this study 
therefore is not further discussed. 

5. Conclusions 

The management of energy and thermal behavior of a Formula-E car battery was studied as one of 
the most crucial parts of formula-E race strategies. Optimal control techniques were applied to 



obtain optimal control signals of steering, acceleration, braking, and regeneration under different 
energy and thermal restrictions. A battery thermal model was used to give an insight into the details 
of heat generation during a race. The results demonstrated how the control inputs should be adapted 
to various restrictions in real-time. The lift and coasting technique was investigated as the most 
time-efficient way to manage the energy. For thermal constraints, smooth drive torque decrease was 
concluded to be the most effective way for reducing battery temperature rise. Finally, a perspective 
study of the future Gen 3 formula-E car was presented and the simulation results were compared to 
the current Gen 2 car. It was concluded that whilst Gen 3 is more energy-efficient (10% to 30% less 
energy consumption) by having energy harvest from the front axle, the cooling system need to be 
more powerful to overcome the potential heating risk(60% more heat generation). 
For the first time, in this study, 1) the effect of combined energy and thermal constraints to lap time 
has been studied; 2) the impact of introducing front axle energy harvesting on performance was 
investigated; 3) a novel effective technique to reduce temperature rise has been found 
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Appendix  

     



Figure A1                                Figure A2 

     

Figure A3                                 Figure A4 

Figure A1 is the ‘Combined heat transfer coefficient ℎ𝑐𝑜𝑚𝑏(𝑉) 𝐴𝑏’ appeared in equation 50 

Figure A2 is the ‘Entropy coefficient (𝑑𝑈𝑜𝑐𝑏𝑑𝑇𝑏 )(𝑆𝑂𝐶) ‘ appeared in equation46 

Figure A3 is the ‘Open circuit voltage 𝑈𝑜𝑐_𝑏’ profile of the battery package in equation 44 

Figure A4 is the ‘Combined resistance  𝑅(𝑆𝑂𝐶)’ appeared in equation 46 

The table below shows other information in the model for result reproduction 

Table A1 

Parameters Value 

Battery cell number 209 

Battery mass 317 kg 

Battery specific heat capacity 1015 J/(kg· K) 
Coolant mass 20 kg 

Coolant specific heat capacity 1800 J/(kg· K) 
 


